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Abstract— This paper presents a novel closed-form solution for
the theoretical calculation of harmonic clipping contours when
an arbitrary number of harmonics is considered. The clipping
contours can be used to design the loads of a high-frequency
power device in order to avoid drain current clipping, and
hence preventing strong nonlinear effects. For the first time the
predicted second harmonic contours are validated thoroughly by
means of experimental characterization of GaN HEMT devices.
The measured contours result in good agreement with the theory.
Moreover, the effect of third harmonic load tuning is also assessed
and verified for the first time. These results prove that the
clipping contours can be used as a tool for the systematic design
of low-distortion power amplifiers.

Index Terms— Field-effect transistors, high-efficiency ampli-
fiers, power amplifiers (PAs).

I. INTRODUCTION

T
HE evolution of wireless digital communications has

increased the need for high-frequency power ampli-

fiers (PAs) characterized by low distortion. At the same time,

maximizing the PA efficiency is another critical design target,

since the PA is one of the most power hungry components in

a wireless transmitter.

Once the active device is chosen according to several

considerations, e.g., frequency band, output power, or cost,

then the bias point and the harmonic terminations can be

tuned to optimize the tradeoff between efficiency, output

power, and linearity. The class AB PA is probably the most

common example of an efficient and linear PA, and relies on

a purely resistive fundamental load and short-circuited higher

harmonics. However, other solutions have been proposed in

the literature to improve PA performance by suitable design of

harmonic terminations [1]–[6]. The work in [7] demonstrated

that class B (or class AB) is in fact a particular case in a

continuum of high-efficiency linear modes in PAs, called the

B/J continuum, all characterized as having the same maximum

output power and efficiency. This “design space” can be

exploited to design wideband PAs, overcoming the purely

resistive fundamental load assumption of class B that can be

difficult to achieve in high-frequency PAs due to the device’s

Manuscript received December 12, 2016; revised February 13, 2017;
accepted March 20, 2017. Date of publication May 9, 2017; date of current
version October 4, 2017. This project was supported by the European Union’s
Horizon 2020 Research and Innovation Programme under Marie Skłodowska-
Curie Grant 654987. (Corresponding author: Roberto Quaglia.)

The authors are with the Centre for High Frequency Engineering, Cardiff
University, Cardiff CF24 3AA, U.K. (e-mail: quagliar@cardiff.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2017.2687900

reactive elements. To allow for this relaxation of fundamental

loading condition, the second harmonic load must be moved

from a short circuit to specific reactive loads in order to avoid

knee voltage violation. Other classes of continuous modes have

since evolved, based on higher harmonics or different device

operation [8]–[11].

The work in [12] identified a possible issue when designing

a continuous mode PA: in broadband design it becomes

difficult to maintain the second harmonic on a purely reactive

load frequency trajectory. This nonideal load condition, if not

properly dealt with, can cause waveform clipping and, as a

consequence, high distortion. Experimental data showed that it

is possible to identify second harmonic contours that separate

the “clipping” loads from the “non-clipping” loads, and that

the loads lying on this contour are leading in fact to a drain

voltage waveform that “grazes” the knee voltage.

The introduced clipping contours can be used as a powerful

tool to compromise systematically the power/efficiency per-

formance (determined by the fundamental load), the linearity,

and the feasibility of the matching networks in a broadband PA

design. A mathematical formulation of the clipping contours,

in the case of fundamental and second harmonic, has been

given in [13]. In particular, it is shown that, by reducing the

intrinsic fundamental load below the nominal optimum Ropt,

the second harmonic clipping contour enters the passive Smith

Chart domain, thus allowing for the use of nonpurely reac-

tive second harmonic loads while maintaining an unclipped

waveform. Another formulation of the clipping contours for

fundamental and second harmonic has been introduced in [14],

and described as a resistive/reactive class J mode.

In this paper, a new formulation for the clipping contours is

introduced, which also allows for the extension to an arbitrary

number of harmonics. In particular, it is shown how the third

harmonic can be used to move clipping contours, confirming

the results of [15], where a numerical method was used to cal-

culate higher harmonics clipping contours. The previous work

in [13] provided an experimental observation of the effects of

violating clipping contours through the linearity measurements

on a prototype PA. In this paper, for the first time, the clipping

contours are experimentally verified by means of systematic

harmonic source– and load–pull measurements, including the

validation of the beneficial effects of third harmonic load

tuning. The latter step is of great importance from a PA

designer’s perspective because it validates a condition that per-

mits an increase to the second harmonic load “design space”

without reducing the output power. This methodology is

applicable to linear PAs, while it might not be suitable where
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significant compression levels must be tolerated as in saturated

PAs for very high efficiency.

