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Abstract: In this work, we propose to approximate the Gaussian integral, the error function and the cumula-

tive distribution function by using the power series extender method (PSEM). The approximations proposed

in this paper present a high accuracy for the complete domain [−∞,∞]. Furthermore, the approximations are

handy and easy computable, avoiding the application of special numerical algorithms. In order to show its

high accuracy, three case studies are presented with applications to science and engineering.
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1 Introduction

Gaussian functions are considered among the most important special functions for science and engineering

because they have a broad scope of application. Error function has applications in: chemical engineering,

transfer phenomena [1], Newtonian fluids analysis to express analytical solutions of differential equations

thatmodel the flownear awall suddenly set inmotion andunsteadyheat conduction in solids,microelectron-

ics, digital and analogue signal processing, noise analysis for the transmission and communication signal

protocols such as Phase Shift Keying (PSK) modulation [2–5], among others.

Another Gaussian function is the normal distribution that has applications in the field of statistics

and probability. This function allows to model several phenomena such as biological [6–9], social [10, 11],

psychological [12, 13], financial [14–16], in science and engineering [3–5, 17–21], among others.

Gaussian integrals can not be solved analytically employing traditional methods [22, 23]. However, there

are some proposed methodologies in literature that allow to construct approximations. Therefore, in [24]

*Corresponding Author: Mario A. Sandoval-Hernandez: National Institute for Astrophysics, Optics and Electronics, Luis

Enrique Erro No. 1, Sta. María Tonantzintla, 72840, Puebla, México; Universidad de Xalapa, Carretera Xalapa-Veracruz Km 2 No.

341, 91190, Xalapa, Veracruz, México; E-mail: m.sandoval@inaoep.mx

Hector Vazquez-Leal: Facultad de Instrumentación Electrónica, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N,

91000, Xalapa, Veracruz, México; Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico (COVEICYDET), Av

Rafael Murillo Vidal No. 1735, Cuauhtemoc, 91069, Xalapa, Veracruz, México

Uriel Filobello-Nino: Facultad de Instrumentación Electrónica, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N,

91000, Xalapa, Veracruz, México

Luis Hernandez-Martinez: National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Sta. María

Tonantzintla, 72840, Puebla, México

https://doi.org/10.1515/math-2019-0131


New handy and accurate approximation for the Gaussian integrals | 1775

are presented some approximative methods that are employed to evaluate Gaussian functions, such as

Power Series Expansions, Rational Approximations, Continued Fraction Expansions, Approximation by Burr

Distributions, Taylor series, among others. However, in order to obtain a good approximation such methods

require to calculate higher order extra terms using an iterative procedure. This characteristics is a draw-back

because the process is too cumbersome to be implemented by hand. Instead such approximativemethods are

programmed using specific languages such as Fortran, C++, among others. Another alternative to evaluate

such integrals is by means of numerical integration, like Simpson’s or trapezoidal rules [25].

There exist other proposals to approximateGaussian functions. For instance, in [24] a normal distribution

integral analytical approximation is reported employing hyperbolic tangent function. Additionally, [26, 27]

presents approximations related to error function expressed in terms of hyperbolic tangent and arctangent

functions, while normal distribution integral was approximated with exponential and inverse tangent func-

tions.

We propose to applicate the novel power series extendermethod (PSEM) [28–30] for the approximation of

the three gaussian integrals, because PSEM exhibits a large domain of convergence and it does not requires a

perturbation parameter [31, 32] or to calculate integrals [33–35] or the solution differential equations [36–38],

as other aproximative methods.

In this work will assume that exact solution for Gauss functions are numerically solved employingMaple

15 and GNUOctave; in addition, one of themetrics that wewill use to determine the precision of the proposed

approximations will be estimated calculating the root-mean-squared (RMS) error, defined for our application

as

Erms =

√√√√√ 1

b − a

b∫

a

(E(t))
2
dt, (1)

where a and b are integration limits, E(t) is the relative error. The process of integration will be performed

numerically utilizing Simpson’s rule 3
8 [39].

The organization of this article is as follows: Section 2 presents an introduction to Gauss integrals. Next,

in Section 3 Power Series Extender Method is explained. Later, in Section 4 Gauss integrals approximations

employing PSEM are presented. Three interesting applications to science and engineering are presented

in Section 5. Discussion on the results for the approximations obtaining employing Gaussian integrals is

presented in Section 6. Finally Section 7 shows the conclusions about this work.

