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Abstract 

We have devised novel methods to evaluate the 

structural similarity of proteins. In this paper, 2ue 

compare them. In each method, a hash vector is 

associated with each fixed-length fragment of three- 

dimensional protein structure. Then, we analyze the 

similarity between fragments by evaluating the difler- 

ence between two hash vectors. The novel aspect of the 

meth,ods ig that the following property is proved theo- 

retically: if the root mean square deviation between 

two fragments is small, then the distance between the 

hash vectors associated with the fragments is small. 

The methods were compared with. the previous methods 

using PDB data, and were shown to be much faster. 

One of the new hashing methods is already included in 

PROTEIX, a database manageme& system for pro- 

tein structures. The features of PROTEIX are also 

described in this paper. 

1 Introduction 

Currently, the number of proteins, for which three- 

dimensional (3D) struct,ures are known, is about 1000 

and it grows year by year. Thus, a dat,abase manage- 

ment system for 3D protein structures is required for 

studying structural relations among a large number of 

protein structures, which may contribute to molecular 

biology and drug design. 

3D data of proteins are collect,ed in Brookhaven’s 

Prot,ein Dat,a Bank (PDB) as a set of text files [3]. 

A number of t,ools which can treat PDB files have 

been developed. Although quick searching for similar 

structures seems very important for interactive uses of 

tools, few t,ools have been developed t,hat allow such 

a search. Thus, we have developed novel met,hods for 

quick substructure searching, by which similar frag- 

ment,s can be retrieved from a database within a few 
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seconds on a st,andard UNIX workstation. One of the 

methods has been adapted t,o PROTEIX, which is a 

database management system for 3D prot,ein struc- 

tures being developed by us. This paper describes the 

methods as well as t,he PROTEIX syst,em. 

Here, we briefly review previous work. While sev- 

eral problems can be considered for searching similar 

structures, this paper focuses on the following prob- 

lem (the substructure search problem): given a frag- 

ment structure P and a positive real number 6, find 

all proteins in a database each of which contains at 

least a fragment R such that. the root mean square 

deviation (rmsd, in short,) between P and R does not, 

exceed 6. A large nunlber of pattern matching algo- 

rithms for 3D prot,ein struct,ures have been proposed 

[2, 8, 9, 11, 12, 15, 16, 171. However, few of them can 

be used for quick substruct,ure searching. Nussinov 

and Wolfson’s method [8] based on t,he geomet,ric hash- 

ing technique may be used. However, it requires long 

preprocessing time and large memory space. Other 

types of geomet,ric hashing t,echniques have also been 

proposed in computer vision [6, 71. but none of t,hem 

seems to be suited t,o this problem. An FFT(Fast 

Fourier Transform)-based algorithm, which was devel- 

oped for computer vision by Schwartz and Sharir [13], 

may be used for quick sub&ructure searching. Al- 

though t,heir algorithm is elegant and efficient, it is not 

practical for typical sizes of fragment structures. In- 

deed, experimental results show that. it is better t,han 

a naive method only when the number of residues is 

more than 200 N 300 [14]. 

In the previous paper, one of the authors proposed 

a method for quick substructure searching, named the 

least-squares hashing method [l]. It is quite different 

from the geomet,ric hashing t,echnique used by Nussi- 

nov and Wolfson [8]. It is rather similar to the con- 

ventional hashing technique, which is widely used in 

dat,aba.se management systems. In the conventional 

hashing technique, an int,eger number is comput,ed for 
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each object so that the numbers are equal if the objects 

are identical. In the least-squares hashing met!hod, 

this technique is modified for protein st,ructures as fol- 

lows. Since what, should be searched for are not- iden- 

t.ical substr&ures but, similar substructures, a vector 

of real numbers is associated with each fixed length 

fragment of protein structure. Moreover, t,he following 

property is required for hash vectors: if rmsd between 

two fragments is small, the distance bet.ween the as- 

sociated hash vectors is small. In the lea&squares 

hashing method, the above propert,y is satisfied in 

most cases. However, it is not proved theoretically. 

Indeed, the least-squares hashing met,hod sometimes 

fails to find similar substructures. It is a crucial weak 

point of the least-squares hashing met.hod. Thus, we 

have developed new hashing methods, in which the 

above property is theoretically proved. As far as we 

know, the proposed hash vectors are the first ones 

for which t,he above property is theoretically proved. 

