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New Hadamard Matrices and Conference Matrices
Obtained via Mathon’s Construction

Jennifer Seberry'* and Albert Leon Whiteman?®

! Department of Computer Science, University College, UNSW, ADFA, Canberra, 2600
Australia
? Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

Dedicated to the memory of our esteemed friend Ernst Straus.

Abstract. We pive a formulation, via {1, — 1} matrices, of Mathen’s construction for conference
matrices and derive a new family of conference matrices of order 5-92*' + |, t = 0. This family
produces a new conference matrix of order 3646 and a new Hadamard matrix of order 7292. In
addition we construct new families of Hadamard matrices of orders 6-92*1 4 2, 10-9%*+! 4 2,
8-49-%, 1 = 0; ¢*{g + 3) + 2 where g = 3 (mod 4) is a prime power and }(g + 5} is the order of a
skew-Hadamard matrix); (¢ + 1)g*- 9", t > 0(where g = 7 (mod 8) is a prime power and §(g + 1) is
the order of an Hadamard matrix}, We also give new constructions for Hadamard matrices of order
4-9 = 0and (g + 1)¢* (where g = 3 (mod 4) is a prime power).

1. Introduction and Some Preliminary Results

For the definitions of Hadamard matrices, skew-Hadamard matrices, conference
matrices, type 1 and type 2 matrices the reader is referred to Wallis (= Seberry) [9].

The theorem of Mathon [3, p. 3237 states that there are symmetric conference
matrices of order (g + 2)¢* + 1 when g = 4t — 1 is a prime power and g + 3 is the
order of a conference matrix. In this paper we study Mathon’s construction giving
the matrices he uses an alternative formulation directly as (1, — 1) matrices. These
matrices are then generalized and used to find new constructions for Hadamard
matrices and conference matrices. In a paper under preparation we develop a
theorem of Mathon’s type when ¢ = 4¢ + 1 is a prime power. The ramifications of
this construction are also explored.

Throughout this paper we have retained the concepts of Mathon, using both B;
and B;, to emphasize our dependence on Mathon's ideas: then B could be replaced
by B,_; just as easily, although C and ', an ingenious censtruction of Mathon,
would need to be retained.

Let g = p" be an odd prime power. Let GF(g) be the finite field of g elements. If
r = 1 the elements of the field may be selected as the complete residue system 0,

*  This work was supported by grants from ARGS and ACRB.
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1,..., p— L. Let x(x) be the quadratic character defined on GF(g), where #(0) =
0, x(x} = 1 if x is a square and y{x} = — 1 if x is not a square.

Assume now that nis a prime. Fori,j = 0, t,..., n — 1 we define the shift matrix
T and the back-shift matrix R by :

1 ifj—i=1 (modn)

T'=(t) where t”={0 otherwise

(1.1)

Il ifj+i=1 {(modn)
0 othewise.

(1.2)

R ={r;) where rij={

Fork=0,1,...,n— 1 wehave
1 ifj—i=k (modn)
b o (0 @
T = () where ¢} {0 otherwise.

The matrices T and R have the following useful properties:
T"=I, (Tk)rzTn—k’ I+T+T2+‘“+T"_1=J,
R*=1I, RT*=RT:=T"*R, JT*=JR'=1

(13)

Here A® denotes the transpose of a matrix A. The matrix J is the matrix of 1’s of
order n, and I is the identity matrix of order n.

If nis a prime power let ¥, ¥4, .. ., o1 denote the elements of GF(n) numbered
sothaty, =0,7, = Ly, = —%({=0,1,...,n — 1) Fori,j,k=0,1,....n — L we
define the type 1 shift matrix T and the type 2 back-shift matrix R by

1 ify,—v%=%
= T(y) = (( ® = i L
K= Th) = (&) where p={0 LU (L
1 ify, + 9=,
e h _ i 1.21
R = {ry) where  r; {0 othewise. ( )

The matrices T(y,) have the following properties:
(i) T(y)are permutation matrices with Ty} = L.
(i) Tk # land ¢ = 1 then ) = 0. Consequently

T(o) + T(vy) + -+ T(ra-r) = J.
(i) (TER)) = T} (1.31)
(iv) The matrices T(,) form an abelian group under multiplication:

TENT) = TOm): %+ %= Vme

To prove (iv) we note that the product P = T{y}T(») of two permutation matrices
is itself a permutation matrix. Put P = {p;;} (i.j = 0.1,...,n — 1). Then

a—l 1 ifd® =W =1 forsomes
) I Is $, >
;= Y ) = { i
s=0

0 otherwise.
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Suppose that p,; = 1. From (1.11) we havey, — y, = 3, % — % = %, so that y;, — y, =
Y + V1 = Tm- Thus py; = £;;. o

The matrices T(y,) and R are both defined over the field GF(n) in which the
ordering of the elements has been fixed. T(,) is.a type 1 matrix and R is a type 2
matrix. Therefore

RT(n) =TI R = T(p.)R (1.32)

by [2, Coroilary 4.19].
Now let X = (x;;) (i,j =0,1,...,n — 1) be a matrix of order ». If n is a prime,
then

(TkX)ij = Xtk
and
(XT_k)i} = Xi jrkr

where the subscripts i + & and j + k are reduced modulo n whenever necessary.
Thus we get

(TkXT_k)u = Xitr, j+k

and

n—1 n=1
( TkXT_k) = 2 Xiwg,jeie (1.4)
k=0 i =0
Similariy if n is a prime power, then
(TEIX)i=xp  W=wn+n w=01..,5-1
and
(XT(?n—k))ij = Xip» Yo =%+ T v=0,1,....80—1.
Consequently
(T(?k)XT{?n-k))ij = Xups W=%t+% %W%=¥%+%
and

i

n—1 r—1
(T ro0x10n0) =5 . (141
k=0 k=0
We note that when k runs over the integers 0, 1, ..., n — 1 50 do u and v in some
order. In particular,ifk =n —ithenu = Qand y, = y—vsifk=n—jthenv =20
and y, =y — .

