
UNIVERSIDADE DE VIGO

DEPARTAMENTO DE ENXEÑERÍA QUÍMICA

NEW HEURISTICS FOR GLOBAL

OPTIMIZATION OF COMPLEX

BIOPROCESSES

Memoria para optar al grado de Doctor Europeus por la Universidad

de Vigo presentada por

José Alberto Egea Larrosa

Vigo, 2008

Autorización

Los Doctores Julio Rodŕıguez Banga, Investigador Cient́ıfico del Instituto de Investiga-
ciones Marinas de Vigo (C.S.I.C.), y Rafael Mart́ı Cunquero, Catedrático de Universidad
de la Universitat de València

CERTIFICAN:

Que la memoria adjunta, titulada “New Heuristics for global optimization of complex
bioprocesses”, que para optar al grado de Doctor presenta D. José Alberto Egea Larrosa,
ha sido realizada bajo su inmediata dirección en el Instituto de Investigaciones Marinas del
C.S.I.C. y, considerando que constituye trabajo de Tesis, autorizan su presentación en la
Universidad de Vigo.

Vigo, 9 de Enero de 2008

Fdo.: Dr. Julio Rodŕıguez Banga Fdo.: Dr. Rafael Mart́ı Cunquero

Agradecimientos

Quiero dedicar unas ĺıneas de agradecimientos a las personas que, de una u otra forma, han
tenido alguna influencia en el desarrollo de este trabajo.

Comienzo con mis directores de tesis, los doctores Julio Rodŕıguez Banga y Rafael Mart́ı
Cunquero, en primer lugar por lo mucho que he aprendido a su lado durante este tiempo, y
en segundo (y no por ello menos importante), por el trato que me han dispensado. Mención
especial debo hacer a Julio, con quien más he convivido. Debo agradecerle la paciencia que
ha tenido conmigo en muchas ocasiones (no sé si alguna vez volverá a tener un doctorando
tan “desobediente” como yo) y, sobre todo, la sensación de confianza en mı́ y en mi trabajo
que me ha transmitido, especialmente durante la última etapa. Esto es algo muy importante
y que aprecio mucho. Además, el ambiente de trabajo ha sido inmejorable, reinando casi
siempre el buen humor. No me olvido de Rafa, con el que, debido a la distancia geográfica,
he convivido menos pero con el que me he mantenido en contacto permanente. En todo
momento me ha tratado como a un amigo y me ha escuchado con atención hasta el final
cuando teńıa algo que sugerir o aportar.

No me hubiera atrevido a escribir la tesis ı́ntegramente en inglés de no haber sabido que
tendŕıa el apoyo y colaboración de mis jefes y la ayuda de un profesional. Gracias, Manuel,
por tus correcciones.

Durante cuatro años he disfrutado de financiación económica proporcionada por el Pro-
grama de Formación del Profesorado Universitario (PFPU) del Ministerio de Educación y
Ciencia. Dentro de este mismo programa, he disfrutado de ayudas económicas para realizar
estancias breves en el extranjero. Con respecto a éstas, quiero agradecer al Profesor Kenneth
Holmström, de Mälardalens University (Suecia), su acogida durante casi tres meses a finales
de 2005, y a Nils-Hassan Quttineh (Nisse) por su ayuda respecto al trabajo alĺı realizado.
A finales de 2006 realicé una estancia breve en Supélec (Francia), donde gracias al Dr. Em-
manuel Vazquez aprend́ı lo que es el kriging y cómo aplicarlo a optimización global. Guardo
un excelente recuerdo de esa estancia tanto por la forma de trabajar de Emmanuel como por
el tiempo y el interés que me dedicó. Agradezco también a Julien Villemonteix las conversa-
ciones e intercambios de ideas que me ayudaron a seguir aprendiendo durante esa estancia y
posteriormente.

El trabajo de tesis no es sólo trabajo en cuanto a que el entorno tiene, a mi juicio, no
poca influencia sobre el ánimo y las ganas que se ponen. En este sentido, he disfrutado de un
excepcional ambiente de trabajo y amistad con la gente del Grupo de Ingenieŕıa de Procesos
del I.I.M. Si tuviera que comenzar de nuevo, elegiŕıa sin duda al mismo grupo de compañeros:
Carlos, Irene, Mı́riam, Marcos, Antonio, Luis, Maŕıa, Óscar, Sonia, Eva, Oliver, Martin,
Amaya. A todos tengo que agradecer las sugerencias y/o preguntas sobre SSm que me han
ayudado a encontrar errores, a mejorarlo y a aprender un poco más. Quiero resaltar a algunos
por su relación más o menos directa con mi trabajo. Oliver y Martin: gracias por las largas
conversaciones e intercambios de ideas sobre los algoritmos que estábamos implementando.

v

Sonia y Eva: gracias por vuestra ayuda y aclaraciones en la parte de optimización dinámica.
Óscar: gracias por contestar a tantas y tantas preguntas sobre Matlab, optimización, etc. . . ,
sin decirme ni una sola vez que no, ni siquiera que esperara un momento. Maŕıa, gracias por
las aclaraciones sobre estimación de parámetros, diseño óptimo, identificabilidad, etc, pero
sobre todo gracias por las conversaciones sobre nuestras vidas; esa oficina no habŕıa sido lo
mismo sin ti, y en general mi vida en el I.I.M. no habŕıa sido lo mismo sin ti. Gracias por ser
una amiga tan especial, por comprenderme tan bien y por hacer que te comprenda tan bien.
Y a ti, Breva, ¿qué te voy a decir? La fatalidad hizo que hace un año y pico tu vida diese
un giro y una de las consecuencias fue que yo tuve que empezar a disfrutar menos tiempo de
ti. Sin embargo, para ese entonces yo ya hab́ıa ganado un hermano y hab́ıamos llegado a esa
fase en la que no importa el tiempo que pase ni la distancia a la que se esté para que alguien
haya quedado incrustado en el corazón para siempre. Como escrib́ı antes a Maŕıa, la vida
no habŕıa sido igual sin ti. De hecho empezó a ser distinta una vez que ya no estabas para
que te estafara 15 minutos cada mañana para ir al trabajo o para que te lanzara la zapatilla
cuando te me quedabas sopa en el sofá por la noche. Gracias por ser aśı y haberme enseñado
tanto.

Mis padres, a quienes dedico este trabajo con toda mi ilusión, han sido y son mi apoyo
constante, mi refugio y el espejo en el que mirarme. Os he tenido en mi cabeza en todo
momento y vuestro pensamiento ha acompañado a todos y cada uno de los pasos dados hacia
delante durante estos años. A ambos, muchas gracias por vuestro amor, por cultivar mis
inquietudes y por vuestra confianza ciega en mı́. A vosotros os lo debo todo. Os quiero.

Creo firmemente que el estado de ánimo influye de forma decisiva en el resultado de las
acciones y/o trabajos que realizamos. En este sentido, quiero agradecer a la gente que ha
contribuido a que mi vida en Vigo haya sido feliz y completa. A Susi, Clemente y Laura,
amigos para toda la vida con los que he pasado momentos inolvidables. A mis compañeros
del equipo de basket que, aunque creo que ni siquiera saben a lo que me dedico, me llamaron
a Paŕıs para jugar con ellos a mi vuelta y me “renovaron” automáticamente cuando tuve la
lesión. A mis compañeros de piso post-Luis, primero Vicky y luego Raúl, que me hicieron
sentir triste cuando sab́ıa que se iban de casa pero que se han quedado como buenos amigos
enriqueciendo un poco más mi vida. Mis amores en Murcia (o más correctamente, de origen
murciano esparcidos por la peńınsula) han sido muy importantes para mı́ a pesar de no vivir
el d́ıa a d́ıa con ellos. Con Manolo, Palbe, Jesús y Lauricia me siento como en mi hogar por
el simple hecho de verlos y estar juntos. Con nadie me siento tan a gusto y con nadie me ŕıo
tanto. Seremos muy tontos, pero qué bien lo pasamos, ¿verdad?

Muchos jóvenes doctores con los que he hablado coincid́ıan en decir que la última parte
de la tesis, la escritura, los últimos experimentos, las correcciones, etc. . . , es un peŕıodo muy
largo y de mucho estrés. Para mı́, sin embargo, ha venido a coincidir con una de las etapas
más felices de mi vida (quizás la más feliz). Varios han sido los motivos para que esto sea
aśı, y el más importante de ellos eres tú, Rebeca.

A mis padres

Oigo y olvido,

veo y recuerdo,

hago y aprendo

Proverbio chino

Summary

Optimization problems arising from the biotechnological and food industries are usually of

non-convex nature and they often exhibit several local minima. Even though advances in

global optimization research have been outstanding in recent years, the current state-of-the-

art is not completely satisfactory, specially when one considers the global optimization of

complex process models (typical of biotechnological and food industries). These models are

complex due to their dynamic behavior and large number of states. Besides, one of the most

important drawbacks for optimizing these complex models is the computation time required

to perform every simulation. Due to the large number of differential and algebraic equa-

tions (DAE’s) defining the mathematical models which describe complex processes and/or

full industrial plants, the time needed to perform a single simulation may vary between some

minutes and hours on a standard personal computer. This can lead to unaffordable computa-

tion times from the practical point of view when the optimization of such processes is carried

out.

The reasons exposed above advise to treat complex models as black boxes in many situa-

tions, that is, as a simple relationship between inputs and outputs without further informa-

tion about relationships among the decision variables. For this kind of problems, stochastic

global optimization methods (and metaheuristics in particular) have proved to be efficient

and robust. Indeed, even though these methods can not ensure the convergence to the global

optimum, they provide very good solutions in practice (the global optimum in some cases)

in reasonable computation times. Besides, stochastic methods permit to treat mathemati-

cal models as black-boxes and are easy to implement, making them robust for any kind of

problem.

The use of the so-called metamodels allows to build surrogate models which interpolate or

approximate the original models, and predict their function values with a certain probability,

being less difficult to evaluate from the computational point of view. Taking advantage of

xi

xii

their statistical properties, these surrogate models allow us to formulate hypotheses about

the location of the global optimum and to find it (or high quality solutions) in a number

of simulations much lower than these employed by traditional optimization methods, thus

considerably reducing the final optimization time.

In the first part of this work we present an introduction to global optimization in the

biotechnological area, including the main type of existing problems and the available opti-

mization methods to solve them. An introduction to a special class of stochastic methods

(metaheuristics) is provided, pointing out the most popular and successful among them. Con-

sidering that our proposed method is based on the scatter search methodology, we describe

it in Chapter 3.

In the second part the methodology proposed for the optimization of complex bioprocesses

is explained. We present a scatter search-based algorithm for the global optimization of non-

linear dynamic systems. A set of new heuristics and improved features have been developed to

handle the main drawbacks inherent to this kind of problems. We have also developed another

optimization algorithm (based on scatter search too) which makes use of surrogate models for

the optimization of computationally expensive problems. In particular, the algorithm uses a

kriging interpolation algorithm which provides predictions and statistics associated to those

predictions, in order to minimize the number of simulations to locate the global optimum.

The scatter search framework makes the algorithm autonomous to select the set of points in

which the predictions must be done. The associated software tools for both algorithms have

been developed, and we present their documentation in Appendix A. Their effectiveness is

demonstrated by the resolution of a set of benchmark problems.

The final part of this work is dedicated to the application of the proposed methodologies to

different problems arising in the biotechnological and food industries. The three main types

of problems described in the first part are considered, and the performances of our algorithms

are compared with those of other state-of-the-art optimization algorithms, showing that our

approach is efficient and robust for the global optimization of this kind of problems.

Resumen

Los problemas de optimización que surgen en el campo de los procesos biotecnológicos y

alimentarios suelen tener una naturaleza no convexa, existiendo con frecuencia numerosos

óptimos locales. Aunque los avances en optimización global han sido notables en los últimos

años, el estado actual no es del todo satisfactorio, sobre todo cuando se considera la opti-

mización global de modelos de procesos complejos (t́ıpicos de las industrias biotecnológicas y

alimentarias). Estos modelos son complejos debido a su comportamiento dinámico y al ele-

vado número de estados. Además, uno de los problemas más importantes para la optimización

de estos modelos complejos es el tiempo de computación necesario para llevar a cabo cada

simulación. Debido al elevado número de ecuaciones diferenciales y algebraicas existentes en

los modelos que describen procesos complejos o plantas completas, el tiempo necesario para

realizar una única simulación puede ser del orden de varios minutos o incluso horas en un

ordenador convencional. Esto puede conducir a tiempos de computación inabordables desde

el punto de vista práctico cuando se lleva a cabo la optimización de dichos procesos.

Las razones anteriores aconsejan, en muchas ocasiones, tratar los modelos complejos como

cajas negras, es decir, como una relación simple entre entradas y salidas sin que se tenga

información sobre la relación entre las variables. Para este tipo de problemas, los métodos

de optimización global (y las metaheuŕısticas en particular) han demostrado su eficiencia y

robustez. En efecto, aunque estos métodos no aseguran la convergencia al óptimo global, en

la práctica proporcionan buenas soluciones (el óptimo global en muchos casos) en tiempos de

computación razonables. Además, estos métodos permiten tratar los modelos matemáticos

como cajas negras y son de fácil implementación, lo que les proporciona robustez y los hace

útiles para cualquier tipo de problema.

El uso de los llamados metamodelos permite construir modelos sustitutos que interpolan

o aproximan los modelos originales y predicen sus valores con cierta probabilidad, siendo

mucho menos dif́ıciles de evaluar desde el punto de vista computacional. Aprovechando

xiii

xiv

sus propiedades estad́ısticas, estos modelos sustitutos permiten realizar hipótesis sobre la

localización del óptimo global y llegar a él (o a soluciones de alta calidad) en un número

de simulaciones mucho menor que los métodos de optimización tradicionales, y por tanto

reduciendo considerablemente el tiempo final de optimización.

En la primera parte de este trabajo se presenta una introducción a la optimización global

en el área biotecnológica, incluyendo los principales tipos de problemas existentes y los

métodos de optimización disponibles para resolverlos. También se hace una introducción

espećıfica a una clase de métodos estocásticos (las metaheuŕısticas), destacando las más po-

pulares y exitosas de entre ellas. Considerando que el método de optimización propuesto en

esta tesis está basado en la metodoloǵıa conocida como scatter search (búsqueda dispersa en

castellano), ésta se describe en el Caṕıtulo 3.

En la segunda parte se presenta la metodoloǵıa propuesta para la optimización de biopro-

cesos complejos. Se presenta un algoritmo de optimización global basado en scatter search

para la optimización de sistemas dinámicos no lineales. Se han desarrollado un conjunto de

nuevas heuŕısticas y caracteŕısticas mejoradas para intentar resolver los principales incon-

venientes asociados a este tipo de problemas. Se ha desarrollado un segundo algoritmo de

optimización global (también basado en scatter search) que hace uso de modelos sustitutos

para la optimización de problemas computacionalmente costosos. En concreto, el algoritmo

usa una interpolación basada en kriging que proporciona predicciones y estad́ısticas asociadas

a ellas para minimizar el número de simulaciones necesarias para localizar el óptimo global.