Moreover, the new met,hods are much faster t.han the 

least-squares hashing method. 

The organization of this paper is as follows. First, 

the rmsd fitting is reviewed, and the substruct,ure 

search problem is defined formally using rmsd. Next, 

new hashing methods and their theoretical proper- 

ties are described in Section 3, and experiment,al re- 

sults for comparing them are described in Section 4. 

A database management system PROTEIX is t,hen 

overviewed. Finally, we conclude with a brief sum- 

mary and future work. 

2 Preliminaries 

First, we consider represent,ation of 3D prot,ein 

structures. As we are only interested in represent- 

ing ~JI outline of 3D structure, we follow the common 

procedure of ignoring side chains and consider only Ca 

atoms (or the carbon and nitrogen atoms in the main 

chain), which are treated as points in 3D space. Only 

the geometry of protein structures is considered and 

details such as t,he identity of specific atoms are ig- 

nored. Thus, each protein structure is t,reated as a se- 

quence of points. For each structure P = (p’, . . . , p”), 

l’i,j denotes the fragment (pi,p’+‘, . . . , #) of P. 

2.1 Root mean square deviation 

Here, we briefly review the root mean square devia- 

tion, which is used as a common measure for compar- 

ing two prot,ein structures in molecular biology. Rmsd 

fitting is a kind of least-squares fitt.ing method for t,wo 

sequences of points, and was developed by several per- 

sons independently [5, 10, 131. 

Let P = (p’, . . . ,p”) and Q = (ql,.--,qn) be two 

sequences of point,s. We assume t,hat. P is translated 

so that it,s centroid (i 2 p”) is at the origin. We 

kl 

also assume that Q is translated in the same way. For 

each point or vector s, si (i = 1,2,3) denot,es t,he i-t,h 

(X,Y,Z) coordinate value of s. Let. 

d(P,Q,R,a) = i 2 ((Rp” + a - @‘II” , 
k=l 

where R is a rotration matrix. a is a translat,ion vector, 

and 11~11 denotes the lengt~h of a vector 2. Then, the 

rmsd value d(P, Q) between P and Q is defined by 

d(P, Q) = $2 d(P, Q, R a) . 

d(P, Q, R, a) is minimized when a is the zero vec- 

tor and R = (AtA)‘/2A-1, where the matrix A = 

(A<j) (;,j = 1,2,3) is given by Aij = epfqf, and 
k=l 

Ali2 = B lneans BB = A [13]. Thus, d(P,Q), R and 

a can be computed in O(fl) time, where O(f(?l)) time 

means that t,he comput,ation time is at most, CI x f(n) 

for some constant c’. 

Q1 
lb/ 

Q2 
I -\ 
\ \ \ \ \ \ 

PJJ 
I I I / 

-’ 

\ 
Output: Q: Q: l l l 

Fig. 1. Substructure search problem. 

2.2 Substructure search 

Using rmsd, we define t,he subst,ruct,ure search 

problem as follows (see Fig. 1): 
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Input: A (pattern) fragment, P = (p’,. ‘. ,p”“), a 

real number 6 > 0 and a set of proteins QS = 

{Q1,-.,QNh 

Output: All st,ructures Qj each of which con- 

tains at least a fragment. Q:,i+tn-l such t,hat 

d(P, Qi,i+m-1 ) I 6. 

The substructure search problem can be solved by a 

naive method which computes rmsd for all Qj,i+,n-l’~. 

However, it takes O(Nm.?z.) time, where we assume 

that the length of each Qj is O(n). In fact, exper- 

imental results described in Section 4 show that it 

takes about a minute. It is t,oo long for interactive 

uses of database management systems. 

3 New hash vectors 

3.1 Conditions for hash vectors 

Before describing new hash vectors, we describe 

general conditions which should be satisfied by any 

hash vector. In conventional hashing methods, an in- 

teger number is associated with each object. However, 

in the hashing methods for protein struct.ures, a vec- 

tor of reals is associat,ed with each fragment of fixed 

length. For each fragment P = (p’, . . . , pH) of length 

H, a hash vector hs(P) is associated. Then, the fol- 

lowing conditions should be satisfied by hs(P): 

(A) hs(P) is invariant with any isometric transforma- 

tion (rotation/translat~ion) for P, 

(B) hs(P) is close to hs(Q) if d(P,Q) is small. 

