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New fundamental insights into capacitance
modeling of laterally non-uniform MOS devices

A.C.T. Aarts, R. van der Hout, J.C.J. Paasschens, A.J. Scholten, M.B. Willemsen, and
D.B.M. Klaassen, Member, IEEE

Abstract— In compact transistor modeling for circuit simula-
tion, the capacitances of conventional MOS devices are commonly
determined as the derivatives of terminal charges, which in
their turn are obtained from the so-called Ward-Dutton charge
partitioning scheme. For devices with a laterally non-uniform
channel doping profile, however, it is shown in this paper that
no terminal charges exist from which the capacitances can be
derived. Instead, for such devices a new model is presented for
the capacitances themselves. Furthermore, a method is given to
incorporate such a capacitance model into circuit simulators,
which are traditionally based on terminal charge models. Com-
parison with 2-D device simulations and a segmentation model
shows that for a constant mobility the new capacitance model
provides an accurate description for a MOSFET with a laterally
diffused channel doping profile. Through a comparison with
high-frequency measurements the agreement between model and
experimental results is discussed.

Index Terms— Diffused Doping, LDMOS, Modeling, Charge
Partitioning, Integrated Circuit Design.

I. INTRODUCTION

LDMOS devices are well-known examples of MOS de-
vices with a laterally non-uniform channel doping pro-

file. Accurate modeling of the capacitances in high-voltage
LDMOS devices is a prerequisite for integrated RF-design of,
for instance, switched-mode power supplies and power ampli-
fiers. For high-voltage devices often the sub-circuit model ap-
proach is followed, but the effect of the lateral non-uniformity
in the channel is usually neglected [1]-[4]. In the sub-circuit
models of [5] and [6], the lateral non-uniformity is taken into
account, but results have been limited to the dc-behavior and
its conductances. For capacitance modeling, efforts have been
taken to incorporate the lateral channel non-uniformity in a
terminal charge model [7]-[9]. However, we have shown [10]
that incorporation of the lateral channel non-uniformity via a
terminal charge model is incorrect. Instead, we have developed
a new capacitance model, which takes into account the lateral
non-uniformity. Furthermore, we have provided a method to
incorporate such a capacitance model into circuit simulators
which are traditionally based on terminal charge models.
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In this paper, the results of [10] are elaborated, and the new
capacitance model is derived in detail. Furthermore, we show
additional, experimental results by comparing this capacitance
model with high-frequency measurements performed on a
MOSFET with a laterally diffused channel doping profile.
In Sec. II the typical capacitance behavior of laterally non-
uniform MOS devices, like an LDMOS transistor, is shown,
and in Sec. III the charge and capacitance modeling of
uniform MOSFETs is recalled. In Sec. IV it is shown that a
terminal charge model does not exist for the description of the
capacitances of laterally non-uniform devices. Next, in Sec. V
the new capacitance model for laterally non-uniform MOS
devices is derived. In Sec. VI the method for incorporation
of the capacitance model into a circuit simulator (traditionally
based on charge models) is demonstrated. Finally, in Sec. VII
the new capacitance model is verified by comparison with
high-frequency measurements, 2-D device simulations, and
circuit simulations using a segmentation approach [11].

II. LDMOS DEVICES

In Fig. 1 a cross-section of an LDMOS device is given.
Due to diffusion from the source-side, the p-well doping of
the LDMOS device decreases from source (S) to drain (D). In
this way, a laterally non-uniform inversion channel region is
formed with its doping concentration NA(x) being dependent
on the lateral position x along the channel. The n−-drift region
is needed to withstand high voltages applied between source
and drain. In the specific LDMOS device of Fig. 1, the gate (G)
extends over the drift region. In Fig. 2 a typical capacitance
measurement on such an LDMOS device is shown, together
with the simulation result of a sub-circuit model comprising
MOS Model 11 (MM11; [12]) for the channel region and MOS
Model 31 (MM31; [12]) for the drift region. Notice that the
oxide of an LDMOS device is sufficiently thick to have no
gate leakage.