We use a standard procedure introduced by Scarpis and Paley (as described in
Wallis [9, p. 291]} to construct the core of a skew-Hadamard matrix. Let n = g be
a prime power. Let the order of the elements y,, y,, ..., 7,_ of GF(g) be fixed as in
the constructions of T(y,) and R in (1.11) and (1.21). Define the matrix

W= (w;) (Li=01,....,4-1)
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of -order g, where

wy = ¢ — %) (Li=01,...,4 — 1)

and y is the quadratic character defined over GF(g). Then W is a circulant matrix
when ¢ is a prime and a type 1 matrix when g is a prime power. In either case W
is symmetric for ¢ = 1 {mod 4) and skew-symmetric for ¢ = 3 (mod 4).

Henceforth let n = g = 3 (mod 4) be a prime or prime power. Let e = ¢, =
(1, 1,...,1) be a vector of n 1’s. Then the matrix :

= (% o)

is a skew-conference matrix of order n+ 1, and § + I, is a skew-Hadamard
matrix of order n + 1. Morcover W is the core of S. The matrices § and W satisfy

the relations
§= -8, S8 =nl,
“ (15)
W'= —W, WW!'=nrl, — J, wJi=0.

The matrices W and T(y,) are both type 1 matrices over GF{(g) and R is a type 2

matrix. Therefore
WTlw) = T(v)W,
() = T(n) (151)
WR =RW!'= RW'= —RW,

by [2, Corollary 4.19].
Next define the matrix

M=I+W

with top row (bg, b, ,...,b,_,)so thathy = L b = y(y)(i=1,2,...,n — 1}, Then (1.5)
implies

MM ={n+ 1)1 —J, MI=M2J=1J _ {1.6)
Finally define the matrix
N =e'(bg,by,. ... bey).

The matrix N is of order »n and each of its rows is the same as the top row of M. It
follows from (1.6) that

NTN — nt fork =0, (1 ?)
YR l=J forl<k<n-—L )
The following additional properties of the matrices M and N are useful:
MN'=(n+1)E—J, NJ=J, JN=nN, (13
: 1.8

WN =20, MN=TN=R'N=N.

Here the matrix £ is the matrix of order n with top row ones and zeros elsewhere.
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2. Matrices for Mathon’s Construction

We shall establish the existence of n + 2(1, — 1) matrices 4 + L B;(i = 1,2,...,n — 1},
C and C' of order n? which satisfy the relations .

() A=4A, 44 =n1—J,

(i) AB, = —BA, i=1,2...1-1)

(iii) AC= —CA,

{iv) AJ=0,BJ=CJ=nl, {i=12...,n—1) 1)
(v) BB =BB = (i =1,2...,n— Li+j#n)

(vi) BB = BB =, (j=1,2...,n— ;i £j)

(vi) B;B!= B, B, (i=12..,n=1)

(vii) BC = CB,=BIC=CB =J, ({i=12...,n—1)
(ix) C=d4,CC=nn+ Y xJ—-nJxJ,CC=nJx(n+1)I-1J)
(r=1)2

(x) ; (B.B} + BiB,) + CC' + C'C = n’(r + 1)L

The integer r in (x} is a parameter whose value in the present section is specified in
Theorem 1.
The matrices A, B;, C arc defined as follows:

A=WxWxIxJ—JxI (2.2)
For n a prime
n—1
Bi=Y RT' x MTY {(j=12..,n—1), (2.3)
=0 .
C=N(ILT,T..., T" Ye. (2.4)
For n a prime power
n—1
B = _;} RT(y) x MT(zy) (i=12..,n-1), (2.31)
C=N(LT,T,,...., T, Ve, T, = T(y) (2.41)

We now prove that when n = 3 (mod 4) is a prime or prime power the equations
in (2.1) are satisfied with ¥ = n. The proofs are carried out for the most part when
n is a prime. Parallel proofs can be given when » is a prime power with T" replaced
by T; = T(y).

Proof of (i). The(1, — 1) matrix A defined in (2.2) was first constructed by Belevitch
[1]. The meaning of (i) is that A is the core of a symmetric conference matrix of
order n? + 1. Details of the proof may be found in Wallis [9, p. 309].

Proof of (ii ). From definitions (2.2), (2.3) we have



360 J. Seberry, A.L. Whiteman

a—1
AB; = (W x W+I><J—J'><I)Z RT! x MTY
=0

n—1 r—1

=Y WRT' x WMTY + % (RT' x J —J x MT¥) {by (1.6))
i=0 =0
n—1

= ;;] WRT! x WMTY. (by (1.3))

In a similar manner we obtain
BA= RZ_; RT'W x MTYW.
Therefore
AB, + BA = (WRT' + RWT) x ;; WMTY =0
since WR = — RW by (1.51). This completes the proof.

