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Abstract

We have devised novel methods to evaluate the
structural similarity of proteins. In this paper, we
compare them. In each method, a hash vector is
associated with each fized-length fragment of three-
dimensional protein structure. Then, we analyze the
similarity between fragments by evaluating the differ-
ence between two hash vectors. The novel aspect of the
methods is that the following property is proved theo-
retically: - if the root mean square deviation between
two fragments is small, then the distance between the
hash vectors associated with the fragments is small.
The methods were compared with the previous methods
using PDB data, and were shown to be much faster.
One of the new hashing methods is already included in
PROTEIX, a database management system for pro-
tein structures. The features of PROTEIX are also
described in this paper.

1 Introduction

Currently, the number of proteins, for which three-
dimensional (3D) structures are known, is about 1000
and it grows year by year. Thus, a database manage-
ment system for 3D protein structures is required for
studying structural relations among a large number of
protein structures, which may contribute to molecular
biology and drug design.

3D data of proteins are collected in Brookhaven’s
Protein Data Bank (PDB) as a set of text files [3].
A number of tools which can treat PDB files have
been developed. Although quick searching for similar
structures seems very important for interactive uses of
tools, few tools have been developed that allow such
a search. Thus, we have developed novel methods for
quick substructure searching, by which similar frag-
ments can be retrieved from a database within a few
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seconds on a standard UNIX workstation. One of the
methods has been adapted to PROTEIX, which is a
database management system for 3D protein struc-
tures being developed by us. This paper describes the
methods as well as the PROTEIX system.

Here, we briefly review previous work. While sev-
eral problems can be considered for searching similar
structures, this paper focuses on the following prob-
lem (the substructure search problem): given a frag-
ment structure P and a positive real number 4, find
all proteins in a database each of which contains at
least a fragment R such that the root mean square
deviation (rmsd, in short) between P and R does not
exceed J. A large number of pattern matching algo-
rithms for 3D protein structures have been proposed
[2, 8,9, 11, 12, 15, 16, 17]). However, few of them can
be used for quick substructure searching. Nussinov
and Wolfson’s method [8] based on the geometric hash-
ing technique may be used. However, it requires long
preprocessing time and large memory space. Other
types of geometric hashing techniques have also been
proposed in computer vision [6, 7], but none of them
seems to be suited to this problem. An FFT(Fast
Fourier Transform)-based algorithm, which was devel-
oped for computer vision by Schwartz and Sharir [13],
may be used for quick substructure searching. Al-
though their algorithm is elegant and efficient, it is not
practical for typical sizes of fragment structures. In-
deed, experimental results show that it is better than
a naive method only when the number of residues is
more than 200 ~ 300 [14].

In the previous paper, one of the authors proposed
a method for quick substructure searching, named the
least-squares hashing method [1]. It is quite different
from the geometric hashing technique used by Nussi-
nov and Wolfson [8]. It is rather similar to the con-
ventional hashing technique, which is widely used in
database management systems. In the conventional
hashing technique, an integer number is computed for
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each object so that the numbers are equal if the objects
are identical. In the least-squares hashing method,
this technique is modified for protein structures as fol-
lows. Since what should be searched for are not iden-
tical substructures but similar substructures, a vector
of real numbers is associated with each fixed length
fragment of protein structure. Moreover, the following
property is required for hash vectors: if rmsd between
two fragments is small, the distance between the as-
sociated hash vectors is small. In the least-squares
hashing method, the above property is satisfied in
most cases. However, it is not proved theoretically.
Indeed, the least-squares hashing method sometimes
fails to find similar substructures. It is a crucial weak
point of the least-squares hashing method. Thus, we
have developed new hashing methods, in which the
above property is theoretically proved. As far as we
know, the proposed hash vectors are the first ones
for which the above property is theoretically proved.
Moreover, the new methods are much faster than the
least-squares hashing method.