B S D

n− drift region

n
p+ n+ +

G

diffused p−well

NA(x )

oxide
L

Fig. 1. Cross-section of an LDMOS device with a diffused p-well MOS
channel region and an n−-type drift region.



Fig. 2. Drain-gate capacitance of an LDMOS device at VDS = 0 V:
symbols represent measurements and the solid line represents sub-circuit
model simulations. The device has a total oxide capacitance of 180fF and
a threshold voltage of 2.8 V. Note that the threshold voltage in the sub-circuit
model is dictated by the I-V characteristics, which is determined by the
threshold voltage of the channel region at the source side.

The discrepancy between measurements and the sub-circuit
model seen in Fig. 2 around the threshold voltage, triggered
device simulations of a MOSFET with a non-uniform channel
doping profile but without a drift region. For the non-uniform
channel doping profile an exponential decay according to

NA(x) = NA0 exp
[
−D

( x
L

)2
]

(1)

is taken, where NA0 represents the doping concentration at
the source (x = 0), and D (D > 0) represents the decay
towards the drain (x = L). For such a MOSFET, the drain-gate
capacitance obtained by device simulations using MEDICI is
plotted in Fig. 3. In this figure we observe that a standard
MOS model, like MM11, is not capable of describing the
typical capacitance behavior of a laterally non-uniform MOS
device. By comparison with a segmentation model [11] using
20 segments each modeled by MM11 with parameters varying
according to the doping profile, we conclude that the peak
in the capacitance behavior is caused by the non-uniform
channel doping profile. Although the capacitance behavior of
the laterally non-uniform device is accurately described by
the segmentation model, the use of such model with many
segments has been found to be limited because of the chance of
non-convergence during simulation if no additional measures
are taken.

III. LATERALLY UNIFORM MOSFETS

Before turning to laterally non-uniform MOSFETs, we
recall the charge- and capacitance modeling of uniform MOS-
FETs (see also [10]). As shown by [13], the total current I i

through terminal i of a uniform MOSFET is given by

Ii(t) = IT(t) +
dQi

dt
, (2)

where IT is the transport current and Qi is the terminal charge
in terms of the terminal voltages Vj . The source- and drain
charge are obtained from the inversion charge using the well-
known Ward-Dutton charge partitioning scheme. From the

Fig. 3. Drain-gate capacitance of a MOSFET (Cox = 0.86 fF) with a
laterally non-uniform channel doping profile (D = 2.78) at VDS = 0 V:
symbols represent device simulations with MEDICI; the dashed line represents
a compact model simulation with MM11; the solid line represents a circuit
simulation with 20 segments each modeled by MM11 with parameters varying
according to the doping profile (see also [11]).

terminal charges Qi the capacitances Cij , which are defined
in terms of the Y -parameters as Cij ≡ Im [Yij ] /(2πf), can
be written as

Cij = (2δij − 1)
∂Qi

∂Vj
, i, j = S,G,D,B (3)

(see also [16]), where δij is the Kronecker delta, i.e. δij = 1,
i = j and δij = 0, i �= j. Thus, the existence of a terminal
charge Qi implies

(2δik − 1)
∂Cij

∂Vk
= (2δij − 1)

∂Cik

∂Vj
(4)

and the integral qc, i of the charging current through terminal i,
given by

qc,i(t) ≡
∫ t

0

[Ii(τ) − IT(τ)] dτ, (5)

equals zero for a closed voltage cycle in time, i.e.
qc, i(tcycle) = 0, where tcycle is the period of the cycle.

In Fig. 4 we have plotted the integral of the charging
current through the drain-, gate-, source- and bulk terminal
of a uniform MOSFET, described by MM11 (without gate
leakage). We observe that indeed all the integrals are exactly
equal to zero after a closed voltage cycle in time.