2 A basic introduction to Gaussian integrals

This section presents some basis for the Gaussian distribution integral, the error function and the Cumulative

distribution function (CDF).

2.1 The Gaussian distribution integral

The Gaussian integral, known as the Euler-Poisson integral, is Gaussian function exp(−πt2), which can not

be analytically integrated [22, 23]

f (x) =

x∫

0

exp(−πt2)dt. (2)

The Gaussian distribution integral can be applied in: quantummechanics to find the probability density

for the fundamental state on the harmonic oscillator, the path integral formulation and the propagator for

the harmonic oscillator. Figure 1 shows the well known Gaussian integral curve.
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Figure 1: Gaussian integral (2).

2.2 Error function

Error function is classified as a special function and it is applied in the field of probabilistic, statistics, partial

differential equations solutions, robotics, among others. Error function is defined as

erf(x) =
2√
π

x∫

0

exp(−t2)dt, (3)

while complementary error function, erfc(x), is defined from error function as

erfc(x) = 1 − erf(x). (4)

Figure 2 presents the behaviour of (3).

Figure 2: Error function (3).
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2.3 Cumulative distribution function

Normal distribution, also known as Gauss-Laplace distribution, is usually employed in statistics since

aleatory processes tend to have similar behavior as this distribution. Several areas of knowledge present

continuous aleatory variables that have a normal density distribution and their behavior exhibits a bell

shape. It is noteworthy to mention the importance of normal distribution because many natural phenomena

variables follow this model. In this tenor, in statistics, central limit theorem shows that under certain

conditions (independent and identically distributed with finite variance), the sum of a large number of

aleatory variables is approximatelydistributedas anormal function [3, 6, 7, 16, 21]. Normalprobability density

function is

p(x) =
1√
2πσ

exp

(
−
(x − µ)2

2σ2

)
, (5)

where µ is themean, σ the standard deviation and σ2 the variance. Figure 3, shows that the graph is divided in

function of standard deviation. For instance, −σ ≤ x ≤ σ interval has 66.36% of the area, which, in statistics

is equal to have 66.36% of the data under study. In a similar fashion, −2σ ≤ x ≤ 2σ encloses 95.45% of

the information and −3σ ≤ x ≤ 3σ 99.73%. The probability is obtained by integrating from −∞ to x, which

represents the area under the curve (see Figure 3). Thus, CDF is

P(x) =
1√
2πσ

x∫

−∞

exp

(
−
(x − µ)2

2σ2

)
. (6)

Figure 3: Normal density function representation.

Cumulative distribution function (CDF) is presented in Figure 4 for a particular case of σ and µ.

3 Basic concept of PSEM method

In broad sense a nonlinear differential equation can be expressed as

L(u) + N(u) − f (x) = 0, x ∈ Ω, (7)

having as boundary condition

B

(
u,
∂u

∂η

)
= 0, x ∈ Γ , (8)
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Figure 4: CDF normal (6), with σ = 1 and µ = 0.

where L and N are a linear operator and a nonlinear operator respectively; f (x), is a known analytic function;

B, is a boundary operator; Γ, is the boundary of domain Ω;
∂u

∂η
denotes differentiation along the normal

drawn outwards from Ω [40]. Next, we express the solution of (7) as a power series

u =

∞∑

k=0

vkx
k , (9)

where vk(k = 0.1, 2, . . .) are the coefficients of the power series.

It is important to notice that (9) can be obtained by some approximative method from literature HPM

[36–38], VIM [34], TSM [41, 42], Taylor series, among others. Now, [29, 43] proposed that the solution for (7)

can be written as a finite sum of functions in the general from

u = u0 +

n∑

i=0

fi(x, ui), (10)

or

u =
u0 +

∑n
i=0 fi(x, ui)

1 +
∑2n

j=n+1 fj(x, uj)
, (11)

where ui are constants to be determined by PSEM, fi(x, ui) are arbitrary functions, and n and2n are the orders

of approximations (10) and (11), respectively. We will denominate (10) and (11) as a trial function (TF).

