
New Grid Scheduling and Rescheduling Methods in the GrADS Project

K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey

Computer Science Dept., Rice University

F. Berman, H. Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia

Dept. of Computer Science, University of California at San Diego

L. Johnsson, B. Liu, M. Patel

Dept. of Computer Science, University of Houston

D. Reed, W. Deng, C. Mendes

Dept. of Computer Science, University of Illinois

Z. Shi, A. YarKhan, J. Dongarra

ICL, University of Tennessee

Abstract

The goal of the Grid Application Development Software

(GrADS) Project is to provide programming tools and an

execution environment to ease program development for the

Grid. This paper presents recent extensions to the GrADS

software framework: (1) A new approach to scheduling

workflow computations, applied to a 3-D image recon-

struction application; (2) A simple stop/migrate/restart ap-

proach to rescheduling Grid applications, applied to a QR

factorization benchmark; and (3) A process-swapping ap-

proach to rescheduling, applied to an N-body simulation.

Experiments validating these methods were carried out on

both the GrADS MacroGrid (a small but functional Grid)

and the MicroGrid (a controlled emulation of the Grid) and

the results were demonstrated at the SC2003 conference.

1. Introduction

Since late 1999, the Grid Application Development

(GrADS) Project has worked to enable an integrated com-

putation and information resource based on advanced net-

working technologies and distributed information sources.

In other words, we have been attacking the problems inher-

ent in Grid computing, as set forth in The Grid: Blueprint

for a New Computing Infrastructure [5]. The Grid connects

computers, databases, instruments, and people in a seam-

less web, supporting computation-rich application concepts

such as distributed supercomputing, smart instruments, and

data-mining. However, its use has been limited to special-

ists, principally due to a lack of usability.

Because the Grid is inherently more complex than stand-

alone computer systems, Grid programs must reflect this

complexity at some level. However, we believe that this

complexity should not be embedded in the main algorithms

of the application, as is often now the case. Instead, GrADS

provides software tools, including a prototype execution en-

vironment and programming tools, that manage the Grid-

specific details of execution with minimal effort by the sci-

entists and engineers who write the programs. This in-

creases usability and allows the system to perform substan-

tial optimizations for Grid execution.

Figure 1 shows the program development framework that

GrADS pioneered in response to this need [8]. Two key

concepts are central to this approach. First, applications

are encapsulated as configurable object programs (COPs),

which can be optimized rapidly for execution on a spe-

cific collection of Grid resources. A COP includes code

for the application (e.g. an MPI program), a mapper that

determines how to map an application’s tasks to a set of

resources, and an executable performance model that esti-

mates the application’s performance on a set of resources.

Second, the system relies upon performance contracts that

specify the expected performance of modules as a function

of available resources.

The left side of Figure 1 depicts tools used to construct

COPs. GrADS supports application development either by

assembling domain-specific components from a high-level

toolkit or by creating a module by relatively low-level (e.g.,

MPI) coding. In either case, GrADS provides prototype

tools that semi-automatically construct performance mod-

els and mappers. Although they are not the major focus of

this paper, some of these tools are described in more detail

in Section 3 below.

The right side of Figure 1 depicts actions when a COP is

delivered to the execution environment. The GrADS infras-

tructure first determines which resources are available and,

GrADS

Compiler

GrADS

Libraries

PCPC
PC

PC
Performance

Contract

Iterative

runtime process

P
S
E

Binder

Realtime

Monitor
Performance

Contract

Violation

Service

Negotiator

Scheduler

Grid

Runtime

System

Appli-

cation

Config-

urable

Object

Program

PC PC
Software

Components

PCPC
PC

Performance

Feedback

Negotiation

GrADS Execution
Environment

GrADS Program
Preparation System

Figure 1. GrADS Program Preparation and Ex-

ecution Architecture

using the COP’s mapper and performance model, sched-

ules the application components onto an appropriate subset

of these resources. Then the GrADS software invokes the

binder to tailor the COP to the chosen resources and the

launcher (not shown) to start the tailored COP on the Grid.