IV. LATERALLY NON-UNIFORM MOSFETS

We have tested both implications (4) and (5) of the existence
of terminal charges for a laterally non-uniform MOSFET,
using device simulations as well as circuit simulations with
the segmentation approach mentioned above (see also [10]).
Again, we do not consider gate leakage, since LDMOS devices
have an oxide that is sufficiently thick. In Fig. 5, we observe
that ∂CDG/∂VD �= −∂CDD/∂VG, which implies that (4)
does not hold for the drain-related capacitances. In Fig. 6, on
the other hand, we observe that the integrals of the charging
current for several closed voltage cycles in time through the
bulk- and gate terminal exactly equal zero. The integrals of



Fig. 4. Integral of the charging current through the drain- source-, gate-
and bulk terminal of a uniform MOSFET, described by MM11, for 50 closed
voltage cycles in time according to the inset (tcycle = 0.4 µs).

Fig. 5. Partial derivatives of drain-related capacitances for a laterally
non-uniform MOSFET with a diffused doping profile according to (1) with
D = 2.78, at VDS = 0.5 V.

the charging current through the drain- and source terminal,
however, are not equal to zero.

Thus, (4) and (5) do not hold for the drain- and source
terminal of a laterally non-uniform MOSFET. As a result, no
terminal drain- and source charge exists for these devices.
A terminal gate- and bulk charge, on the other hand, does
exist (provided that there are no gate leakage currents). The
above is in line with the general observations on non-linear
dissipative systems [14] and with the terminal charge conserva-
tion constraints in [15]. Consequently, for a compact model of
laterally non-uniform MOSFETs, instead of a terminal drain-
and source charge, expressions for the capacitances have to be
derived directly.

V. NEW CAPACITANCE MODEL FOR LATERALLY

NON-UNIFORM DEVICES

The electron drain-to-source current I = I(x, t) at position
x and time t is given by the transport equation and the
continuity equation, according to (see [16])⎧⎪⎨

⎪⎩
I = −W μQinv

∂V

∂x
,

∂I

∂x
= W

∂Qinv

∂t
,

(6)

Fig. 6. Integral of the charging current through the drain- source-, gate-
and bulk terminal of a laterally non-uniform MOSFET with a diffused
doping profile according to (1) with D = 2.78, for 60 closed voltage cycles
in time according to the inset (tcycle = 0.4 µs), obtained using the
segmentation model.

valid for 0 < x < L, where W is the width of the device, L is
its length, μ the electron mobility, Qinv the inversion charge
per unit area, and V = V (x, t) is the quasi-Fermi potential.
With the source terminal positioned at x = 0 and the drain
terminal at x = L, the boundary conditions for the quasi-Fermi
potential are

V (0, t) = VSB(t), V (L, t) = VDB(t). (7)

Under the assumption of no leakage currents, the gate current
IG = IG(t) is given by

IG = −W d
dt

{∫ L

0

Qtot dx

}
, (8)

where Qtot = Qinv + Qbulk represents the total charge per
unit area underneath the oxide, with Qbulk the sum of the
depletion- and accumulation charge per unit area. In the
model a charge-sheet approach based on surface-potential
formulations is taken. The surface potential ψs is determined in
terms of the gate-bulk bias VGB and the quasi-Fermi potential
V from Poisson’s equation and Gauss’ law according to [17].

In case the MOSFET has a diffused doping profile, the
doping concentration NA is dependent on the lateral position
x along the channel; see (1). As a result, the inversion charge
and the total charge can be written as

Qinv = Qinv (V, VGB, x) , Qtot = Qtot (V, VGB, x) , (9)

i.e., with an explicit dependence on the lateral position x. For
reasons of simplicity, we assume that the electron mobility
does not depend on the doping concentration, and we neglect
mobility reduction due to the longitudinal- and transversal
electrical field. We remark that the approach can be extended
to also include the mobility effects. For instance, the electron
mobility can be taken dependent on the doping concentration
NA [18], so that it also becomes explicitly dependent on the
lateral position x. Furthermore, mobility reduction due to the
electrical fields can be incorporated through a dependence on
the effective, global longitudinal- and transversal electrical
field [12], so that it becomes explicitly dependent on the
terminal voltages. Subsequently, the small-signal analysis for



determination of the capacitances can be elaborated analo-
gously as has been done here for a uniform and constant
mobility.

