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	e main purpose of this paper is to present �-Generalized Exponential Distribution which among other things includes
Generalized Exponential and Weibull Distributions as special cases. Besides, we also obtain three-parameter extension of
Generalized Exponential Distribution. We shall also discuss moment generating functions (MGFs) of these newly introduced
distributions.

1. Introduction

	e gamma family distributions was discussed by Karl
Pearson in 1895 as pointed out in Balakrishnan and Basu
[1]. However, a�er a period of 35 years the Exponential
Distribution is a special case of the gamma distribution to
appear on its own. It is also related to Poisson process as
it has been observed that the time between two successive
Poisson events follows the Exponential Distribution. While
discussing the sampling of standard deviation (SD), the
Exponential Distribution was referred to by Kondo [2] as
Pearson’s Type� distribution. Ste�ensen [3], Teissier [4], and
Weibull [5] proposed the applications of Exponential Dis-
tribution in actuarial, biological, and engineering problems,
respectively.

An extension of Exponential Distribution was proposed
by Weibull (1951). 	e Exponential Distribution is a special
case wherein the shape parameter equals one. 	e Weibull
distribution has many applications in survival analysis and
reliability engineering; for reference see Lai et al. (2006).
Some other applications in industrial quality control are
discussed in Berrettoni (1964).

2. Some Basic Definitions and �-Generalized
Exponential Distributions

We begin with some de�nitions which provide a base for the
de�nition of�-Generalized Exponential Distributions.

	e Euler gamma function Γ(�) is de�ned by the integral
Γ (�) = ∫∞

0
��−1	−�
�, � (�) > 0. (1)

A random variable� is said to have gamma distribution with
parameter � > 0, if its p.d.f. is given by

� () = 1Γ (�)�−1	−�, 0 <  < ∞
� () = 0, elsewhere.

(2)

Replacing  by /�, we get the following form of gamma
distribution with parameters �, � with � > 0 and � > 0:
� () = 1��Γ (�)�−1	−�/�,

0 <  < ∞, � > 0, � > 0.
(3)

	e gamma distribution with parameters �, � o�en arises in
practices, as the distribution of time one has to wait until a
�xed number of events have occurred.

	e beta function of two variables� and � is de�ned by

� (�, �) = ∫1
0
�−1 (1 − )�−1 
,

Re (�) > 0, Re (�) > 0.
(4)
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If we take  = 1 − �, then, 0 ≤  ≤ 1 implies 0 ≤ � ≤ 1, and
we get

� (�, �) = ∫1
0
(1 − �)�−1 ��−1
�

= ∫1
0
��−1 (1 − �)�−1 
�

= ∫1
0
�−1 (1 − )�−1 
 = � (�,�) .

(5)

In the literature (for reference see [6–8]), it is known that

� (�,�) = Γ (�) Γ (�)Γ (� + �) . (6)

In (5), if we take

 = 1� + 1 (7)

then 0 ≤  ≤ 1 implies 0 ≤ � < ∞, and we get

� (�,�)
= ∫0
∞

( 1� + 1)
�−1 ( �� + 1)

�−1 (− 1
(� + 1)2)
�

= ∫∞
0

��−1(� + 1)�+� 
�.
(8)

A continuous random variable � is said to have beta distri-
bution with parameters� and �, if its p.d.f. is given by

� () = 1� (�, �)�−1 (1 − )�−1 , 0 ≤  ≤ 1
� () = 0, elsewhere.

(9)

	is distribution is known as beta distribution of 1st kind (for
reference see [7]).
	e beta distribution has an application to model a random
phenomenon whose set of possible values is a �nite interval[�, �], which by letting � denote the origin and taking (� − �)
as a unit measurement can be transformed into the interval[0, 1].
A continuous random variable� is said to have beta distribu-
tion of 2nd kind with parameters� and �, if its p.d.f. is given
by

� () = 1� (�, �) ��−1(1 + �)�+� , 0 ≤ � < ∞, �, � > 0,
� () = 0, elsewhere.

(10)

More recently, Rahman et al. [7] (for more details see [8–
16]) have de�ned �-gamma and �-beta distributions and their
MGFs as follows.