The organization of this paper is as follows. First,
the rmsd fitting is reviewed, and the substructure
search problem is defined formally using rmsd. Next,
new hashing methods and their theoretical proper-
ties are described in Section 3, and experimental re-
sults for comparing them are described in Section 4.
A database management system PROTEIX is then
overviewed. Finally, we conclude with a brief sum-
mary and future work.

2 Preliminaries

First, we consider representation of 3D protein
structures. As we are only interested in represent-
ing an outline of 3D structure, we follow the common
procedure of ignoring side chains and consider only Ca
atoms (or the carbon and nitrogen atoms in the main
chain), which are treated as points in 3D space. Only
the geometry of protein structures is considered and
details such as the identity of specific atoms are ig-
nored. Thus, each protein structure is treated as a se-
quence of points. For each structure P = (p!,---,p"),
P; ; denotes the fragment (p’,p'*!,--- p’) of P.

2.1 Root mean square deviation

Here, we briefly review the root mean square devia-
tion, which is used as a common measure for compar-
ing two protein structures in molecular biology. Rmsd
fitting is a kind of least-squares fitting method for two
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sequences of points, and was developed by several per-
sons independently [5, 10, 13].
Let P = (p! p") and Q = (g',---,q") be two

sequences of points. We assume that P is translated
n

. | o -

so that its centroid (; Zp‘) is at the origin. We
k=1

also assume that @ is translated in the same way. For

each point or vector s, s; (¢ = 1,2,3) denotes the i-th

(X,Y,Z) coordinate value of s. Let

1 n
= - Rp* — gkli2
d(P.Q,R.a) n;n pt+a—g|
where R is a rotation matrix, a is a translation vector,
and ||z|| denotes the length of a vector x. Then, the
rmsd value d(P,Q) between P and @ is defined by
d(P,Q) = mind(P,Q, R,a) .

d(P,Q, R, a) is minimized when a is the zero vec-
tor and R = (A'A4)/2471, where the matrix A=

(Aij) (1,5 = 1,2,3) is given by A,]_Zp,q], and
k=1

A2 = B means BB = A [13]. Thus, d(P,Q), R and

a can be computed in O(n) time, where O(f(n)) time

means that the computation time is at most C'x f(n)

for some constant C'.

Output: Q) Q) e o«

Fig. 1. Substructure search problem.

2.2 Substructure search

Using rmsd, we define the substructure search
problem as follows (see Fig. 1):
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Input: A (pattern) fragment P = (pl,---,p™), a
real number § > 0 and a set of proteins QS =
{le""QN}s

Output: All structures @/ each of which con-
tains at least a fragment @’ , such that

d(P,Q] iym-1) S 6.

The substructure search problem can be solved by a
naive method which computes rmsd for all Q, itm—1 S
However, it takes O(Nmn) time, where we assume
that the length of each @7 is O(n). In fact, exper-
imental results described in Section 4 show that it
takes about a minute. It is too long for interactive
uses of database management systems.

i,i+m—

3 New hash vectors
3.1 Conditions for hash vectors

Before describing new hash vectors, we describe
general conditions which should be satisfied by any
hash vector. In conventional hashing methods, an in-
teger number is associated with each object. However,
in the hashing methods for protein structures, a vec-
tor of reals is associated with each fragment of fixed
length. For each fragment P = (p!,---,pH) of length
H, a hash vector hs(P) is associated. Then, the fol-
lowing conditions should be satisfied by hs(P):

(A) hs(P)isinvariant with any isometric transforma-
tion (rotation/translation) for P,

(B) hs(P) is close to hs(Q) if d(P, Q) is small.

Although condition (A) may be implied by condition
(B), we describe them separately to make the presen-
tation clear. Note that once such a vector is given,
d(P, @) must be computed only when hs(P) is close
to hs(Q). In the least-squares hashing method previ-
ously proposed [1], condition (A) is satisfied but con-
dition (B) is not necessarily satisfied. Indeed, it some-
times fails to find similar fragments.

3.2 Hash vector - a basic one

Here, we describe new hash vectors. All vectors are
computed in a similar way. First, we describe a basic
one, denoted by HASH(A).