Next, we calculate the Taylor series of (10) or (11), resulting in the power series:

u = u0 +

n∑

i=0

Pi,0 +

n∑

i=0

∞∑

k=1

Pi,kx
k , (12)

u = u0 +

n∑

i=0

Pi,0 +

2n∑

i=0

∞∑

k=1

Pi,kx
k , (13)

respectively, where Taylor coefficients Pk are expressed in terms of parameters ui.

Finally, we equate/match the coefficients of power series (12), (13) with (9) to obtain the values of ui and

substitute them into (10) or (11) to obtain the PSEM approximation. The proposed arbitrary functions can

be functions, quotients of polynomials, transcendental functions, composite, products of transcendental

functions, among others [29]. It is important to notice that PSEM convergence greatly depends on the

proper selection of the trial function. Then, its necessary that the proposed TF can potentially describes the

qualitative behavior of the solution of the nonlinear problem.
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4 Approximation for the Gaussian integrals

This section presents approximation for the Gaussian integrals.

4.1 Approximation for the Gaussian distribution integral

Taylor series for the Gaussian Distribution Integral is

f (x) = x −
1

3
πx3 +

1

10
π2x5 −

1

42
π3x7 +

1

216
π4x9 − · · · . (14)

We propose as TF to approximate the Gaussian Distribution Integral the following modified logistic

function

f̃1(x) =
1

1 + exp(−c5x9 − c4x7 − c3x5 − c2x3 − c1x)
−
1

2
. (15)

Next, we obtain the Taylor series of (15), resulting

f (x) = 0 +
1

4
c1x +

(
1

4
c2 −

1

48
c31

)
x3 +

(
1

4
c3 +

1

8
c21c2 +

1

480
c51 −

1

8

(
c1c2 +

1

24
c41

)
c1

+
1

4

(
−
1

4
c2 +

1

48
c31

)
c21

)
x5 + · · · .

(16)

Equating coefficients from the respective x-powers of (14) and (16), the next nonlinear equation system

results

x :
1

4
c1 = 1

x3 :
1

4
c2 −

1

48
c31 = −

1

3
π

x5 :
1

4
c3 +

1

8
c21c2 +

1

480
c51 −

1

8

(
c1c2 +

1

24
c41

)
c1 +

1

4

(
−
1

4
c2 +

1

48
c31

)
c21 =

1

10
π2

x7 : · · · = −
1

42
π3

x9 : · · · =
1

216
π4

(17)

Solving the system (17) and substituting the values of c1, c2, c3, c4 y c5 in (15), results

f̃1(x) =
1

1 + exp(ψ(x))
−
1

2
, −∞ < x < ∞, (18)

where ψ(x) is the argument given by

ψ(x) = −
( 1

54
π4 −

4664

2835
π3 +

928

45
π2 −

256

3
π +

1024

9

)
x9

−
(
−
2

21
π3 +

152

45
π2 −

64

3
π +

256

7

)
x7

−
(2
5
π2 −

16

3
π +

64

5

)
x5

−
(
−
4

3
π +

16

3

)
x3 − 4x.

(19)
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In the literature, there are other expressions that allow to approximately calculate Gaussian function

integrals. In [44] was proposed the following approximation

f̃2(x) =
1

2
tanh

(
39x

2
−
111

2
arctan

(
35x

111

))
, −∞ < x < ∞. (20)

On one hand, Figure 5a shows a comparison among the exact solution and approximations (18) and (20).

On the other hand, Figure 5b presents a comparison of relative error for both approximations resulting a

notable lowest error for our proposal. In fact, RMS error of (18) for the interval [0, 3] is 1.208 × 10−5, while

(20) shows a value of 1.742 × 10−4; therefore, its error of our proposal is 14.42691943 times lower.

(a) Gaussian distribution integral and approximations.

(b) Relative error.

Figure 5: Gaussian distribution integral approximations and relative error.