For � > 0 and � ∈ L, the �-gamma function is de�ned by
the integral

Γ	 (�) = ∫∞
0

�
−1	−��/	
�. (11)

For �(�) > 0, �(�) > 0, the �-beta function of two variables� and � is de�ned by

�	 (�, �) = 1� ∫1
0
��/	−1 (1 − �)�/	−1 
�. (12)

It is implicit in the literature (for reference see [7]) that

�	 (�, �) = Γ	 (�) Γ	 (�)Γ	 (� + �) . (13)

For the sake of completeness, we present a very simple proof
of the relation (13).

We have

�	 (�, �) = 1� ∫1
0
�/	−1 (1 − )�/	−1 
. (14)

Put

 = cos2 �; (15)

then


 = −2 cos � sin �
�, (16)

and we get

�	 (�, �) = 2� ∫�/2
0

(cos �)2�/	−1 (sin �)2�/	−1 
�. (17)

Now

Γ	 (�) = ∫∞
0

��−1	−��/	
�. (18)

Put

�	� = 2 (19)

or

� = (�2)1/	 , (20)

so that


� = 2��1/	2/	−1
 = 2�1/	−12/	−1
; (21)

we get

Γ	 (�) = 2�1/	−1 ∫∞
0

�(�−1)/	(2/	)(�−1)	−�22/	−1

= 2�(�/	)−1 ∫∞

0
2�/	−1	−�2
.

(22)

Since the integrals involved are convergent, we have

Γ	 (�) Γ	 (�) = (2��/	−1 ∫∞
0

2�/	−1	−�2
)
⋅ (2��/	−1 ∫∞

0
�2�/	−1	−�2
�)

= 4�(�+�)/	−2 ∫∞
0

∫∞
0

2�/	−1�2�/	−1	−(�2+�2)
 
�.
(23)
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Put

 = # cos �,
� = # sin �, (24)

so that



� = #
#
�; (25)

we get

Γ	 (�) Γ	 (�) = 4�(�+�)/	−2 ∫∞
0

∫�/2
0

(cos �)2�/	−1

⋅ (sin �)2�/	−1 	−2#2�/	+2�/	−1
# 
� = {2�
⋅ ∫�/2
0

(cos �)2�/	−1 (sin �)2�/	−1 
�}
⋅ {2�(�+�)/	−1 ∫∞

0
#2(�+�)/	−1	−2
#} .

(26)

Using (17) and (22), we get

Γ	 (�) Γ	 (�) = �	 (�, �) Γ	 (� + �) , (27)

which gives

�	 (�, �) = Γ	 (�) Γ	 (�)Γ	 (� + �) . (28)

	is completes the proof of the relation (13).

Corollary 1. One has the following:

(i) Γ	(�) = 1.
(ii) �	(�/2, �/2) = */�.
(iii) Γ	(�/2) = √*/�.

Proof. Put� = � in (22); we get

Γ	 (�) = 2∫∞
0

	−�2
 = − [	−�2]∞
0

= 1. (29)

From (13), we have

�	 (�, �) = Γ	 (�) Γ	 (�)Γ	 (� + �) . (30)

We take� = � = �/2; we get
�	 (�2 , �2) = Γ	 (�/2) Γ	 (�/2)Γ	 (�) = Γ	 (�2) Γ	 (�2)

= [Γ	 (�2)]
2 .

(31)

	is gives

[Γ	 (�2)] = √�	 (�2 , �2). (32)

Putting� = �/2 and � = �/2 in (17), we get

�	 (�2 , �2) = 2� ∫�/2
0


� = 2� [�]�/20 = (2�) (*2 )
= *� ,

(33)

which establishes (ii).
Putting the value of �	(�/2, �/2) in (32), we get

Γ	 (�2) = √*� , (34)

which proves (iii).