To determine the capacitances, we apply small-signal volt-
ages to the terminals of the device according to

VGB(t) = V GB + vGB ejωt,

VDB(t) = V DB + vDB ejωt,

VSB(t) = V SB + vSB ejωt,

(10)

for given stationary gate-bulk bias V GB, drain-bulk bias V DB

and source-bulk bias V SB, and small-signal amplitudes vGB,
vDB and vSB. Here, ω = 2πf is the angular frequency. Due to
the perturbation, the drain-to-source current, the gate current
and the quasi-Fermi potential are perturbed according to

I(x, t) = I(x) + [i1(x) + j ω i2(x)] ejωt,

V (x, t) = V (x) + [v1(x) + j ω v2(x)] ejωt,

iG(t) = IG + [iG1 + j ω iG2] ejωt,

(11)

where the variables with a bar correspond to the dc-solution.
This dc-solution is given by⎧⎪⎪⎨

⎪⎪⎩
I = −W μQinv

(
V (x), V GB, x

) dV (x)
dx

,

dI(x)
dx

= 0,

(12)

with boundary conditions V (0) = V SB and V (L) = V DB,
and the dc-gate current equal to zero, i.e.

IG = 0. (13)

Substitution of (11) into (6) and (8) yields, after subtraction of
the dc-solution and under neglect of the higher-order terms in
v1, v2 and vGB, the following 6 equations for the 6 unknowns
i1, i2, v1 , v2, iG1 and iG2,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1(x) = −W μ

[
Qinv

(
V (x), V GB, x

) dv1(x)
dx

+ v1(x)
∂Qinv

∂V

(
V (x), V GB, x

) dV (x)
dx

+ vGB
∂Qinv

∂VGB

(
V (x), V GB, x

) dV (x)
dx

]
,

di1(x)
dx

= 0,

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i2(x) = −W μ

[
Qinv

(
V (x), V GB, x

) dv2(x)
dx

+ v2(x)
∂Qinv

∂V

(
V (x), V GB, x

) dV (x)
dx

]
,

di2(x)
dx

= W

[
v1(x)

∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)]
.

(15)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iG1 = 0,

iG2 = −W
∫ L

0

[
v1(x)

∂Qtot

∂V

(
V (x), V GB, x

)
+ vGB

∂Qtot

∂VGB

(
V (x), V GB, x

)]
dx.

(16)

Notice that O(ω2)-terms have been neglected, which corre-
sponds to the quasi-static approximation. Thus, the small-
signal currents are dependent on the dc-solution. The boundary
condition (7) transfers into

v1(0) = vSB, v1(L) = vDB,

v2(0) = 0, v2(L) = 0.
(17)

In the Appendix the solution of (14)-(16) for i 1, i2, v1 , v2,
iG1 and iG2, under boundary condition (17) is given.

The real part i1 of the small-signal current represents the
conductances. From the imaginary parts of the small-signal
currents, the capacitances are determined, as follows:
For CiG, i = D,G, S,B: vDB = vSB = 0:

CDG = − i2(L)
vGB

, CSG =
i2(0)
vGB

, CGG =
iG2

vGB
,

CBG = CGG − CDG − CSG.

(18)

For CiD, i = D,G, S,B: vGB = vSB = 0

CDD =
i2(L)
vDB

, CSD =
i2(0)
vDB

, CGD = − iG2

vDB
,

CBD = CDD − CSD − CGD

(19)

For CiS, i = D,G, S,B: vGB = vDB = 0

CDS = − i2(L)
vSB

, CSS = − i2(0)
vSB

, CGS = − iG2

vSB
,

CBS = CSS − CDS − CGS

(20)
For CiB, i = D,G, S,B:

CDB = CDD − CDG − CDS, CSB = CSS − CSG − CSD,

CGB = CGG − CGD − CGS, CBB = CBS + CBG + CBD.
(21)