Once launched, execution is tracked by the contract

monitor, which detects anomalies and invokes, when nec-

essary, the rescheduler to take corrective action. Perfor-

mance monitoring in GrADS is based on Autopilot [13],

a toolkit for real-time application and resource monitor-

ing and closed-loop control. Autopilot provides sensors

for performance data acquisition, actuators for implement-

ing optimization commands and a decision-making mecha-

nism based on fuzzy logic. Part of the tailoring done by the

binder is to insert the sensors needed for monitoring a par-

ticular application. Autopilot then assesses the application’s

progress using performance contracts [23], which specify

an agreement between application demands and resource

capabilities. The contract monitor takes periodic data from

the sensors and uses Autopilot’s decision mechanism to ver-

ify that the contract is being met. If a contract violation

occurs, the monitor takes corrective action, such as contact-

ing a GrADS rescheduler. GrADS incorporates a variety

of utilities associated with contract monitoring, including

a Java-based Contract Viewer GUI to visualize the perfor-

mance contract validation activity in real-time.

The GrADS facilities described thus far were, with the

exception of the rescheduler, implemented in the first pro-

totype GrADS system that was demonstrated at SC2002.

In the year between SC2002 and SC2003, several new ca-

pabilities were added. First, we significantly enhanced the

GrADS binder to support execution on heterogeneous com-

puting resources. Second, we developed a new approach

to the scheduling of workflow applications, which are ex-

tremely common in a Grid environment. Finally, we devel-

oped two different approaches to rescheduling and imple-

mented them in the GrADS software system. These exten-

sions, which were demonstrated at SC2003, are elaborated

in the remainder of this paper.

To support research into and evaluation of GrADS capa-

bilities , GrADS has constructed two research testbeds. The

MacroGrid consists of Linux clusters with GrADS software

installed at several participating GrADS sites, including one

cluster at University of California at San Diego (UCSD,

10 machines), two clusters at University of Tennessee at

Knoxville (UTK, 24 machines), two clusters at University

of Illinois at Urbana-Champaign (UIUC, 24 machines), and

one cluster at University of Houston (UH, 24 machines).

The experiments in Section 3 and Section 4.1 run on this

testbed. The MicroGrid is a Grid emulation environment

that runs on clusters and permits experimentation with ex-

treme variations in network traffic and loads on compute

nodes [16]. Section 4.2 describes experiments run on this

platform. (We earlier ran very similar experiments on the

MacroGrid, validating both the MicroGrid’s emulation and

the rescheduling method’s practicality [14].)

Clearly, the experiments we describe exercise many parts

of the GrADS environment. This paper closes with a brief

discussion of what we learned from these experiences, and

an outline of future work.

2 Launching Components on the Grid

Once an application schedule has been chosen, the

GrADS application manager must prepare the configurable

object program andmap it onto the selected resource config-

uration. In turn, the application manager invokes the binder,

which is responsible for creating and configuring the appli-

cation executable, instrumenting it, and then launching it

on the Grid. The original GrADS binder did most of its

work by editing the entire application binary, which limited

its applicability to homogeneous collections of processors.

(Early iterations of the GrADS testbed included only clus-

ters of Pentiums.) It soon became clear that this approach

would not suffice for a general system because most grids

are homogeneous and because it was important to support

linking GrADS programs against libraries of components

that were preinstalled on resources across the Grid.

To address these issues, we developed a new distributed

GrADS binder that executes on all Grid resources speci-

fied in the schedule. The new binder receives three sets

of inputs: resource specific information (such as hardware

and software capabilities) via the Grid Information Service

(GIS), characteristics of the target architecture that can be

used for machine-specific optimizations, and a compilation

package that consists of the application’s source code in an

intermediate representation, a list of required libraries, and

a script to configure the application for compilation.

A binder process executes on each machine chosen by

the scheduler. For this to be possible, the global binder

2

must know the locations of all software resources, includ-

ing application-specific libraries, general libraries, and the

binder itself. To that end, the global binder queries the

GrADS Information Service (GIS) to locate necessary soft-

ware on the scheduled node, starting with the local binder

code. The global binder then launches the local binder

process, which further queries GIS for the locations of

application-specific libraries and instruments the code. Af-

ter the local code is instrumented with Autopilot sensors, it

is configured and compiled. Finally, the global binder en-

ables the launch of the application. If the application is an

MPI application, then a global synchronization must be car-

ried out as part of the MPI protocol at the beginning of the

execution. In this case, the binder returns control to the ap-

plication manager which launches the application after syn-

chronization. In non-MPI applications, the binder launches

the application and notifies the application manager when

the program terminates.

