ERRATUM

Susanne Juhnke · Nicola Peitzsch · Nicole Hübener Cornelia Große · Dietrich H. Nies

New genes involved in chromate resistance in Ralstonia metallidurans strain CH34

Published online: 20 March 2004 © Springer-Verlag 2004

Arch Microbiol (2002) 179:15-25

During preparation of the Ph.D. thesis of Susanne Juhnke, we discovered that we accidentally compressed the data sets (Tables 1 and 3) for the genes $chrF_2$ and chrR into one data set, which was assigned to $chrF_2$. The corrected versions of Tables 1 and 3 are given below. chrR is a new gene not present in the genome annotation of *Ralstonia metallidurans*. It is located upstream of $chrB_2$ on the opposite DNA strand of the chromosome of this bacterium. A revised version of Table W2 of the Electronic Supplementary Material is also available.

Table 1 Minimal inhibitory concentrations. Cells of *Ralstonia* metallidurans strain AE126(pMOL28) and its plasmid-free derivate strain AE104 were cultivated on solidified Tris-buffered mineral salts medium containing either 3 mM sodium sulfate or $30\,\mu$ M sulfate and various concentrations of potassium chromate. Growth was analyzed after 3 days at 30 °C. Each determination was done at least three times with identical results

Table 3 Activity of chr promoters in mutant strains of R. metal lidurans. Cells were grown in Tris-buffered mineral salts medium containing either 3 mM or 30 µM sulfate and 2 g sodium gluconate/l with shaking at 30 °C and the basal level of β-galactosidase activity from a chrAp1::lacZ or a chrBp1::lacZ fusion was determined. Half of the culture was induced with 50 µM chromate (3 mM sulfate) or 20 µM chromate (30 µM sulfate) and incubation was continued with shaking for 3 h at 30 °C. The chromate concentrations used were the optimum inducer concentration at the respective sulfate concentration (Fig. 3). β -Galactosidase activity was determined in the uninduced control and divided by the basal level expression leading to IR_{unind}. Similarly, β -galactosidase activity was determined in the induced cells and also divided by the basal level expression leading to IR_{ind} . The induction ratio IR_{ind} was divided by the control ratio IR_{unind} . All points were done in triplicate in each experiment. Moreover, each experiment was done at least three times independently, and the standard deviations of these three experiments are shown. nd Not determined. Table W2 of the electronic supplementary material has an extended version of this table that contains the IR_{ind}, the IR_{unind} and the basal level expression data

Bacterial strain	Relevant genotype	MIC values (µM of chromate)		Promoter	Genetic background	IR_{ind}/IR_{unind} 50 µM CrO ₄ ²⁻	IR_{ind}/IR_{unind} 20 µM CrO ₄ ²⁻
		3 mM Sulfate	30 µM Sulfate		Dackground	3 mM SO_4^{2-}	$30 \mu\text{M} \text{SO}_4^{2-}$
AE126	pMOL28	350	40	chrAp	pMOL28	0.91	n. d.
	$\Delta chrB_1$	350	40		$\Delta chrB_1$	0.91	n. d.
	$\Delta rpoH$	350	40		$\Delta chrI$	0.93	n. d.
	$\Delta chrC$	300	35		No pMOL28	1.04	n. d.
	$\Delta chrI$	300	35	chrBp	pMOL28	4.88	1.90
AE104	Plasmid-free	150	20		$\Delta chrB_1$	4.46	3.24
	$\Delta chrF_2$	125	20		$\Delta chrI$	4.32	5.52
	$\Delta chr R$	175	20		$\Delta chrC$	10.4	1.83
	$\Delta chrB_2$	70	10		$\Delta rpoH$	15.1	9.42
	$\Delta chrA_2$	70	10		No pMOL28	2.20	1.77
					$\Delta chrB_2$	1.02	1.03
					$\Delta chrF_2$	2.50	1.70
The online version of the original article can be found at					$\Delta chrR$	10.5	3.84

The online version of the original article can be found at http://dx.doi.org/10.1007/s00203-002-0492-5

S. Juhnke · N. Peitzsch · N. Hübener · C. Große · D. H. Nies (\boxtimes)

Institut für Mikrobiologie,

Martin-Luther-Universität Halle-Wittenberg,

Kurt-Mothes-Strasse 3, 06099 Halle, Germany,

European Community,

Tel.: +49-345-5526352, Fax: +49-345-5527010,

e-mail: d.nies@mikrobiologie.uni-halle.de