A random variable � of continuous type is said to have
Weibull distribution if its probability density function is given
by

� (, �, :, ]) = :� ( − ]� )�−1 	−((�−])/�)� ,  > ]

� (, �, :, ]) = 0, elsewhere,  ≤ ].
(35)

Weibull distribution is widely used in engineering prac-
tice due to its versatility. It was originally proposed for
the interpretation of fatigue data but now it is also used
for many other problems in engineering. In particular, in
the �eld of life phenomenon, it is used as the distribution
of lifetime of some object, particularly when the “weakest
link” model is appropriate for the model; that is, consider
an object consisting of many parts and suppose that the
object experiences death (failure) when any of its parts fail;
it has been shown [6] (both oretically and empirically) under
these conditions that Weibull distribution provides a close
approximation to the distribution of the lifetime of the item.

	e Gamma and Weibull distributions are commonly
used for analyzing any lifetime data or skewed data. Both
distributions have nice physical interpretation and several
desirable properties. Unfortunately both distributions have
drawbacks, one major disadvantage of the gamma distribu-
tion is that the distribution function or the survival function
can not be computed easily if the shape parameter is not an
integer. By using mathematical tables or computer so�ware
one obtains the distribution function, the survival function,
or hazard function. 	is makes the gamma distribution
unpopular as compared toWeibull distribution whose distri-
bution function, hazard function, or survival function is easy
to compute. It is well known that even though the Weibull
distribution has convenient representation of distribution
function, the distribution of the sum of independent and
identically distributed (i.i.d) Weibull random variables is not
simple to obtain. 	erefore, the distribution of the mean
of random sample from Weibull distribution is not easy to
compute whereas the distribution of sum of independent
and identically distributed (i.i.d) gamma random variables is
well known. For more details see Mudholkar, Srivastava and
Freimer (1995), Mudholkar and Srivastava [17], Gupta and
Kundu [18], and Gupta et al. [19].
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Recently R. D. Gupta and D. Kundu have introduced
three-parameter Exponential Distribution (location, scale,
and shape) and studied the theoretical properties of this fam-
ily and compared them with respective good studies proper-
ties of Gamma andWeibull distributions.	e increasing and
decreasing hazard rate of the Generalized Exponential Distri-
bution (GED) depends on the shape parameter. Generalized
Exponential Distribution (GED) has several properties that
are quite similar to gamma distribution but it has distribution
function similar to that of theWeibull distribution which can
be computed easily. Since theGeneralized Exponential family
has the likelihood ratio ordering on the shape parameter, one
can construct a uniformly most powerful test for testing one
sided hypothesis on the shape parameter when the scale and
location parameters are known.

3. Generalized Exponential Distribution (GED)

A continuous random variable� whose p.d.f. is given by

� () = {{{
:	−�� if  ≥ 0
0 if  < 0, : > 0, (36)

is said to have an Exponential Distribution.
	e Generalized Exponential Distribution (GED) intro-

duced by Mubeen et al. [15] has p.d.f.

� (, �, :) = �: (1 − 	−��)�−1 	−��,
 > 0 for �, : > 0

� (, �, :) = 0, otherwise.
(37)

	e MGF of (37) is given by

C� (�) = D (	��) = ∫∞
0

	���: (1 − 	−��)�−1 	−��

= ��(�, 1 − �:) ,

(38)

where �(�, �) = ∫10 ��−1(1 − �)�−1
�.
Replacing : by 1/� and  by ( − F) in (37), we get

the following form of Generalized Exponential Distribution
(GED):

� (, �, �, F) = �� (1 − 	−(�−�)/�)�−1 	−(�−�)/�,
 > F, � > 0, � > 0. (39)

4. Extensions of Generalized Exponential
Distribution (GED)

	e main aim of this paper is to present interesting exten-
sions of Generalized Exponential Distribution (GED) in
various ways and to study their moment generating functions
(MGFs). We shall �rst de�ne Generalized Exponential Dis-
tribution (GED) in terms of a new parameter � > 0 and call

it �-Generalized Exponential Distribution (�-GED). In fact,
we prove the following result, which included Generalized
Exponential Distribution as a special case.

�eorem 2. Let � be a random variable of continuous type
and let � > 0, : > 0, and � > 0 be the parameters; then the
function

� (, �, :, �) = �: (1 − 	−���/	)�−1 	−1	−���/	,
 > 0

� (, �, :, �) = 0, elsewhere

(40)

is the p.d.f. of random variable� of continuous type.

Remark 3. If we take � = 1, it reduces to Generalized
Exponential Distribution.