Note that by using a high-level representation of the pro-

gram and configuring and compiling it only at the target

machine, the binder naturally deals with heterogeneous re-

sources. This is important in any Grid context. More-

over, preserving high-level program information until the

target machine is known also provides opportunities for

architecture-specific optimizations. This will be explored

in future GrADS research.

3 Scheduling Workflow Graphs

Workflow applications are an important class of pro-

grams that can take advantage of the power of Grid comput-

ing. The LIGO [1] pulsar search and several image process-

ing applications [7] are examples of workflow applications

that harness the power of the Grid. As the name suggests,

a workflow application consists of a collection of compo-

nents that need to be executed in a partial order determined

by control and data dependences.

The previous version of the GrADS scheduler was de-

signed to support tightly-coupled MPI applications [17, 20,

24] and was not well suited to workflow applications. On

the other hand, existing approaches to workflow schedul-

ing, such as Condor DAGMan [18], are not able to effec-

tively exploit the performance modeling available within

GrADS to produce better schedules. To address these short-

comings, we developed a new GrADS workflow scheduler

that resolves the application dependences and schedules the

components, including parallel components, onto available

resources using GrADS performance models as a guide.

3.1 Workflow Scheduling

A Grid scheduler for a workflow application must be

guided by an objective function that it tries to optimize.

Examples of such objective functions include minimizing

communication time and volume, minimizing overall job

completion time, and maximizing throughput. For the

GrADS Project, we have chosen to minimize the overall job

completion time, also known as the makespan, of the appli-

cation. The GrADS scheduler builds up a model of Grid

resources using services such as MDS [4] and NWS [25].

The scheduler also obtains performance models of the ap-

plication using a scalable technique developed for GrADS.

Using these models, the scheduler then provides a mapping

from the workflow components to the Grid resources.

A stricter definition of the problem can be formulated

with the help of two sets: the set C = {c1, c2, . . . cm}
of available application components from the application

DAG, and the set G = {r1, r2, . . . rn} of available Grid re-
sources. The goal of the scheduler is to construct a mapping

from elements of C onto elements of G.

For each application component, the GrADS workflow

scheduler ranks each eligible resource, reflecting the fit be-

tween the component and the resource. Lower rank values,

in our convention, indicate a better match for the compo-

nent. After ranking the components, the scheduler collates

this information into a performance matrix. Finally, it runs

heuristics on the performance matrix to schedule compo-

nents onto resources.

Computing rank values The scheduler ensures that re-

sources meet certain minimum requirements for a compo-

nent. Resources that do not qualify under these criteria are

given a rank value of infinity. For all other resources, the

rank of the resource rj is calculated by using a weighted

sum of the expected execution time on the resource and the

expected cost of data movement for the component ci:

rank(ci, rj) = w1 × eCost(ci, rj) + w2 × dCost(ci, rj)

The expected execution time eCost is calculated using a

performance modeling technique that will be described in

the next section. The cost of data movement dCost is esti-

mated by a product of the total volume of data required by

the component and the expected time to transfer data given

current network conditions. For this measurement, NWS is

used to obtain an estimate of the current network latency

and bandwidth. The weights w1 and w2 can be customized

to vary the relative importance of the two costs.

Scheduling application components Once ranks have

been calculated, a performance matrix is constructed. Each

element of the matrix pij denotes the rank value of exe-

cuting the ith component on the jth resource. This matrix

is used by the scheduling heuristics to obtain a mapping

of components onto resources. Such a heuristic approach

is necessary since the mapping problem is NP-complete

[6]. We apply three heuristics to obtain three mappings and

then select the schedule with the minimum makespan. The

3

heuristics that we apply are the min-min, the max-min, and

the sufferage heuristics [3, 19].

3.2 Component Performance Modeling

As described in the previous section, estimating the per-

formance of a workflow component on a single node is

crucial to constructing a good overall workflow schedule.