HASH(A):

hs(P) = (c1(P),s1(P), -+, cp(P), sp(P)), where
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-1

a Z lIp* — ell (cosZZE=2) 4 ),

aZup ~dl(s

Note that c¢ denotes the centroid of P (i.e.,

27rz

UL S

H

c= z p*). Thus, ||p* — c|| denotes the length be-
k=1

tween the centroid and the k-th point. Also note that

a (o > 0) and 8 (B > 0) are fixed reals and D is a

fixed integer, which are to be determined later. Thus,

hs(P) is computed in the following way.

(1) Compute the centroid ¢ of P.
(2) Fori =1 to D, repeat (3)-(6).

(3) ci+0, s;«0.

(4) For k=1 to H, repeat (5)(6).

(5) c; ci+a||p" —c]](cos(z—m—(}@)+ﬁ).
(6) s; & 8; +allp* - c||(sin(w—-—(;_ﬁ) + ).

(7) hs(P) + (c1,81,"**,CD\SD)-

Note that hs(P) is similar to (a low frequency part
of ) the Fourier spectrum of the distances between the
points and the centroid (see Fig. 2). Although the
Fourier spectrum has been already applied to geomet-
ric hashing [6], hs(P) is quite different from it.

Now, we will prove that hs(P) defined in HASH(A)
satisfies conditions (A} and (B). Condition (A) is triv-
ially satisfied since hs(P) is computed only from the
distances between the points and the centroid. To
show that condition (B) is satisfied, we first prove the
following lemma. Readers who are not interested in
details of the theoretical analysis might skip lemmas,
proofs and theorems.

(p',---.p") and Q =
-,q") are tra.nslated S0 that the centroids are at

Lemma 1: Assume that P =
(g,

the origin. Then, |Z 7' - Z la'll] <

Proof: Let Q = (q RN | ) denote the rotated se-
quence of Q such that d(P,Q,I,0) = d(P,Q), where
0 denotes the zero vector and I denotes the identity
matrix.

Then, the following inequality holds:

H ) H ) H _ H )
DA AT [l = @'l
=1 i=1 i=1 =1
H . H .
> lPl - >ollp' -4l
=1 i=1

Hd(P,Q).

<

llag'll

IA
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Hash Vector:
hs(P)=(610,850,190,110,410,140,550,630)

Fig. 2. Computation of a hash vector.

where the last inequality comes from the triangular

inequality. Since t; + -+ tyg < VH, /834 + t%,

holds for all ¢; > 0,---,tg >0,

H H
e -dl < vVH (S 19 - d'|2 = Hd(P,Q)
i=1 =1

holds and the theorem follows. O

From Lemma 1, the following theorem is immedi-
ately proved, which shows that HASH(A ) satisfies con-
dition (B).

Theorem 1: For all i, |c;{P)
B)d(P, Q) and |s;(P

- ci(Q)I < Ha(l +
- 5:(Q)| < Ha(1 + pB)d(P, Q).

Let HS(P,Q,~) denote the condition that (|s;(P)—
s(Q < 7 A [6(P) - ei(Q)] < =) holds for all i.
From Theorem 1, the following property holds: if
HS(P,Q,~) does not hold for v = Ha(1 + 3)8, then
d(P,Q) > 6. Thus, if HS(P,Q,~) does not hold, it

Lonte [vsiem

can be concluded that d(P,Q) > § without comput-
ing rmsd (d(P,Q)). However, note that d(P,Q) < d
does not necessarily hold if HS(P, @, ) holds.

Note that hs(P) can be computed in O(H) time,
and condition HS(P,Q,~) can be tested in constant
time since we assume that D is a fixed small integer.

3.3 Variants

In this subsection, we describe several variants
of HASH(A). First, we describe HASH(B) and
HASH(B’), which are obtained by replacing the cen-
troid ¢ of HASH(A) with other positions.