Proof of (iii). From (2.2) and (2.4) we get
(4C); = (W x W)C); + (I x N)C); — ((J x DC);

~0+JNT ~ NJ=—J +nNT". (by (1.8))
(CA); = (C(W x W), + (C(I x J)),; —{C(J x I});;

=0+ NTJ —nNT' =J — nNT". (by (1.8))
This establishes the formula AC + C4 = 0. '

Proof of (iiv ). The definition of 4 in {2.2) reveals that the sum of the elements in each
row of 4 is 0. Therefore AJ = 0. The definitions (2.3) and (2.4) reveal that the sum
of the elements in each row of B; and in each row of Cis n. Therefore B,J = CJ = nJ.

Proof of (v). For j + k # n we have

n~1 n-1

BB, =Y Y RTRT"x MTUMT* (by (2.3))

i=0 =0
r—1 n—1 i .

— Tn+h-1 % MZ T:J+J|k (by (1_3))
k=0 i=0
=1 na-1 |

—_ T x MZ Ti(j+k]+gk (g =h— l)
g=0 i=0
a—l1 .

=Y T x M2J (by (L3))
g=0

=J x [

The proof of (v} is thus compiete, This result includes the corollary
B=1J, i=12...,n—1)
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Proof of (vi). For j # k we have

n—1n-1

BB, =Y Y RTHRT"} x MTHMT™*} (by (2.3))

i=0 h=0
n—1 n—1

= T MM TY™% {by {L.3))
i=0 h=0
n—1 n—1 .

= T x MM TH-h-ok (g=n—1)
g=0 i=0
n—1

=Y T*xJ (by (1.6))
=0

=JxJ (by(I.B))

The result for By B; is obtained in a similar manner. This completes the proof of {vi).
Proof of (vii). In the proof of (vi) assume that j = k. Then we get
-1
BB =n) T'x MM'T™%. (2.5)
g=0 .
Similarly we have
r—1
BB=nYy Tx MMT,
g=0
Thus B;Bj = B,_;B,_; and the proof is complete.
Proof of (viii). From (2.3) and (2.4) we obtain

(B.C)y = M *f TEWNTY = MN Y T (by (1.8))
= MN;}= MJ =1 - {by (1.3), (1.6))

(CB,);; = NT'M ,,Z:, T™ = NT'MJ (by (1.3))
— NT'J =_NJ =J. (by (1.6), (1.8)) .

The resuits for B{C and CB; are derived in a similar manner.

Proof of (ix). First we prove that C2 = J x J. This follows from
n—1
i=0G

where we have used (2.4), (1.3) and (1.8).
Next we deduce from (1.7) that
N . An2J  ifi=j
CC)y=nNT'T" N = aNT' N = '
(CCy=n " {—nJ ifi £

which is equivaient to
CC=nn+ 1) xJ—nJxJ.
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The evaluation of C'C is more difficuit. When n is a prime we use (1.3) and get
n—1 X a—1
CC=Jx Y (NT(NT ) =J x ¥ THN'N)T*
=0 K=0
n—1
=Jx Y THN'N)T™*

Since each row of the matrix N is the vector (by.b;,...,b,_), where b, = 1 and
b= xli}(i=1,2,...,n — 1) it follows that
(N‘N);=nbb, (i,j=0,1,...,n—1)

Hence (1.4) yields

("Z T*(N'N) )i =n Z By iy (2.6)

If i = j then the right member of (2.6) reduces to n® since by, by, = 1 for each k
from 0 to n — 1. If i # j then the right member of (2.6} becomes

n=l
”(bobj—i + bi-'jbﬂ) +n kZO x(i -+ k)JC(f + k) ==
in view of a lemma of Jacobsthal [9, p. 9, Lemma 5]. Therefore
r—1
Y, THN'N)T* = nMM’ = n(n + 1{ —nJ,
k=0

where we have used (1.6). This establishes the formula

CC=nJx(n+1)1-1J)
when n is a prime.
Since the extension of the preceding argument to the prime power case is not
straight forward we now turn to the consideration of this case. From the definition
of C in (2.4} and the properties of T(y,) in (1.31} we get

r—1

CC=Jx 3 (NT(r)J(NT()) =7 x Z T(-x)N'NT(3)

a—1
=J x kzn T (N NYT (7,-,)-
Since each row of the matrix N is the vector (by, by,...,b,—,) where b, = 1 and
b= x{y)(i=12,....n — 1}it follows that
(N‘N)U=nblbj (i,j=0,l,...,}1—l).

Hence (1.41) yields

(:g: T(3)(N'N) T(y,.-k)) =n n‘—i b,b,. (2.61)

ij
where for each k the values of u and v are uniquely determined from the relations
% =% + % and y, =% + 3. If i = f then the right member of (2.61) reduces to n”
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since b,b, = 1 for each k from 0 to n — 1. If i # j then b, = 1, b, = x{3; — y;) for
k=n—1iandh, =1,b, = x{y — v)for k = n — j. The right member of (2.61) now
becomes

n{aly; — %) + x(i — ) + n :g; X+l + )= —n

in view of the lemma of Jacobsthal [9, p. 9 Lemma 5). The rest of the proof proceeds
as before. :

Proof of (x). We now establish the validity of (x) with r = n. We have

(:Zx:luz {B.B{ + B!B;) = j;l BB {by (vii))
=n'Y Y T x MMT (by (2.5))
=n{Ix(n— MM + uz: T¢ x MM'(J — !]) (by (1.3)}
=1 xn(n—1)MM + (J — 1) x sMM'(J — I} _ (by (1.3))

=(I x MM)(n*I x I —nl x J —nJ x I+ n{J x J))
=’n+ DI xi—nln+ 1)) xI—nn+ 1} xJ+2nJ xJ. (by(L6)
Combining this with the sum of CC* + C'C in (ix) we get

(142
Y, (B:B{+ B{B)+ CC' + C'C = rn?(n + 1),
i=1

and this is equation (x) with r = n,
The results of this section may be summarized in the following theorem:

Theorem 1. Let n = 3 (mod 4) be a prime power. Then there exist matrices of order
n® satisfying equations (2.1) with r = n.