El hecho de estar basado en scatter search hace que el algoritmo elija automáticamente el

conjunto de puntos sobre los que se hará la predicción. Las herramientas de software asocia-

das a ambos algoritmos se documentan en el Apéndice A. Su efectividad queda demostrada

mediante la resolución de una serie de problemas como banco de pruebas.

La parte final de este trabajo se dedica a la aplicación de las metodoloǵıas propuestas a

diferentes problemas de las industrias biotecnológicas y alimentarias. Se consideran los tipos

de problemas descritos en la primera parte. El comportamiento de nuestros algoritmos se

compara con el de otros algoritmos de optimización global que constituyen el estado actual,

demostrando que las metodoloǵıas propuestas son eficientes y robustas para cumplir con el

objetivo propuesto.

Objectives

The main objective of this work consists in developing a methodology for the global optimiza-

tion of complex bioprocesses (i.e., processes from the biotechnological and food industries).

Mathematical models describing such processes are often non-linear and multimodal. Thus,

their optimization is a difficult and time-consuming task where the state-of-the-art opti-

mization algorithms often fail. To successfully comply with this main objective, a set of

sub-objectives has been formulated:

� Review of the type of problems arising in the bioprocess industry optimization and the

type of optimization algorithms available to solve such problems.

� Review of the most promising metaheuristics and their application to (bio)process en-

gineering optimization problems.

� Analysis of the scatter search and kriging methodologies and their application to the

class of problems of our interest.

� Development of heuristics and advanced features to overcome typical drawbacks of some

optimization problems which prevent classical optimization methods from solving them.

� Exploitation of the statistical information provided by the kriging interpolation tech-

nique to develop patterns of search in the optimization of computationally expensive

models.

� Development of software tools to test the proposed methodologies with benchmark and

real problems.

� Application of the proposed methodologies to a set of industrial problems covering the

most relevant types found in the bioprocess industries.

xv

Objetivos

El principal objetivo de este trabajo consiste en desarrollar una metodoloǵıa para la opti-

mización global de bioprocesos complejos (procesos de las industrias biotecnológicas y ali-

mentarias). Los modelos matemáticos que describen dichos procesos suelen ser no lineales

y multimodales. Por tanto, su optimización es una tarea compleja y costosa (en términos

de tiempo de computación) en la que los métodos de optimización global que constituyen el

estado actual pueden fallar. Para cumplir con este objetivo principal se han formulado una

serie de sub-objetivos:

� Revisión de los tipos de problemas que surgen en la optimización de bioprocesos y de

los algoritmos disponibles para su resolución.

� Revisión de las metaheuŕısticas más prometedoras y de su aplicación a problemas de

optimización en ingenieŕıa de (bio)procesos.

� Análisis de las metodoloǵıas de scatter search y kriging y su aplicación a la clase de

problemas que nos interesa.

� Desarrollo de heuŕısticas y caracteŕısticas avanzadas para superar los inconvenientes

que surgen en cierto tipo de problemas de optimización y que evitan que los métodos

clásicos de optimizacion puedan resolverlos.

� Uso de la información estad́ıstica proporcionada por la interpolación por kriging para

desarrollar patrones de búsqueda en la optimización de modelos computacionalmente

costosos.

� Desarrollo de herramientas de software para testar las metodoloǵıas propuestas en pro-

blemas reales.

� Aplicación de las metodoloǵıas propuestas en un conjunto de problemas industriales

que abarquen los tipos de problemas más relevantes en las industrias de bioprocesos.

xvii

Contents

I Introduction 1

1 Bioprocess Engineering Optimization 3

1.1 Types of optimization problems in bioprocess engineering 5

1.1.1 Dynamic optimization . 6

1.1.2 Integrated design and control . 7

1.1.3 Parameter estimation . 8

1.2 Global optimization methods in bioprocess optimization 9

1.2.1 Deterministic GO methods . 9

1.2.2 Stochastic GO methods . 10

1.2.3 Hybrid methods . 11

1.2.4 Surrogate-based global optimization 11

2 Metaheuristics for global optimization 13

2.1 Desirable properties of a metaheuristic . 13

2.2 Types of metaheuristics . 14

2.2.1 Genetic Algorithms (GAs) . 16

2.2.2 Evolution Strategies (ES) . 16

2.2.3 Differential Evolution (DE) . 17

2.2.4 Tabu Search (TS) . 18

2.2.5 Particle Swarm Optimization (PSO) 20

2.2.6 Ant Colony Optimization (ACO) . 20

2.2.7 Simulated Annealing (SA) . 21

2.2.8 Memetic Algorithms (MAs) . 22

2.2.9 Iterated Local Search (ILS) . 23

2.2.10 GRASP . 24

xix

xx Contents

2.2.11 Hill Climbing . 24

2.2.12 Estimation of Distribution Algorithms (EDAs) 25

2.2.13 Hybrid metaheuristics . 26

3 Scatter Search 27

3.1 Scatter Search methodology . 27

3.2 Scatter Search tutorial . 31

3.2.1 Initialization . 32

3.2.2 First RefSet formation . 32

3.2.3 Subset generation and combination . 33

3.2.4 RefSet update . 34

3.2.5 RefSet regeneration . 34

3.2.6 Improvement method . 36

II Methodology 39

4 A scatter search heuristic for bioprocess optimization 41

4.1 Introduction . 41

4.2 Methodology . 43

4.2.1 Diversification Generation Method . 43

4.2.2 Building the RefSet . 46

4.2.3 Subset Generation and Solution Combination methods 48

4.2.4 Updating the RefSet . 50

4.2.5 Improvement Method . 53

4.2.6 RefSet Rebuilding . 57

4.2.7 Intensification . 60

4.2.8 The go beyond strategy . 61

4.2.9 Constraints handling . 64

4.2.10 Integer variables handling . 64

4.2.11 Stopping criterion . 65

4.3 Application to benchmark problems . 65

4.3.1 Unconstrained problems . 66

4.3.2 Constrained problems . 67

Contents xxi

4.3.3 Mixed-integer problems . 69

5 Improved scatter search for computationally expensive process models 73

5.1 Kriging . 74

5.1.1 Theory . 74

5.1.2 Covariance choice . 75

5.1.3 Illustrative examples . 76

5.2 SSKm . 77

5.2.1 Selection of a performance index for evaluating new points 81

5.3 Application examples . 85

5.3.1 Kriging prediction . 85

5.3.2 Kriging-based global optimization . 86

5.4 Conclusions . 88

III Applications 91

6 Preliminary chapter 93

6.1 Selected optimization methods . 93

6.2 Procedure followed in the experiments . 96

7 Parameter estimation problems 99

7.1 Isomerization of α-pinene . 100

7.1.1 Introduction . 100

7.1.2 Numerical results . 102

7.2 Inhibition of HIV proteinase . 104

7.2.1 Introduction . 104

7.2.2 Numerical results . 106

7.3 Three-step biochemical pathway . 109

7.3.1 Introduction . 109

7.3.2 Numerical results . 112

7.4 Conclusions . 113

8 Integrated design and control problems 117

8.1 Introduction . 117

xxii Contents

8.2 Problem WWTP1: Simultaneous design and control of a WWT plant 118

8.2.1 Introduction . 118

8.2.2 Numerical results . 123

8.3 Problem WWTP-COST: a computationally expensive model 125

8.3.1 Introduction . 125

8.3.2 Subproblem WWTP-COST1: PI Tuning 127

8.3.3 Operational design . 131

8.4 Conclusions . 137

9 Dynamic optimization problems 139

9.1 Introduction . 139

9.2 Fed-batch reactor for ethanol production . 141

9.2.1 Introduction . 141

9.2.2 Numerical results . 142

9.3 Fed-batch fermenter for penicillin production 144

9.3.1 Introduction . 144

9.3.2 Numerical results . 145

9.4 Drying operation . 146

9.4.1 Introduction . 146

9.4.2 Numerical results . 151

9.5 Microwave heating of foods . 151

9.5.1 Introduction . 151

9.5.2 Numerical results . 155

9.6 Conclusions . 156

10 Executive summary of results 159

IV Conclusions 161

V Appendices 171

A Software documentation 173

A.1 Introduction . 173

A.2 SSm toolbox . 174

A.2.1 SSm problem definition . 174

A.2.2 User options . 174

A.2.3 Global options . 174

A.2.4 Local options . 175

A.2.5 SSm output . 176

A.2.6 Guidelines for using SSm . 177

A.3 Extra tools . 178

A.3.1 ssm multistart . 178

A.3.2 ssm test . 179

A.4 Application examples . 181

A.4.1 Unconstrained problem . 181

A.4.2 Constrained problem . 181

A.4.3 Constrained problem with equality constraints 183

A.4.4 Mixed integer problem . 184

A.4.5 Dynamic parameter estimation problem using n2fb 185

A.4.6 ssm multistart application . 186

A.4.7 test ssm application . 186

A.5 Help files . 189

A.5.1 SSm help file . 189

A.5.2 SSKm help file . 192

B Test Functions of Section 4.3 195

B.1 Unconstrained problems . 195

B.2 Constrained problems . 199

VI Bibliography 203

VII Publications 231

xxiv Contents

List of Figures

2.1 Taxonomy of metaheuristics . 15

3.1 Schematic representation of the scatter search design 29

3.2 Initial set of diverse solutions . 33

3.3 First Refset formation . 33

3.4 Combination of every pair of solutions in RefSet 34

3.5 New Refset . 35

3.6 Refset regeneration . 36

3.7 Improvement Method applied to 2 solutions in the RefSet 37

4.1 Interaction between the optimization procedure and the DAE’s solver 42

4.2 Intervals within a variable range . 46

4.3 Combination method . 50

4.4 RefSet update with a threshold distance . 51

4.5 Two solutions in a flat zone of the objective function 53

4.6 Correction of the distance filter overlap . 57

4.7 RefSet rebuilding by distance (yellow) and by direction (green) 59

4.8 Intensification strategy . 61

4.9 go beyond strategy . 63

5.1 Kriging prediction and Gaussian distribution for point xi (sine function) . . . 76

5.2 Kriging prediction and 95% confidence intervals (sine function) 77

5.3 Performance index calculation for n/nf = 0.25 84

5.4 Performance index calculation for n/nf = 0.75 85

5.5 Michalewicz function and its kriging approximation using a different number

of observations . 86

xxv

xxvi List of Figures

5.6 Contour plot of the six-hump camel-back function with the evaluations done

by different global optimization algorithms . 89

5.7 Contour plot of the Branin function using 20 initial observations (red circles)

and 30 extra evaluations (black triangles) . 90

7.1 Mechanism for thermal isomerization of α-pinene 101

7.2 Histogram of solutions obtained from the multistart procedure using n2fb for

the α-pinene isomerization problem . 103

7.3 Convergence curves for the different solvers in the α-pinene isomerization problem103

7.4 Experimental data vs. predicted values using the parameters estimated with

SSm . 104

7.5 Mechanism of irreversible inhibition of HIV proteinase 105

7.6 Histogram of solutions obtained from the multistart procedure using n2fb in

double precision for the inhibition of HIV proteinase problem 107

7.7 Convergence curves for the different solvers in the inhibition of HIV proteinase

problem . 108

7.8 Experimental data vs. predicted values using the parameters estimated with

SSm . 109

7.9 Three-step biochemical pathway scheme . 110

7.10 Histogram of solutions obtained from the multistart procedure using n2fb for

the three-step biochemical pathway problem 112

7.11 Convergence curves for the different solvers in the three-step biochemical path-

way problem . 115

7.12 Comparison of convergence curves for the three-step biochemical pathway

problem . 115

7.13 Experimental data vs. predicted values in one experiment using the parameters

estimated with SSm . 116

8.1 WWT plant scheme . 119

8.2 Histogram of solutions obtained from the multistart procedure using fmincon

for problem WWTP1 . 123

8.3 Convergence curves for the different solvers in problem WWTP1 125

8.4 WWT COST plant scheme . 126

8.5 Histogram of solutions obtained from the multistart procedure using fmincon

for problem WWTP-COST1 . 129

8.6 Convergence curves for the different solvers in problem WWTP-COST1 . . . 130

8.7 ISE evolution comparison for default and optimized parameters 131

8.8 Histogram of solutions obtained from the multistart procedure using fmincon

for WWTP-COST2 problem . 133

8.9 Convergence curves for the different solvers in WWTP-COST2 problem . . . 134

8.10 Histogram of solutions obtained from the multistart procedure using misqp for

WWTP-COST3 problem . 135

8.11 Convergence curves for SSm compared with those obtained by Exler et al. (2007)137

9.1 Scheme of the CVP approach . 140

9.2 Convergence curves for the ethanol production problem 143

9.3 Optimal control profiles for the ethanol production problem 144

9.4 Convergence curves for the penicillin production problem 147

9.5 Optimal control profiles for the penicillin production problem 148

9.6 Air drying of a cellulose slab . 149

9.7 Convergence curves for the drying process problem 152

9.8 Control profiles for the drying process problem 153

9.9 Convergence curves for the combined oven problem 157

9.10 Control profiles for the combined oven problem 158

xxviii List of Figures

List of Tables

1.1 Biotechnological products in different economic areas 4

4.1 Unconstrained test problems . 66

4.2 Unconstrained test problems results . 68

4.3 Constrained test problems . 69

4.4 Results for constrained problems, comparing with CDE 69

4.5 Mixed-integer test problems . 70

4.6 Mixed-integer test problems results . 71

5.1 Solutions for the optimization of the six-hump camel-back function in 50 func-

tion evaluations . 87

6.1 Maximum number of function evaluations fixed for every problem 96

6.2 Selected parameters for DE and SRES . 97

7.1 Results for the α-pinene isomerization problem 102

7.2 Results for the inhibition of HIV proteinase problem 107

7.3 Bounds and best solution for the inhibition of HIV proteinase problem 108

7.4 Parameters for two solutions in the inhibition of HIV proteinase problem . . 109

7.5 S and P concentration values for all the experiments 111

7.6 Results for the three-step biochemical pathway problem 113

7.7 Bounds and best solution for the three-step biochemical pathway problem . . 114

8.1 Bounds for the inequality constraints for the state variables 122

8.2 Results for problem WWTP1 . 124

8.3 Bounds, initial point and best SSm solution for problem WWTP1 124

8.4 Initial and optimized indexes for problem WWTP1 124

xxix

8.5 Operational variables for the WWTP COST benchmark 127

8.6 Results for problem WWTP-COST1 . 129

8.7 Best solutions provided by SSKm and rbfSolve for problem WWTP-COST1 . 129

8.8 Initial and optimized indexes for problem WWTP-COST1 130

8.9 Bounds and initial point for WWTP-COST2 problem 132

8.10 Results for WWTP-COST2 problem . 133

8.11 Initial and optimized indexes for WWTP-COST2 problem 134

8.12 Bounds and best SSm solution for WWTP-COST3 problem 136

8.13 Initial and optimized indexes for WWTP-COST3 problem 137

9.1 Results for the ethanol production problem 142

9.2 Results for the penicillin production problem 146

9.3 Results for the drying process problem . 151

9.4 Results for the combined oven problem . 156

A.1 SSm problem settings . 174

A.2 SSm user options . 174

A.3 SSm global options . 175

A.4 SSm local options . 176

Part I

Introduction

1

Chapter 1

Bioprocess Engineering
Optimization

Biotechnology is the application of science and engineering to the use of living organisms

or substances derived from them, to generate products or to perform functions that can

benefit the human condition. It is based on scientific areas such as physiology, molecular

biology and molecular genetics as well as on other arising disciplines like genomics, proteomics,

transcriptomics and metabolomics. Biotechnology covers a broad segment of science and its

industrial applications. It has had a major impact in our society over the last decades due

to its quick development and its applications to improve the quality of life.