Finally, we show how the lateral non-uniformity influences
the capacitances in comparison to those obtained via the
classical Ward-Dutton charge partitioning scheme. To that end,
we consider, without loss of generality, a perturbation at the
gate terminal. Since the perturbation is in time, the term
between square brackets in (32) satisfies

v1(x)
∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)
=

d
d ej ω t

{Qinv (V (x, t), VGB(t), x)}

= vGB
d

dVGB(t)
{Qinv (V (x, t), VGB(t), x)} ,

(22)
under neglect of higher-order terms. Substitution of (22)
into (32), with the time-dependent potentials replaced by the
stationary ones, yields by use of (18) for the source- and drain



related capacitances

CSG =
W μ

L

∫ L

0

v2(x)
vGB

∂Qinv

∂x

(
V dc, V GB, x

)
dx

− d
dV GB

{
W

∫ L

0

(
1 − x

L

)
Qinv

(
V dc, V GB, x

)
dx

}

CDG = −W μ

L

∫ L

0

v2(x)
vGB

∂Qinv

∂x

(
V dc, V GB, x

)
dx

− d
dV GB

{
W

∫ L

0

x

L
Qinv

(
V dc, V GB, x

)
dx

}
,

(23)
where we have written V dc = V dc

(
x, V GB

)
= V (x) to refer

to the dependency of V (x) on V GB. Since for a laterally non-
uniform MOS device ∂Qinv/∂x �= 0, the first term in the
right-hand side of (23) thus represents the correction to the
capacitances obtained from the classical Ward-Dutton charge
partitioning scheme.

To determine the gate- and bulk related capacitances for a
perturbation at the gate terminal, we notice that (22) also holds
for the depletion and accumulation charge Qbulk as well as for
the total charge Qtot. As a result, by use of (16) and (18) we
obtain for the gate- and bulk related capacitances

CGG =
d

dV GB

{
−W

∫ L

0

Qtot

(
V dc, V GB, x

)
dx

}
,

CBG = − d
dV GB

{
W

∫ L

0

Qbulk

(
V dc, V GB, x

)
dx

}
.

(24)
Thus, the terms between brackets in (24) are the terminal gate-
and bulk charge QG and QB, respectively, from which the
corresponding capacitances can be derived. Notice that the
lateral non-uniformity is included via the dependence on the
lateral position.

VI. INCORPORATION OF A CAPACITANCE MODEL INTO

CIRCUIT SIMULATORS

Conventional circuit simulators are based on terminal charge
models. However, in Sec. IV we have shown that for laterally
non-uniform MOS devices no terminal charge model exists.
Therefore, we have developed a method to implement the
capacitance model directly into these circuit simulators; see
Fig. 7. In [10] we have shown for a three-terminal device
with a laterally diffused doping profile that this method indeed
yields for a closed voltage cycle in time a non-zero charging
current through the source- and drain terminal and a zero
charging current through the gate terminal. Furthermore, we
have shown in [10] that this method yields exactly the same
results as a circuit simulation using the segmentation approach.
Thus, capacitance models can be successfully implemented
into conventional charge-based circuit simulators.

VII. RESULTS

In this section the capacitances calculated from the model
equations of Sec. V are shown in comparison to those obtained
from high-frequency measurements (Figs. 8 and 9), 2-D device

G
=i −C

SS
i1+C

SD
i2+C i =CDS i1−CDDi2+C

S D

i = C i1+ C i2
−C i

i1=
dVSG

d t i2=
dVDG
d t

V
i1

SGV=q

i i
2

i3=
dV

DG

d t

B

SB DB

BS BD

BB 3

q=q

3

BG

i
3 i 3

BGV=

Fig. 7. Equivalent circuit for a MOS device illustrating the method to
implement a capacitance model into circuit simulators.

simulations (Figs. 10 and 11), and circuit simulations using
the segmentation approach (Figs. 12 and 13). For more plots
showing the comparison with 2-D device simulations and
circuit simulations using the segmentation approach we refer
to [10]. In the model, a diffused doping profile according to
(1) is taken. In this way, D = 0 corresponds to the uniform
case, while D > 0 represents a device with a laterally diffused
doping profile decreasing from source to drain.