This paper is organized as follows. Section II shows the new

formulation of the clipping contours, for the second harmonic

and for an arbitrary number of harmonics. Section III describes

the experimental characterization campaign, comparing the

measurement results with the proposed theory. Finally, in

Section IV some conclusions are drawn.

II. CLOSED-FORM SOLUTION

Clipping contours are defined as the region of loads, at the

kth harmonic, which provide a zero-grazing voltage waveform

for given input drive and other specified harmonic loads. In a

real device, zero can be substituted by Vmin, a value related to

the knee voltage, which represents the boundary between the

quasi-linear and the strong nonlinear behavior of the device.

To simplify the representation, the voltage waveform can be

normalized by V0 = VDD − Vmin, where VDD is the drain bias

voltage. By setting the normalized bias at 1, a zero-grazing

condition can still be considered.

Drain current can be expressed in terms of Fourier series.

Assuming unilateral device behavior, with constant-piecewise

transconductance, the fixed input drive translates into a rec-

tified sinusoidal drain current waveform with constant con-

duction angle, whose Fourier components can be calculated

in closed form [16]. In particular, only cosine terms will be

present, and the current can be expressed as

I (θ) = I0 +

∞
∑

m=1

Im cos(mθ). (1)

Since all current harmonic components are known, all but the

kth harmonic voltage components are known. As a conse-

quence, the clipping contours can be derived by finding the

family of voltage waveforms that graze zero and contain the

known harmonic components. The approach used in [13] for

the definition of this voltage waveform family is based on the

factorization of the voltage waveform, typical of continuous

modes. In this paper, a new formulation is proposed that can

be extended to higher harmonics.

A. New Formulation of Second Harmonic Clipping Contours

The normalized voltage waveform can be written as

v(θ) = 1 − v1r cos(θ) − v1q sin(θ) +

− v2r cos(2θ) − v2q sin(2θ). (2)

The definition of zero-grazing condition is mathematically

expressed as [7]
{

v(θ) = 0

dv(θ)/dθ = 0
(3)

that deriving (2) becomes


















1 − v1r cos(θ) − v1q sin(θ)+

− v2r cos(2θ) − v2q sin(2θ) = 0

v1r sin(θ) − v1q cos(θ)

+ 2v2r sin(2θ) − 2v2q cos(2θ) = 0.

(4)

The angle θ can be substituted by an independent variable φ

swept in the range [−π; π[. If either the fundamental or

the second harmonic voltage is known, then the second or

fundamental voltage can be derived as the system solution.

A solution will be found for each φ, and will correspond to

a v(θ) with a minimum in θ = φ.

For a known second harmonic load, v2r , v2q are known, and

the system of (4) can be rewritten as
{

v1r cos(φ) + v1q sin(φ) = 1 − A

v1r sin(φ) − v1q cos(φ) = B
(5)

where

A = v2r cos(2φ) + v2q sin(2φ)

B = 2(−v2r sin(2φ) + v2q cos(2φ)). (6)

With some simple calculations, the system is solved as
{

v1r = (1 − A) cos(φ) + B sin(φ)

v1q = (1 − A) sin(φ) − B cos(φ).
(7)

On the other hand, for a known fundamental load,

v1r and v1q are known, and the system is solved as
{

v2r = (1 − A) cos(2φ) + B sin(2φ)

v2q = (1 − A) sin(2φ) − B cos(2φ)
(8)

where
{

A = v1r cos(φ) + v1q sin(φ)

B = (−v1r sin(φ) + v1q cos(φ))/2.
(9)

In both the cases, to plot the contours on the Smith chart,

the obtained solutions in terms of voltage can be translated

to impedances by denormalizing the voltage components and

applying Ohm’s law (the current components are known).

B. Higher Harmonics Clipping Contours

The normalized voltage waveform is written as

v(θ) = 1 −

N
∑

n=1

(vnr cos(nθ) + vnq sin(nθ)) (10)

and its derivative is

dv(θ)/dθ =

N
∑

n=1

n(vnr sin(nθ) − vnq cos(nθ)). (11)

Also in this case, all harmonic voltages will be known,

except the ones at the kth harmonic. Repeating the calculations

done for the second harmonic case, we find






vkr = (1 − A) cos(kφ) + B sin(kφ)

vkq = (1 − A) sin(kφ) − B cos(kφ)
(12)

where

A =

N
∑

n=1,n �=k

(vnr cos(nφ) + vnq sin(nφ))

B =

N
∑

n=1,n �=k

n(−vnr sin(nφ) + vnq sin(nφ))/k. (13)
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Fig. 1. Voltage drain waveforms for second harmonic clipping solutions for
Z1 = Ropt = 50 �. Input harmonics and higher output harmonics short-
circuited. Valid solutions (solid traces) and invalid solutions (dashed traces).