Bioprocess engineering is the subdiscipline within biotechnology that is responsible for

translating the discoveries of science into practical products, processes or systems that can

serve the needs of society. Quoting Louis Pasteur, bioprocess engineering is to biotechnology

as the fruit is to the tree. Neither can exist without the other. Bioprocess engineering enables

the development of new products, services and industrial processes in several sectors. Table

1.1 presents a list of biotechnological products in different economic areas.

Bioprocess engineering covers all engineering aspects of biotechnological production. It

was developed out of chemical engineering in the mid-20th century, when the initiation of the

first antibiotic production on the industrial scale imposed the use of techniques unknown to

the engineering profession, like sterility and sterile techniques of manipulating great volumes,

microbiological fluid filtration, kinetics of microbial processes, mixing and aeration. The main

objectives for the biochemical engineer must encompass the design of an optimal process that:

3

4 Chapter 1. Bioprocess Engineering Optimization

Activity Product

Ethanol, acetone, organic acids, amino acids,
Industrial (bio)chemical products

biopolymers, enzymes.

Therapeutic proteins, antibodies, vaccines,
Pharmaceutics antibiotics, signal molecules, diagnostic agents,

enzyme inhibitors.

Energetics Biofuels, biogas, hydrogen.

Fermented foods and beverages, probiotics, proteins,
Food

additives, amino acids, sugars.

Silage, compost, biological fertilizers,
Agriculture

insecticides and pesticides.

Waste water treatments, solid waste processing,
Services

analytical agents, tissue and organ engineering.

Extraction and concentration of metals,
Mining

secondary oil processing.

Table 1.1: Biotechnological products in different economic areas

(i) provides the desired quality of a final product; (ii) minimizes the total process time and cost

through improved operational efficiency; and (iii) falls within the constraints of acceptable

market entry (Najafpour, 2006).

It is quite usual to find the term biochemical engineering meaning bioprocess engineer-

ing. However, there is a difference between them. Bioprocess engineering includes mechani-

cal, electrical and industrial engineers working to apply the principles of their disciplines to

biotechnological processes. Some problems such as equipment design, sensor development,

control and process optimization can utilize principles from these disciplines (Shuler and

Kargi, 1992).

Like in many other scientific and engineering fields, mathematical modeling, optimization

and control have become fundamental tools for optimally designing and operating produc-

tion facilities in the biotechnological process industries (e.g., see Shimizu 1996; Bailey 1998;

Steffens et al. 2000; Barton et al. 2000; Banga et al. 2003b,c; Biegler and Grossmann 2004;

Floudas et al. 2005)

Since many biotechnological processes are operated in batch or semi-continuous modes,

they have an inherently dynamic nature. In this context, there are at least three relevant

types of optimization problems (as we will introduce in Section 1.1): optimal operation

(dynamic optimization), integrated process design and control, and parameter estimation.

These problems can be stated as, or transformed into, nonlinear programming problems

subject to dynamic (usually differential algebraic) constraints. Their highly constrained,

non-linear and sometimes non-smooth nature often causes non-convexity, and therefore global

1.1. Types of optimization problems in bioprocess engineering 5

optimization methods are needed in order to find suitable solutions.

1.1 Types of optimization problems in bioprocess engineering

In the context of bioprocess engineering optimization there are three types of problems spe-

cially relevant (Banga et al., 2003b):

� Dynamic optimization (or open-loop optimal control): Given a pre-defined perfor-

mance index such as profitability, product quality or productivity (often subject to

safety or environmental specifications), the aim is to find the optimal operating condi-

tions over a time interval.

� Integrated design and control: The aim is to simultaneously find the static variables

of the process design, the operating conditions and the controllers’ parameters which

optimize a combined measure of the plant economics and its controllability, subject to a

set of constraints which ensure appropriate dynamic behavior and process specifications.

� Parameter estimation (also called the inverse problem): The aim is to find the set

of parameters of a mathematical model to obtain the best possible fit to the existing

experimental data.

In this study we will consider all these optimization problems as nonlinear program-

ming problems subject to differential-algebraic constraints. The resolution of the differential-

algebraic constraints is usually a hard problem. Thus, an approximate method (typically a

Runge-Kutta, BDF method, or a similar numerical process) is applied to simultaneously solve

the set of DAE’s and obtain the state values corresponding to a set of values for the deci-

sion variables. Therefore, this kind of complex problem is solved with a black-box sequential

method in which the optimization takes place in the set of the decision variables. Given a

set of values for the decision variables, the approximate solver of the differential-algebraic

constraints computes the associated values for the states. We then test the feasibility of the

solution with the set of additional inequality and/or equality constraints functions (if they

exist). To sum it up, a remarkable computational effort is associated with the evaluation and

the feasibility test of one solution.

6 Chapter 1. Bioprocess Engineering Optimization

1.1.1 Dynamic optimization

For many industrial processes (and specially bioprocesses), computing the optimal operation

policies becomes fundamental to optimize their productivity (Balsa-Canto et al., 2005; Banga

et al., 2005). In particular, the dynamic optimization of fed-batch reactors has received major

attention in recent years (Banga et al., 1997, 2003c) as well as bioprocesses related to the

food industry (Banga et al., 2003b; Garćıa et al., 2006).

The mathematical formulation of the dynamic optimization problem can be stated as:

min
u(t),v,tf

C (x(tf), z(tf),u(tf),v, tf) (1.1)

subject to the system dynamics:

ẋ = F (x(t), z(t),u(t),v, t) (1.2)

x(0) = x0 (1.3)

u(0) = u0 (1.4)

z(0) = z0 (1.5)

where x(t) ∈ X ⊂ R
n and z(t) ∈ Z ⊂ R

m are the vectors of differential and algebraic

states respectively; u(t) ∈ U ⊂ R
p is the vector of control (input) variables; v ∈ V ⊂ R

q are

time invariant parameters; t is the time (and tf is the final time); C is a functional to be

minimized; F is the set of differential-algebraic equations describing the systems dynamics;

finally, x0, z0, and u0 are the values of the respective vectors at the initial time, t0.

Equality and inequality constraints may be imposed. Some of them must be satisfied over

the whole process time (path constraints):

Hpath (x(t), z(t),u(t),v, t) = 0 ∀t (1.6)

Gpath (x(t), z(t),u(t),v, t) ≤ 0 ∀t (1.7)

while others must be only satisfied at the end of the process (endpoint constraints):

Hend (x(tf), z(tf),u(tf),v, tf) = 0 (1.8)

Gend (x(tf), z(tf),u(tf),v, tf) ≤ 0 (1.9)

1.1. Types of optimization problems in bioprocess engineering 7

The control variables and/or the time-invariant parameters may be subject to lower and

upper bounds:

uL ≤ u(t) ≤ uU (1.10)

vL ≤ v ≤ vU (1.11)

1.1.2 Integrated design and control

The general statement of the simultaneous (integrated) design and control problem takes

into account the process and control superstructures, indicating the different design alterna-

tives (Schweiger and Floudas, 1997; Bansal et al., 2000; Sakizlis et al., 2004). This general

approach results in mixed integer optimal control problems. The aim is to simultaneously

find the static variables of the process design as well as the operating conditions and the

controllers’ parameters which optimize a combined measure of the plant economics and its

controllability, subject to a set of constraints which ensure appropriate dynamic behavior and

process specifications. In recent years, several authors have stated the necessity of performing

simultaneous design and control in bioprocess engineering (Bogle et al., 1996; Groep et al.,

2000; Banga et al., 2003c; Moles et al., 2003a). We state our problem as follows:

Find v to minimize:

C =
∑

wi · φi (1.12)

subject to

f(ẋ,x,v, t) = 0 (1.13)

x(t0) = x0 (1.14)

h(x,v) = 0 (1.15)

g(x,v) ≤ 0 (1.16)

vL ≤ v ≤ vU (1.17)

where v is the vector of decision variables (e.g., design variables, operating conditions,

parameters of controllers, set points, etc.); C is the cost (objective function) to minimize

(normally a weighted combination of capital, operation and controllability costs, φi); f is

a functional for the system dynamics (i.e., the nonlinear process model); x is the vector of

the states (and ẋ is its derivative); t0 the initial time for the integration of the system of

8 Chapter 1. Bioprocess Engineering Optimization

differential algebraic equations (and, consequently, x0 is the vector of the states at that initial

time); h and g are possible equality and inequality path and/or point constraint functions

which express additional requirements for the process performance; and, finally, vL and vU

are the upper and lower bounds for the decision variables. The dependence of φi upon the

decision variables, v, is defined by the problem formulation. In some cases this dependence is

simple and straightforward (i.e., when minimizing the cost of a chemical process, one of the

φi can be equal to a reactor size, which may also be a decision variable), whereas in others

there might not be an explicit expression for this dependence (i.e., φi can be the integral

square error, ISE, of a controller which, in general, does not depend explicitly on the decision

variables).

1.1.3 Parameter estimation

Rigorous dynamic mathematical models are essential for the optimization and on-line control

of industrial bioprocesses (Vanrolleghem and Dochain, 1998). Model building consists of

different stages: First, based on the theoretical or empirical knowledge about the process, the

objectives are set; in a second stage, the system must be identified from the experimental data.

The parameters are estimated and, finally, the model can be validated (Rodŕıguez-Fernández,

2006). The estimation of the model parameters is usually formulated as an optimization

problem. In the case of nonlinear dynamic models (and considering continuous measurements

over the time), we state the problem as follows:

Find p to minimize:

J =

∫ tf

0
(ymsd(t) − y(p, t))T W (t)(ymsd(t) − y(p, t))dt (1.18)

subject to

f(ẋ,x,y,p,v, t) = 0 (1.19)

x(t0) = x0 (1.20)

h(x,y,p,v) = 0 (1.21)

g(x,y,p,v) ≤ 0 (1.22)

pL ≤ p ≤ pU (1.23)

where J is the cost function to be minimized; p is the set of model parameters to be estimated;

ymsd are values of the experimentally measured system state variables; y(p, t) are the values

1.2. Global optimization methods in bioprocess optimization 9

of the state variables predicted by the model; W (t) is a scaling matrix; x are the differential

state variables and v is a vector of parameters; f describes the system dynamics; h and g

are possible equality and inequality path and/or point constraint functions which express

additional requirements for the system behavior; finally, pL and pU are the upper and lower

bounds for the parameters.

1.2 Global optimization methods in bioprocess optimization

Model based optimization can be successfully used to improve the design and/or operation of

single units or full process plants. Typically, most of the problems in bioprocess engineering

applications are highly constrained and exhibit nonlinear dynamics. These properties often

result in non-convexity and multimodality. Furthermore, in many complex process models

some kind of noise and/or discontinuities (either due to numerical methods, or to intrinsic

properties of the model) is present. Therefore, there is a great need of robust global opti-

mization solvers which can locate the vicinity of the global solution in a reasonable number of

iterations and handle noise and/or discontinuities. In general, (iterative) gradient-based local

methods for constrained nonlinear programming (NLP) problems are very efficient, but they

can only handle differentiable objective and constraint functions based on a set of continuous

variables (Gill et al., 1989). Additionally, convergence to the global solution is not guaranteed

in the case of multimodal problems. Therefore, one must use the so-called global optimization

(GO) methods (Moles et al., 2003a; Banga et al., 2003b,a) in order to provide an approxi-

mation of the global optimum. GO methods can be roughly classified as being deterministic

(Grossmann, 1996; Floudas and Pardalos, 2000) or stochastic (Guus et al., 1995).

1.2.1 Deterministic GO methods

These methods, also called exact methods, assure convergence to the global optimum for

certain problems, although no algorithm can solve general GO problems with certainty in

polynomial time. For these methods, the computational effort usually increases exponentially

with the problem size. Further, they have requirements (e.g., smoothness, differentiability)

which are rarely met in realistic applications, although very significant advances have been

recently made (Esposito and Floudas, 2000b; Singer et al., 2001; Papamichail and Adjiman,

2002). Reviews of these methods can be found in Pinter (1996) and Floudas (2000).

10 Chapter 1. Bioprocess Engineering Optimization

1.2.2 Stochastic GO methods

Stochastic GO methods can usually find solutions close to the global solution in relatively

short computation times compared to deterministic GO methods (Banga et al., 1997; Ali

et al., 1997; Banga et al., 2003a; Moles et al., 2003a,b). Note that with these stochastic

methods, the convergence to global optimality is not guaranteed, but many empirical studies

have shown that they are often the best methods for many classes of problems. Another

advantage of these methods is that they are easy to implement, and they can treat the

objective function as a black box (i.e., a simple connection between inputs and outputs,

with no derivative information needed). This feature is specially appealing in the case of

complex dynamic systems where the objective function is the result of e.g., a simulation

provided by a third-party software with restricted access for the user (a common case in real

industrial applications). The number of stochastic algorithms has rapidly increased due to

the difficulties of solving complex optimization problems by traditional methods. The most

important groups of stochastic algorithms are:

� Random search and adaptive methods: They were developed in the 50’s and

60’s (Brooks, 1958; Matyas, 1965; Rastrigin and Rubinstein, 1969). One of the most

popular adaptive methods is the controlled random search (CRS) by Price (1983), which

basically consists in generating solutions within the search space and replacing them

by other solutions improving their function values by an iterative procedure. The main

drawback of these algorithms is their slow convergence rate towards the global optimum

for high dimensional problems.

� Clustering methods: These methods work clustering solutions based on some char-

acteristics (normally taking into account some kind of distance among them) to create

groups. They normally use these clusters to perform multi-start procedures avoiding

to use similar initial points, thus being more efficient than classical multi-start (Törn,

1973; Rinnooy-Kan and Timmer, 1987).

� Metaheuristics: A meta-heuristic is an iterative generation process which guides

a subordinate heuristic by combining intelligently different concepts for exploring and

exploiting the search spaces using learning strategies to structure information in order to

find efficiently near-optimal solutions (Osman and Kelly, 1996). Chapter 2 is dedicated

to this type of optimization algorithms.

1.2. Global optimization methods in bioprocess optimization 11

1.2.3 Hybrid methods

The key concept of hybrid methods is synergy. A hybrid method tries to exploit the best

properties of different methodologies (Fraga, 2006). A hybrid method may consist of a global

method coupled with a local search (Csendes, 1988; Chelouah and Siarry, 2003; Fraga and

Žilinskas, 2003; Rodŕıguez-Fernández et al., 2006b; Egea et al., 2007a; Lasdon and Plummer,

2008), a stochastic GO method combined with a deterministic one (Balsa-Canto et al., 2005)

or a combination of two or more stochastic GO methods (Preux and Talbi, 1999). Hybrid

methods can be classified according to the type of hybridization they use: sequential or paral-

lel. In sequential hybridization, two or more algorithms are applied one after another, using

as starting conditions the results obtained by the previous algorithms. Some examples of

sequential hybridization successfully applied to bioprocess engineering optimization can be

found in Banga and Seider (1996); Banga et al. (2005); Rodŕıguez-Fernández et al. (2006b).