Remark. Although we have couched most of the proofs in terms of 7, the shift matrix,
_a circulant matrix, the results and proofs we give go straight through with type 1
and type 2 matrices, (see Wallis, [9] for appropriate definitions) as indicated in the
case of n a prime power.
It is possible these constructions can be modified to give matrices satisfying (2.1)
for other orders (e.g.,, 2 — 1).

Example 1. The case g = 3.
Mathon's construction makes use of three matrices 4, B, C of order 9,

Construction of the matrix A. The matrix A is the core of 2 symmetric conference
matrix of order 10. Tt may be defined by means of the equation

A=Wx W+ IxJ+Jx —1I,

where W is the circulant matrix with first row [0 + —] obtained from the core of
a skew-Hadamard matrix of order 4, I is the identity matrix of order 3 and J is the
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3 % 3 matrix of ones. We have
W= W, WW*r=3r—-J, WI =0
Note that 4 is a type 1 matrix defined over GF(3?). It is the same matrix 4 given
by Geramita and Seberry [2, p81]. The matrix A can also be written in the form
a b ¢
¢ a b
b ¢ a
where a, b, ¢ are the circulant matrices with first rows
O++] [—+-1 [——+]
respectively. Thus we have
c=p b+c=—2L
Construction of the matrix B. The matrix B is
—-¢ a—-1 —b
a—i1 —b —c
- b —¢ a-—1
1t should be noted that B is a block back circulant matrix whose elements are
circulant matrices. Hence B is neither type 1 nor type 2 matrix over GF(9), (Perhaps
it should be referred to as a type 3 matrix over GF(9}) but it could still be defined

as a group matrix over Z; x Z;.
" The matrix B may also be written in the form

M MT MT? 1 T T2
B=| MT MT? M or M| T T* I
MT? M MT T ! T

where M = I + W, W as before, and T is the circulant matrix {shift matrix) with
first row [0 + 0]. Note that

T2 =T, T}=1, I+T+T*=1

Construction of C, The matrix C is constructed as follows:

[+ + - + + - + + -
S A e
+ o+ -+ o+ =+ o+ =
— 4+ 4+ - 4+ +  — o+ o+
-+ + -+ + = o+ +
-+ + =+ =+ 4+
+ — 4+ o+ - 4+ 4+ - +
T T S S

+ - + o+ -+ o+ =+
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The construction of the matrix C is an ingenious idea of Mathon. Note that C is
not composed of circulants or back-circulants.
The matrix C may also be written in the form

N N N 1 11
C=| NT NT NT| oo N|T T T
NT? NT? NT? T2 T? T?
where
+ 4+ -
N={+ + -
+ + -

Note that each row of N is the same as the top row of M.
The matrices A, B, C satisfy equations (2.1} with r = n = 3. In this case they
are

A=A, A2=9]_,
AB= —BA, AC= —CA,
AJ =0, BJ=CJ=3J,
BE=C%*=, > 2.7)
BC=CB=BC=CB=J

CC =120 xJ—3J xJ, C'C=12J x I —3J x J,
BB + B'B + CC' + C'C = 3.

Example 2. The case g = 7.
The construction makes use of five matrices A, B,, B,, B,, C of order 49.

Construction of the matrix A. The matrix A is the core of a symmetric conference
matrix of order 50. It may be defined by means of the equation
A=Wx W+ IxJ+Jx -1,

where W is the circulant matrix with first row [0 + + — + — —] obtained from
the core of a skew-Hadamard matrix of order 8. We have

Ww'= —W, WW'=71—J, WwJ =0.

The matrix A may also be written as a block circulant matrix of circulant matrices.
A, then, is a circulant matrix with first row [a b b cc b ¢ c] where a, b, ¢ are themselves
circulant matrices with first rows

O++++++] [—++—+—=] [—— —+—+ +]

respectively. We note that although A has been defined thus it could also have been
defined as a type 1 matrix over the group Z; x Z,.
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Thus we have
¢c="b, b+c=-2I

Construction of the matrices B,, B,, B;. We define M = I + W, to be the circulant
matrix with first row [+ + + — + — —], and T to be the circulant matrix with
first row [0 + 00000]. Thus M is the core of the skew-Hadamard matrix of order
8 and T, the shift matrix, has the properties

Tﬁ — Tt, TS — (TZ)I, T4 — (Ts}r, T'.'f — I,
I+T+T2+ T3+ T+ T+ T°= 1

We now construct the matrices B,, B;, B; to be block back circulant matrices with
first rows

B, =[M MT MT? MT?® MT* MT® MT¢]
B,=[M MT> MT* MT® MT MT> MT?]
B,={M MT* MT® MT? MT> MT MT*]
respectively. We note that these matrices, while neither type 1 nor type 2 {as noted

before they should be called type 3). they are still group matrices and could be
defined on Z; x Z,.