HASH(B):
hs(P) (¢ (P), sy (P), -+, c'p(P), $p(P)), where
H
2 1
RN R ’”(H L) +5).
=1
H
(k-1
) = 2 3 I - dsn w2l 4 )
L
andd = Zp i.e., d is the centroid of {p',---,pt}).
k=1
HASH(B’):
hs(P) = ((/’(P),s”(P), -+, 5 (P), s (P)), where
" 2ri(k — 1)
d(P) = aan ~ell(c ’”‘H )48,
s/ (P) = a Z Ip* — e]| (sin( ) +3),
N k=1
and e= Z p* (e, e is the centroid of
—L+1
{pN-L+1 e P
Next, we  describe  HASH(A+B) and

HASH(A+B+B’), each of which is a combination of
the vectors described above.

HASH(A+B):
hS(P) = (CI(P)ﬁsl(P)’ "7 CD(P)ssD(P)»
i (P),sy(P),---,cp(P),sp(P)).
HASH(A+B+B’):
hS(P) = (CI(P)FSI(P)» ) CD(P)asD(P)*
,¢p(P), sp(P),

Cll(P)!sll(P)-
{(P),s{(P), ---, cp(P),sp(P)).

All hash vectors described above use the distances
from a special point, while HASH(C) described below
uses the distances between points in the input frag-
ment.
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HASH(C):

hS(P) = (él(P) '§1(P)’ Tty éD(I)) éD(P))v where
4(P) = a Z o~ 5 ¥l cos ZE Y )
3 - i i . 2mi(k—1)
4(P) = a k\; llp' = P ¥l (sin( T + ).

HASH(A+C):

hs(P) = (¢1(P), s1(P), ---, cp(P),sp(P),

éI(P)a él(P)v Tty éD(P)»gD(P))'

Finally, we describe HASH(X). While all vectors
described above correspond to a 1D Fourier spec-
trum, HASH(X) corresponds to a 2D Fourier spec-
trum. HASH(X) is similar to (a low frequency part
of) a 2D Fourier spectrum of the distance map.

HASH(X):

hs(P) = (cc11(P), cs11(P), scy1(P), s811(P), cer2(P),
cs12(P), sc12(P),8812(P),- -+ ,ccpp(P), espp(P),
SCDD(P),SSDD(P)), where

H H . .

cciy=ay 3 Lunfeos( =L cos 2B )) 4 )
N ami(k — 1 2rj(h—1

csiy = a3 3 Linfoos( =L gin IR D)) | )
k=1 h=1
L omik—1),  2mj(h—1)

scij = az Z Lk (sin( T ) cos( 1 i )+ 8),
k=1 h=1
H H . .

ssi= a3 Lunfoin(ZE L) G 2RI 1)) g
k=1 h=1

Lue = |ip* - P*|

Here, we consider theoretical properties of the vari-
ants. The following lemma can be proved in a similar
way as in Lemma 1.

Lemma 2: Let P = (pl,...,pH), Q =
L L

1 ) 1 )
1 ... oH 1_ - i 2 _ - i
(¢'--+,q%),d L;p and d L;q'Then’
H
1> lp - dlll—leq—d'*’ul Hd(PQ)-
i=1

From Lemma 2, the following theorem is immedi-
ately proved, which shows that HASH(B) satisfies con-
ditions (A) and (B).

Theorem 2: For all i, |c}(P) — c’(Q)|
$)Ha(1 + B)d(P,Q) and |s] P) - si(Q)l
T)Ha(1+ B)d(P,Q).

IANIA
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It is not difficult to see that similar properties hold
for the other vectors except HASH(X). However, we
have not yet proved a similar property for HASH(X).

3.4 Substructure search using hash vec-
tors

Using hs(P), the substructure search can be done
quickly. For a quick substructure search, two phases
are required: the preprocessing phase and the search
phase.

First, we describe the preprocessing phase. It is
done whenever a new protein structure is registered
in a database. Let @7 be a new protein structure
being registered, where we assume that @7 consists
of n points. Then, hash vectors are computed in the
following way.

(1) Fori=1ton— H+ 1, repeat (2).
(2)  Compute hs(Q] ;\ y_,)-

Note that H is a constant and H = 40 is used in the
current version.