For this type of hybridization, a key issue is to the decide the amount of search to be per-

formed by each method. In parallel hybridization we can distinguish between synchronic

and asynchronic parallel hybridization. In synchronic parallel hybridization one algorithm is

used as an operator of other(s) (Chelouah and Siarry, 2003; Egea et al., 2007a). Asynchronic

parallel hybridization implies a cooperative design in which two or more algorithms exchange

information to increase their respective performances (Gras et al., 2003; Vrugt and Robinson,

2007).

1.2.4 Surrogate-based global optimization

In general, all the GO approaches presented above require a significant number of evaluations

of the objective and constraint functions. In the case of realistic problems, these models

may be costly to evaluate, posing a major challenge to the application of GO methods.

In recent years, a number of approaches have been proposed to obtain surrogate models

which are cheaper to evaluate than the original ones in terms of the computational CPU

time, and which imitate the original model based on a reduced number of sampled points or

simulations. Provided the surrogate model is accurate enough, the computation times can

be significantly reduced. Surrogate model-based methods can be classified into two groups:

non interpolating (e.g., quadratic polynomials and other regression models) and interpolating

methods (e.g., basis functions and kriging). At the same time, both methods can be one-stage

or two-stage methods. Two-stage methods fit first a response surface using sample points

12 Chapter 1. Bioprocess Engineering Optimization

from the real model and then optimize an auxiliary function based on the fitted surface. A

potential disadvantage of these methods is that the initial surface may not accurately fit the

real model, which can cause the optimization to stop prematurely, or converge to non-global

solutions. On the other hand, one-stage methods evaluate hypotheses about the location of

the optimum. This is done by examining the best-fitting response surface passing through

the observed data and other points in which the optimum is presumed to be located. Each

hypothesis is evaluated and the surface is constructed by evaluating the new points where

this credibility is maximum.

Jones (2001b) presented a taxonomy of these methods with a complete overview of the

different approaches in which it is concluded that interpolating methods are more suitable

than non-interpolating methods to locate the global optimum, specifically mentioning kriging

and basis functions. However, non-interpolating quadratic fitting methods have been widely

used in response surfaces-based engineering design as surveyed in Simpson et al. (2001).

Chapter 2

Metaheuristics for global
optimization

The term metaheuristic, originally introduced by Fred Glover at the same time that tabu

search (Glover, 1986), is composed by the prefix meta- (in Greek, beyond) and heuristic

(in Greek, to find). In computer science, a heuristic is a procedure to provide high quality

solutions in short computational time to a hard optimization problem. A heuristic is not

usually based on a formal analysis but arises from an expert knowledge of the task to be

solved.

There are some definitions of metaheuristics (Osman and Laporte, 1996; Osman and

Kelly, 1996; Blum and Roli, 2003; Dréo et al., 2006). The one given by Dorigo and Stützle

(2004) is shown below:

a metaheuristic can be seen as a general-purpose heuristic method designed to

guide an underlying problem-specific heuristic (...) A metaheuristic is therefore

a general algorithmic framework which can be applied to different optimization

problems with relative few modifications to make them adapted to a specific prob-

lem.

2.1 Desirable properties of a metaheuristic

Melián et al. (2003) proposed a list of properties that a metaheuristic should comply with. It

must be noted that some of these properties are opposite to others, therefore it is not possible

13

14 Chapter 2. Metaheuristics for global optimization

to meet all of them at the same time. These properties are the following:

� Simplicity: The metaheuristic must be based on a simple and clear principle.

� Accuracy: It must be formulated with accurate terms.

� Consistency: The elements of the metaheuristic must be deduced from its principles.

� Effectiveness: It must provide high quality solutions (the global optimum or solutions

close to it) with high probability.

� Efficiency: It must not employ a huge amount of computational resources (e.g., com-

putation time and memory).

� Generality: It must be applicable to a large variety of problems.

� Versatility: It must be adaptable to different contexts of model changes.

� Robustness: It must not be too sensitive to small modifications in the model or in

the application context.

� Interactivity: It must allow the user to apply his/her own knowledge of the problem

to improve the performance.

� Multiplicity: It must provide different high quality solutions among which the user

can choose.

� Autonomy: The metaheuristic must work without adjusting any parameter if neces-

sary.

2.2 Types of metaheuristics

There are several classifications of metaheuristics according to different criteria (see, for ex-

ample, Taillard et al. 2001; Dréo et al. 2007). We have found the most complete classification

in the web page maintained by Johann Dréo1. Here we will distinguish two main criteria to

classify metaheuristics (see Figure 2.1):

1http://nojhan.free.fr/metah/

2.2. Types of metaheuristics 15

� Metaheuristics based on a population or set of solutions (e.g., genetic algorithms, evo-

lution strategies, differential evolution, scatter search, ant colony optimization, parti-

cle swarm optimization, memetic algorithms, estimation of distribution algorithms) or

based on a trajectory (e.g., tabu search, simulated annealing, GRASP, iterated local

search, hill climbing).

� Metaheuristics inspired in nature (e.g., genetic algorithms, evolution strategies, ant

colony optimization, particle swarm optimization, simulated annealing) or not (e.g., it-

erated local search, GRASP, scatter search, tabu search, differential evolution, memetic

algorithms, hill climbing, estimation of distribution algorithms).

Figure 2.1: Taxonomy of metaheuristics

Most metaheuristics were initially developed for combinatorial problems. Since optimiza-

tion problems arising in bioprocess engineering are usually continuous or mixed-integer, we

must use specific adaptations to this context. There are some studies and adaptations of

metaheuristics to continuous problems (Hedar, 2004; Michalewicz and Siarry, 2008) even if

many of them have not extensively been applied to bioprocess engineering optimization.

In the following lines we will briefly introduce some of the most well-known metaheuristics.

Some examples of their application to process engineering optimization will be shown. Scatter

16 Chapter 2. Metaheuristics for global optimization

search will be more deeply analyzed in Chapter 3.

2.2.1 Genetic Algorithms (GAs)

Genetic algorithms were developed in the 70’s by Holland (1975) and improved by Goldberg

(1989). They are inspired on principles of natural selection and genetics. GAs encode the

decision variables in sets of solutions called chromosomes, formed by different parts (genes)

with some values (alleles). GAs are population-based algorithms, in which the population

size is usually an important factor affecting their performance and scalability. Once a problem

is encoded in chromosomes and a fitness measure for selecting good solutions (usually the

objective function value) has been chosen, the population can start to evolve using steps

shown in Algorithm 1 (Sastry and Goldberg, 2005):

Algorithm 1 Genetic Algorithm pseudocode
Initialization: Generate the initial population over the search space
Evaluation: Evaluate the fitness of the initial population
repeat

Selection: Assign a higher probability of being subject to the next steps to the best solutions
Recombination: Combine parts of two or more parental solutions to create new ones
Mutation: Modify locally a solution (usually in a random way)
Replacement: The offspring created by selection, recombination and mutation replaces the ori-
ginal parental population

until Termination criterion is met

Due to their popularity, GAs have been widely applied to many optimization problems,

including process engineering. Some recent examples of their application can be found in

Fraga and Senos Matias (1996); Garrard and Fraga (1998); Sarkar and Modak (2004); Wang

et al. (2004) and Ponsich et al. (2007).

2.2.2 Evolution Strategies (ES)

Evolution strategies were proposed in the 60’s and 70’s by Ingo Rechenberg (Rechenberg,

1973). ES use natural problem-dependent representations, and primarily mutation and se-

lection as search operators. The operators are applied in a loop. An iteration of the loop

is called a generation. The sequence of generations is continued until a termination crite-

rion is met. The first formulated strategy only considered one parental solution and one

offspring solution ((1+1)-strategy). The first population-based strategy was the so-called

(µ+1)-strategy in which there is a population of µ parents that are combined to generate

a child (which could also be mutated). The child replaces the worst parent as long as the

2.2. Types of metaheuristics 17

former outperforms the latter. Later, other strategies which constitute the current state-of-

the-art were formulated ((µ + λ) and (µ, λ) strategies). These new formulations allowed the

algorithms to be parallelized and parameter self-adjustable. In both strategies, µ parents

generate λ children by recombination and mutation. In the (µ, λ)-strategy only the best µ

children pass to the next generation whereas none of the parents are kept. This is a non eli-

tist strategy, since it allows the population to decrease its average quality in each generation.

In the (µ + λ)-strategy the best µ members of the union between parents and children are

selected for the next generation. This can accelerate the convergence rate but also make the

algorithm converge prematurely to sub-optimal solutions. Algorithm 2 shows the pseudocode

for (µ, λ) and (µ + λ) strategies.

Algorithm 2 Evolution Strategy pseudocode
Generate a set of solutions over the search space
Select the best µ elements among the set of solutions = Pop
repeat

Mutate the elements in Pop to create an offspring of λ elements
(µ, λ): Select the best µ elements of the offspring to create the new Pop
(µ + λ): Select the best µ elements from the union of Pop and the offspring to create the new
Pop

until Termination criterion is met

Unlike other metaheuristics, ES have a solid theoretical basis (Beyer, 1996; Beyer and

Schwefel, 2002). Together with GAs, ES have been one of the most applied metaheuristics to

process engineering optimization (Roubos et al., 1999; Costa and Oliveira, 2001; Banga et al.,

2003b,c; Moles et al., 2003a,b; Park and Lee, 2004; Banga et al., 2005; Balku and Berber,

2006).

2.2.3 Differential Evolution (DE)

This algorithm (Storn and Price, 1997) is an evolutionary algorithm which uses vector dif-

ferences for perturbing the vector population. The algorithm makes use of two operators:

The differential mutation (i.e., perturb a vector by adding to it the difference of other two

population vectors multiplied by a factor) and the crossover (i.e., exchange the value of some

decision variables between the original and the perturbed vector with a certain probability).

The pseudocode of the algorithm is shown in Algorithm 3.

DE has been widely used by the scientific community in many research areas (Price

et al., 2005), being currently one of the most popular algorithms for global optimization.

Some recent applications of DE to process engineering problems can be found in Wang et al.

18 Chapter 2. Metaheuristics for global optimization

Algorithm 3 Differential Evolution pseudocode
Set algorithm parameters, F and CR
Initialize and evaluate population P
while Termination criterion not met do

for i = 1 to NP do

Choose randomly xj and xk with i 6= j 6= k
MUTATION: ui = xi + F (xj − xk)
for n = 1 to prob size do

Generate a random number within [0, 1], nrand
if nrand ≥ CR then

CROSSOVER: vi,n = ui,n

else

vi,n = xi,n

end if

end for

if vi is better than xi then

Replace xi by vi

end if

end for

end while

(2001); Banga et al. (2003c); Babu and Angira (2006); Angira and Santosh (2007).

2.2.4 Tabu Search (TS)

TS was created in the 70’s by Fred Glover (Glover, 1977) although the formal name and

the methodology were established later (Glover, 1989, 1990). TS is based on the premise

that problem solving, in order to qualify as intelligent, must incorporate adaptive memory

and responsive exploration. The adaptive memory feature of TS allows the implementation

of procedures that are capable of searching the solution space economically and effectively.

TS starts from a solution in the search space and makes a movement to another solution

within its neighborhood. TS begins in the same way as ordinary local or neighborhood

search, proceeding iteratively from one point (solution) to another until a chosen termination

criterion is satisfied. We may contrast TS with a simple descent method where the goal is

to minimize the objective function, f(x). Such a method only permits moves to neighbor

solutions that improve the current objective function value and ends when no improving

solutions can be found. The final x obtained by a descent method is called a local optimum,

since it is better than all solutions in its neighborhood, or, at least, as good as them. The

evident shortcoming of a descent method is that such a local optimum in most cases will not

be a global optimum.

TS permits moves that deteriorate the current objective function value but the moves are

2.2. Types of metaheuristics 19

chosen from a modified neighborhood, N∗(x). Short and long-term memory structures are

responsible for the specific composition of N∗(x). In other words, the modified neighborhood

is the result of maintaining a selective history of the states encountered during the search. In

the TS strategies based on short-term considerations, N∗(x) characteristically is a subset of

N(x), and the tabu classification serves to identify elements of N(x) excluded from N∗(x).

In TS strategies that include longer term considerations, N∗(x) may also be expanded to

include solutions not ordinarily found in N(x), such as solutions found and evaluated in past

search, or identified as high quality neighbors of these past solutions. Characterized in this

way, TS may be viewed as a dynamic neighborhood method (Glover et al., 2007). This means

that the neighborhood of x is not a static set, but rather a set that can change according to

the history of the search.

A tabu solution (or area) remains in a tabu list during a defined number of iterations

(tabu tenure). TS uses the concept of aspiration criterion which in a simple form can be

defined as follows: “if a solution outperforms the best solution found so far, the search will

be directed to it regardless its tabu status”. Apart from the short-term memory, tabu search

also makes use of a long-term memory which keeps track of the frequencies or attributes of

the visited solutions to identify different regions. The long-term memory has two associated

strategies: intensification and diversification. Intensification consists in revisiting explored

areas to investigate them more deeply. Areas containing good solutions are favored. Diver-

sification consists in visiting new areas not yet explored. Algorithm 4 shows the pseudocode

of a basic TS procedure.

Algorithm 4 Tabu Search pseudocode
Set x0

xc = xbest = x0

Tabu list=∅
repeat

Mutate xc to create xnew

if xnew is in Tabu list then

if aspiration criterion met then

xc = xnew

Remove xnew area from the Tabu list
end if

else

xc = xnew

end if

Update Tabu list
Update xbest

until Termination criterion is met

20 Chapter 2. Metaheuristics for global optimization

For further information about TS see Glover and Laguna (1997). Some applications to

process engineering optimization can be found in Wang et al. (1999); Teh and Rangaiah

(2003); Rajesh et al. (2003); Lin and Miller (2004); Cavin et al. (2005) and Exler et al.

(2007).

2.2.5 Particle Swarm Optimization (PSO)

This method, first reported by Kennedy and Eberhart (1995), is based on the idea of social

learning and exchange of information among the members of a population. Each member of

the swarm (i.e., each particle or solution) have two main characteristics: its position and its

velocity. A particle changes both parameters by following two solutions: the best solution

found so far by the swarm, Gbest, and the best solution visited by itself during the search

process, Pbest.

A pseudocode of the algorithm is shown in Algorithm 5. For further information about

swarm optimization see Eberhart et al. (2001). An application of PSO in process engineering

can be found in Ourique et al. (2002).

Algorithm 5 Particle Swarm Optimization pseudocode
Initialize and evaluate population P
Set velocity of every particle, V , to 0
Set memory of every particle, Pbest = P
Gbest = Best Particle
while Termination criterion not met do

for i = 1 to NP do

Set w: inertia weight
Set C1 and C2: positive constants
Set Rn1 and R2: random numbers within the interval [0, 1]
Update speed of each particle according to
V (i) = w · V (i) + C1Rn1(Pbest(i) − P (i)) + C2Rn2(Gbest − P (i))
P (i) = P (i) + V (i)
Update Pbest and Gbest

end for

end while

2.2.6 Ant Colony Optimization (ACO)

This method, introduced by Dorigo (1992), is based on the social behavior of some insects

that present a sophisticated social structure. It was initially developed for combinatorial

optimization problems although it has received major attention in recent years for contin-

uous problems (Dréo and Siarry, 2006; Socha and Dorigo, 2008). Its biological basis is the

communication established by ants when they seek food. During food seeking, ants modify

2.2. Types of metaheuristics 21

the environmental conditions by secreting pheromones on their way. Later, other ants will

detect the pheromones concentration and will follow those paths more frequently used by

other members of the community, which correspond to the shortest paths from their anthill

to the food source. The ants movements are always randomized, but the probability of flit-

ting into the direction of pheromones is higher. Some important parameters to be taken into

account are: (i) the pheromone evaporation, to avoid following the initial paths which were

completely random, and (ii) the size of the colony: a small size may not provide enough infor-

mation about good paths whereas a big size may increase the computational effort too much.