Construction of C, The matrix C may be written in the form

[ N N N N N N N
NT NT NT NT NT NT NT
NT? NT?2 NT? NT? NT? NT? NT?
C=|NT® NT® NT® NT® NT?® NT> NT?
NT* NT* NT* NT* NT* NT* NT*
NT® NT® NT® NT® NT® NT® NT?
NTS NTS NT®S NT® NT® NTS NTS

where

[+ + + - + - -]

+ + + - + - -

O T S

N=|+ + + - + — -—

+ + + - + - -

+ + + -+ = -
[+ + + - + - —]

Note that each row of N is the same as the top row of M.
The matrices A, By, B,, Bs, C satisfy equations (2.1) with r = n = 7. In this case
they are
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A=A AA" =9I — J,

AB, = —BA, (i=1,2,3)

AC = —CA, '

AJ =0, BJ=CJ=T1J, (i =1,2,3)

B.B,= BB, = J, (ij =1,2,3) . (2.8)
BB = BB, = J, (ij = 1,2, 31 #j)

BC=CB,=BC=CB=J, {i=1273)
Ci=J, CC=56IxJ-TIxJ, CC=56JxT—-T7FxJ
BB + BB, + B,B; + ByB, + BB, + BB, + CC' + C'C = 3921 |

3. Further Matrices for Mathon’s Construction

In this section we construct matrices of order n? satisfying the equations (2.1) with
r=3and n=3"" >0,

Suppose B;, C;, B;, C; are square (1, — 1) matrices of orders b;, b; respectively,
which satisfy

B?=C?=BC,=CB,=BC,=CB =J, kelij)
B =CJ = a,J, (3.1)
BB, + BB, + C,C; + C,C, = 4hI; .
Then B,,, C,, where
B, = B;x (B + B}) + C; x (B, - B))
Cn=—B x3{(C;— C)+ C; x3(C, + ()
are square {1, — 1) matrices of order h; = b, satisfying (3.1} where a,, = a;4;. So we

have

Lemma 2, Suppose there exist two pairs of (1, — 1) matrices of orders by, b; respectively
satisfying (3.1). Then there exists a pair of (1, — 1) matrices of order b,b; satisfying (3.1).

Corollary 3. By (2.7) matrices satisfying (3.1} exist for order 9. Hence by Lemma 2
such matrices also exist for orders 9%, 5 > 1,

We now show how to adjoin a matrix A to the matrices B, C of Corollary 3 so
that the requirements (i), (i) and (iii) of (2.1} arc also satisfied.

Suppose B;, C, are matrices satisfying (3.1) above. We use Lemma 2 an odd
number of times to obtain (1, — 1) matrices B,,,, and Cy,,, of order 9*1, ¢ > 0
which aiso satisfy (3.1) observing that as B,J = C,J = 3J we have

By =Cynid = 3%y
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since each iteration of Lemma 2 only leaves one term without a factor +(B, — B})
or +{C; — C).

Belevitch [1] observed that if W is the core of a conference matrix of orderp + 1
then - :

W,=Wx Wx WH+IxIxWH+IxWxiI+WxiIxl]J

is the core of a conference matrix of order p* + 1. This was also observed by Wallis
[8] who noted that if ) " is used to denote the sum of all the cyclic permutations of
a Kronecker product being summed so that

MIXIXxW=IxIxWH+IxWxI+WxIxJ.
then
Wo=WxWXxWxWxW+YIxJxWxWxW
+¥IxIxIxJxW
and
Wo=WXxWxWxWxWxWxW+YIxIxWxWxWxWxW
+3IXIXIXIXWxWxW+ITxIxWxWxIxJxW
+¥IxIxIxIxIxTIxW

are the cores of conference matrices of orders p> + 1 and p” + 1 respectively, Turyn
[6] further extended this to obtain cores of conference matrices of order p>**' + 1,
s 2 0. This ensures that the matrix A = A, of equations (2.1} can be extended to a
matrix of order 9%**! satisfying

Appay = Adenys A%r+l =9¥M 1 —J
It only remains to show that
Azi1 By + By dper =0 and Ay oy + Copy Az = 0.

Since each term of A,,,, contains an odd number of 4,’s in its Kronecker product
representation the equation A, B, = — B, A, will be used an odd number of times
while each other factor in a term in 4,,,, B, ,, will either be +B,, + C,, 3J (from
J-3(B, + B}) or J-}{C, +C})) or 0 {from J-}B, — B!} or J-3}{C, — C})).
Since +B,, +C,, 3J, 0 will occur in the same positions in A, B, and
Byiv1 Az4y the odd number of occurrences of 4, B, and B, A, respectively ensures

Azr+1Bzz+1 + Bz:+1A2r+1 =0
and similarly
Az41Coi1 + Cop Az = 0.

Thus we can say

Theorem 4. Suppose there exist (1, — 1)} matrices A + I, B, C of order ¢* satisfying,
fori=1
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A=A, AA'=4'1—J, AJ=0

AB= —BA, AC= —CA

B*=C?>=J, BJ=CJ=k'J  (kconstant) (3.2)
BC=CB=B'C=CB=J

BB + BB+ CC + C'C = 4¢'.

Then such matrices also exist of order g2***.

Corollary 5. There exist (1, — 1) matrices A + I, B, C of order 9%, t > O satisfying
(3.2).

Example 3. Lemma 2 gives the following matrices of order ¢’ (writing 4, B, C for A,,
B].a Ci)

By=Bx 3B+ B)x$B+B)+Cx3B—B)xiB+5B)
—BxHC—-C)x4B—B)+C x3C+C)x3C+ Y}
Cy= —Bx B+ B} x C — C)— C x 4B - B) x {C — C)
—BxHC-C)xHC+ C)+ Cx3HC+ C)x HC+ C)
Ay=AxAxA+AxIxJ+IxIxA+IxAx]
Now BJ = CJ = 3J (see (2.7)) and 4B = —BA, AC = —CA so
A3By=(Ax Ax A)B; + AB x }{B + B) x 3J + AC x 3(B — B') x 3J
+ AC x 3{(C + €) x 3J + B x 3J x $A(B + B')
+C x 3J x LA(C + C)+ 3J x 3A(B+ B') x }(B + B')
+3J x +A(B — B') x (B + B') — 3J x $4(C — C') x }(B — B")
+ 37 x JA(C + C) x H{C + C)
= —B,A,.