Although condition (A) may be implied by condition 

(B), we describe them separately to make the presen- 

t,ation clear. Note that once such a vector is given, 

d(P, Q) must be computed only when hs(P) is close 

to hs(Q). In the least-squares hashing method previ- 

ously proposed [l], condition (A) is satisfied but con- 

dit,ion (B) is not necessarily satisfied. Indeed, it some- 

times fails to find similar fragments. 

3.2 Hash vector - a basic one 

Here, we describe new hash vectors. All vect,ors are 

computed in a similar way. First, we describe a basic 

one, denoted by HASH(A). 

HASH(A): 

WP) = (cl(P),sl(P), a*-, cdP),s~(P)), where 
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H 

C;(P) = Cl 
c 

IIP” - CII (cos( 
27ri(k - 1) 

H 
)+B), 

k=l 

.i(P) = a 2 llpk - Cl1 (sin( 2*;(km l)) + /3) . 

k=l 

Note that c denotes the centroid of P (i.e., 

c = 5~~). Thus, lip” - cl1 denotes t,he lengt,h be- 

k=l 

tween the centroid and t,he k-th point,. Also not,e t~hat 

a (a > 0) and P (B 2 0) are fixed reals and D is a 

fixed integer, which are t,o be det,ermined later. Thus, 

hs(P) is computed in the following way. 

(1) Compute the centroid c of P. 

(2) For i = 1 to D, repeat (3)-(6). 

(3) c; t- 0, sj t 0. 

(4) Fork = 1 t,o H, repeat (5)(6). 

(5) c; t ci + aJlpk - cll(cos( F) + p). 

(6) Si t Sj + LyI(p” - cl((sin( v) + 13). 

(7) h(P) + (cl,s~,**-,cD,s~). 

Note that hs(P) is similar t,o (a low frequency part 

of) the Fourier spectrum of the dist,ances between the 

points and the cent,roid (see Fig. 2). Alt,hough the 

Fourier spectrum has been already applied t,o geomet- 

ric hashing [S], hs(P) is quite different from it. 

Now, we will prove that, hs(P) defined in HASH(A) 

satisfies conditions (A) and (B). Condition (A) is triv- 

ially satisfied since hs(P) is computed only from the 

distances between the points and the centroid. To 

show that. condition (B) is satisfied, we first, prove t.he 

following lemma. Readers who are not interested in 

details of the theoretical analysis might skip lemmas, 

proofs and theorems. 

Lemma 1: Assume that P = (p’ , . . . , pH) and Q = 

(Q’ >‘.. , qH) are translat,ed so that the cent,roids are at 

the origin. Then, 12 /piI) - 2 llqiII I 5 H d(P,Q). 
i=l i=l 

Proof: Let Q = ($,a .. , GH) denote the rotated se- 

quence of Q such that d( P, 0, I, o) = d( P, Q), where 

o denotes t,he zero vector and I denotes the ident,it.y 

matrix. 

Then, t.he following inequality holds: 

I ~llPill-~lln’llI = I ~IIP’II-~lla”lll 
i=l i=l i=l i=l 

I 5 I lIPill - ll4”ll I L 2 lIPi - 4ill 7 
i=l i=l 
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frcm the I 

Haah Vector: 
hs (PI= (610,650,190,110,410,140,550,630) 

Fig. 2. Computation of a hash vector. 

where the last inequality comes from the triangular 

inequdity. Since tl + ’ ’ ’ + tH 5 I/% tf + . . - + t% 

holds for all tl 2 0,. . . , tH 2 0, 

H 1 H 

c lIpi - @“II I & c lIpi - ijill2 = HcZ(P, Q) 
i=l i=l 

holds and the theorem follows. q 

From Lemma 1, the following theorem is immedi- 

ately proved, which shows that HASH(A) satisfies con- 

dition (B). 

Theorem 1: For all i, /c,(P) - q(Q)1 I Ho(l + 

p)d(P, Q) and Isi - si(Q)l I Ho(l + P)d(P, Qb 

Let HSU? Q, Y) d enote the condition that (Is;(P) - 

si(Q)I 5 y A [c;(P) - c;(Q)/ 5 y) holds for all i. 