It is worth noting that the use of pheromones can be interpreted as an implementation of a

memory structure. This fact together with the introduction of probabilistic elements allow

us to consider ACO as a particular and efficient case of probabilistic TS. Algorithm 6 shows

the pseudocode of a basic ACO procedure.

Algorithm 6 Ant Colony Optimization pseudocode
Generate a set of solutions over the search space
Select the best k elements among the set of solutions as the set of ants, s
repeat

Build pheromones from ants in s
Create new solutions according to pheromones information
Take the best k elements among s and the new solutions as new s

until Termination criterion is met

For further information about ACO see Dorigo and Stützle (2004). Some examples of

application of ACO in process engineering can be found in Jayaraman et al. (2000); Rajesh

et al. (2001); Chunfeng and Xin (2002); Zhang et al. (2005).

2.2.7 Simulated Annealing (SA)

Introduced by Kirkpatrick et al. (1983), this is one of the most popular methods among

the global optimization community. In SA, the process of slow and controlled cooling of a

melted material to obtain a crystalline structure is reproduced. This structure corresponds

to a minimum of energy (represented by the function value in optimization). Starting from

a given temperature, a new solid state is generated by applying a perturbation. The energy

for this new state is evaluated. If the new solid state has a lower energy than the previous

one, the movement is automatically accepted; otherwise it is accepted with a probability P

given by

22 Chapter 2. Metaheuristics for global optimization

P = e
− ∆E

KBT (2.1)

where E is the energy, KB is the Boltzmann constant and T is the temperature. The

probability P decreases along the optimization procedure. The critical point of the algorithm

is the definition of the cooling scheme. Algorithm 7 shows the SA pseudocode.

Algorithm 7 Simulated Annealing pseudocode
Set x0, iter = 0
xc = xbest = x0

Create xnew randomly
repeat

∆E = f(xnew) − f(xc)
if ∆E < 0 then

xc = xnew

if f(xc) < f(xbest) then

xbest = xc

end if

else

T = φ(iter)
rnd =random number
if rnd < e

−
∆E

KBT then

xc = xnew

end if

end if

Mutate xc to create a new xnew

iter = iter + 1

until Termination criterion is met

SA is quite a popular algorithm within the optimization community. Thus, there are

several studies in different fields in which we can find guidelines to set the search parameters,

including process engineering (Kookos, 2004; Faber et al., 2005; Sun and Lin, 2006).

2.2.8 Memetic Algorithms (MAs)

The basic scheme of MAs is a combination of a local search with a crossover operator, an exact

method or other heuristics. They present faster convergence rates than other evolutionary

algorithms for some problems in which a local search procedure is efficient. The term Memetic

Algorithms appeared in 1989 (Moscato, 1989). The pseudocode of a basic MA is given in

Algorithm 8.

Although this recent method has been mainly applied in combinatorial optimization prob-

lems, some engineering applications have arisen recently (Zelinka et al., 2001; Benali et al.,

2007). This type of algorithms have been also proposed for those optimization problems

2.2. Types of metaheuristics 23

Algorithm 8 Memetic Algorithm pseudocode
Generate an initial population
repeat

Recombine, mutate or apply other operator(s) among the population members
Improve population members (or a subset of it) with local search
Select new population for the next generation

until Termination criterion is met

involving computationally expensive simulation models (typical of complex bioprocess) to in-

tensify the search in promising areas when the budget of function evaluations is small (Zhou

et al., 2007). However, this strategy could lead to suboptimal solutions if the number of

simulations allowed is not large enough.

2.2.9 Iterated Local Search (ILS)

Iterative local search consists of two phases: the first one in which a solution is generated

and a second one in which that solution is improved. Every iteration produces a solution

(usually a local optimum) and the best of them is the algorithm output.

Termination of local search can be based on a time bound. Another common choice is to

terminate when the best solution found by the algorithm has not been improved in a given

number of steps. Local search algorithms are typically incomplete algorithms, as the search

may stop even if the best solution found by the algorithm is not optimal. This can happen

even if termination is due to the impossibility of improving the solution, as the optimal

solution can lie far from the neighborhood of the solutions crossed by the algorithms. The

pseudocode of a basic ILS is shown in Algorithm 9.

Algorithm 9 Iterated Local Search pseudocode

xbest = ∅
repeat

Create a random solution, xr, within the search space
Perform a local search using xr as initial point
Save the local solution found
Update xbest

until Termination criterion is met

Many authors have added several features to this basic scheme such as memory, clustering

methods and others to make the search more efficient. In many cases, the addition of these

features creates a new metaheuristic, as is the case of GRASP, presented in Section 2.2.10. For

further information about local search methods see Mart́ı (2003). An example of application

of this metaheuristic in bioprocess engineering optimization can be found in Rodŕıguez-Acosta

24 Chapter 2. Metaheuristics for global optimization

et al. (1999).

2.2.10 GRASP

GRASP (Greedy Randomized Adaptive Search Procedures) is a multistart local search pro-

cedure, where each iteration consists of two phases: a construction phase and a local search

phase. The GRASP methodology was developed in the late 1980s, and the acronym was

coined by Feo and Resende (1995). It was first used to solve computationally-difficult set

covering problems (Feo and Resende, 1989). Each GRASP iteration consists in constructing

a trial solution and then applying an exchange procedure to find a local optimum (i.e., the

final solution for that iteration). The construction phase is iterative, greedy, and adaptive.

It is iterative because the initial solution is built considering one element at a time. It is

greedy because the addition of each element is guided by a greedy function. It is adaptive

because the element chosen at any iteration in a construction is a function of those previously

chosen (that is, the method is adaptive in the sense of updating relevant information from one

construction step to the next). The improvement phase typically consists of a local search

procedure.

Performing multiple GRASP iterations may be interpreted as a means of strategically

sampling the solution space. Based on empirical observations, it has been found that the

sampling distribution generally has a mean value that is inferior to the one obtained by a

deterministic construction, but the best over all trials dominates the deterministic solution

with a high probability. The intuitive justification of this phenomenon is based on the ordering

statistics of sampling. GRASP implementations are generally robust in the sense that it is

difficult to find or devise pathological instances for which the method will perform arbitrarily

bad. The robustness of this method has been well documented in applications to production,

flight scheduling, equipment and tool selection, location, and maximum independent sets.

The pseudocode of a basic GRASP implementation is shown in Algorithm 10.

GRASP was originally designed for combinatorial optimization problems, although an

adaptation to continuous problems has recently appeared (Hirsch et al., 2007).

2.2.11 Hill Climbing

Hill climbing is an optimization technique which belongs to the family of local search. In hill

climbing, the basic idea is to always head towards a state which is better than the current one

(Rich and Knight, 1991). The algorithm is started from a random solution. It sequentially

2.2. Types of metaheuristics 25

Algorithm 10 GRASP pseudocode

xbest = ∅
init points = local solutions = ∅
repeat

Construction phase: Select a suitable initial point, x0 based on the information provided by
init points and local solutions
Perform a local search using x0 as initial point
Save both x0 and the local solution in init points local solutions respectively
Update xbest

until Termination criterion is met

makes small changes to the solution, each time improving it a little bit. At some point the

algorithm can not see any improvement anymore; then, the algorithm terminates. Ideally,

at that point a solution is found that is close to optimal, but it is not guaranteed that hill

climbing will ever come close to the optimal solution. Basic hill climbing works as shown in

Algorithm 11.

Algorithm 11 Hill Climbing pseudocode
Start with current solution = initial solution
while not Termination criterion do

Select a random relative direction from current solution
Generate one or more solutions close to current solution following that direction
if any of the generated solutions improves current solution then

Set this new solution as current solution
Continue searching in the same direction

end if

end while

Strategies to avoid cycling or to accelerate the convergence rate can be added in advanced

implementations, as in the one by de la Maza and Yuret (1994).

2.2.12 Estimation of Distribution Algorithms (EDAs)

These new algorithms are a variant of evolutionary algorithms which generate new solutions

by learning and sampling from the probability distribution of the best individuals of the

population at each iteration instead of using crossover and mutation operators (Mühlenbein

and Paass, 1996; Larrañaga and Lozano, 2001). With these methods, relationships between

decision variables are identified and exploited. Algorithm 12 shows the pseudocode of a basic

EDA. Note that it is the same one used for genetic algorithms but changing the steps of

recombination and mutation.

A recent application of EDAs to process engineering optimization can be found in Jiang

et al. (2006).

26 Chapter 2. Metaheuristics for global optimization

Algorithm 12 Estimation of Distribution Algorithm pseudocode
Initialization: Generate the initial population over the search space
Evaluation: Evaluate the fitness of the initial population
repeat

Calculate a probabilistic model of the population (or a part of it)
Generate a new population following the probabilistic model

until Termination criterion is met

2.2.13 Hybrid metaheuristics

In recent years, many studies in the field of hybrid metaheuristics have been published. A

skilled combination of concepts of different metaheuristics can provide a more efficient be-

havior and a higher flexibility when dealing with real-world and large-scale problems (Talbi,

2002). Some recent examples of hybrid metaheuristics applied to process engineering opti-

mization problems are Chiou and Wang (1999); Srinivas and Rangaiah (2007) and Shelokar

et al. (2008).

Chapter 3

Scatter Search

Scatter search is a population-based metaheuristic that has recently been shown to yield

promising outcomes for solving combinatorial and nonlinear optimization problems. Based

on formulations originally proposed in the 1960s for combining decision rules and problem

constraints such as the surrogate constraint method, scatter search uses strategies for com-

bining solution vectors that have proved effective in a variety of problem settings.

3.1 Scatter Search methodology

Scatter search was first introduced by Fred Glover (Glover, 1977) as a heuristic for integer

programming. Scatter search orients its explorations systematically, relative to a set of refer-

ence points that typically consist of good solutions obtained by prior problem solving efforts.

The scatter search template (Glover, 1998) has served as the main reference for most of the

scatter search implementations to date. Scatter search methodology is very flexible, since

each of its elements can be implemented in a variety of ways and degrees of sophistication.

Here we give a basic design to implement scatter search based on the well-known “five-method

template” (Laguna and Mart́ı, 2003). The advanced features of scatter search are related to

the way these five methods are implemented. That is, the sophistication comes from the

implementation of the scatter search methods instead of the decision to include or exclude

certain elements (as in the case of tabu search or other metaheuristics).

The fact that the mechanisms within scatter search are not restricted to a single uniform

design allows the exploration of strategic possibilities that may prove effective in a partic-

27

28 Chapter 3. Scatter Search

ular implementation. These observations and principles lead to the following “five-method

template” for implementing scatter search:

1. A Diversification Generation Method to generate a collection of diverse trial solutions.

2. An Improvement Method to transform a trial solution into one or more enhanced trial

solutions. Neither the input nor the output solutions are required to be feasible, though

the output solutions will more usually be expected to be so. If no improvement of the

input trial solution results, the “enhanced” solution is considered to be the same as the

input solution.

3. A Reference Set Update Method to build and maintain a reference set consisting of

the b “best” solutions found, where the value of b is typically small compared to the

population size of other evolutionary algorithms, organized to provide efficient accessing

by other parts of the method. Solutions gain membership to the reference set according

to their quality or their diversity.

4. A Subset Generation Method to operate on the reference set, to produce several subsets

of its solutions as a basis for creating combined solutions.

5. A Solution Combination Method to transform a given subset of solutions produced by

the Subset Generation Method into one or more combined solution vectors.

Figure 3.1 shows the interaction among these five methods and highlights the central role

of the reference set (RefSet). This basic design starts with the creation of an initial set of

solutions P , and then extracts from it the RefSet. The darker circles represent improved

solutions resulting from the application of the Improvement Method.

The Diversification Generation Method is used to build a large set P of diverse solutions.

The size of P (PSize) is typically at least ten times the problem size. The initial RefSet

is built according to the Reference Set Update Method, which can take the b best solutions

(as regards their quality in the problem solving) from P to compose the RefSet. However,

diversity can be considered instead of, or in addition to, quality for the updating. For example,

the Reference Set Update Method could consist of selecting b distinct and maximally diverse

solutions from P . Regardless of the rules used to select the reference solutions, the solutions

in RefSet are ordered according to quality, where the best solution is the first one in the

list. The search is then initiated by applying the Subset Generation Method which, in its

3.1. Scatter Search methodology 29

simplest form, involves generating all pairs of reference solutions. The pairs of solutions in

RefSet are selected one at a time and the Solution Combination Method is applied to generate

one or more trial solutions. These trial solutions are subjected to the Improvement Method.

The Reference Set Update Method is applied once again to build the new RefSet with the

best solutions, according to the objective function value, from the current RefSet and the

set of trial solutions. The basic procedure terminates after all the generated subsets are

subjected to the Solution Combination Method and none of the improved trial solutions are

admitted into the RefSet under the rules of the Reference Set Update Method. However, in

advanced scatter search designs, the RefSet rebuilding is applied at this point and the best

b/2 solutions are kept in the RefSet while the other b/2 are selected from P , replacing the

worst b/2 solutions, as shown in Figure 3.1. For other possible advanced designs see Mart́ı

et al. (2006).

Repeat until |P| = PSize
P

Diversification Generation

Method

Subset Generation

Method

Improvement

Method

Solution Combination

Method

Improvement

Method

No more new

solutions

Reference Set

Update Method

RefSet

Diversification Generation

Method

Improvement

Method

Stop if MaxIter

reached

SS Main Loop

SS Initialization

Repeat until |P| = PSize
PP

Diversification Generation

Method

Subset Generation

Method

Improvement

Method

Solution Combination

Method

Improvement

Method

No more new

solutions

Reference Set

Update Method

RefSetRefSet

Diversification Generation

Method

Improvement

Method

Stop if MaxIter

reached

SS Main Loop

SS Initialization

Figure 3.1: Schematic representation of the scatter search design

The RefSet is a collection of both high quality solutions and diverse solutions that are

used to generate new solutions by way of applying the Solution Combination Method. We

can use a simple mechanism to construct an initial reference set and then update it during

30 Chapter 3. Scatter Search

the search. The size of the reference set is denoted by b = b1 + b2. The construction of the

initial RefSet starts with the selection of the best b1 solutions from P . These solutions are

added to RefSet and deleted from P . For each solution in the updated P , the minimum of

the distances to the solutions in RefSet is computed. Then, the solution with the maximum

of these minimum distances is selected. This solution is added to RefSet and deleted from P ,

and the minimum distances are updated. The process is repeated b2 times, where b2 = b−b1.

The resulting RefSet has b1 high quality solutions and b2 diverse solutions. Algorithm 13

shows a basic scatter search procedure in pseudocode.