Fig. 2. Second harmonic clipping contours for fundamental load Z1 =

Ropt = 50 �. Input harmonics and higher output harmonics are short-
circuited. (a) Including and (b) excluding invalid solutions.

C. Example and Considerations

To plot the clipping contours, apart from the load conditions

at the non-kth harmonic, four device parameters are needed.

The drain current bias (IDQ) and maximum (IMAX) are used

to determine the current Fourier components, while the drain

voltage bias (VDD) and minimum (Vmin) are used to normalize

and denormalize the voltage components.

As an example, a device with IMAX = 1 A, IDQ =

50 mA, VDD = 28 V, and Vmin = 2.5 V is considered. The

fundamental optimum load results of Ropt ≃ 50 �. Fig. 1

shows the drain voltage waveforms related to some possible

solution for the second harmonic clipping contours when the

fundamental load is Z1 = Ropt, and Zn = 0 for n ≥ 3. It has

to be noted that this new formulation also provides invalid

solutions where the identified minimum is a local minimum

and there is actually another absolute minimum lower than 0.

For this reason, it is necessary to execute a sweep of the

solutions to exclude invalid ones. However, this operation can

be optimized in a software tool, and has a negligible impact

on its usability. Fig. 2 compares the second harmonic clipping

contour in the cases where the invalid solutions are included

and not included.

Although the proposed method is able to predict the clipping

contours at any harmonic, throughout this paper the focus is on

the second harmonic clipping contours, since they are the most

Fig. 3. Second harmonic clipping contours for fundamental load
(a) Z1 = Ropt = 50 � and (b) Z1 = 0.8Ropt = 40 �. Input harmonics
and higher output harmonics are short-circuited.

important from a design perspective. In fact, in a broadband

design, the second harmonic frequency can result very close,

or even inside, the range of fundamental frequencies, thus

making it more difficult, or even not feasible, to obtain a

purely reactive second harmonic load. For higher harmonics

this situation rarely verifies, especially in telecom applications.

However, the third harmonic load is considered for its impor-

tance in moving the position of the second harmonic clipping

contours.

To recall the utility of the harmonic clipping contours

method from a design perspective, Fig. 3 compares the second

harmonic clipping contours for different fundamental loads.

In Fig. 3(a), where the fundamental load is set at the optimum

for power, the gray area representing the clipping second

harmonic loads covers the whole Smith chart, except the single

point at a short circuit. By reducing the fundamental load as in

Fig. 3(b), the clipping region shrinks relaxing the short circuit

constraint on the second harmonic termination, which now has

a larger design space. This means that linear operation over a

broad bandwidth can be achieved by a controlled reduction of

the power targets. It is also to be noted that a reduction of input

drive can lead to a very similar extension of the nonclipping

region, but in that case the corresponding power reduction

would be quadratic instead of linear. A similar behavior can

be observed when considering a fundamental load for class J

operation, i.e., Z1 = (1 + j)Ropt = (50 + j50) � (see

Fig. 4) [7], [17]. Also, in this case the reduction of the real

part of the fundamental load “opens” a nonclipping region in

the Smith chart.

Fig. 5 shows the second harmonic clipping contours, con-

sidering the example device introduced earlier, and third

harmonic load at the optimum for class F. In Fig. 5(a),

the fundamental load is set at Z1 = 1.15Ropt = 57.5 �,

corresponding to the standard class-F power increase with

respect to class B; the whole Smith chart is included in the

clipping region, except for the short circuit, as expected from

class-F theory. Fig. 5(b) shows the case with Z1 = Ropt =

50 �: thanks to the tuning of the third harmonic load, a larger

part of the Smith chart becomes an available design space

for the second harmonic without current clipping, but without
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Fig. 4. Second harmonic clipping contours for fundamental load (a) Z1 =

Ropt + j Ropt = (50+ j50) � and (b) Z1 = 0.8Ropt + j Ropt = (40+ j50) �.
Input harmonics and higher output harmonics are short-circuited.