From Theorem 1, the following property holds: if 

HS(P, Q, 7) does not hold for y = Hcr( 1 + p)S, t,hen 

d(P, Q) > 6. Thus, if HS(P, Q, y) does not hold, it 

can he concluded t,hat d(P, Q) > h‘ without comput,- 

ing rmsd (d(P, Q)). However, note that, d(P, Q) 5 b 

does not necessarily hold if HS(P, Q, y) holds. 

Note t,hat. b(P) can be computed in O(H) time, 

and condit,ion HS(P, Q, y) can be tested in constant, 

time since we assume that D is a fixed small integer. 

3.3 Variants 

In this subsection, we describe several variams 

of HASH(A). First, we describe HASH(B) and 

HASH(B’), which are obtained by replacing the cen- 

troid c of HASH(A) with ot,her positions. 

HASH(B): 
hs(P) = (c;(P),;;(P), “0, c&(P),&(P)), where 

c:(P) = a c llpk - dll (cos( 2ni(;- l)) + /3) , 

kc1 

s:(P) = cr 5 lip” - dll (sin( ‘lri(i- l)) + 13) , 

k=l 

and d = 2 p” (i.e., d is the centroid of {p’, . . . , p”}). 

k=l 

HASH(B’): 
b(P) = (d;(P),$‘(P), .. . , c:(P), s;(P)), where 

c:‘(P) = Q C lip” - ell(cos( 
27ri(k - 1) 

H )+?I, 
kc1 

s:‘(P) = cy 2 lip” - el( (sin( 2ai(i- ‘) ) + 13) , 

N k=l 

and e = C p” (i.e., e is the centroid of 

k=N-L+l 

{pN-Lf’, *. . JP}). 

Next,, we describe HASH( A+B) and 

HASH(A+B+B’), each of which is a combination of 

the vectors described above. 

HASH(A+B): 
hs(P) = (cl(p), sl (PI, ‘. ‘7 CD(p), SD(p), 

~‘l(~),~:(~),~~~,~~(~),s’o(~)). 

HASH(A+B+B’): 
hs(P) = (cl(p),%(p), “*, cD(p),sD(p)~ 

~‘l(P),Sl,(P)~...,C’D(P),S~(P), 

c:‘(P), s:‘(P), . . . , c;(P), s;(P)). 

All hash vectors described above use the diskmces 

from a special point, while HASH(C) described below 

uses the distances bet,ween point,s in t,he input frag- 

ment, . 
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HASH(C): 

+ 
&i(P) = (1 c lIpi - pi+ql (cos(2ni(;- l)) + /9) ) 

k=l 

ii(P) = 0 & I(p’ - pi++11 (sin( 2ri(b- l)) + /I) . 

kc1 -- 

HASH(A+C): 

Finally, we describe HASH(X). While all vectors 

described above correspond t,o a 1D Fourier spec- 

trum, HASH(X) corresponds to a 2D Fourier spec- 

trum. HASH(X) is similar to (a low frequency part 

of) a 2D Fourier spectrum of the distance map. 

HASH(X): 

h?(P) = (cc11(P),~~11(~),~~11(~),~~11(~)~~~12(~)~ 

CS~@),SCI%(P),SS~.L(+“,CCDD(~),C~DD(~)T 

SCDD(~), SSDD(~)), where 

cc+ = ck 
cc 

Lhk(-( 
w;- 1) ) cos( w;- 1) ) + p), 

k=l h=l 

, 

cSiJ = a 2 2 Lhk(COs( 2ri(L- ‘I) sin( 2rr’(k- ‘I) •+ p), 

kc1 h=l 

SCij =O~~Lhk(Sin(2”‘(~-1))COS(2~~(~-1))+8), 

k=l h=l 

H H 

SSij = Ct 
cc 

Lhk(sin( 
““y 1) ) sin(2*;(;- 1)) + p), 

k=l h=l 

Lhk = ljpk - ph(( 

Here, we consider t,heoretical properties of the vari- 

ants. The following lemma can be proved in a similar 

way as in Lemma 1. 

Lemma 2: Let P = (pl,...,pH), Q = 

(q’, * * - ) qy, d1 = ;$ 

L 

a=1 

pi and d2 = i c qi. Then, 

r=l 

12 bi - d’ll - 5 ,,d - d211 I I Cl+ $)HW,Q). 
i=l i=l 

From Lemma 2, the following theorem is immedi- 

ately proved, which shows that HASH(B) satisfies con- 

ditions (A) and (B). 