The computed hash vectors are stored in a database
along with the position data of Ca atoms (see Fig. 3).
Although it takes O(Hn) time to compute the hash
vectors for each @7, the time can be ignored since the
hash vectors for Q/ must be computed only when Q7
is stored in a database. The memory space required to
store the hash vectors for each Q7 is O(n), because the
size of a hash vector can be considered as a constant.

Next, we describe the search phase. In the search
phase, a pattern structure P is input, where we
assume that the length of P is m > H. Then,
a substructure search is done in the following way.
First, hs(P; g) is computed. Next, for all frag-
ments QfH_H 1»hs(P; p)and hs(Q,. i+ H—1) are com-
pared. If condition HS(P; H,Q, i+ H—1>7) is satisfied,

d(P,Q’ !itm—1) 18 computed and tested. Otherwise,
d(P, Qf i+m—1) is not computed, but the next fragment
is tested. The following summarizes the procedure for
the search phase (see also Fig. 4), where |Q7| denotes
the number of Cax atoms in a protein structure @7, and
we assume that there are NV structures in a database.

(1) Compute hs(Py g).
(2) For j =1 to N, repeat (3)-(5).
(38) Fori=1to|Qi|—m+1, repeat 4)(5).
(4) If condition HS(P, y4,Q
then do (5).

I d(P,Q iy py) <6,

then output ¢ and try next j.

u+H 1-7) holds,

(5)
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-—-—

hash vectors
hs (Q: ‘ )=(680,3023,1890,2125)
hs (st )=(645,3320,1920,2070)
hs (Q;' ‘)= (525,3940,1644,2015)
‘ )
®

® Database

=
A

N—

Fig. 3. The preprocessing phase (H = 4).

Here, we consider the computation time for the
above procedure. We consider the time for (2)-(5),
because the time for (1) is much smaller. It is ex-
pected that (5) is not executed for most ;. Thus, the
time for each protein structure Q7 is expected to be
O(n) in most cases. Thus, the search time for N pro-
tein structures in a database is expected to be O(Nn)
in most cases.

Next, we consider the parameter v. From Theorem
1, ¥ = Ha(l + 3)8 should be used (in the case of
m = H). However, experimental results show that it
does not fail to find similar fragments even if a much
smaller value is used. It is obvious that the search time
is reduced if a smaller v is used. Thus, the value for v
should be determined based on experimental results.

The search time might be reduced if hash vectors
are stored in a special data structure in which similar
vectors can be retrieved quickly [18]. However, we did
not implement such a data structure since it is too
complicated and does not seem to be practical.
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hs(Q}  )=(680,3020,1890,2120)
=== not close to hs(P, ;)
—— d( P, Qljs)is not computed
et ¥

hs(Q],)=(1610,2330,820,3180)

=P close to hs(P;,;)

= J(P, Q"u)is computed
7 Fe
[ ]

Fig. 4. The search phase (H = 6).

4 Experimental results

Experiments have been done using PDB data {3].
Although PDB data contains various kinds of infor-
mation, only positions of Ca atoms are used. All al-
gorithms are implemented in the C language on a SUN
SPARC STATION-10 (a UNIX workstation).

The new hashing methods are compared with the
previous and the naive ones in Table 1. NV denotes
the naive method described in Subsection 2.2. LS de-
notes the least-squares hashing method [1]. Both A
and A’ denote HASH(A), where D = 4 is used in A
and D = 8 is used in A’. B, A4+B and A+B+B’ de-
note HASH(B), HASH(A+B) and HASH(A+B+B’),
respectively, where D = 4 and L = 4 is used in each

4
case. A+C denotes HASH(A+C), where D = 4 is

1060-3425/95 $10.00 © 1995 |IEEE
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Table 1. Comparison of the new hashing methods.