Algorithm 13 Basic Scatter Search procedure

1: Start with P =Ø
2: repeat

3: Use the Diversification Generation Method to construct a solution and apply the Improvement
Method

4: Let x be the resulting solution
5: if x /∈ P then

6: P = P ∪ x
7: else

8: Discard x
9: end if

10: until |P | = PSize
11: Use the Reference Set Update method to build RefSet = {x1, . . . , xb} with the best b1 quality

solutions and b2 diverse solutions (b1 + b2 = b) in P
12: Sort the solutions in RefSet according to their objective function value such that x1 is the best

solution and xb the worst
13: Make NewSolutions = TRUE
14: while NewSolutions do

15: Generate NewSubsets with the Subset Generation Method
16: Make NewSolutions = FALSE
17: while NewSubsets 6= Ø do

18: Select the next subset s in NewSubsets
19: Apply the Solution Combination Method to s to obtain new trial solutions
20: Apply the Improvement Method to the trial solutions
21: Apply the RefSet Update Method
22: if Refset has changed then

23: make NewSolutions = TRUE
24: end if

25: Delete s from NewSubsets
26: end while

27: end while

Of the five methods in scatter search methodology, only four are strictly required. The

Improvement Method is usually needed if high quality outcomes are desired, but a scatter

search procedure can be implemented without it as it occurs in some problems where the

Improvement Method can not provide high quality solutions due to the problem’s nature or

when the computation budget is limited to a small number of function evaluations. On the

3.2. Scatter Search tutorial 31

other hand, hybrid scatter search designs could incorporate a short-term tabu search or other

complex metaheuristic (usually demanding more running time).

It is interesting to observe similarities and contrasts between scatter search and the orig-

inal GA proposals. Both are instances of what are sometimes called “population based”

or “evolutionary” approaches. Both incorporate the idea that a key aspect of producing

new elements is to generate some form of combination of existing elements. However, GA

approaches are predicated on the idea of choosing parents randomly to produce offspring,

and further on introducing randomization to determine which components of the parents

should be combined. By contrast, the scatter search approach does not emphasize random-

ization, particularly in the sense of being indifferent to choices among alternatives. Instead,

the approach is designed to incorporate strategic responses, both deterministic and proba-

bilistic, that take account of evaluations and history. Scatter search focuses on generating

relevant outcomes without losing the ability to produce diverse solutions, due to the way the

generation process is implemented.

As other metaheuristics, scatter search has been mainly applied to optimization problems

involving integer variables (see Glover et al. 2000a for a list of scatter search applications).

However, some adaptations to continuous problems have arisen in recent last years. Fleurent

et al. (1996) and Trafalis and Kasap (1996) presented a scatter search approach for continu-

ous optimization. Later, Trafalis and Kasap (2002) combined scatter search with other meta-

heuristics. Laguna and Mart́ı (2002) presented the OptQuest callable library, based on scatter

search, which was used in Ugray et al. (2005). Laguna and Mart́ı (2005) tested some advanced

scatter search designs for global optimization and later Herrera et al. (2006) analyzed the

performance of different combination methods and improvement strategies. Other advanced

implementations have been applied to parameter estimation in systems biology (Rodŕıguez-

Fernández et al., 2006a), chemical and bioprocess optimization (Egea et al., 2007a) and food

engineering optimization (Rodŕıguez-Fernández et al., 2007). Egea et al. (2007b) developed

a scatter search-based algorithm for computationally expensive process models.

3.2 Scatter Search tutorial

When presenting an optimization algorithm one usually tries to illustrate the way it works

in as much detail as possible. Detailed explanations, pseudocodes, figures and application

examples are usually used for this purpose. In Glover et al. (2003) a useful step-by-step

32 Chapter 3. Scatter Search

scatter search tutorial for continuous problems is presented. It helps non-experts to start

their first implementation. In the next lines, another tutorial of the scatter search basic

scheme is presented, based on figures showing solutions over the search space. To follow it,

some points must be considered:

1. We will consider a minimization problem.

2. Numbers inside every solution (circles) represent their objective function values.

3. Number of diverse solutions to initiate the procedure, PSize = 10.

4. RefSet dimension, b = 4 solutions.

5. The function to be optimized has 3 minima, 2 of them local (green squares) and 1 global

(blue square).

6. For the sake of clarity, the Improvement Method is only applied in the last figure of this

section.

3.2.1 Initialization

The algorithm starts by creating a set P of Psize diverse solutions (10 in our case) with

a sampling technique which can be simple randomization, latin hypercube sampling or any

other strategy like those proposed in Laguna and Mart́ı (2003). Figure 3.2 shows the initial

set of diverse solutions at the beginning of the procedure.

3.2.2 First RefSet formation

The initial RefSet must contain both quality and diverse solution. The RefSet Update Method

is called for the first time. Thus, as explained in Section 3.1, b1 = 2 solutions will be

selected by quality (i.e., those with the smallest function values since we are dealing with

minimization). Then, b2 = 2 solutions must be selected following a diversity criterion. In

Figure 3.3, the first b1 solutions (in red) are automatically selected according to their function

value. The next solution (in grey) is selected by maximizing the distance to all the b1 solutions

and the next one (in black) uses the same principle taking into account the b1 and the rest

of solutions already included in b2. The rest of solutions not included in the RefSet are

discarded.

3.2. Scatter Search tutorial 33

5 7 5

8

5

2
6

7

4

5

Figure 3.2: Initial set of diverse solutions

5 7 5

8

5

2
6

7

4

5

Figure 3.3: First Refset formation

3.2.3 Subset generation and combination

Once the initial RefSet has been formed, the Subset Generation Method creates different sets

of solutions to be combined. Then, every set of solutions generates one or more solutions

34 Chapter 3. Scatter Search

by applying the Solution Combination Method. In Figure 3.4, the sets are all the pairs of

solutions in RefSet. The Solution Combination Method, in this case, consists in generating a

solution for each pair inside the segment linking the two solutions of the pair. The generated

solutions are represented in blue in Figure 3.4.

8

8

4

5

5

9

3

5

2

4

Figure 3.4: Combination of every pair of solutions in RefSet

3.2.4 RefSet update

After generating new solutions, the RefSet Update Method is called again to update the

members of the RefSet. The update can be done by quality, diversity or a combination of

both strategies (Laguna and Mart́ı, 2005). Here we will update the RefSet by quality, thus

the best b best solutions among the last RefSet members and the new generated solutions

are selected as the new RefSet members. Those solutions with the minimum function values

are selected. In our example, the new RefSet is composed by 2 new solutions and 2 solutions

which were part of the RefSet in the previous iteration (see Figure 3.5).

3.2.5 RefSet regeneration

The previous steps, including the Improvement Method, which will be illustrated in Section

3.2.6, are repeated until a termination criterion is met. Scatter search usually makes use

of a memory element to avoid performing combinations among sets of solutions already

3.2. Scatter Search tutorial 35

2

3

4

4

Figure 3.5: New Refset

combined. It may occur that, at some point, no new subsets are available. At this moment,

the algorithm can either stop or perform a regeneration which usually consists in deleting the

worst b/2 solutions in the RefSet in terms of quality and replacing them by diverse solutions.

For this purpose, the Diversification Generation Method is used again to generate a set of

diverse solutions (or we can simply use again the same set of diverse solutions used in the

initialization of the method). Following the same diverse criterion as the one used in the

first RefSet formation (see Section 3.2.2) those solutions maximizing their distance to the

current RefSet solutions will be added to the RefSet. If the RefSet should be regenerated

in a situation like that depicted in Figure 3.5, the 2 solutions to be deleted would be those

with function value equal to 4 (since they are the b2 worst solutions in terms of quality). The

Diversification Generation Method would create new diverse solutions and those maximizing

their distance with respect to the remaining solutions in the RefSet would enter it. Note that

new solutions gain the RefSet membership one by one in a sequential way by maximizing

their distance to the current solutions in the RefSet. In Figure 3.6 the 2 solutions in red

would replace the deleted solutions.

36 Chapter 3. Scatter Search

5

2

3

6

Figure 3.6: Refset regeneration

3.2.6 Improvement method

As stated in Section 3.1, during the optimization procedure all the generated solutions are

subjected to the Improvement Method which usually consists of a local search procedure to

improve the quality of the solutions. In some applications where the local search provides poor

results it might be suppressed or an alternative Improvement Method must be designed (such

as another metaheuristic hybridized with scatter search). Here we will only illustrate how

the Improvement Method usually works by applying it to two solutions (the best 2 solutions

of our particular RefSet). In Figure 3.7 the application of the Improvement Method to two

different solutions results in finding two optima, one of them being the global optimum.

Advanced scatter search implementations take into account different parameters, such

as quality of the solutions and distances to found local minima in order to minimize the

computational effort, and thus avoiding to perform local searches from initial solutions which

are likely to provide already known local minima.

3.2. Scatter Search tutorial 37

2

3

4

4

Figure 3.7: Improvement Method applied to 2 solutions in the RefSet

Part II

Methodology

39

Chapter 4

A scatter search heuristic for
bioprocess optimization

4.1 Introduction

Many real world optimization problems in bioprocess engineering (and also in business or

economics) are too complex to be given tractable mathematical formulations. Although we

used mathematical notation in the formulations provided in Section 1.1, we are considering

the general case in which there is no explicit expression of the objective function since it

contains multiple nonlinearities, combinatorial relationships and uncertainties inaccessible

to modeling except by resorting to more comprehensive tools like computer simulation. In

the context of optimizing simulations, a “complex evaluation” refers to the execution of a

simulation model (which can be extremely time-consuming).

Theoretically, the issue of identifying best values for a set of decision variables falls within

the realm of optimization. Until quite recently, however, the methods available for finding

optimal decisions have been unable to cope with the complexities and uncertainties posed

by many real world problems of the form treated by simulation. The area of stochastic op-

timization has attempted to deal with some of these practical problems, but the modeling

framework limits the range of problems that can be tackled with such technology. The com-

plexities and uncertainties in these systems are the primary reason to often choose simulation

as a basis for handling the decision problems associated with them. Advances in the field of

metaheuristics have led to the creation of optimization engines that successfully guide a series

41

42 Chapter 4. A scatter search heuristic for bioprocess optimization

of complex evaluations with the goal of finding optimal values for the decision variables.

As stated in Chapter 1, most optimization problems in the chemical and bio-chemical

industries are highly nonlinear in either the objective function or the constraints. Moreover,

they show dynamic nature and can be formulated as nonlinear programming problems subject

to differential-algebraic constraints. This set of constraints must be solved using specific

mathematical techniques (e.g., initial value problem numerical methods) provided by the

user or embodied in the objective function value to be optimized. Once this set of DAE’s has

been solved, and the objective function and additional constraints have been evaluated, the

output information is used by the optimization procedure to drive the search and choose the

new solutions to be evaluated (i.e., the new inputs for the DAE’s solver) in an iterative way.

Figure 4.1 shows the interaction of the optimization procedure with the external mathematical

method to solve the set of differential-algebraic constraints of the dynamic model to be

optimized.

x

y

f(x,y)

g(x,y)

h(x,y)x0

Figure 4.1: Interaction between the optimization procedure and the DAE’s
solver

In this context, optimization methods should be able to treat the optimization problems

as “black-boxes”. The disadvantage of “black-box” approaches is that the optimization pro-

cedure is generic and has no knowledge of the process employed to perform evaluations inside

the box and therefore does not use any problem-specific information. The main advantage,

on the other hand, is that the same optimizer can be applied to complex systems in many

different settings. Therefore, although we have designed and tested our method in the process

systems engineering environment, it can be directly applied to solve any kind of black-box

optimization problems in other settings.

When classifying the global optimization algorithms in Section 1.2, it was explained that

deterministic (or exact) algorithms work well only for small problems with some require-

ments (rarely met in real applications). Although they ensure the convergence to the global

optimum, the computation time needed might be unaffordable. In contrast, stochastic (or

4.2. Methodology 43

heuristic) methods can locate the global optimum or its vicinity in modest computation times

for every type of problem. Many authors (e.g., see Banga et al. 2003c and references therein)

have successfully applied stochastic global optimization methods to process engineering op-

timization.

In Chapter 2 we reviewed a kind of stochastic methods known as metaheuristics which

arose to solve hard combinatorial optimization problems and were extended for solving con-

tinuous and mixed-integer problems in recent years. Many examples of application of meta-

heuristics to process engineering optimization were provided.

Current research in global optimization is highly devoted to metaheuristics. In this work,

we propose a scatter search-based global optimization algorithm for continuous and mixed-

integer problems which is efficient for solving optimization problems arising in bioprocess

engineering. The motivation for choosing scatter search as a basis of our algorithm is that,

in a recent review by Neumaier et al. (2005) comparing several GO solvers over a set of

1000 constrained GO problems, the scatter search-based algorithm OQNLP (see Section 6.1)

obtained the best performance among the stochastic methods, solving the highest percentage

of big problems.

4.2 Methodology

We have implemented our algorithm in Matlab under the name SSm (Scatter Search for

Matlab). Our development goes beyond a simple exercise of applying scatter search to opti-

mization problems in bioprocess engineering, but presents innovative mechanisms to obtain

a good balance between intensification and diversification in a short-term search horizon. In

the Applications part of this work, computational comparisons with the selected methods

introduced in Section 6.1 over a set of bioprocess engineering optimization problems favor

the proposed procedure.

4.2.1 Diversification Generation Method

SSm begins by generating an initial set S of m diverse vectors in the search space. Unlike

other diversification strategies, SSm does not only generate vectors with their components

uniformly distributed within the search space, but also drives the generation of values for each

decision variable onto parts of the space where they have not appeared very often during the

diversification process. For that, the method makes use of memory taking into account the

44 Chapter 4. A scatter search heuristic for bioprocess optimization

number of times that every decision variable appears in different parts of the search space.

This is usually accomplished by dividing the range of each variable into p sub-ranges of

equal size. Then, a solution is constructed in two steps. First, a sub-range is randomly

selected. The probability of selecting a sub-range is inversely proportional to its frequency

count (which keeps track of the number of times the sub-range has been selected). Second, a

value is randomly chosen from the selected sub-range.

Initially, the range of every decision variable, xi with i ∈ [1, 2, ..., n] (being n the problem

size) defined by its lower and upper bounds, xli and xui respectively, is divided in p sub-ranges

of equal size, (xui − xli)/p. Therefore, the limits that define each sub-range j ∈ [1, 2, ..., p]

for the variable i are given by

� Lower bound:

lbij = xli +
xui − xli

p
(j − 1) (4.1)

� Upper bound:

ubij = xli +
xui − xli

p
j (4.2)

Frequencies,fij , are defined as the number of times that the variable i is in the sub-range

j along all the generated vectors.

To initialize all the frequencies to a value of 1, p vectors are first generated, each of

them having all their variables randomly generated in the same sub-range using a uniform

distribution (e.g., vector 1, x1, has all its variables in sub-range 1, and every decision variable

i is randomly generated using a uniform distribution within the bounds xli and xli+
(xui−xli)

p).

This first set of vectors forms the initial matrix of diverse vectors Sp×n that will be extended

up to a size of m-by-n by adding new diverse vectors.

S =











x1

x2

...
xp











=











x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

...
...