Proof of �eorem 2. Clearly

� (, �, :, �) ≥ 0 ∀ > 0, � > 0, : > 0, � > 0. (41)

Now

∫∞
0

� (, �, :, �) 

= ∫∞
0

�: (1 − 	−���/	)�−1 	−1	−���/	

= �∫∞
0

(1 − 	−���/	)�−1 (:	−1	−���/	) 


= �[[
[
(1 − 	−���/	)�

� ]]
]

∞

0

= [(1 − 	−���/	)�]∞
0

= 1 − 0 = 1.

(42)

Hence �(, �, :, �) is a p.d.f. of random variable � of
continuous type.

5. The Moment Generating Function (MGF)
of Theorem 2

In this section, we derive MGF of the random variable �
having k-Generalized Exponential Distribution in terms of
new parameter � > 0; we have

C	 (�) = D (	���) = ∫∞
0

	���� (, �, :, �) 

= ��:∫∞

0
	��� (1 − 	−���/�)�−1 (	−1	−���/	) 
.

(43)

Put

	−���/	 = �; (44)
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then

	−���/	 (−:	−1) 
 = 
�,
	�� = �−	/� (45)

so that

	��� = �−�	/�. (46)

	erefore,

C	 (�) = �∫1
0
�−�	/� (1 − �)�−1 
�

= �∫1
0
�(1−�	/�)−1 (1 − �)�−1 
�

= �∫1
0
(1 − �)�−1 �(1−�	/�)−1
�

= ��(�, 1 − (��: )) = �Γ (�) Γ (1 − (��/:))
Γ (� + 1 − (��/:))

= Γ (� + 1) Γ (1 − (��/:))
Γ (� + 1 − (��/:)) .

(47)

Our next theorem is also a generalization of Exponential
Distribution in terms of new variable �, which includes
Weibull distribution as a special case.

�eorem 4. Let � be a random variable of continuous type
and let � > 0, : > 0, and � > 0 be the parameters; then the
function

� (, �, :, �) = ��: (1 − 	−���)�−1 	−1	−��� ,
0 <  < ∞

� (, �, :, �) = 0, elsewhere,
(48)

is the p.d.f. of random variable� of continuous type.

Remark 5. For � = 1,�-Generalized Exponential	eorem 4
reduces to Classical Exponential Distribution.

Proof of �eorem 4. Clearly

� (, �, :, �) ≥ 0 ∀ > 0, � > 0, : > 0, � > 0. (49)

Now

∫∞
0

� (, �, :, �) 

= ��:∫∞

0
(1 − 	−���)�−1 	−1	−���


= �∫∞
0

(1 − 	−���)�−1 (�:	−1) 	−���


= �[[
[
(1 − 	−���)�

� ]]
]

∞

0

= [(1 − 	−���)�]∞
0

= 1 − 0 = 1.
(50)

Hence �(, �, :, �) is a p.d.f. of random variable � of
continuous type.

Remark 6 (Weibull distribution is a special case of 	eo-
rem 4). To see this, we take � = 1, : = 1 in 	eorem 4; it
follows that

� (, �) = �	−1	−�� = 	−�� 

 (	) ,  > 0
� (, �) = 0,  ≤ 0.

(51)

Replacing  by ( − F)/�, we get
� (, �, �, ]) = 	−((�−])/�)� 

 ( − ]� )	 ,

( − ]� ) > 0
� (, �, �, ]) = 0, ( − ]� ) ≤ 0

(52)

or

� (, �, �, ]) = �� ( − ]� )	−1 	−((�−])/�)	,  > ],
� (, �, �, ]) = 0,  ≤ ],

(53)

is a p.d.f. of �, which is clearly the density of Weibull
Distribution.

6. The Moment Generating Function (MGF)
of Theorem 4

In this section, we derive MGF of the random variable �
having k-Generalized Exponential Distribution in terms of a
new parameter � > 0; we have

C	 (�) = D (	���) = ∫∞
0

	���� (, �, :, �) 

= ��:∫∞

0
	��	 (1 − 	−���)�−1 	−1	−���
.

(54)

Put 	−��� = �; then
	�� = �−1/�,

	−��� (−�:	−1) 
 = 
�. (55)
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	erefore,

C	 (�) = �∫1
0
�−�/� (1 − �)�−1 
�

= �∫1
0
�(1−�/�)−1 (1 − �)�−1 
�

= �∫1
0
(1 − �)�−1 �(1−�/�)−1
�

= ��(�, 1 − ( �:)) = �Γ (�) Γ (1 − (�/:))
Γ (� + 1 − (�/:))

= Γ (� + 1) Γ (1 − (�/:))
Γ (� + 1 − (�/:)) .