Fig. 5. Second harmonic clipping contours for fundamental load (a) Z1 =

1.15Ropt = 57.5 � and (b) Z1 = Ropt = 50 �. Third harmonic load for
class F. Input harmonics and higher output harmonics are short-circuited.

the need to reduce the fundamental load below Ropt. This

result is a clear indication that introducing higher harmonics

in the computation of clipping contours opens new degrees

of freedom for the design of PAs, thus allowing more free-

dom in the positioning of the second harmonic load without

compromising the output power target.

III. EXPERIMENTAL VERIFICATION

A. Method

The clipping contours have been verified for the first

time with a comprehensive characterization using the setup

portrayed in Fig. 6, a three-harmonics active source–

and load–pull system with waveform measurement capabil-

ity [18], [19]. A probe station is used for the die characteriza-

tion. The system is controlled by a software suite developed by

Mesuro Ltd. The nonlinear vector network analyzer (N5242A)

collects the power waves from the external directional couplers

and reconstructs the current/voltage waveforms thanks to the

stable phase reference provided by a comb-generator. Vector,

absolute amplitude, and phase calibration are performed using

the analyzer utility. The load termination at fundamental,

second, and third harmonics, and the source termination at

second and third harmonics are controlled by adjusting the

phase and amplitude of additional RF sources (Agilent ESG

and PSG families). The signals are then multiplexed and

injected into the device ports. The RF sources are synchronized

with a 10-MHz reference signal.

Load–pull is used to sweep the second harmonic load on

a grid, in order to identify the clipping contours, and to

position the fundamental and third harmonic loads at different

Fig. 6. (a) Block diagram and (b) picture of the source– and load–pull
measurement system.

Fig. 7. Microscope pictures of (a) 2 × 400 µm and (b) 6 × 80 µm devices.

impedances. The effect of higher harmonics loaded with 50 �

instead of a short circuit is negligible, since it is mitigated by

the output capacitance of the device.

Harmonic source–pull is used to short circuit the input

harmonics at the gate reference plane of the device, in order to

suppress the harmonic voltage components generated by the

nonlinear input capacitance and to minimize the role of drain-

to-gate feedback. As a consequence, a drain current shaping

similar to the ideal truncated sinewave can be guaranteed,

and the risk of instability generated by the harmonic-load pull

exploring extreme load conditions can be minimized.

The selected fundamental frequency for the characterization

is 2 GHz, which is the maximum frequency manageable with

the available setup, and that represents a reasonable choice

when considering mobile telecom applications.

The following approach is followed in the characterization:

1) fundamental load–pull, with shorted source/load har-

monics, performed to identify the extrinsic optimum

load Zopt for output power;

2) estimation of output capacitance COUT for waveform

de-embedding at the intrinsic current generator plane;

3) identification, on a power sweep in optimum load con-

ditions, of drive level and of associated IMAX and Vmin;
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TABLE I

FUNDAMENTAL LOAD–PULL: MEASURED PARAMETERS

WITH SHORTED HARMONICS

TABLE II

MEASURED KEY PARAMETERS FOR THE PREDICTION

OF CLIPPING CONTOURS

4) second harmonic load sweep, at the selected drive level

and with the other harmonic terminations set at arbitrary

values;

5) tracing of minimum drain voltage contours versus

second harmonic load, at which min{vds(t)} = Vmin;

6) comparison with predicted contours at the intrinsic

generator plane.

B. Devices

Two GaN HEMT on SiC substrate devices are considered

for the validation of the clipping contours theory; a 2×400 µm

device based on 0.5-µm technology and biased at 28-V drain

voltage, and a 6×80 µm device based on 0.25-µm technology

and biased at 50 V. Fig. 7 shows the microscope pictures of

the characterized devices.

Fundamental load–pull, with other harmonic terminations

short-circuited, has been performed on both devices and the

main results are summarized in Table I. The Ropt and COUT

values are identified as 1/Zopt = 1/Ropt − jωCOUT.

A power sweep into a fundamental optimum load allows the

identification of the key parameters for the calculation of the

clipping contours and of the successive characterization steps,

see Table II and Fig. 8. The 6×80 µm device starts exhibiting

clipping at a significantly higher minimum drain voltage with

respect to the 2×400 µm device. This is due to knee walk-out

occurring when biasing at 50 V.

The drain waveforms measured at the selected drive level

are shown in Fig. 9; it can be noted that the drain current

is just at the onset of clipping, thus providing a condition

where strong nonlinearity is still negligible, but with reason-

able output power and efficiency. We select the drive level

according to this qualitative waveform observation, instead

of relying on gain compression figures, which are usually

misleading when using GaN devices characterized by evident

soft-compression. Furthermore, in this drive level condition,

the measured current harmonic components are in accordance

with the current components predicted assuming a truncated

sinusoid.