...
...

xp
1 xp

2 . . . xp
n











(4.3)

The initial matrix of frequencies is defined as:

f =











f11 f12 . . . f1p

f21 f22 . . . f2p
...

...
...

...
fn1 fn2 . . . fnp











=











1 1 . . . 1
1 1 . . . 1
...

...
...

...
1 1 . . . 1











(4.4)

4.2. Methodology 45

New vectors will be generated using the following procedure: for each new vector xp+t to be

generated (with t ∈ [1, 2, ...,m − p]) the probability of having its decision variable i in the

sub-range j is calculated as

probp+t
i,j =

1
fij

p
∑

k=1

1
fik

(4.5)

Then, a uniformly distributed random number, rnd, in the interval [0, 1] is generated.

The next generated vector xp+t will have its i-th component in the subrange j = a for the

first value of a that accomplishes

rnd ≤
a

∑

j=1

probp+t
i,j a = 1, 2, . . . , p (4.6)

Each component, xp+t
i , will take a value randomly selected using an uniform distribution in

the range [lbij , ubij]. Thus, for a new vector to be generated, the probability of having the

variable i in the sub-range j is inversely proportional to the frequency of appearance of the

variables i in this sub-range considering the already created vectors. Therefore, the method

has to “remember” and update these frequencies to enhance diversity. As new vectors xp+t

are generated, they are added to the matrix S in rows until it becomes m-by-n dimensional.

The starting set of points also includes the following three solutions: the first one in which

all variables are set to the lower bound, the second one in which all variables are set to the

upper bound, and the third one in which all variables are set to the midpoint between both

bounds. This is the standard scatter search implementation of the Diversification Generation

Method for non-linear problems and is used by different methods like OptQuest (Laguna and

Mart́ı, 2002). However, we have found that in some instances in which variables may have

values in a huge range of positive values, a logarithmic distribution usually provides better

results.

In the context of chemical and bio-process optimization, the selection of the lower bounds

for the decision variables is usually quite straightforward because of their physical meaning

(e.g., a temperature can never have a value lower than 0 Kelvin). However, the selection

of the upper bounds is not so easy and they are often chosen as arbitrary large values to

contain all the potential values for each variable. Therefore, it is expected that the optimal

and good solutions may lie, in general, closer to the lower bounds than to the upper bounds.

In this context, a uniform distribution for selecting diverse solutions within the bounds will

46 Chapter 4. A scatter search heuristic for bioprocess optimization

not generate many trial points with good values. In contrast, a logarithmic distribution will

generate more trial vectors close to the lower bound, thus allowing the algorithm to be ini-

tialized with high quality members in the initial population, ensuring a faster convergence.

Moreover, a logarithmic distribution is also helpful in the case of variables that can intrinsi-

cally have values in different orders of magnitude (as is the case of pre-exponential factors in

kinetic equations) or with variables without physical meaning, for which selecting bounds is

a difficult task. In order to obtain good initial values for these cases, an option for selecting

variables in different orders of magnitude has been added in our implementation under the

name log var.

Figure 4.2 illustrates this situation. Consider a variable that takes values between 10−12

and 104. If we generate a starting set of points between those bounds using a uniform

distribution, we will approximately obtain the same number of values in every interval shown

in Figure 4.2(a). Alternatively, if we select the log var option for this variable, its values

will be randomly selected with equal probability across the sub-ranges depicted in Figure

4.2(b). With this option, the number of subintervals is automatically adjusted so that there

are a maximum of two orders of magnitude between the limits of each interval (e.g., for a

variable between 10−12 and 104, the number of subintervals would be 8), thus generating

more solutions close to the lower bound.

(a) Values uniformly distributed within the bounds

(b) Values distributed within the different orders of magnitude

Figure 4.2: Intervals within a variable range

4.2.2 Building the RefSet

As described in Section 3.1, the RefSet Update Method is applied in two different steps of

the algorithm: when building the initial RefSet from the set S of diverse solutions and when

updating it after applying the Solution Combination Method.

4.2. Methodology 47

For building the initial RefSet, after generating the set S of diverse solutions, two strategies

may be chosen. In the first strategy (used by default), a subset of high quality and diverse

points is selected as the RefSet. The initial RefSet is built selecting the best b/2 solutions

from S as given by the evaluation-simulation process and then making more b/2 selections in

order to maximize the minimum distance between the candidate solution and the solutions

currently in RefSet.

The first step consists in evaluating all diverse vectors and select the b/2 best ones in terms

of quality. For example, in a minimization problem, provided the diverse vectors are sorted

according to their function values (the best one first), the initial selection is
[

x1, x2, . . . , xb/2
]T

such that

f(xi) ≤ f(xj) ∀ j > i , i ∈ [1, 2, . . . , b/2 − 1] , j ∈ [2, 3, . . . , b/2] (4.7)

Vectors added to the RefSet are deleted from S. The current number of vectors present in the

RefSet is computed as h. Therefore, in this stage h = b/2 (and the maximum possible value

of h is b). We complete the RefSet with the remaining diverse vectors in S by maximizing

the minimum Euclidean distance to the included vectors in the RefSet.

For every diverse vector in S, xd, with d ∈ [h + 1, h + 2, ...,m], Euclidean distances to all

current RefSet vectors are computed. The minimum of these distances, dmin, is stored for

each vector:

dmin(xd) = min{d(xd,RefSet)} (4.8)

where d(xd,RefSet), represents a vector whose components are the Euclidean distances be-

tween vector xd and all the vectors in the RefSet. Then, the vector x having the highest

minimum distance will join the RefSet. Therefore, RefSet = RefSet ∪ x such that

dmin(x) = max
(

dmin(xd)
)

∀ d = h + 1, h + 2, ...,m (4.9)

and the value of h is increased one unit since a new vector has been added to the RefSet.

This is repeated until the RefSet is filled with b vectors (i.e., h = b) so that RefSet ∈ R
b×n.

This criterion is applied in a sequential fashion. At each step we add to the RefSet the

solution that maximizes dmin(xd), remove it from S, and then recalculate the Euclidean

distances. Therefore, we add one solution at each step until the RefSet has been completed

(i.e., we do it for b/2 steps).

48 Chapter 4. A scatter search heuristic for bioprocess optimization

This strategy requires |S| simulations to identify the best b/2 solutions in terms of the

objective function value. Unless we choose a low value for |S|, this can cause a waste of

computational effort, especially in the case of time-consuming problems. We therefore propose

an alternative strategy which does not take into account the quality of the diverse vectors.

The initial RefSet is formed by 3 vectors: one having all the variables in their lower bounds,

another one having all the variables in their upper bounds and the middle point between

these two vectors. This initial RefSet ∈ R
3×n is completed using the same distance criterion

described in the first strategy until it is composed of b decision vectors.

Note that the first strategy involves a higher computational cost since all the diverse

vectors have to be evaluated. However, this strategy ensures a better quality of the initial

RefSet which can help to converge faster to the global solution. The second strategy does

not involve any simulation prior to the optimization stage. We therefore have no information

about the quality of these solutions and thus we expect the algorithm to converge more slowly.

The first strategy combines quality and diversity in the initial RefSet, whereas the second

one focuses only on diversity (and saves computational effort).

4.2.3 Subset Generation and Solution Combination methods

After the initial RefSet is built, its solutions are sorted according to their quality (i.e., the

best solution is the first) and we apply the Subset Generation Method. Mart́ı and Laguna

(2003) stated that most of the quality solutions obtained by combination arise from sets of two

solutions, thus, in our implementation, the Subset Generation Method consists of selecting

all pairs of solutions in the Refset to combine them. To avoid repeating combinations with

the same pair of solutions, we use a memory term which keeps track of the pairs previously

combined.

The Solution Combination Method is a key element in scatter search implementations.

This method is typically adapted to the problem context. Linear combinations of two so-

lutions were suggested by Glover (1994) in the context of nonlinear optimization and are

a generalization of the linear or arithmetical crossover also used in continuous and convex

spaces (Michalewicz et al., 1994). Herrera et al. (2006) studied different types of combina-

tion procedures for scatter search applied to continuous problems. They concluded that the

BLX-α algorithm (with α = 0.5) is a suitable combination method for continuous scatter

search. Laguna and Mart́ı (2005) already used this idea and extended it to avoid generating

4.2. Methodology 49

solutions in the same area by defining up to four different regions within and beyond the seg-

ments linking every pair of solutions. These authors changed the number of created solutions

from each pair of solutions in the RefSet depending on the position of the latter in the sorted

RefSet. Here we will use the same principles, but instead of performing linear combinations

between solutions, we will perform a type of combination based on hyper-rectangles, which

enhances the diversification.

These combinations are of the following four types, assuming that x′ and x′′ are the

solutions to be combined and that x′ is superior in quality to x′′:

c1 = x′ − d1 (4.10)

c2 = x′ + d2 (4.11)

c3 = x′′ − d3 (4.12)

c4 = x′′ + d4 (4.13)

where di = ri • (x” − x′)/2 with i = 1, 2, 3 or 4 depending on the number of solutions

generated (see below); ri is a vector of dimension n with all its components being uniformly

distributed random numbers in the interval [0, 1]. The notation (•) above indicates an en-

trywise product (i.e., the vectors are multiplied component by component), thus it is not a

scalar product. The vector di has the following form:

di =











di,1

di,2
...

di,n











T

=













ri,1(x′′

1−x′

1)
2

ri,2(x′′

2−x′

2)
2
...

ri,n(x′′

n−x′

n)
2













T

(4.14)

Note that if both solutions, x′ and x′′, belong to the first b/2 elements of the sorted RefSet,

then 4 vectors are generated: one each type. If only x′ belongs to the first b/2 elements of

the sorted RefSet, then 3 vectors are generated (types 1, 2 and 4). Finally, if neither x′′ nor

x′ belong to the first b/2 elements of the sorted RefSet, then 2 vectors are generated: one of

type 2 and another one of type 1 or 3 (randomly chosen). Figure 4.3 illustrates the type of

combinations and the regions in which new solutions are created.

These vectors generated by combination of the RefSet members will be named xc with

c ∈ [1, 2, ..., nc], and form a matrix C ∈ R
nc×n where nc is the total number of vectors

generated by combination, which is not a fixed number. It may change in every iteration

50 Chapter 4. A scatter search heuristic for bioprocess optimization

Figure 4.3: Combination method

depending on the number of combinations made among RefSet members (remember that the

method avoids doing combinations with pairs of vectors already combined).

It must be noted that the Solution Combination Method does not have any checking mech-

anism to detect whether a new vector has any of its variables out of the bounds. Therefore,

before evaluating these new vectors, a quick check is done by the algorithm: if any of the

decision variables is out of the interval defined by its bounds, it is automatically adjusted to

the value of the closest bound to it.

If the RefSet changes after the application of the RefSet Update Method described in

Section 4.2.4, indicating that at least one new solution has been inserted in the RefSet, we

apply again the Solution Combination Method to all the pairs in RefSet containing at least

one new element. Otherwise, as in advanced scatter search designs, we resort to the rebuilding

mechanism as described in Section 4.2.6.

4.2.4 Updating the RefSet

In its original design, the Reference Set Update Method indicates that the RefSet is updated by

selecting a set of high-quality and diverse solutions from the union of the RefSet and the new

combined solutions. In Mart́ı and Laguna (2003), it is pointed out that the RefSet is usually

updated considering the quality of the elements. However, we have empirically found that,

4.2. Methodology 51

for continuous problems, this standard mechanism tends to create clusters of solutions, which

results in an intermediate RefSet with very similar solutions which are unlikely to produce

new good solutions by combination. This effect also appears in other metaheuristics applied

to continuous problems and have been overcome in different ways (see for example Herrera

and Lozano 2000 and Tfaili and Siarry 2008). We have added a distance filter to prevent

similar solutions from becoming part of the RefSet. Specifically, we define a threshold value,

dth, as a minimum Euclidean distance to be accomplished by every solution. This mechanism

is illustrated in Figure 4.4: in a minimization problem, having 5 candidate solutions to form a

RefSet of 4 members and a defined dth, we would start adding to the new RefSet the solution

with the highest quality. We would add the rest of solutions to fill the RefSet regarding

their quality and providing they comply with dth. In Figure 4.4, after adding the first two

solutions (with function values equal to 1 and 3 respectively) we analyze the next candidate

by quality (i.e., the solution with function value equal to 4). Since its distance to one of the

solutions already in RefSet (i.e., the solution with function value equal to 3) is lower than

the specified dth, it would not enter the RefSet and the procedure would continue analyzing

the following candidate.

Figure 4.4: RefSet update with a threshold distance

This filter avoids clustering of the RefSet solutions thus preventing the search to prema-

turely converge to a sub-optimal solution. The price to be paid is to diminish the average

quality of the RefSet, which may be a drawback for problems with a small budget of simula-

tions.

The parameter dth is initialized as the minimum Euclidean distance among the members

52 Chapter 4. A scatter search heuristic for bioprocess optimization

of the first RefSet. It increases or decreases its value dynamically depending on the search

history. If the best solution found does not improve in 2 consecutive iterations, dth decreases

its value 10%. If we improve the best solution in 4 consecutive iterations, dth increases its

value 10%. We have empirically found that, with this scheme, the dth-value is reduced in the

last iterations, permitting the final refinement of the solutions.

A different criterion has been implemented for the cases in which the Euclidean distance

criterion is inefficient. Indeed, we normalize Euclidean distances with respect to the bounds of

the decision variables in order to have a similar contribution of each variable regardless their

order of magnitude. If these bounds are not wisely chosen (e.g., the variables have no physical

meaning or we simply have no idea of the practical range of them), this strategy can make

the elements in the RefSet not to be as diverse as we wish. To avoid this, a second strategy

based on differences in the decision variables can be chosen. According to this criterion, two

solutions will be different if their relative difference in all variables is equal or greater than a

value specified by the user.

We have included a second filter to prevent the method from being trapped in a region

for a large number of iterations. In particular, if a solution is relatively far from the RefSet

members but presents a very similar objective value to any of them (as it may happen in

functions with flat landscape), we do not allow it to enter the RefSet. This prevents vectors in

the same flat area from joining the RefSet at the same time. Provided the diversity criterion

(defined by dth) is accomplished, the candidate vector z will join the RefSet only if

f(z) < f(x)(1 − ε) ∀ x ∈ RefSet (4.15)

where ε is a small value defined by the user.

Figure 4.5 illustrates this situation in a minimization problem. Consider a solution x

in the RefSet and a candidate solution z to enter it. Suppose that z verifies the distance

filter according to dth and x has a slightly better value (say around 0.1% lower) than z.

Then, instead of directly adding z to the RefSet, the quality filter considers that it may lie

in the same flat area as x and forbids the action in order to“wait” for a better solution (thus

performing a more aggressive search).

In accordance with the problem’s characteristics, the user adjusts this filter value, ε, for

an optimal algorithm performance. The default value for this filter is relatively conservative,

but it should be changed in problems in which we want to enhance diversity (for example

4.2. Methodology 53

z x

Figure 4.5: Two solutions in a flat zone of the objective function

when there are multiple local minima and the global optimum has a small basin of attraction).