4.2 Approximation for error function

Taylor series for error function is

erf(x) =
2x√
π
−

2x3

3
√
π
+

x5

5
√
π
−

x7

21
√
π
+

x9

108
√
π
− · · · . (21)

Next, the proposed trial function is the following modified logistic function

ẽrf1(x) =
2

1 + exp(−c5x9 − c4x7 − c3x5 − c2x3 − c1x)
− 1. (22)
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Repeating the PSEM procedure employed in the last section, we obtain the following approximation

ẽrf1(x) =
2

1 + exp(ξ (x))
− 1, −∞ < x < ∞, (23)

where

ξ (x) = −
1

5670

(105π4 − 9328π3 + 116928π2 − 483840π + 645120
π9/2

)
x9

+
2

315

(15π3 − 532π2 + 3360π − 5760
π7/2

)
x7

−
2

15

(3π2 − 40π + 96
π5/2

)
x5

+
4

3

(π − 4
π3/2

)
x3 −

4x

π1/2
.

(24)

In the literature there are several expressions to approximate the error function. For example, in [24, 27,

44] the following approximations were reported

ẽrf2(x) = tanh

(
2x(1 + 0.089430x2)√

π

)
, −∞ < x < ∞, (25)

ẽrf3(x) =

√

1 − exp

((
− 4
π + 0.14x

2
)
x2

1 + 0.14x2

)
, 0 ≤ x, (26)

ẽrf4(x) = tanh

(
39x√
2π

−
111

2
arctan

(
35x

111
√
π

))
, −∞ < x < ∞, (27)

respectively.

Figure 6a shows a comparison of exact solution and the above mentioned approximations. In addition,

Figure 6b presents a comparison of relative error resulting a notable lower error for our proposal. Finally,

Figure 6c depicts the relative error of our proposal in order to appreciate the error. Furthermore, calculating

the RMS error for the interval [0, 4] results: 1.392×10−5, 2.248×10−4, 1.551×10−4, and 6.696×10−5 for (23),

(25), (26), and (27), respectively. It is important to notice that the error of our proposal (23) is several times

lower than the other approximations.

4.3 Approximation for cumulative distribution function

The Taylor series expansion for CDF is

P(x) =
1

2
+

√
2x

2
√
π
−

√
2x3

12
√
π
+

√
2x5

80
√
π
−

√
2x7

672
√
π
+ · · · . (28)

We propose the following TF function

P̃1(x) =
1

1 + exp(−c5x9 − c4x7 − c3x5 − c2x3 − c1x)
. (29)

After the application of PSEM procedure, we obtain

P̃1(x) =
1

1 + exp(ζ (x))
, −∞ < x < ∞, (30)
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(a) Error funcion erf(x) and approximations.

(b) Relative error. (c) Zoom of Relative error in (23).

Figure 6: Error function approximations and relative error.

where the argument ζ (x) is

ζ (x) = −

√
2

181440

(105π4 − 9328π3 + 116928π2 − 483840π + 645120
π9/2

)
x9

+

√
2

2520

(15π3 − 532π2 + 3360π − 5760
π7/2

)
x7

−

√
2

60

(3π2 − 40π + 96
π5/2

)
x5

+

√
2

3

(π − 4
π3/2

)
x3 −

2
√
2

π1/2
x.

(31)

Additionally, another way to approximate the CDF is obtained by employing the next TF

P̃2(x) = c1 +
1

2
tanh

(
114arctan

(251
250

arctan(c2x) + c3x
))

. (32)

Following PSEM presented in this article and solving for c1, c2 and c3 yields to

P̃2(x) =
1

2
+
1

2
tanh

(
114arctan

(251
250

arctan(−0.09839818659x)+

0.1057907667x
))

, −∞ < x < ∞.

(33)

Furthermore, in [44] was proposed the next approximation

P̃3(x) =
1

exp

(
− 358x

23 + 111 arctan
(
37x
294

))
+ 1

, −∞ < x < ∞. (34)
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Figure 7a shows a comparison of the proposed PSEM approximation and the other ones reported,

resulting a good agreement with the exact solution. However, Figure 7b can be observed the lowest relative

error for our proposal. See Figure 7c for a detailed view of the relative error of (30). In addition, we calculated

the RMS error over the interval [0,6] for the approximations, resulting: 6.756 × 10−6, 3.509 × 10−5, and

3.496 × 10−5, for (30), (33) and (34), respectively. It clearly results that our proposal exhibits the lowest of

all RMS errors.

(a) Cumulative distribution and approximations.

(b) Relative error in approximations. (c) Relative error on (30).

Figure 7: Comparison of CDF and its approximations.