Fig. 8. Measured (symbols) gate-gate capacitance of a MOSFET with a
diffused doping profile, for VDS = 0 and 2 V. The dashed line represents the
simulated capacitance of a uniform MOSFET (D = 0), using the new model.

In Figs. 8 and 9 measurements are shown of a conventional
MOSFET (thus without drift region) but with a diffused doping
profile. The measurements were performed on dedicated test
structures, by use of an S-parameter analyzer at a frequency
of f = 1 GHz. The device has an oxide thickness of 40 nm,
and a threshold voltage of about 3 V. In Fig. 8 we observe
that the model with a uniform doping (D = 0) does not
adequately predict the measured capacitance values. The plot
reveals that especially in depletion the diffused doping profile
has a strong impact on these capacitance values. In Fig. 9, on
the other hand, we observe that the new model for a laterally



Fig. 9. Comparison of the gate-gate capacitance of a MOSFET with a
diffused doping profile, between measurements (symbols) and the new model
(solid lines) with D = 5.

non-uniform MOSFET with D = 5 accurately describes the
effect of the diffused doping profile. In strong inversion for
VDS = 2 V, however, the model over-estimates the measured
capacitance. Possible reasons are the neglect of mobility
reduction due to the longitudinal and transversal fields, and
the assumption that the electron mobility is independent of
the doping concentration.

To omit the mobility effects, we compare the new capaci-
tance model with 2D-device simulations (using MEDICI) in
which we take a constant and uniform mobility. In Figs. 10
and 11 we observe that the capacitances obtained from the
new model compare very well to the ones obtained from the
device simulations, for both a laterally non-uniform device
and a uniform device. Furthermore, in Fig. 10 the influence of
the diffused doping profile is clearly seen: With the maximum
value of CDG equal to 0.5 × Cox for the uniform device, but
equal to 0.7 × Cox for the laterally non-uniform device, an
increase of about 40% in maximum drain-gate capacitance is
obtained due to the lateral non-uniformity.

Fig. 10. Comparison of the normalized drain-gate capacitance between
MEDICI device simulations (symbols) and the new model (solid lines),
for VDS = 0 V. Results are shown for a laterally diffused doping profile
(D = 2.78) and a uniform doping profile (D = 0).

To exclude possible 2D-effects and make a one-to-one
comparison, we finally compare the new capacitance model

Fig. 11. Normalised gate-gate capacitance of the new model (solid lines)
compared to device simulations (symbols), for VDS = 0, 1, 2 and 3 V. The
device has a laterally diffused doping profile with D = 2.78.

with circuit simulations using the segmentation approach. In
Figs. 12 and 13 we observe that the capacitances obtained
from the new model compare very well to the ones obtained
from the segmentation model, for both a laterally non-uniform
device and a uniform device. Furthermore, in Fig. 12 the
influence of the diffused doping profile is clearly seen: The
lateral non-uniformity causes the maximum value of CDD to
exceed above the total oxide capacitance, up to a value of
1.3 × Cox.

Fig. 12. Normalised drain-drain capacitance for VDS = 0 V, obtained by
the new model (solid lines) in comparison to MOS Model 11 for the uniform
case (D = 0), and to the segmentation model for a laterally diffused doping
profile (D = 2.78), both represented by the symbols.