DATA NUM || NV | LS A A B A+B A+B A+C X
+B’
4HHB(A) || 57 63.0 | 121 4.9 5.2 4.0 2.5 1.5 3.0 4.2
(50-94) 126 % | 6.7% |[66% |50% 3.0 % 1.3 % 3.5 % 5.2 %
7LZM 86 64.0 | 23.7 8.8 9.4 5.1 2.3 1.3 31 4.7
(35-80) 25.5% | 127% | 125% | 65 % |25 % |09 % |36 % |59 %
1R69 6 67.5 | 24.8 6.7 7.2 8.6 3.8 1.5 4.5 4.7
(5-55) 255% 191% | 90% 11.2% | 4.5 % 1.1 % 54 % 5.8 %
3ADK 5 709 | 5.1 6.8 7.2 4.9 34 1.8 3.5 4.7
(115-170) 44% [87% |87% 5.7 % 38 % 1.6 % 3.9 % 5.5 %
8LDH 10 63.2 | 8.1 1.2 1.2 11 0.6 0.5 0.7 1.5
(150-194) 8.0 % 1.2 % 1.1 % 0.7 % 0.3 % 01% 03 % 1.5 %

used. X denotes HASH(X), where D = 3 is used.

Each item: in DATA denotes a filename (denoting
a protein structure) of PDB data, where chain A is
used in the case of 4HHB. Each pair of numbers in
parentheses denotes the range of positions of a frag-
ment P. Each item in NUM denotes the number of
protein structures Q¥’s each of which contains a frag-
ment Q},,,_, such that d(P,Q];,,,_,) < é. For
each algorithm and each pattern fragment, search time
(CPU time (sec)) among all structures in a database
is shown, where 811 structures are used and all struc-
tural data are stored in main memory of the work-
station. A percentage of indices, for which rmsd is
computed, is described too. In each algorithm except
HASH(X), preprocessing (i.e., computation of hash
vectors) for all structures was completed in a few min-
utes, so that it can be neglected. In HASH(X), it took
more than an hour. However, it may be allowed since
preprocessing must be done only once.

The following parameters were used: H = 40,
a = 200, 3 = 0.5, § = 4.0(4) and v = 1200.0,
where o = 1.0 was used in HASH(X). In general,
it is expected that search time is reduced if a larger
value of D is used. However, comparison of A and A’
shows that search time increases although a larger D
is used, because the time for comparing hash vectors
increases, while the percentage of indices, for which
rmsd is computed, is reduced at most 0.2%. Thus,
D = 4 is used. Although v « Ha(l + 8)§ was used,
each method except LS could find all structures each
of which contained a fragment Qf, +m—1 such that
d(P,Q] ;1 m_1) < 8. LS failed to find 3 structures
in the case of 3ADK. Moreover, LS took longer than
the other hashing methods in most cases. Thus, it is
proved that the new hashing methods are much more
useful than the least-squares hashing method.

© 1995 IEEE
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From Table 1, it is seen that the following relation
holds approximately:

A+B+B’ > A+B= A+C » X >
A~ A’=~B»>LS >NV,

where x > y denotes that x is faster thany, and z = y
denotes that z is as fast as y. Thus, it can be said
that we had better combine different types of hash
vectors. In each of the new hashing methods, it can
be seen that the search time was reduced consider-
ably compared with the naive method. Especially, it
is seen that HASH(A+B+B’) is 30 ~ 100 times faster
than the naive method. Thus, it is proved that the
new hashing methods, especially HASH(A+B+B’),
are very effective.

5 PROTEIX

One of the hashing methods (HASH(A+B+B’))
was already included in PROTEIX (PROTEIn
database management system on uniX), which is a
database system for 3D protein structures. PROTEIX
is being developed to supply a tool for molecular biol-
ogists who analyze 3D structural patterns of proteins.
Here, we overview PROTEIX.

5.1 Overview of the system

Fig. 5 illustrates an overview of the PROTEIX sys-
tem. PROTEIX consists of three parts:

(A) An in-memory database consisting of protein
structures,

(B) An interactive graphic interface for displaying 3D
protein structures and inputing commands,

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS '95)
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Commands PDB Files PROTEIX Files
‘ |pdblgox.ent I Data Ipd.blgox.dent I
|pdb3sgt:.ent I Converter |[pdb3sgt . dent |

W . .