5 Applications to science and engineering

This section presents three case studies. The first case study belongs to the area of transport phenomena

in chemical engineering [1]; the second one lies in the area of digital communications [2] in electronics

engineering; and finally we propose an approximation for the incomplete gamma function.
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y
t<0, fluid at rest

y
t<0, wall set in

motion

v0

y
t<0, fluid in

unsteady
flow

v0

v y,t( )x

(a) Viscous flow of a fluid near

a wall suddenly set in motion.

(b) Velocity distribution for Viscous flow of a

fluid near a wall suddenly set in motion.

Figure 8: Error function applied on time-dependent flow of Newtonian fluids.

5.1 Case 1: Error function in transport phenomena

A semi-infinite body in a liquid with constant density and viscosity limited under a solid plane xz horizontal.

Initially the fluid is in a steady state; at t = 0, the solid surface begins to move in x positive direction with vo

velocity, as depicted in Figure 8a. The goal is to find the velocity vx as a function of y and t. In the direction

of x there is no pressure gradient neither gravity force and a laminar flow is considered.

In [1] the equation that models this system and the components of velocity at χ, y, z are vχ = v(y, t),

vy = 0, vz = 0 is given by

∂vχ
∂t

= ν
∂2vχ
∂y2

, (35)

where ν =
µ

ρ
, with initial (IC) and boundary (BC) conditions

I.C. at t ≥ 0, vχ = 0, ∀y,

B.C. 1 at y = 0, vχ = v0, ∀t > 0,

B.C. 2 at y =∞, vχ = 0, ∀t > 0.

Introducing an additional velocity ϕ =
vχ
vo
, equation (35) is re-written as

∂ϕ

∂t
= ν

∂2ϕ

∂y2
, (36)

where

ϕ = ϕ(η), (37)

and

η =
y√
4νt

. (38)
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In [1] was presented the solution for (36) in terms of the function erf(x), resulting

vχ(y, t)

v0
= 1 − erf

(
y√
4νt

)
. (39)

From (23) and (39), we obtain

ṽχ(y, t)

v0
= 2 −

2

1 + exp

(
ξ
(

y
√

4νt

)) . (40)

Figure 8b depicts a comparison for the distribution of the viscous flow velocity of a fluid near a wall

suddenly set in motion among (39) and (40), resulting a good agreement.

5.2 Case 2: Error function in digital communications

Bandwidth efficiency in Phase Shift Keying (PSK)modulation scheme increments utilizingM-PSKmodulation

[2]. In digital phase modulation, the M signals employed in PSK are represented as

Sm(t) = Re

[
g(t) exp(jθm) exp(j2πfc t)

]
, (41)

where Sm(t) is the waveform used to transmit information through the communication channel; g(t), is the

time dependent signal pulse shape and θm = 2π(m−1)
M , for m = 1, 2, · · · ,M, where M are the possible phases

of the carrier that transmits the information. If M = 2 we have a binary PSK. In this way, to have a more

efficient use of the bandwidth, each signal element should represent more than a bit [45]. Figure 9 displays,

for the case of BPSK for M = 2 the Signal space diagram of Binary Phase Shift Keying (BPSK) scheme, where

S1 and S2 symbols are represented by binary numbers 1 and 0.

0 1
M=2

BPSK

Figure 9: Signal space diagram of BPSK.

In digital transmission, Bit Error Rate (BER) is defined as the number of bits with errors divided by the

total number of transmitted, received or processed bits for a determined period. The probability for BER in

Binary Phase Shift Keying is

P(x) =
1

2
erfc

(√
Eb
No

)
, (42)

where
Eb
No

, is the Signal to Noise Ratio (SNR); Eb, the energy in one bit and No, is Additive White Gaussian

Noise (AWGN). As the bit transmitted signal energy Eb increases, for a specific noise spectral density No; the

messages corresponding to 1 and 0 symbols become more separated and the probability of error decreases

[46]; as is depicted in Figure 10. By using (23), (42) can be rewritten as

P̃ = 1 −
1

1 + exp

(
ξ
(
Eb
No

)) . (43)
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Figure 10 depicts the bit error probability for PSKmodulation obtainedwith (43). The simulation from this

figure was obtained by replacing the error function by our PSEM approximation in the code Matlab/Octave

published in [47] (see Appendix 1).