VIII. CONCLUSIONS

In this paper, we have shown that laterally non-uniform
channel doping profiles in, for instance, LDMOS devices lead
to a capacitance behavior that is fundamentally different from
that of MOSFETs with uniform channels. Furthermore, we
have demonstrated that for these devices as a consequence
of the lateral non-uniformity, no terminal source- and drain
charge exists. Therefore, we have derived for MOS devices
with a laterally non-uniform channel doping profile a ca-
pacitance model. This model is based on surface-potential



Fig. 13. Normalised drain-gate capacitance of the new model (solid lines)
compared to segmentation model (symbols), for a diffused doping profile
according to (1) with D = 2.78.

formulations. Next, we have presented a method to implement
the capacitance model into standard charge-based circuit simu-
lators. Finally, a comparison with 2-D device simulations and a
segmentation model demonstrates that for a constant mobility
the typical capacitance behavior of laterally non-uniform MOS
devices is accurately predicted by the capacitance model.
A comparison with high-frequency measurements shows for
low drain-source bias conditions a good agreement in all
regimes ranging from accumulation and depletion to strong
inversion. At elevated drain-source voltages, however, the
model agrees less in strong inversion, which is is ascribed to
the simplifications made in the model for the electron mobility.

APPENDIX

The solution of (14) for v1 and i1 is given by

i1(x) =
W μC′

ox

L
C,

v1(x) = eΓ(x) (vSB + C T (x) − vGB S(x)) ,
(25)

where the functions Γ, T and S are given by

Γ(x) = −
∫ x

0

∂Qinv
∂V

(
V (s), V GB, s

)
Qinv

(
V (s), V GB, s

) dV (s)
ds

ds,

T (x) = − C′
ox

L

∫ x

0

e−Γ(s)

Qinv

(
V (s), V GB, s

) ds,

S(x) =
∫ x

0

∂Qinv
∂VGB

(
V (s), V GB, s

)
Qinv

(
V (s), V GB, s

) dV (s)
ds

e−Γ(s) ds.

(26)
and the constant C is determined from the boundary condition
v1(L) = vDB, i.e.

C =
1

T (L)

(
vDB e−Γ(L) − vSB + vGB S(L)

)
. (27)

The solution of (15) for v2 is given by

v2(x) = eΓ(x) u2(x), (28)

where u2, under boundary condition u2(0) = 0, is given by

− C′
ox

L
u2(x) = Qinv

(
V (0), V GB, 0

)
u′2(0)T (x)

− T (x)
μ

∫ x

0

[
v1(s)

∂Qinv

∂V

(
V (s), V GB, s

)
+ vGB

∂Qinv

∂VGB

(
V (s), V GB, s

)] (
1 − T (s)

T (x)

)
ds.

(29)

The value u′
2(0) is determined from the boundary condition

u2(L) = 0. Thus, by combining (25)-(29) with (15) and (16),
we have determined the small-signal quasi-Fermi potentials v1

and v2, and the small-signal currents i1, i2, iG1 and iG2.
For the derivation of the capacitances we determine the

imaginary parts i2(0) and i2(L) of the small-signal currents
at the source- and drain side. To that end, we integrate the
second equation of (15) twice with respect to x, and obtain

i2(0) =
1
L

∫ L

0

i2(x)dx

−W

∫ L

0

(
1 − x

L

) [
v1(x)

∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)]
dx,

i2(L) =
1
L

∫ L

0

i2(x)dx

+W

∫ L

0

x

L

[
v1(x)

∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)]
dx.

(30)

Subsequently, with the first equation of (15) rewritten as

i2(x) = −W μ

[
d
dx

{
v2(x)Qinv

(
V (x), V GB, x

)}
−v2(x)∂Qinv

∂x

(
V (x), V GB, x

)]
,

(31)

substitution of (31) into (30) yields, under the boundary
condition v2(0) = v2(L) = 0,

i2(0) =
W μ

L

∫ L

0

v2(x)
∂Qinv

∂x

(
V (x), V GB, x

)
dx

−W

∫ L

0

(
1 − x

L

) [
v1(x)

∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)]
dx

i2(L) =
W μ

L

∫ L

0

v2(x)
∂Qinv

∂x

(
V (x), V GB, x

)
dx

+W

∫ L

0

x

L

[
v1(x)

∂Qinv

∂V

(
V (x), V GB, x

)
+ vGB

∂Qinv

∂VGB

(
V (x), V GB, x

)]
dx.

(32)

Notice that in a laterally non-uniform MOS device
∂Qinv/∂x �= 0, so that the first terms of (32) do not vanish.
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