Similarly for A, C,. The results for B, C,, B'C;, C4 B, Cy B follow by similar simple
calculation, 3

4. Mathon’s Consiruction for Conference Matrices

The theorem of Mathon cited in the introduction is an immediate consequence of
the following result.

Theorem 6. Suppose there exist {1, — 1) matrices A + I, By, ..., By, 1y, C of order
n? satisfying equations (2.1) with r = n. Further suppose there is a symmetric con-
ference matrix of order n+ 3. Then there exists a conference matrix of order
n’(n+2)+ 1.
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Proof. Form the circulant matrix Z with first row
Aa Bis BZ: ey B(n—-].),f?,a Ca Ct, B;n—]_)ps LR ] BE: B_tl

Form the symmetric core of order n + 2 of the given symmetric conference matrix.
The inner product of two rows of the core is — 1. Attach to each off diagonal element
in Z the same sign as the corresponding element in the core. Denote the resulting

matrix by V.
0 e
e VvV

We now prove that the matrix
is the required conference matrix of order n’(r + 2). Here e is the row vector
composed of n*(n + 2) — 1 ones.

Let §;; denote the inner product of the ith row of ¥ with the jth column of V.
From (i} and {x} of {2.1} we get

(Sﬁ = nz[n + 2).{ - J.
Ifi # j the contribution to 6;;from the diagonal elements is of the form AB; + B4 =
0 or AC + CA = 0 in view of (ii) and (iit). The contribution from the off diagonal
elements is —J in view of (v}, (vi) and {viii). Hence 6,; = —J, i # j. This proves
VV i =nn 4+ 2] —J x J.
Theorem 6 follows at once. i

Remark. In [3] Mathon investigates a method for constructing classes of inequiv-
alent conference matrices by means of skew latin squares. We shall not pursue this
subject in the present paper but the reader can see from Example 5 that skew latin
squares are implicitly used. It is quite possible that using inequivalent skew latin
squares herc will lead to inequivalent conference matrices.

Example 4. Construction of C,¢ in the case g = 3. We first form the matrix Z and
the core of the symmetric conference matrix of order 6.

A B, C C B 0 + - - +
Bl A B C + 0 + - -
Z=|(C B, A B C and { — + 0 + -
C C B A B - - + 0 +
B, C ¢ B A + - + 0
Hence
A B -C -—-C 4
B A B, -C -¢
U= - B A B, -C

-C -C B 4 B
B, -C —-C B A
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gives the conference matrix of order 46;

0 1...1
1
Cop = '
46 : U
1
Example 5. Using the core of C,, given in Example 1 we have for ¢ = 7 that the
core, U, of the conference matrix of order 442 is

A B, B, —-B, C - -B, —B, B]
B A B, —By, —B; C ¢ —B, —B
BE B‘l A B] - B2 - Ba - C C' - B;

B, —B B A4 B B -B € -C
c —B, —B B A4 B -B -B C
¢ ¢ -B B, B A4 B, -B, —B,
- Bz - 33 C Cl‘ - B; — Iz B;_ A Bl

| B]_ “_32 _Ba ‘_C CI _BS B‘z B; A _

5. A New Family of Conference Matrices

The technique used to prove Mathon's theorem may also be used to construct a
new family of conference matrices. This time we utilize Corollary 5 instead of
Theorem 1.

Theorem 7. There exist symmetric conference matrices of order 5-9%1' + 1,¢t = 0.

Proof. Let 4, B, C be the matrices of Corollary 3, and let ¢ be the row vector
composed of 9**! ones. Then

[0 e e e e el
e A B -C -—-C B
e B A B —-C —-C
e —-C B A B —-C
e —C —C B A B
le B —-C -C B A
is the required conference matrix of order 5-9%*! 4+ 1, ¢ > 0. O

Theorem 7 implies

Corollary 8. There exist symmetric Hadamard matrices of order 10-9%*1 + 2,1 > 0.

Proof. Lemma 5.2 of [9] states that the existence of a symmetric conference matrix
of order »# implies the existence of a symmetric Hadamard matrix of order 2n. This
proves the corollary. O
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Remark. Theorem 7 produces a new conference matrix of order 3646 = 5-9* + 1.
Corollary 8 produces a new Hadamard matrix of order 7292 = 10-9° + 2.

6. A New Construction for Hadamard Matrices
The constructions of this section are variations of the constructions of Section 4.

Theorem 9. Suppose there exist r + 2 matrices 4, B, ..., By_1yp: B, ..., By, G
C*' of order n* satisfving (2.1). If there also exists a skew-Hadamard matrix or a
symmetric coniference matrix of order

(i i(r + 5), then there is an Hadamard matrix of order n*(r + 3) + 2,

(i) r + 3, then there is an Hadamard matrix of order 2n*(r + 2) + 2.