< . .

L ] [ ]

PROTEIX \ v
\ PROTEIX Graphic
e ——— | Interface

Programs for
Pattern Matching
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Fig. 5. Overview of PROTEIX.

(C) A set of pattern matching programs for 3D pro-
tein structures and amino acid sequences.

All parts of PROTEIX are written in the C lan-
guage, while X-window (X11R5) and Motif have been
adopted for the graphic interface. While PROTEIX
is now working on SUN SPARC workstations, it will
work on various UNIX workstations with slight mod-
ifications, because it has high portability.

5.2 Pattern matching facilities

The most important feature of PROTEIX is that it
has powerful pattern matching programs for 3D pro-
tein structures. It has three pattern matching pro-
grams for 3D protein structures: a conventional rmsd
fitting program, a substructure search program us-
ing the hashing method described in this paper, and
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an alignment program for two 3D structures. For
the alignment program, an algorithm based on the
dynamic programming technique is used, which we
have already proposed [1]. To allow quick substruc-
ture searching, all protein structure data are stored
in main memory. Since compact data structures are
used, more than 1000 structures can be stored within
32Mbyte main memory.

The following is a typical method of using the above
facilities. Assume that we want to study protein struc-
tures similar to some protein structure S. We first pick
some small fragment P from S, and find structures
@7’s each of which contains a fragment similar to P,
using the substructure search program. Then, for each
structure @7, we study structural similarities between
S and Q/, using the structural alignment program and
the rmsd fitting program.
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Fig. 6. Snapshot of PROTEIX (display mode M1).

5.3 Graphic interface

PROTEIX has an interactive color graphic inter-
face for displaying 3D protein structures and inputing
commands (see Fig. 6). It has two modes (M1 and
M2} for displaying a 3D structure. In mode M1, Ca
atoms (or the carbon and nitrogen atoms in a back-
bone chain) and bonds connecting them are displayed
(Fig. 6). In mode M2, an outline of the shape of
a backbone chain is displayed as a curved tube. Note
that proteins are displayed on a color display although
only gray colors are used in Fig. 6. Moreover, after ap-
plying a pattern matching program to two structures,
two structures are shown superimposed. Of course, in
each mode, structures can be rotated and scaled down
or up.

PROTEIX allows the user to use fragments of struc-
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tures, by specifying the start and end positions of
residues. It is useful to look at details of the struc-
ture as well as to specify a fragment for a substructure
search.

The graphic interface of PROTEIX is designed so
that users not familiar with UNIX can use it. Cur-
rently, all commands are input using the 'mouse’ de-
vice only. Such commands as rotation and scaling can
be done by clicking the mouse button at an appropri-
ate position of the bar. The user can specify PDB files
using the file selection box, which appears on the right
of the display window. A PDB file can be specified by
clicking the mouse at the position where the file name
appears. Because there are alot of files in PDB, the hi-
erarchical file structure (directory structure) of UNIX
is adopted. Files found by a substructure search are
also displayed in the file selection box.
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6 Conclusion

In this paper, we have described new hashing meth-
ods for quick substructure searching as well as the
PROTEIX database management system for 3D pro-
tein structures. The proposed hashing methods have
desirable properties, which are proved theoretically.
Moreover, experimental results show that the meth-
ods are very fast and effective. It seems that making
a considerable improvement on the methods is very
difficult. Thus, such an improvement is a challenging
open problem.

One of the proposed methods was already included
in the PROTEIX system. We believe that PROTEIX
is a useful tool for molecular biologists who study
structural relations among proteins. For that purpose,
we will continue to improve PROTEIX. The followings
are future plans for PROTEIX:

e A graphic editor which allows user to input new
structures or modify existing structures,

¢ Structural alignment algorithms/programs for
more than two structures,

¢ Interfaces to other systems/programs for protein
structures.
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