C. Clipping Contours Results

The second harmonic clipping contours for the two devices

are calculated and measured, at the intrinsic current generator

plane, considering three families of waveforms: class AB,

class J, and class F.

Fig. 8. Measured gain (dashed trace) and minimum drain voltage (solid
trace) versus output power for (a) 2 × 400 µm and (b) 6 × 80 µm device,
respectively. The drive level selected for the clipping contours measurement,
with the corresponding minimum voltage, is highlighted.

Fig. 9. Measured drain voltage (gray) and current (black) waveforms for
(a) 2 × 400 µm and (b) 6 × 80 µm device, respectively, at the selected drive
level. The corresponding output power and PAE are indicated.

For the class AB case the intrinsic fundamental load Z1 is

set on a purely real value, and the third harmonic load is short-

circuited. The trend of the second harmonic clipping contours

is observed for Z1 at Ropt (maximum output power load),

0.9Ropt, and 0.8Ropt (corresponding to an output power reduc-

tion of 1 dB). The predicted and measured contours for the two

devices are shown in Fig. 10. The second harmonic reflection
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Fig. 10. Calculated (left) and measured (right) second harmonic clipping
contours for (a) 2 × 400 µm and (b) 6 × 80 µm device, respectively, when
varying the fundamental load Z1 on the real axis. The third harmonic load
Z3 has been short-circuited.

Fig. 11. Calculated (left) and measured (right) second harmonic clipping
contours for (a) 2 × 400 µm and (b) 6 × 80 µm device, respectively, when
varying the fundamental load Z1 around the class J optimum. The third
harmonic load Z3 has been short-circuited.

coefficient Ŵ2 = ((Z2 − 50)/(Z2 + 50)) was swept on a

uniform 8 × 8 (real × imaginary) rectangular grid, between

−1 and 1. Good agreement between measured and estimated

contours can be observed for both the devices. In fact, not

only is the trend versus fundamental load confirmed, but also

the actual position of the contours is predicted satisfactorily.

For the class J case, the intrinsic fundamental load Z1 is set

around the optimum for class J, Z1 = Ropt + j Ropt, and

the calculated and measured contours are shown in Fig. 11.

The second harmonic reflection coefficient Ŵ2 was swept on

an 8 × 8 rectangular uniform grid, then a second sweep on a

Fig. 12. Measured drain voltage (gray) and current (black) waveforms for
(a) 2 × 400 µm and (b) 6 × 80 µm device, respectively, at the selected drive
level for class-F loading condition. The corresponding output power and PAE
are indicated.

Fig. 13. Calculated (left) and measured (right) second harmonic clipping
contours for (a) 2×400 µm (b) and 6×80 µm device, respectively, when Z3
is at a short circuit (black) or at the optimum for class-F (gray). Z1 = Ropt .

smaller area with 7×7 grid was used to refine the contour. Also

in this case, good agreement between measured and estimated

contours is achieved for both the devices.

In order to verify the trend of the second harmonic clipping

contours when the third harmonic load is tuned, an initial tun-

ing of the third harmonic load has been performed to find the

proper termination that delivers a class-F voltage waveform.

The resulting measured waveforms, which correspond to a

Z1 = 1.15Ropt at the selected drive level, are shown in Fig. 12.

In the next step, the third harmonic load is kept at the chosen

value, and the second harmonic load is swept to determine the
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clipping contour. Fig. 13 compares the predicted and measured

contours for a short-circuited third harmonic load and at the

optimum for class F, while maintaining Z1 = Ropt.

It is interesting to notice how the nonclipping region for

the second harmonic can be extended through tuning of the

third harmonic load instead of the fundamental load, without

reducing the power with respect to class AB condition. This

result highlights the importance of having extended the clip-

ping contour theory beyond the second harmonic, and it opens

new degrees of freedom in the design of broadband linear PAs.

IV. CONCLUSION

A new formulation for determining harmonic clipping con-

tours for high-frequency power devices has been presented

in this paper. This new approach allows the inclusion of an

arbitrary number of harmonics for the clipping contour predic-

tion. The second harmonic clipping contours are thoroughly

verified for the first time against load–pull measurements of

two different GaN HEMTs, and very good agreement results

from this comparison. Moreover, it has been demonstrated that

the tuning of the third harmonic load permits the extension

of the second harmonic design space without output power

reduction, thus providing the designers with a powerful tool

for the systematic design of linear PAs.
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