(56)

We also present the following three-parameter extension
of Generalized Exponential Distribution (GED). In fact, we
prove the following.

�eorem 7. Let � be a continuous random variable; then the
function

� (, �, :, R) = �:R1 − (1 − R)� (1 − R	−��)�−1 	−��,
 > 0, � > 0, : > 0, 0 < R ≤ 1,

� (, �, :, R) = 0, otherwise

(57)

is the p.d.f. of random variable� of continuous type.

Proof of�eorem7. Clearly�(, �, :, R) ≥ 0 for all > 0, � >0, : > 0, R > 0.
Now

∫∞
0

� (, �, :, R) 

= �:R1 − (1 − R)� ∫

∞

0
(1 − R	−��)�−1 	−��


= �1 − (1 − R)� ∫
∞

0
(1 − R	−��)�−1 (:R	−��) 


= ( �1 − (1 − R)�)[
[
(1 − R	−��)�

� ]
]
∞

0

= (1 − (1 − R)�)(1 − (1 − R)�) = 1.

(58)

	is shows that�() is a p.d.f. of the random variable�. 	is
proves 	eorem 7.

If we replace: by 1/� and by (−F) in	eorem7,we get
the following form of Generalized Exponential Distribution
(GED):

� (, �, �, F, R)
= �R� (1 − (1 − R)�) (1 − R	−(�−�)/�)�−1 	−(�−�)/�,

 > F, � > 0, � > 0, F > 0, 0 < R ≤ 1.
� (, �, �, F, R) = 0, otherwise.

(59)

Remark 8. For R = 1, 	eorem 7 reduced to Generalized
Exponential Distribution (GED).

Remark 9. Taking R = 1 in (59), we get relation (39).

7. The Moment Generating Function (MGF)
of Theorem 7

C� (�) = D (	��) = ∫∞
0

	��� (, �, :, R) 

= �:R(1 − (1 − R)�) ∫∞

0
	�� (1 − R	−��)�−1 	−��


= �R(1 − (1 − R)�) ∫∞
0

(1 − R	−��)�−1 	�� (:	−��) 
,
(60)

Put

	−�� = �, (61)

so that

−:	−��
 = 
�,
	�� = �−�/�; (62)

we get

C(�) = �R(1 − (1 − R)�) ∫1
0
(1 − R�)�−1 �−�/�
�,

0 < R ≤ 1.
C (�) = �(1 − (1 − R)�)�� (�, 1 − �:) ,

(63)

where

�� = �� (�, �) = ∫1
0
(1 − R�)�−1 ��−1
�,

� > 0, � > 0, 0 < R ≤ 1.
(64)

Remark 10. For R = 1, we have
�1 (�, �) = ∫1

0
(1 − �)�−1 ��−1
� = � (�, �) . (65)

And (63) reduces to Remark 8.
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Remark 11. If in ��(�, �) = ∫10 (1 − R�)�−1��−1
�, we put  =R�;
then


� = 1R
 (66)

and we get

�� (�, �) = ∫�
0
(1 − )�−1 (R)

�−1 1R

= 1R� ∫

�

0
(1 − )�−1 �−1
, 0 ≤ R ≤ 1.

(67)

Remark 12. Letting R → 0 in (57) and noting that

T�
�→0

⋅ �R(1 − (1 − R)�) = 1, (68)

we get

� (, :) = :	−��, if  ≥ 0, : > 0, (69)

which is the p.d.f. of the Exponential Distribution.

Finally we present the following more general interesting
result which among other things includes Weibull distribu-
tion as a limiting case.

�eorem 13. Let� be a random variable of continuous type. IfR > 0, : > 0, and � > 0 are the parameters, then the function

� (, R, :, �) = �R:
1 − (1 − R)	 (1 − R	−��)	−1 �−1	−�� ,

 > 0, 0 < R < 1,
� (, R, :, �) = 0, elsewhere,  ≤ 0,

(70)

is the p.d.f. of the random variable X.