Proof of (i). Since 4{r + 5)is even it follows that r = 3 (mod 4). Form two circulant
matrices I and V with initial rows

A + I., Bl" BZ"'"'!B(J'—I},-Q!C ‘dnd (_1)(?4‘1];’2-((4 - I), C‘s B{‘r—]],fl)"')B.'rb B_rl

respectively. Also form the core of order }{r + 3) of the skew-Hadamard matrix
or conference matrix, The inner product of any two rows of this core is of course
- 1. Attach to each off diagonal element in U and V the same sign as the correspond-
ing element in the core. Denote the resulting matrices by X and Y respectively. We
now prove that the matrix

1 1 e e
i -1 —¢ ¢

H = 6.1
ef _el X Y { )
¢! e’ Y —X

is the required Hadamard matrix of order n*(r + 3) + 2.
It suffices to establish that

XY =YX, (6.2)
and
XX'+ YY' = nz(r + 3) + 21 - 21 (6.3)

Equation (6.2) asserts that the inner product &; of the ith row of the matrix
[X Y] with the jth column of the matrix [Y — X' is equal to 0. We therefore
evaluate &;. If i = j the contribution 1o §; from the diagonal element is

(A+DHA-I)—(A-DH{4+1n=0.

The contribution from the off diagonal clements is 3(r + 1)J —4(r + 1)J = 0.
Thus §; = 0. If i # j the contribution to a typical §; from the diagonal elements is
of the form (4 + I)B, + B{A — I} — (A — I)B; — B{A + I}. The contribution from
the off diagonal elements is J — J. Again, 5;; = 0, i # j. This proves (6.2).

We now prove (6.3). This time let §;; denote the inner product of the ith row of
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the matrix [X Y] with the jth column of its transpose. By (i} and (x) of {2.1) we have

{r—1)2
Si={A+D*+{A—IF+ Y (BB +BB)+CC+CC
i=1 :

=24% 4+ 21 + n*(r + 1)1
=n*r+ 3+ 201 - 2J.

If i #j the contribution to a typical §; from the diagonal elements is of the
form (A + I)B, + B{A4 — I) + (4 — I}B; + B{A + I). The contribution from the off
diagonal elements is —J — J. Thus d; = —2J, i # j. This completes the proof of
(6.3).

Proof of (ii). This time form two circulant matrices U and V with initial rows
A + I} Bl’ B},a (RS B{r—l]p,’ C Cr'! B[rr-ﬂ_l}JQ, RS | BIZ" Bi!
and
(_ l}(f‘*l];’l(A - I)l Bl‘ BZ'! R B[r—1)||'29 C9 Cls B{lr—lj,r'Z! LERE BrZ! Brls

respectively, Also form the core of order r + 2 of the skew-Hadamard matrix or
conference matrix. Attach to each off diagonal element in U and V the same sign
as in the corresponding element of the core. Denote the resulting matrices by X
and Y respectively.

The rest of the proof consists in showing that a matrix H defined as in (6.1) is
the required Hadamard matrix of order 2n?(r + 2) + 2. The argument is similar to
that used in the preceding proof. There is no need to include the details here.  []

Corollary 10. Let g = 3 (mdd 4) be a prime power. Then if there is a skew-Hadamard
matrix of order 3{g + 5) there is an Hadamard matrix of order ¢*(q + 3) + 2.
Further if there is a symmetric conference matrix of order q + 3 then there is an
Hadamard matrix of order 2¢*(q + 2} + 2.

Proof. Use the matrices constructed above satisfying Theorem | withg =r =n.
O

Remark. The first part of Corollary 10 gives a new construction for the Hadamard
matrix of order 272+ 30 + 2 = 2*- 1367. Hadamard matrices of order 2% 1367 and
2%-1367 are as yet unknown. The matrices of order 2¢*(q + 2) + 2 in the second
part can also be constructed from the conference matrices of order ¢*{¢ + 2} + 1
found by Mathon.

Corollary 11. Suppose there exist matrices of order g* satisfying (3.2). Then there
are Hadamard matrices of order 6-¢° + 2 and 10-¢* + 2. In particular there exist
Hadamard matrices of order 6-9%* 4 2 and 10-9%*1 + 2.t = 0.

Proof. Use the matrices of Corollary 5 withr = 3, n = 3%*t > 0,

Remark. Corollary 11 gives new constructions for Hadamard, atrices of orders
56 =6-9 4+ 2and 92 = 10-9 + 2. Corollary 8 is included as a special case.
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7. Another Proof of a Theorem of Seberry

We now utilize Theorem 1 to construct another family of Hadamard matrices. The
matrix A of (2.1) is not included in this construction.

Theorem 12. Suppose there exist (1, —1) matrices By, ..., B,_y,n, C of order n?
satisfying (2.1). Further suppose that there exists an Hadamard matrix of order r + 1.
Then there is an Hadamard matrix of order n°(r + 1).

Proof. Let G be the Hadamard matrix of order r + 1 and U the circulant matrix of
order r + 1 with first row

t
Bis BZs AR ] B(r—n,-zs C: Cl-, {'r—lj,fb EERE ] B25 Bel

Construct a matrix H by attaching to each element of U/ the same sign as the
corresponding element in G, We now show the H is the required Hadamard matrix
of order n*(r + 1). Let §,; denote the inner product of the ith row of H and the jth
column of H*, Since any two rows of G are orthogonal it follows from (v), (vi) and
{viii) of (2.1} that &; = 0, i + j. Moreover, from (x) of (2.1) we have 8; = n*(r + L}/.
This proves that H is an Hadamard matrix of order n?(r + 1). O

Corollary 13. Let ¢ = 3 (mod 4) be a prime power. Then there exists an Hadamard
matrix of order g*(q + 1).

Proof. Use the matrices B, B!, C, C* of Theorem 1 withg=r =n.

Corollary 14, There exist Hadamurd matrices of order 49,5 > 0.