Theorem 2: For all i, [c{(P) - c:(Q)1 5 (1 + 

F)Ha(l + P)d(P,Q) and Is:(P) - s;(Q)1 I (1 + 

f)fW + P)W, &I. 
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It is not, difficult, to see that similar properties hold 

for the other vectors except HASH(X). However, we 

have not yet proved a similar property for HASH(X). 

3.4 Substructure search using hash vec- 
tors 

Using h(P), th c substructure search can be done 

quickly. For a quick substructure search, t,wo phases 

are required: the preprocessing phase and the search 

phase. 

First,, we describe the preprocessing phase. It is 

done whenever a new protein structure is registered 

in a database. Let Qj be a new protein struct,ure 

being registered, where we assume that, Qj consists 

of n points. Then, hash vectors are computed in the 

following way. 

(1) For i = 1 to n - H + 1, repeat (2). 

(2) Compute h~(Qi,~+~-~). 

Not-e that H is a constant and H = 40 is used in the 

current version. 

The computed hash vectors are st,ored in a database 

along with the position data of Ccu atoms (see Fig. 3). 

Although it takes O(Hn) time to compute the hash 

vectors for each Qj, t,he time can be ignored since the 

hash vectors for Qj must be computed only when Qj 

is stored in a dat,abase. The memory space required to 

store the hash vectors for each Qj is O(n), because the 

size of a hash vector can be considered as a constant,. 

Next, we describe t,he search phase. In the search 

phase, a pattern structure P is input, where we 

assume that the length of P is m 2 H. Then, 

a sub&ructure search is done in the following way. 

First, hs(Pl,~) is computed. Next, for all frag- 

ments Q{,i+H-l, hs(Pl,~) and hs(Qi,,+,-,) are com- 

pared. If condition HS(P~,H, Qi,i+H--l, y) is satisfied, 

d(P, Qi,,+,-,) is computed and tested. Otherwise, 

d(P, Qi,i+m-l) is not. computed, but the next fragment 

is tested. The following summarizes the procedure for 

the search phase (see also Fig. 4), where I&j/ denotes 

the number of Ccy atoms in a protein structure Qj, and 

we assume that there are N structures in a database. 

(1) Compute hs(P,,~). 

(2) For j = 1 to N, repeat (3)-(5). 

(3) For i = 1 t,o I&j1 - na + 1, repeat. (4)(5). 

(4) If condition HS(P~,H, Qj,i+H--lr y) holds, 

then do (5). 

(5) If d(P, Qi,i+,,z-l) I 6, 

then output, Qj and try next. j. 
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hs(QI~,)=(680,3023,1890,2125~ 
, 

hs(Qj5)=(645,3330,1920, 2070) 
, 

,)=(525,3940,1644,2015) 
0 
a 

l Database 

Fig. 3. The preprocessing phase (H = 4). 

Here, we consider the computation time for the 

above procedure. We consider the time for (2)-(5), 

because the time for (1) is much smaller. It is ex- 

pected that (5) is not executed for most i. Thus, the 

time for each protein structure Qj is expected to be 

O(n) in most cases. Thus, the search time for N pro- 

tein structures in a database is expected to be O(Nn) 

in most cases. 

Next, we consider the parameter y. From Theorem 

1, y = Ha( 1 + /3)S should be used (in the case of 

m = H). However, experimental results show that it 

does not fail to find similar fragments even if a much 

smaller value is used. It is obvious that the search time 

is reduced if a smaller y is used. Thus, the value for y 

should be determined based on experimental results. 

The search time might be reduced if hash vectors 

are stored in a special data structure in which similar 

vectors can be retrieved quickly [18]. However, we did 

not implement such a data structure since it is too 

complicated and does not seem to be practical. 
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hs(Qf~)=(680,3020,1890,2120) 

+ not close to hs (P,,, ) 

II) cT( P,Q: ,)is not computed 
. * 
. 
. 

hs(Q4~p)=(1610,2330,820,3180) 
I 

q close to hs (Pz,b I 

e d(P, Q:,, )is cquted 
. ‘ 
. 

Fig. 4. The search phase (H = 6). 

4 Experimental results 

Experiments have been done using PDB data [3]. 

Although PDB data contains various kinds of infor- 

mation, only positions of Ca atoms are used. All al- 

gorithms are implemented in the C language on a SUN 

SPARC STATION-10 (a UNIX workstation). 