-2 0 2 4 6 8 10
1e-5

1e-4

1e-3

1e-2

1e-1

Eb/No, dB

B
it
 E
rr
o
r 
R
a
te

Exact

Eq.(43)

Bit error probability curve for BPSK modulation

Figure 10: Bit error probability curve for PSK modulation.

5.3 Case 3: Incomplete Gamma function

This case study presents the approximation for incomplete Gamma function [48] represented as

γ(a, x) =

x∫

0

ta−1 exp(−t)dt. (44)

Considering a =
1

2
,
3

2
,
5

2
,
7

2
and

9

2
; then (44) is simplified, resulting

γ

(
1

2
, x

)
=
√
π erf(

√
π), (45)

γ

(
3

2
, x

)
= −

1

2

(√
π erf(

√
π) exp(x) + 2

√
x
)
exp(−x), (46)

γ

(
5

2
, x

)
= −

1

4

(
4x

3
2 − 3

√
π erf(

√
π) exp(x) + 6

√
x
)
exp(−x), (47)

γ

(
7

2
, x

)
= −

1

8

(
8x

5
2 + 20x

3
2 − 15

√
π erf(

√
π) exp(x) + 30

√
x
)
exp(−x), (48)

γ

(
9

2
, x

)
= −

1

16

(
16x

7
2 + 56x

5
2 + 140x

3
2 − 105

√
π erf(

√
π) exp(x) + 210

√
x
)
exp(−x), (49)
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respectively.

Generally, for a = k
2 , where k > 0 and odd; the incomplete Gamma function is expressed in terms of error

function. Therefore, the results from this case study canbe extended toother values of a. Figure 11 presents the

comparison of the exact solution of (45)-(49) against the results of using approximation ẽrf1(
√
π), depicting

a notable good agreement.

(a) Exact incomplete Gamma function versus (45)-(49)

(b) Detail of Exact incomplete Gamma function versus (48) and (49)

Figure 11: Exact Incomplete Gamma function versus (45)-(49).
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6 Discussion

For the first case study,we obtained an accurate approximated solution for the distribution of the viscous flow

velocity of a fluid near a wall suddenly set in motion with a relative error depicted in Figure 12. In this figure

we can observe the points PA and PB that show the locationwhere the relative error reaches peakmagnitudes

of −2.826 × 10−6 and 3.372 × 10−5, respectively. After point PB the relative error tends to zero.

PB

PA

Figure 12: Relative error of (40).

For second case study, Figure 13 shows the analysis for the absolute error for the error function ap-

proximation applied to BER from BPSK. It is important to highlight the high accuracy of the results. The

simulation for the second case study was performed utilizing the software Octave 4.0 replacing the built-

in Matlab/Octave function erf(x) presented in [47] by (23). This case study demonstrated that the proposed

approximate function ẽrf1(x) canbeapplied todigital signal processingwith ahighprecision results as shown

in Figure 13. Thus, our presented simulation shows a good performance which is in good agreement with the

exact result presented in [47].

Figure 14 presents the absolute error of the approximate incomplete Gamma function for different values

of a. In table 1 the RMS error over the interval [0, 10] for every approximation of incomplete Gamma function

is presented. There can be seen an increment for the RMS as a increases its value; this is because the

relative error that ẽrf1(x) exhibits is scaled by a numeric coefficient that increases as a increases, resulting

an unavoidable increment of the error. In order to mitigate this issue, the order of the PSEM approximation

of erf(x)must be increased.

It is important to point out that the present work shows that it is possible to obtain highly accurate

asymptotic solutions employing PSEM. Likewise, from literature we know that truncated Taylor series have,

regularly, a poor local convergence; however, the employment of truncated Taylor series as a part of PSEM,

empowers the convergence of the approximated solutions; such as the ones presented in this work, which

covers whole domain of the independent variable. In addition, it is relevant to note, that during the ap-

proximation process performed in this article, no integration procedure was performed; such as it happens

with other approximate methods like HAM [37], HPM [49], VIM [34], classical perturbation method [31],

Picard [50], Adomian [51, 52], among others, that require the application of analytical integration to obtain

the approximate solutions depending of the number of iterations needed. Unfortunately, as we know from
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Figure 13: Bit error probability curve for PSK modulation in (43).

Figure 14: Absolute error.

Table 1: RMS error for every approximation of incomplete Gamma function.