We model performance by building up an architecture-

independent model of the workflow component from indi-

vidual component models. To obtain the component mod-

els, we consider both the number of floating point opera-

tions executed and the memory access pattern. We do not

aim to predict an exact execution time, but rather provide an

estimated resource usage that can be converted to a rough

time estimate based on architectural parameters. Because

the resources are architecture-independent, our models can

be used on widely varying node types.

To understand the floating point computations performed

by an application, we use hardware performance counters

to collect operation counts from several executions of the

program with different, small-size input problems. We then

apply least squares curve-fitting on the collected data.

To understand an application’s memory access pattern,

we collect histograms of memory reuse distance (MRD) —

the number of unique memory blocks accessed between a

pair of references to the same block — observed by each

load and store instruction [11]. Using MRD data collected

on several small-size input problems to the application, we

model the behavior of each memory instruction, and predict

the fraction of hits and misses for a given problem size and

cache configuration. To determine the cache miss count for

a different problem size and cache configuration, we eval-

uate the MRD models for each reference at the specified

problem size, and count the number of accesses with pre-

dicted reuse distance greater than the target cache size.

3.3 Workflow Scheduling Test Case

In this section, we apply some of the strategies described

in the previous sections to the problem of adapting EMAN

[10], a bio-imaging application developed at Baylor College

of Medicine, for execution on the Grid using the GrADS

infrastructure. EMAN automates a portion producing 3-

D reconstructions of single particles from electron micro-

graphs. Human intervention and expertise is needed to

define a preliminary 3-D model from the electron micro-

graphs, but the refinement from a preliminary model to the

final model is fully automated. This refinement process

is the most computationally intensive step and benefits the

most from harnessing the power of the Grid. Figure 2 shows

the components in the EMAN refinement workflow, which

Figure 2. EMAN refinement workflow

forms a linear graph in which some components can be par-

allelized.

We have scheduled the EMAN refinement workflow

components using the GrADS workflow scheduler (incor-

porating the constructed performance models) and executed

the workflow on a grid of heterogeneous platforms using the

GrADS binder, which enabled us to use both IA-32 and IA-

64 machines, validating our approach to heterogeneity. This

configuration was demonstrated live at the SC2003 confer-

ence.

4. Rescheduling

Normally, a contract violation activates the GrADS

rescheduler. The rescheduling process must determine

whether rescheduling is profitable, based on the sensor data,

estimates of the remaining work in the application, and the

cost of moving to new resources. If rescheduling appears

profitable, the rescheduler computes a new schedule (us-

ing the COP’s mapper) and contacts rescheduling actua-

tors located on each processor. These actuators use some

mechanism to initiate the actual migration or load balanc-

ing. Sections 4.1 and 4.2 describe two rescheduling mecha-

nisms that we have explored. Both rely on application-level

migration, although we designed both so that the required

additional programming is minimal. Whether a migration is

done or not, the rescheduler may contact the contract mon-

itor to update the terms of the contract.

4.1 Rescheduling by Stop and Restart

Our first approach to rescheduling relied on application

migration based on a stop/restart approach. The application

is suspended and migrated only when better resources are

4

found for application execution. When a running applica-

tion is signaled to migrate, all application processes check-

point user specified data and terminate. The rescheduled

execution is then launched by restarting the application on

the new set of resources, which then read the checkpointed

data and continue the execution.

4.1.1 Implementation

We implemented a user-level checkpointing library called

SRS (Stop Restart Software) [22] to provide application mi-

gration support. Via calls to SRS, the application can check-

point data, be stopped at a particular execution point, be

restarted later on a different processor configuration and be

continued from the previous point of execution. SRS can

transparently handle the redistribution of certain data dis-

tributions (e.g., block cyclic) between different numbers of

processors (i.e., N to M processors). The SRS library is

implemented atop MPI and is hence limited to MPI-based

parallel programs. Because checkpointing in SRS is imple-

mented at the application rather than the MPI layer, migra-

tion is achieved by exiting of the application and restarting

it on a new system configuration.