The new hashing methods are compared with the 

previous &nd the naive ones in Table 1. NV denotes 

the naive method described in Subsection 2.2. LS de- 

notes the least-squares hashing method [l]. Both A 

and A’ denote HASH(A), where D = 4 is used in A 

and D = 8 is used in A’. B, A+B and A+B+B’ de- 

note HASH(B), HASH(A+B) and HASH(A+B+B’), 

respectively, where D = 4 and L = + is used in each 

case. A+C denotes HASH(A+C), where D = 4 is 
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Table 1. Comparison of the new hashing methods. 

used. X denotes HASH(X), where D = 3 is used. 

Each item in DATA denot,es a filename (denoting 

a protein struct,ure) of PDB data, where chain A is 

used in the case of 4HHB. Each pair of numbers in 

parentheses denotes the range of positions of a frag- 

ment P. Each item in NUM denotes t,he number of 

protein structures &j’s each of which cont,ains a frag- 

ment Qi i+m-l such that d( P, Qi,i+,-l) 5 6. For 

each algdrithm and each pattern fragment, search time 

(CPU time (set)) among all structures in a dat.abase 

is shown, where 811 structures are used and all struc- 

tural data are stored in main memory of the work- 

staGon. A percentage of indices, for which rmsd is 

computed, is described too. In each algorithm except 

HASH(X), preprocessing (i.e., comput,at,ion of hash 

vectors) for all structures was completed in a few min- 

utes, so that it can be neglect,ed. In HASH(X), it t.ook 

more t,han an hour. However, it, may be allowed since 

preprocessing must be done only once. 

The following parameters were used: H = 40, 

a = 20.0, 13 = 0.5, 6 = 4.0(A) and y = 1200.0, 

where cy = 1.0 was used in HASH(X). In general, 

it is expected that search time is reduced if a larger 

value of D is used. However, comparison of A and A’ 

shows that search time increases alt,hough a larger D 

is used, because the time for comparing hash vect,ors 

increases, while the percentage of indices, for which 

rmsd is computed, is reduced at most 0.2%. Thus, 

D = 4 is used. Although y < Hcu(1 + p)S was used, 

each method except LS could find $1 structures each 

of which contained a fragment Qi,i+,-, such that 

d(P,Qi,i+m-l) 5 6. LS failed to find 3 structures 

in the case of 3ADK. Moreover, LS took longer than 

t,he ot$her hashing methods in most cases. Thus, it is 

proved that the new hashing methods are much more 

useful than the least-squares hashing metjhod. 

From Table 1, it. is seen that. the following relation 

holds approximately: 

A+B+B’ + A+B x A+C >- X + 

AZ:‘= B > LS + NV, 

where .I’ + y denotes that x is faster t,han y, and x a y 

denotes that, 2 is as fast. as y. Thus, it can be said 

t,hat we had bet,ter combine different types of hash 

vectors. In each of the new hashing methods, it can 

be seen that the search time was reduced consider- 

ably compared wit,h the naive method. Especially, it 

is seen t.hat HASH(A+B+B’) is 30 N 100 times faster 

than the naive method. Thus, it is proved that the 

new hashing methods, especially HASH( A+B+B’), 

are very effective. 

5 PROTEIX 

One of the hashing met,hods (HASH(A+B+B’)) 

was already included in PROTEIX (PROTEIn 

database management syst,em on uniX), which is a 

dat,abase system for 3D prot,ein structures. PR.OTEIX 

is being developed to supply a t,ool for molecular biol- 

ogists who analyze 3D struct,ural pat,t,ellls of proteins. 

Here, we overview PR.OTEIX. 

5.1 Overview of the system 

Fig. 5 illustrates an overview of the PROTEIX sys- 

tem. PROTEIX consists of three parts: 

(A) An in-memory database consisting of protein 

structures, 

(B) An int.eractive graphic interface for displaying 3D 

prot.ein structures and inputing commands, 
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Commands PDB Files 

PROTEIX \h l 

PROTEIX Files 

p&lgox.dent 

pdb3sgt.dent 
. 
. 

Fig. 5. Overview of PROTEIX. 

(C) A set of pattern matching programs for 3D pro- 

tein structures and amino acid sequences. 