Proof. Use the matrices B, B', C, C* of Corollary 3 withr =3, n =3 s > 1. The
required Hadamard matrix is
—B B C oy
' —B B C
C ' —B B |
B C ¢ —B
Remark, Corollary 13 is due to Seberry [5]. Coroilary 14 is duc to A.C.

Mukhopadhyay [4] and R.J. Turyn [7]. However, the approach to these corollaries
in the present paper is conceptually different.

Remark. We also note the following 4.9°x (4.9° + 2) (1, —1) matrix D {where e is
an % x | column of ones)
e e B B C C
e —e B B Lo &
e —e C C -—B B
e e C* ¢ -B -—B
which satisfies
DD =491+ 2J. O



New Hadamard Matrices and Conference Matrices 375
8. Another New Construction for Hadamard Matrices

In this section we construct one more family of Hadamard matrices. The method
has already been used in Section 3. , ’

Suppose that we have two (1, —1) matrices B, C of order m® satisfying the
equations of (2.1) with r = 3. Then equation (x) becomes

BB + B'B + CC' + C'C = 4m*L. (8.1)

Tn addition suppose that we have four (1, —1) matrices By, B,, By, C, of order n?
satisfying the equations of (2.1) with r = 7. Then equation (x) becomes

3
i=1

Define four matrices E,, E,, E;, E, of order m?n? as follows:
E, =B, x 4B+ B')+ B, x }(B— B'),
E, =B, x3C— C)+ B, x {C + C),
Ey=B; x {C+C)+ C, x3(C—C),
E,=Byxi{B—B)+C, x{B+ B).
These matrices satisfy the relations
EE=E}=J ijke{l,234}
E\EY =EE, E\E, =ELE,,
E,E, = E;E5, EYE, = ELE,,
EE =EE=J, (ij)#(L4or(23), i#j

4
Y (E.E{ + E{E) = 8m*n’I. -
=

Finally construct the matrices
E E E E
F=| 4 F,=|" 3
E, —E, E, —E,

F?=F!<=F,F,=F,F,=F Fy=F.F, =1, x 2J,
F,F} + FIF, + F,F, + F3F, = 8m?nl.

then

A direct verification now shows that

_F, F, F F
F. —F F, £
£ R —-F F,
F; F 1 =5

is an Hadamard matrix of order 8m?n?,

This proves
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Theorem 15. Suppose that there are two (1, — 1) matrices B, C of order m* and four
(1, —1) matrices B,, B,, By, C, of order n* satisfying (2.1). Then there exists an
Hadamard matrix of order 8m*n>.

Corollary 16. There exist Hadamard matrices of orders 8-49-9%, s > 1.

Proof. We use the two matrices of order 9%, s = 1 of Corollary 3 and the four
matrices of order 49 of Theorem 1. . |

Remark. Theorem 15 may easily be generalised. We present the argument briefly.
Let two (1, — 1) matrices B, C of order m? be defined as in (8.1). In addition suppose
that By, B,, ..., By,—1, C; are 4s (1, — 1) matrices of order n® satisfying (2.1) with
r = 8s — 1. Then equation (x) becomes

Z (B.Bi + BiB;) = 8sn’I (8.21)

where we have written By, in place of C,. The equation (8.21) reduces to (8.2) when
s=1
Define 4s (1, — 1) matrices of order m?r? as follows:

Equr1 = Biyry X H{B + B') + By, x 3(B — B),

Equrs = Buyer X 3(C — C') + Byyiz x 3HC + C),
Egurs = By X HC + C') + Byyua % 3(C — C),
Eqyia = Bayrs X 3(B — B') + Byysy x 3(B + B),

where u =0, 1,..., s — 1. Then the matrices
Equn Equia . Eqyia Equrs
Fapry = s Fayrz = , u=0,1,...,s-1,
E4u+4 _E4ﬂ+l E4ﬂ+3 _E4u+2

satisfy the relations
Ez_—"F}P;z.P;F[=IZ = 2J,
FF =FF=10x2, i#]
S (F,F! + F/F)=8sm*n?1,

L

where both i and j extend over the values 4u + land 4 + 2, u=0,1,...,5 — L.
Next suppose there is an Hadamard matrix G of orders 4s. Let U be the circulant

matrix of order 4s with first row
FDFZ, FS! Fﬁ:"'?F43—3’F4s—2a F-ts—lsFt‘ts—Bs et F;’FgaFé!Fi

Construct a matrix H by attaching to each element of U the same sign as the
corresponding element in G. We may now check the row inner products of H and
verify that the requirements for-an Hadamard matrix of order 8sm*n® are fulfilied.

Thus we obtain
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Theorem 17. Suppose there exist two (1, — 1) matrices B, C of order m* and 4s(1, — 1}
matrices By, By, ..., By1, Cy of order n* satisfying (2.1). Suppose also that there
exists an Hadamard matrix of order 4s. Then there exists an Hadamard matrix of

order 8sm*n®,

The following corollary is complementary to Corollary 13,

Corollary 18. Let ¢ = 7 (mod 8) be a prime power. Then if there is an Hadamard
matrix of order (g + 1), there is also an Hadamard matrix of order ¢*(q + 1)¥,
s=0.

Proof. From Corollary 3 we have two matrices of order 9%, s 2 1 satisfying (3.1},
From Theorem 1 with ¢ = r = n = 85 — 1 we have 45 = (¢ + 1)/2 matrices of order
q° satisfying (2.1). Assume that an Hadamard matrix of order {g + 1) exists. Then
Corollary 18 is an immediate consequence of Theorem 17. [}
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