The SRS library uses the Internet Backplane Protocol

(IBP) [12] for checkpoint data storage. An external compo-

nent (e.g., the rescheduler) interacts with a daemon called

Runtime Support System (RSS). RSS exists for the dura-

tion of the application execution and can span multiple mi-

grations. Before the application is started, the launcher ini-

tiates the RSS daemon on the machine where the user in-

vokes the GrADS application manager. The actual applica-

tion, through the SRS, interacts with RSS to perform some

initialization, to check if the application needs to be check-

pointed and stopped, and to store and retrieve checkpointed

data.

The contract monitor retrieves the application’s registra-

tion through the Autopilot [13] infrastructure. The appli-

cations are instrumented with sensors that report the times

taken for the different phases of the execution to the contract

monitor.

The contract monitor compares the actual execution

times with predicted ones and calculates the ratio. The toler-

ance limits of the ratio are specified as inputs to the contract

monitor. When a given ratio is greater than the upper toler-

ance limit, the contract monitor calculates the average of the

computed ratios. If the average is greater than the upper tol-

erance limit, it contacts the rescheduler, requesting that the

application be migrated. If the rescheduler chooses not to

migrate the application, the contract monitor adjusts its tol-

erance limits to new values. Similarly, when a given ratio

is less than the lower tolerance limit, the contract monitor

calculates the average of the ratios and lowers the tolerance

limits, if necessary.

The rescheduler component evaluates the performance

benefits that might accrue by migrating an application and

initiates the migration. The rescheduler daemon operates

in two modes: migration on request and opportunistic mi-

gration. When the contract monitor detects unacceptable

performance loss for an application, it contacts the resched-

uler to request application migration. This is called mi-

gration on request. Additionally, the rescheduler periodi-

cally checks for a GrADS application that has recently com-

pleted. If it finds one, the rescheduler determines if another

application can obtain performance benefits if it is migrated

to the newly freed resources. This is called opportunistic

rescheduling. In both cases, the rescheduler contacts the

NetworkWeather Service (NWS) for updated Grid resource

information. The rescheduler uses the COP’s performance

model to predict remaining execution time on the new re-

sources, remaining execution time on the current resources,

and the overhead for migration and determines if migration

is desirable.

4.1.2 Evaluation

We have evaluated stop/restart rescheduling based on ap-

plication migration for a ScaLAPACK [2] QR factorization

application. The application was instrumented with calls to

the SRS library that checkpointed application data includ-

ing the matrix A and the right-hand side vector B.

In the experiments, 4 UTK machines and 8 UIUC ma-

chines were used. The UTK cluster consists of 933 MHz

dual-processor Pentium III machines running Linux and

connected to each other by 100 Mb switched Ethernet. The

UIUC cluster consists of 450 MHz single-processor Pen-

tium II machines running Linux and connected to each other

by 1.28 Gbit/second full-duplex Myrinet. The two clusters

are connected via the Internet.

A given matrix size for the QR factorization problem

was input to the application manager. Initially, the sched-

uler used the more powerful UTK cluster. However, five

minutes after the start of the application, an artificial load

was introduced on a UTK node, which could make it more

efficient to execute the application the UIUC cluster.

The contract monitor requested the rescheduler to mi-

grate the application due to the loss in predicted perfor-

mance caused by the artificial load. The rescheduler evalu-

ated the potential performance benefits due to migration and

either migrated the application or allowed the application to

continue on the original machines.

The rescheduler was operated in two modes — default

and forced. In normal operation, the rescheduler works un-

der default mode, while the forced mode allows the resched-

uler to require the application to either migrate or continue

on the same set of resources. Thus, if the default mode is to

migrate the application, the forced mode will continue the

5

7000 8000 9000 10000 11000 12000

Size of matrices (N)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Application duration 2

Checkpoint reading
Application start 2

Grid overhead 2
Performance modeling 2

Resource selection 2
Checkpoint writing
Application duration 1

Application start 1

Grid overhead 1
Performance modeling 1

Resource slection 1

Rescheduler decided not

to reschedule for size 8000.

Wrong decision

Left Bars No rescheduling

Right Bars Rescheduling

Figure 3. Problem size and migration

application on the same set of resources and vice versa. For

the experiments, results were obtained for both modes, al-

lowing comparison of the scenarios and verification that the

rescheduler made the right decision.