Proof of �eorem 13. Clearly

� (, R, :, �) ≥ 0 ∀ > 0, R > 0, : > 0, � > 0. (71)

Now

∫∞
0

� (, R, :, �) 

= �R:∫∞

0
(1 − R	−��)	−1 �−1	−��


= �
1 − (1 − R)	 ∫

∞

0
(1 − R	−��)	−1 (:R	−���−1) 


= �
1 − (1 − R)	 [[[

(1 − R	−��)	
� ]]

]

∞

0

= �
1 − (1 − R)	 (

(1 − (1 − R)	)
� ) = 1.

(72)

	is shows that�(, �, :, �) is the p.d.f. of random variable�
of continuous type. 	is proves 	eorem 13.

Remark 14. Weibull Distribution is the limiting case of
	eorem 13. To see this, we let R → 0 in 	eorem 13 and
note that

lim
�→0

�R
1 − (1 − R)	 = 1, (73)

so that

� (, :) = :	−���−1 = 	−�� 

 (�) ,  > 0,
� (, :) = 0,  ≤ 0,

(74)

is the p.d.f. of random variable� of continuous type.
Replacing  by ( − ])/�, it follows that

� (, �, :, ]) = :	−((�−])/�)� 

 ( − ]� )� ,
 − ]� > 0

� (, �, :, ]) = 0,  − ]� ≤ 0.
(75)

Equivalently

� (, �, :, ]) = :� ( − ]� )�−1 	−((�−])/�)� ,  > ],
� (, �, :, ]) = 0,  ≤ ],

(76)

is a p.d.f. of �, which is clearly density of Weibull Distribu-
tion.

8. Applications

	e applications of Exponential Distribution have been
widespread, which include models to determine bout cri-
teria for analysis of animal behaviour [20]; design rainfall
estimation in the Coast of Chiapas [21]; analysis of Los
Angeles rainfall data [22]; so�ware reliability growth models
for vital quality metrics [23]; models for episode peak and
duration for ecohydroclimatic applications [24]; estimating
mean life of power system equipment with limited end-of-
life failure data [25]; and cure rate modeling (Kannan et al.
(2010). In related work, the closeness of the exponentiated
Exponential Distribution with the Weibull, gamma, and log-
normal distributions is studied in Gupta and Kundu (2003a),
(2003b), (2004), (2006)) and [26]. Some generalizations of
the exponentiated Exponential Distribution are discussed in
Nadarajah and Kotz [27].

	e Exponential Distribution is o�en used to model
the reliability of electronic systems, which do not typically
experience wear-out type failures. 	e distribution is called
“memoryless,” meaning that the calculated reliability for,
say, a 10-hour mission is the same for a subsequent 10-hour
mission, given that the system is working properly at the start
of each mission. Given a hazard (failure) rate, �, or mean
time between failure (MTBF = 1/�), the reliability can be
determined at a speci�c point in time (�). 	e distribution
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function, reliability function, and hazard rate of 	eorem 2
are given by

W (, �, :, �) = X (� ≤ ) = ∫�
0
� (, �, :, ) 


= (1 − 	−���/	)� ,
 > 0, � > 0, : > 0.

(77)

	e survival function Y(, �, :, �) is given by

Y (, �, :, �) = 1 − W (, �, :, �)
= 1 − (1 − 	−���/	)� ,  > 0. (78)

	e hazard rate ℎ(, �, :, �) is given by

Y (, �, :, �) = W (, �, :, �)
Y (, �, :, �)

= (1 − 	−���/	)�−1 	−1	−���/	
1 − (1 − 	−���/	)� ,  > 0.

(79)

Similarly we can also obtain the distribution function, relia-
bility function, and hazard rate of other theorems too.

9. Conclusions

In this paper the authors conclude the following.
(i) Weibull distribution is a special case of �-Generalized

Exponential Distribution. Further if R tends to 0, then our
lastly proved more general result leads to Weibull distribu-
tion.

(ii) Also if R tends to 1, then our newly introduced 3-
parameter extension of Generalized Exponential Distribu-
tion (GED) reduced to classical Exponential Distribution.

(iii) 	e moment generating functions (MGFs) obtained
in this paper generalize the classical moment generating
functions (MGFs) of the given distributions.
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