All parts of PROTEIX are written in the C lan- 

guage, while X-window (XllR5) and Motif have been 

adopted for the graphic interface. While PROTEIX 

is now working on SUN SPARC workstations, it will 

work on various UNIX workstations with slight mod- 

ifications, because it has high portability. 

5.2 Pattern matching facilities 

The most important feature of PROTEIX is that it 

has powerful pattern matching programs for 3D pro- 

tein structures. It has three pattern matching pro- 
grams for 3D protein structures: a conventional rmsd 

fitting program, a substructure search program us- 

ing the hashing method described in this paper, and 

an alignment program for two 3D structures. For 

the alignment program, an algorithm based on the 

dynamic programming techniclue is used, which we 

have already proposed [l]. To allow quick substruc- 

ture searching, all protein structure data are stored 

in main memory. Since compact data structures are 

used, more than 1000 structures can be stored within 

32Mbyte main memory. 

The following is a typical method of using the above 

facilities. Assume that we want to study protein struc- 

tures similar to some protein structure S. We first pick 

some small fragment P from S, and find structures 

&j’s each of which contains a fragment similar to P, 
using the substructure search program. Then, for each 

structure Qj, we study structural similarities between 

S and Qj, using the structural aligmnent program and 

the rmsd fitting program. 
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Fig. 6. Snapshot of PROTEIX (display mode Ml). 

5.3 Graphic interface 

PROTEIX has an interactive color graphic inter- 

face for displaying 3D protein structures and inputing 

commands (see Fig. G). It has two modes (Ml and 

M2) for displaying a 3D structure. In mode Ml, Ca 

atoms (or the carbon and nit,rogen at,oms in a back- 

bone chain) and bonds connecting them xe displayed 

(Fig. G). In mode M2, d outline of the shape of 

a backbone chain is displayed as a curved tube. Note 

that proteins are displayed on a color display although 

only gray colors are used in Fig. 6. Moreover, after ap- 

plying a pattern matching program to two structures, 

two structures are shown superimposed. Of course, in 

each mode, structures can be rotated and scaled down 

or up. 

PROTEIX allows the user to use fragments of struc- 
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tures, by specifying the start and end positions of 

residues. It is useful to look at det,ails of the struc- 

ture as well as to specify a fragment for a substructure 

search. 

The graphic interface of PROTEIX is designed so 

that users not familiar with UNIX can use it. Cur- 

rently, all commands are input using the ‘mouse’ de- 

vice only. Such commands as rotation and scaling can 

be done by clicking the mouse button at an appropri- 

ate position of t.he bar. The user can specify PDB files 

using the file selection box, which appears on the right 

of the display window. A PDB file can be specified by 

clicking the mouse at the position where the file name 

appears. Because t,here are a lot of files in PDB, the hi- 

erarchical file structure (directory struct,ure) of UNIX 

is adopted. Files found by a substructure search are 

also displayed in the file selection box. 
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6 Conclusion [5] W. Iiabsch, “A solution for the best rotation to relate 

two sets of vectors”, Acta. Cry&. A32 (1976) 922-923. 

In this paper, we have described new hashing met,h- 

ods for quick substructure searching as well as the 

PROTEIX database management system for 3D pro- 

tein structures. The proposed hashing methods have 

desirable properties, which are proved theoretically. 

Moreover, experimental results show that the meth- 

ods are very fast and effective. It seems that making 

a considerable improvement on the methods is very 

difficult. Thus, such an improvement is a challenging 

open problem. 

[6] A. Calvin, E. Schonberg, J. T. Schwartz and M. Sharir, 

“Two-dimensional, model-based, boundary matching 

using footprints”, Zn.t. J. Robotics Research, 5 (1986) 

28-55. 

One of the proposed methods was already included 

in the PROTEIX system. We believe that PROTEIX 

is a useful tool for molecular biologists who study 

structural relations among proteins. For that purpose, 

we will continue to improve PR.OTEIX. The followings 

are future plans for PR.OTEIX: 

l A graphic editor which allows user to input new 

structures or modify existing structures, 

l Structural alignment algorithms/programs for 

more than two structures, 

l Interfaces to other systems/programs for protein 

structures. 

[7] E. Iii&on and H. Wolfson, “3-D curve matching”, 

Proc. AAAI Workshop on. Spatial Reas0nin.g and 

Multi-Sensor Fusion, 1987, pp. 250-261. 
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[Q] C. A. Orengo and W. R. Taylor, “A rapid method 
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