Figure 3 was obtained by varying the size of the matrices

(i.e., the problem size) on the x-axis. The y-axis represents

the execution time in seconds of the entire problem includ-

ing the Grid overhead. For each problem size, the left bar

represents the running time when the application was not

migrated and the right bar represents the time when the ap-

plication was migrated.

Several observations can be made from Figure 3. First,

the time for reading checkpoints dominated the reschedul-

ing cost, as it involves moving data across the Internet and

redistributing data to more processors. On the other hand,

the time for writing checkpoints is insignificant since the

checkpoints are written to IBP storage on local disks.

In addition, the rescheduling benefits are greater for large

problem sizes because the remaining lifetime of the appli-

cation is larger. For matrix sizes of 7000 and below, the

migration cost overshadows the performance benefit due to

rescheduling, while for larger sizes the opposite is true. Our

rescheduler actually kept the computation on the original

processors for matrix sizes up to 8000. So, except for ma-

trix size 8000, the rescheduler made the correct decision.

For matrix size 8000, the rescheduler assumed an

experimentally-determined worst-case rescheduling cost of

900 seconds while the actual rescheduling cost was about

420 seconds. Thus, the rescheduler evaluated the perfor-

mance benefit to be negligible. Hence, in some cases, the

pessimistic approach of assuming a worst-case rescheduling

cost will lead to underestimating the performance benefits

due to rescheduling.

In another paper [21], we examine the effects of other

parameters (e.g., the load and the time after the start of the

application when the load was introduced) and the use of

opportunistic rescheduling.

4.2 Rescheduling by Processor Swapping

Although very flexible, the natural stop, migrate and

restart approach to rescheduling can be expensive: each

migration event can involve large data transfers. More-

over, restarting the application can incur expensive startup

costs, and significant application modifications may be re-

quired for specialized restart code. Our process swapping

approach, which was initially described in [15], provides

an alternative that is lightweight and easy to use, but less

flexible than our migration approach.

4.2.1 Basic Approach

To enable swapping, the MPI application is launched with

more machines than will actually be used for the compu-

tation; some of these machines become part of the compu-

tation (the active set) while some do nothing initially (the

inactive set). The user’s application sees only the active

processes in the main communicator (MPI Comm World);

communication calls are hijacked, and user communication

calls to the active set are converted to communication calls

to a subset of the full process set.

During execution, the contract monitor periodically

checks the performance of the machines and swaps slower

machines in the active set with faster machines in the inac-

tive set. This approach requires little application modifica-

tion (as described in [15]) and provides an inexpensive fix

for many performance problems. On the other hand, the ap-

proach is less flexible than migration – the processor pool is

limited to the original set of machines, and the data alloca-

tion can not be modified.

MPI Swapping was implemented in the GrADS

rescheduling architecture in which performance contract vi-

olations trigger rescheduling. The swapping rescheduler

gathers information from sensors, analyzes performance

information and determines whether and where to swap

processes. We have designed and evaluated several poli-

cies [14] and we have experimentally evaluated our process

swapping implementation using an N-body solver [14, 15].

4.2.2 Evaluation

This section describes how we used the MicroGrid to eval-

uate the GrADS rescheduling implementation.

6

The MicroGrid Understanding the dynamic behavior of

rescheduling approaches for Grids requires experiments un-

der a wide range of resource network configurations and dy-

namic conditions. Historically, this has been difficult, and

simplistic experiments with either a few resource configura-

tions or simple models of applications have been used. We

use a general tool, the MicroGrid, which supports system-

atic, repeatable, scalable, and observable study of dynamic

Grid behavior, to study the behavior of the process swap-

ping rescheduling system on a range of network topologies.

We show data from a run of an N-body simulation, under the

N-N rescheduling system, running on the MicroGrid emu-

lation of a distributed Grid resource infrastructure.

The MicroGrid allows complete Grid applications to ex-

ecute on a set of virtual Grid resources. It exploits scalable

parallel machines as compute platforms for the study of ap-

plications, network, compute, and storage resources with

high fidelity. For more information on the MicroGrid see

[9, 16, 26].

Experiments with process-swapping rescheduling The

first step in using the MicroGrid is to define the virtual re-

source and network infrastructure to be emulated. For our

demonstration, we created a virtual Grid which is a subset

of the GrADS testbed, consisting of machines at UCSD,

UIUC, and UTK. The virtual Grid includes two clusters

at UTK and UIUC and a single compute node at UCSD.