Approximation of γ(a, x) RMS error for the interval [0, 10]

a = 1
2 3.435 × 10−5

a = 3
2 1.718 × 10−5

a = 5
2 2.576 × 10−5

a = 7
2 6.441 × 10−5

a = 9
2 2.254 × 10−4

literature, many integrals does not have known exact solution at all producing a failure during the iterative

steps (iterations) of such approximative methods. Finally, given that PSEM does not require a perturbation

parameter [31] and it does not generate secular terms [49]; it can be concluded that thismethodology presents

a high potential for application in all areas of science and engineering where it is required the approximate

solution for integrals, nonlinear differential equation, and special functions. Therefore, given the flexibility,
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applicability and novelty of PSEM method, we are proposing this method to be known also as Taylor-Leal

Method (TLM) for the approximation of nonlinear problems where the Taylor expansion of the exact solution

can be obtained.

7 Conclusions

This work proposed highly accurate PSEM approximations for the Gaussian distribution integral, error

function and CDF. In fact, as the independent variable increases to infinity the absolute error tends to zero. It

is worth to note that the approximations proposed in this work are handy and easy computable avoiding the

application of data tables or numerical algorithms. Furthermore, we compared the proposed approximations

with other reported in the literature finding that our proposals presented the lowest RMS error. Finally, three

applications to science and engineering allow us to conclude that our proposed approximations exhibit a

notable potential for the solution of different practical problems.
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Appendix 1. Modified MATLAB program for Bit error probability

curve for BPSK modulation

%

Date of modification 20/jan/2018

%

%

% The original program was publicated on:

%Irfan Ali / International Journal of Engineering Research and Applications

%(IJERA)

%ISSN: 2248-9622

%www.ijera.com

%Vol. 3, Issue 1, January -February 2013, pp.706-711

%Bit-Error-Rate (BER) Simulation Using MATLAB/Octave

%

%Irfan Ali

%M.Tech. Scholar, Jagan Nath University, Jaipur (India)

%

% Program for simulating binary phase shift keyed transmission and

% reception and compare the simulated and theoretical bit error (Ber)

% probability

%

% Program modified by Mario Sandoval H.

%Date of modification 20/jan/2018

%Next line is added, replace simBer on original

$--------------------------------------------------------

%simBer2 = 0.5*(1-fxt_PSEM_ERF(sqrt(10.^(Eb_N0_dB/10))));

%-------------------------------------------------------

%fxt_PSEM_ERF implemented in file m

%fxt_PSEM_ERF is equation (23)

%

%

clear

N = 10^6 % number of bits or symbols

rand(’state’,100); % initializing the rand() function

randn(’state’,200); % initializing the randn() function

% Transmitter

ip = rand(1,N)>0.5; % generating 0,1 with equal probability

s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1

n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % white gaussian noise, 0dB variance

Eb_N0_dB = [-3:10]; % multiple Eb/N0 values

for ii = 1:length(Eb_N0_dB)

% Noise addition

y = s + 10^(-Eb_N0_dB(ii)/20)*n; % additive white gaussian noise

% receiver - hard decision decoding

ipHat = real(y)>0;
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% counting the errors

nErr(ii) = size(find([ip- ipHat]),2);

end

simBer2 = 0.5*(1-fxt_PSEM_ERF(sqrt(10.^(Eb_N0_dB/10)))); % modification ber

theoryBer = 0.5*erfc(sqrt(10.^(Eb_N0_dB/10))); % theoretical ber

close all

figure

semilogy(Eb_N0_dB,theoryBer,’ro--’,’LineWidth’,2);

hold on

semilogy(Eb_N0_dB,simBer2,’bx-’);

axis([-3 10 10^-5 0.5])

grid on

legend(’Exact’,’Eq. (53)’); %obtenido con PSEM

xlabel(’Eb/No, dB’);

ylabel(’Bit Error Rate’);

title(’Bit error probability curve for BPSK modulation’);

ERROR_A=abs(simBer2-theoryBer);

close all

figure

semilogy(Eb_N0_dB,ERROR_A,’bo-’);

hold on

axis([-3 11 10^-8 0.5])

grid on

legend(’Absolut Error’);

xlabel(’Eb/No, dB’);

ylabel(’Bit Error Rate’);

title(’Absolut error for probability curve for BPSK modulation’);
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