The UTK cluster includes three 550Mhz Pentium II nodes.

The UIUC cluster consists of three 450Mhz Pentium II ma-

chines. Both clusters are internally connected by Gigabit

Ethernet. The single UCSD machine is a 1.7 Ghz Athlon

node. The latency between UCSD and the other two sites

is 30ms, and between UTK and UIUC the latency is 11ms.

These configurations are described for MicroGrid in stan-

dard Domain Modeling Language (DML) and a simple re-

source description for the processor nodes.

The MicroGrid uses a Linux cluster at UCSD to imple-

ment its Grid emulation. We allocated two 2.4Ghz dual-

processor Xeonmachines for network simulation, and seven

450Mhz dual-processor Pentium II machines to model the

compute nodes in the above virtual Grid.

To perform the process swapping rescheduling experi-

ment on the virtual Grid, we first launched the MicroGrid

daemons (instantiating the virtual Grid). From this point

on, all processes launched on UCSD, UTK, or UIUC ma-

chines ran on the virtual Grid nodes. Second, we launched

the contract monitor infrastructure (the Autopilot manager

and contract monitor processes) and rescheduler process on

the UCSD node. Third, we launched the N-body simulation

application to the UTK and UIUC clusters which then con-

nected to the contract monitor and rescheduler. All three of

the initial active application processes started on the UTK

nodes. At (virtual) time 80 seconds, we added two competi-

tive processes to consume CPU time on one UTK machine.

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

Time (seconds)

It
e
ra

ti
o

n
 n

u
m

b
e
r

Figure 4. Emulated application progress dur-

ing N-body demonstration run

The rescheduling infrastructure detected poor performance

and migrated all three working application processes to the

UIUC cluster by time 150 seconds. Figure 4 shows the re-

sulting application progress, first slowed by the competitive

load, then increased by the migration to free resources.

5. Conclusions and Future Work

Although the results presented here are preliminary,

they establish several promising outcomes of the GrADS

Project:

• Rescheduling by stop/migration/restart and by single-
processor swapping are both feasible and require lit-

tle additional programming. Of the two approaches,

stop/migration/restart is very flexible, whereas the

overhead for processor swapping is quite low.

• Advanced scheduling of workflow applications can be
done successfully given the necessary infrastructure.

In the GrADS framework, this includes good node per-

formance estimation, a distributed launch process and

suitable scheduling heuristics.

• Grid computations can be successfully emulated by a
controllable testbed (i.e., the MicroGrid). This allows

a much wider range of experimentation and develop-

ment than traditional full-scale testing on the Grid, as

well as more accurate analysis of the results.

• Using simple computation and communication perfor-
mance metrics, captured via PAPI and the MPI pro-

filing interface with automatically-inserted sensors, al-

lows the detection of performance variations. More-

over, these techniques enable GrADS applications to

reschedule themselves for improved performance.

We have recently started to apply these insights in

our new Virtual Grid Application Development (VGrADS)

7

project. This project adds an abstraction layer called “vir-

tual Grids” (vgrids) to the current Grid infrastructure. A

vgrid will incorporate many of the GrADS techniques

discussed here, notably the workflow scheduler and the

rescheduling mechanisms, as well as new capabilities, such

as fault tolerance and “Grid economies” for allocating re-

sources.

Acknowledgement

The research reported here is based on work supported

by the National Science Foundation Next Generation Soft-

ware Program under NSF awards EIA-9975020 and ACI-

0103759.

References

[1] B. Barish and R. Weiss. Ligo and detection of gravitational

waves. Physics Today, 52(10), 1999.
[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-

mel, I. Dhillon, J. Dongarra, S. Hammerling, G. Henry,

A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-

PACK User’s Guide, 1997.
[3] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.

Heuristics for scheduling parameter sweep applications in

grid environments. In 9th Heterogeneous Computing work-

shop (HCW’2000), 2000.
[4] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,

W. Smith, and S. Tuecke. A directory service for config-

uring high-performance distributed computations. In Pro-

ceedings of the 6th IEEE Symposium on High-Performance

Distributed Computing, pages 365–375, August 1997.
[5] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint

for a New Computing Infrastructure. Morgan Kaufmann,

second edition, 2003.
[6] M. R. Garey and D. S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of Np-Completeness. MIT Press,

1979.
[7] S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T. Pan, and

J. Saltz. Image processing on the grid:a toolkit or building

grid-enabled image processing applications. In 3rd Interna-

tional Symposium on Cluster Computing and the Grid, 2003.
[8] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,

L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-

gulo, I. Foster, D. Gannon, S. L. Johnsson, C. Kesselman,

R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wol-

ski. Towards a framework for preparing and executing adap-

tive grid programs. In Proceedings of NSF Next Generation

Systems ProgramWorkshop (International Parallel and Dis-

tributed Processing Symposium), Fort Lauderdale, Florida,

April 2002.
[9] X. Liu and A. Chien. Traffic-based load balance for scalable

network emulation. In Proceedings of SC2003, November

2003.
[10] S. Ludtke, P. Baldwin, and W. Chiu. EMAN: Semiau-

tomated software for high-resolution single-particle recon-

structions. J. Struct. Biol., 128:82–97, 1999.

[11] G. Marin. Semi-automatic synthesis of parameterized per-

formance models for scientific programs. Master’s thesis,

Dept. of Computer Science, Rice University, April 2003.
[12] J. S. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and

R. Wolski. The internet backplane protocol: Storage in the

network. In NetStore99: The Network Storage Symposium,

1999.
[13] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopilot

performance-directed adaptive control system. Future Gen-

eration Computer Systems, 18(1):175–187, 2001.
[14] O. Sievert and H. Casanova. Policies for swapping MPI

processes. In Proceedings of HPDC-12, the Symposium on

High Performance and Distributed Computing, June 2003.
[15] O. Sievert and H. Casanova. A simple MPI process swap-

ping architecture for iterative applications. The Interna-

tional Journal of High Performance Computing Applica-

tions, 2004. to appear.
[16] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,

K. Taura, and A. Chien. The MicroGrid: A scientific tool for

modeling computational grids. In Proceedings of SC2000,

November 2000.
[17] K. Taura and A. Chien. A heuristic algorithm for mapping

communicating tasks on heterogeneous resources. In Het-

erogeneous Computing Workshop, May 2000.
[18] D. Thain and M. Livny. Building reliable clients and ser-

vices. In The Grid 2: Blueprint for a New Computing In-

frastructure, chapter 19. Morgan Kaufmann, second edition,

2003.
[19] Tracy D. Braun et al. A comparision of eleven static heuris-

tics for maping a class of independent tasks onto heteroge-

neous distributed computing systems. Journal of Parallel

and Distributed Computing, 61:810–837, 2001.
[20] S. Vadhiyar and J. Dongarra. A metascheduler for the grid.

In Proceedings of the High Performance Distributed Com-

puting Conference, July 2002.
[21] S. Vadhiyar and J. Dongarra. A performance oriented mi-

gration framework for the grid. In IEEE Computing Clusters

and the Grid (CCGrid), May 12-15 2003.
[22] S. Vadhiyar and J. Dongarra. SRS a framework for de-

veloping malleable and migratable parallel applications for

distributed systems. Parallel Processing Letters, 13(2):291–

312, June 2003. ISSN 0129-6264.
[23] F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed.

Performance contracts: Predicting and monitoring grid ap-

plication behavior. In Lecture Notes in Computer Science,

volume 2242, pages 154–165. Springer Verlag, November

2001.
[24] R. Wolski, J. Plank, J. Brevik, , and T. Bryan. G-commerce:

Market formulations controlling resource allocation on the

computational grid. In Proceedings of 2001 International

Parallel and Distributed Processing Symposium (IPDPS),

March 2001.
[25] R. Wolski, N. T. Spring, and J. Hayes. The network weather

service: a distributed resource performance forecasting ser-

vice for metacomputing. Future Generation Computer Sys-

tems, 15(5–6):757–768, 1999.
[26] H. Xia, H. Dail, H. Casanova, F. Berman, and A. Chien.

Evaluating the GrADS scheduler in diverse grid environ-

ments using the microgrid. submitted for publication, May

2003.

8