When relying on local search, the search may be more aggressive, whereas if no Improvement

Method is present, it is recommended that the default conservative value is used. In more

advanced designs, this filter could be dynamic, being more relaxed at the beginning of the

search in order to quickly locate the basin of attraction of the global minimum, and tighter

at the end of the search to allow a specified tolerance in the solution. The evolution of this

filter is not obvious and needs experimental work. As is shown in the Applications part of

this work, the algorithm performs very well with a constant value.

Note that the two implemented filters act restricting the incorporation of solutions that

contribute only slight quality and diversity to the current RefSet. Therefore, the scatter

search design by itself will make the search more efficient over a long term horizon.

To summarize how the RefSet Update Method is working in our algorithm taking into

account the filters described, Algorithm 14 shows a pseudocode of the procedure.

4.2.5 Improvement Method

The Improvement Method consists of a local search with the appropriate algorithm, using a

carefully selected solution as the starting point. One of the advantages of implementing our

optimization method in the Matlab environment is that we can easily apply any improvement

54 Chapter 4. A scatter search heuristic for bioprocess optimization

Algorithm 14 SSm RefSet Update
1: Create a set, tempset, with the RefSet and the generated solutions by combination: tempset ∈

R
b+nc×n = RefSet ∪ C

2: Sort solutions in tempset by quality
3: Clear the RefSet : RefSet =Ø
4: Add the best solution in tempset to the RefSet and clear it from tempset
5: while |RefSet | < b do

6: for i = 1 to |tempset| do

7: xt = x1
tempset

8: Delete x1
tempset from tempset

9: if min
{

d(xt, x
i)

}

> dth and f(xt) < f(xi)(1 − ε) ∀ xi ∈ RefSet then

10: RefSet = RefSet ∪ xt

11: break for

12: end if

13: end for

14: end while

method available in one of the many existing libraries. We have considered the following

methods:

� fmincon: this is a local gradient-based method, implemented as part of the Matlab opti-

mization Toolbox, which finds a local minimum of a constrained multivariable function

by means of a SQP (Sequential Quadratic Programming) algorithm. The method uses

numerical or, if available, analytical gradients.

� solnp: the SQP method by Ye (1987).

� fsqp: this algorithm is a SQP method for minimizing smooth objective functions subject

to general smooth constraints. The successive iterates generated by the algorithm all

satisfy the constraints (Panier and Tits, 1993).

� ipopt : Interior Point OPTimizer is a software package for large-scale nonlinear opti-

mization. It is designed to find (local) solutions of nonlinear programs (Wächter and

Biegler, 2006).

� misqp: the solver called Mixed-Integer Sequential Quadratic Programming (MISQP)

is a SQP Trust-Region method, recently developed by Exler and Schittkowski (2006,

2007), which handles both continuous and integer variables.

� n2fb: this algorithm was specially designed for non-linear least squares problems by

Dennis et al. (1981). The method is based on a combined approximation of a Gauss-

Newton and quasi-Newton algorithm.

4.2. Methodology 55

� lsqnonlin: this method is also designed for non-linear least squares problems. It can

use different algorithms such as the interior-reflective Newton method (Coleman and

Li, 1994), the Levenberg-Marquardt method with line search (Moré, 1978) or a Gauss-

Newton method with line search (Dennis, 1977).

� fminsearch: this is a direct search method implemented in Matlab, that uses the simplex

search method of Lagarias et al. (1999). It does not use numerical or analytic gradients.

We have adapted the original code to handle nonlinear constraints.

� NOMADm: Nonlinear Optimization for Mixed variables And Derivatives-Matlab, ab-

breviated as NOMADm (see Abramson 2002), is a Matlab code that runs various

Generalized Pattern Search (GPS) algorithms to solve nonlinear and mixed variable

optimization problems. This solver is suitable when local gradient-based solvers do not

perform well.

� dhc: the Dynamic Hill Climbing algorithm by de la Maza and Yuret (1994) is a direct

search algorithm which explores every dimension of the search space using dynamic

steps. Only the local phase of the algorithm has been implemented.

In a classical implementation of scatter search, the improvement method is applied to a

large number of solutions (all the initial solutions in S and all the combined solutions from the

RefSet). However, in applications related to chemical and bio-process engineering, we often

face time-consuming evaluation problems (i.e., every function evaluation can consume several

minutes) or complex topologies which can make the local search inefficient. This implies that

the application of the Improvement Method should be restricted to a low number of promising

solutions. This idea has also been used by other authors in memetic algorithms, assigning

different probabilities to the individuals to be subject to a local search (see for example Lozano

et al. 2004; Molina et al. 2005). It is expected that in the first iterations of the search process

the solutions generated will be of a relatively poor quality. Therefore, we have implemented a

parameter that determines the iteration number in which the Improvement Method is applied

for the first time (i.e., defining a number of previous function evaluations before calling the

Improvement Method). Then, once this is satisfied, both quality and diversity filters are

applied. These filters were successfully applied in Ugray et al. (2005) and they do not allow

the Improvement Method to be applied from a solution of a low quality (merit filter), or

from a solution close to other from which the Improvement Method was applied in previous

56 Chapter 4. A scatter search heuristic for bioprocess optimization

iterations (diversity filter). As documented by these authors, the filters significantly reduce

the computational time with good results.

The merit filter ensures that no local search will be performed unless we do not find a

better initial point than those found before. However, this filter is flexible since finding high

quality solutions might be a time-consuming task for some problems and calling the local

search from other points may be useful. An initial threshold is defined in the first call to the

local search (e.g., as the function value of the first initial point). If no good initial points are

found after a pre-defined number of iterations, the filter is relaxed (i.e., points with worse

objective function values can be chosen as initial points to perform the local search) by means

of a relaxation parameter thfactor. The threshold is relaxed calculating a new threshold from

the existing one according with:

thnew = thold + thfactor(1 + |thold|) (4.16)

The distance filter computes the Euclidean distance between the local minima and the

initial points used to locate them. This filter prevents the algorithm from doing local searches

from initial points that might lead to already found local optima. It assumes spherical basins

of attraction for the optima and defines the radius of a circle as the Euclidean distance from

the initial point used for the local search and the optimum found. In practice, basins of

attraction are not spherical, thus the distance filter often needs to be relaxed. If no initial

points being far enough from found optima are found after a number of iterations, this filter

is relaxed by multiplying the radii by a parameter in the interval [0, 1].

To avoid overlapping of the circles defining the initial points and their respective local

minima, a correction of this filter has been implemented. Figure 4.6 represents two local

searches which lead to two different optima, activating the distance filters (dotted circles).

To prevent other vectors leading to different optima from being discarded as initial points for

the following local searches, a correction of the filters is applied (solid circles).

For two different local minima, xi and xj their respective radii defining the distance filters

are ri and rj , which must satisfy:

ri + rj ≤ d(i, j) (4.17)

where d(i, j) is the Euclidean distance between xi and xj.

4.2. Methodology 57

4

5

Figure 4.6: Correction of the distance filter overlap

The distance filter should be relaxed or even deactivated when many local solutions are

closely located, as it is the case of some problems in bioprocess engineering optimization.

An alternative strategy has been implemented for applying the Improvement Method in

our algorithm: instead of using filters, a local search is performed every time that the algo-

rithm finds a better solution than the best current one, using this new found best solution as

initial point. To avoid performing many local searches from similar initial points, a minimum

number of function evaluations between two local searches is fixed. This allows the algorithm

to search more globally without spending computation time on intermediate local searches

without improving the best solution. Algorithm 15 shows a pseudocode of this procedure.

4.2.6 RefSet Rebuilding

Rebuilding is a key operation associated with the RefSet. It implements a mechanism to

partially rebuild the RefSet when none of the new trial solutions generated with the Combi-

nation Method, xc, qualifies for addition to the RefSet. In advanced scatter search designs,

the method is usually the same as that used to create the initial RefSet, in the sense that

it uses the max-min distance criterion for selecting diverse solutions. Typically, the worst g

vectors in RefSet (in terms of quality) are deleted. New diverse vectors are generated using

the Diversification Generation Method and the RefSet is refilled according to the diversity

58 Chapter 4. A scatter search heuristic for bioprocess optimization

Algorithm 15 Alternative Improvement Method strategy
Set n1, n2

Set neval = 0
Apply the Diversification Generation Method
Build the initial RefSet
Perform a local search from the best solution so far after n1 evaluations
xbest = Local solution obtained
Start the SSm main routine
while not end of the optimization do

if a solution, x∗, better than xbest found and neval ≥ n2 then

Perform a local search from x∗

xbest = Local solution obtained
neval = 0

end if

neval = neval + function evaluations of current iteration

end while

criterion of maximizing Euclidean distances performed in the first RefSet formation. Nor-

mally, g is equal to b/2 but in aggressive implementations it can be set to b-1 (i.e., all the

solution vectors in the RefSet except the best one are deleted).

We have modified the standard implementation of the rebuilding mechanism to incorpo-

rate the notion of orthogonality. Over a long-term horizon, the purpose of adding diverse

solutions to the RefSet is to generate new search directions. It is therefore interesting not only

to get scattered solutions in the search space, but also solutions that are able to create new

search directions. Then, instead of selecting the solutions in S with the max-min distance,

we select those with min-max cosine with the solutions already in the RefSet. Specifically,

we choose the best element in RefSet as the center of gravity and in the first iteration apply

the standard criterion to add the first diverse solution to the RefSet. Consider now the vec-

tor linking this new solution with the center of gravity. In subsequent iterations, instead of

considering distances between the solutions in S and the RefSet members, we consider the

vectors that the former define with the center of gravity and select the solution associated

with the vector that minimizes the maximum value of the cosine among the vectors of the

solutions already in the RefSet. In this strategy, the vectors refilling the RefSet are chosen to

maximize the number of relative directions defined by them and the existing vectors in the

RefSet.

Figure 4.7 illustrates both types of RefSet Rebuilding, the classical one, by distance, and

our strategy, by direction. In Figure 4.7(a) two solutions of the RefSet (in white) have been

kept, and the rest have been deleted. The Diversification Generation Method has created

4.2. Methodology 59

a set of diverse solutions (in grey) from which we will take two to refill the RefSet. The

classical criterion of maximizing the Euclidean distance would select the yellow solution in

Figure 4.7(b) as the next RefSet member. Our criterion selects the best solution remaining

in the RefSet as a center of gravity and would generate all the vectors linking it to the rest of

solutions in the RefSet (in this case just a vector since there are only two solutions). Among

the candidate solutions generated by the Diversification Generation Method, we add to the

RefSet the one defining a vector with the center of gravity which is as orthogonal as possible

to the rest of vectors defined by the latter and the rest of solutions in the RefSet (e.g., in

Figure 4.7(b), we would add the green solution to the RefSet). The process is repeated with

the following solutions to be included in the RefSet. In Figure 4.7(c), the classical criterion

would again select the furthest solution from the current RefSet members (in yellow again).

Our criterion would analyze all the possible vectors defined by linking the candidate solutions

with the center of gravity and would select that solution defining a vector as orthogonal as

possible to the rest of vectors defined by the center of gravity and the rest of solutions in the

RefSet (in green again).

5

6

9 4

2

5

3

6

3

(a)

5

2

6

3

9 4

5

6

3

(b)

5

2

3

6

5

3

9 4

6

(c)

Figure 4.7: RefSet rebuilding by distance (yellow) and by direction (green)

60 Chapter 4. A scatter search heuristic for bioprocess optimization

In other words, after deleting the g worst solutions, the RefSet is (b− g)×n dimensional.

Let j = b− g be the number of existing vectors in the current RefSet. We introduce the new

matrix M (j−1)×n containing the vectors that define the segments formed by the best vector

in RefSet (i.e., the center of gravity) and the rest of vectors in it. The (k − 1)th row of M

is x1 − xk, being x1 the center of gravity, and xk (k = 2, . . . , j) the rest of the elements in it

(note that the RefSet is sorted according to quality). For every diverse vector created with

the Diversification Generation Method, xd with d ∈ [1, 2, . . . ,m] in the regeneration phase, a

vector Qd of scalar products is also defined

Qd = (x1 − xd)MT (4.18)

where x1 is again the center of gravity and MT is the transpose matrix of M . For every xd,

the maximum value of its corresponding vector Qd is computed as msp(xd). The solution

y ∈ xd will join the RefSet in the regeneration phase if

msp(y) = min{msp(xd)} ∀d ∈ [1, 2, . . . ,m] (4.19)

At this stage, the value of j is increased one unit, the value of m is decreased one unit

and the process continues until j = b. The application of this strategy results in a maxi-

mum diversity in search directions on the regenerated RefSet. After every time the RefSet

Rebuilding is carried out, the center of gravity is allowed to be combined again with all the

rest of RefSet solutions, regardless of the fact that it was previously combined with any of

them. This has similarities with the aspiration criterion of tabu search, in which a forbidden

movement is allowed if a predefined condition is met.

4.2.7 Intensification

The inclusion of the distance filter in the RefSet Update Method (Section 4.2.4) could be too

restrictive if the parameter dth takes relatively large values, (or if the tolerance chosen by the

user when using the other strategy is too high), thus rejecting too many solutions to become

part of the RefSet. Instead of keeping this parameter under low values to prevent this effect,

we have experimentally found that if we store the rejected solutions with good values in a

secondary reference set, RefSet2, we can treat them differently from the other solutions in

the RefSet. RefSet2 stores the solutions that do not qualify to enter into the RefSet and

present a value close to the value of the best solution found (specifically, better than the

4.2. Methodology 61

second best solution in the RefSet). During the Solution Combination Method, we combine

the best solution in the RefSet with all the solutions in RefSet2 and add all the resulting

solutions to the RefSet Update Method phase. This intensification mechanism is performed

every Intensfreq iterations.

Figure 4.8 illustrates those combinations in an example with four solutions in the RefSet

(white and red circles) and two solutions in RefSet2 (grey circles). The blue square represents

the global optimum. In this example this intensification strategy makes the process converge

faster since the combination of solutions in RefSet2 (in grey) with the best in RefSet (red

circle) generates solutions which are very close to the global optimum of the function.

5

5

7

3

2

4

Figure 4.8: Intensification strategy

4.2.8 The go beyond strategy

Another advanced strategy to enhance the intensification of the search has been implemented

in our algorithm. It has been named go beyond strategy and consists of exploiting promising

directions. When performing the Solution Combination Method every generated vector is

compared with its parent. If a new vector outperforms its parent in terms of quality, a new

non-convex solution in the direction defined by the child and its parent is created. The child

becomes the new parent and the new generated solution is the new child. If the improvement

continues, we might be in a very promising area, thus the area of generation of new solutions

62 Chapter 4. A scatter search heuristic for bioprocess optimization

is increased. This procedure is limited to the first b/2 elements of the RefSet.

A straightforward question arises from the last paragraph: how do we identify the parent

of a generated solution? As explained in Section 4.2.3, the new solutions are created in

hyper-rectangles defined by the pair of solutions combined (see Figure 4.3). The parent of

a solution will be the RefSet solution lying in one of the vertices of the hyper-rectangle in

which it has been created. Figure 4.9 depicts how the go beyond strategy works: from a pair

of RefSet solutions (in red), some new solutions are generated in the corresponding hyper-

rectangles. The pink solution is the child whose parent is the RefSet solution in the vertex of

its hyper-rectangle. Since the child outperforms the parent in quality, a new hyper-rectangle

(in yellow) is defined by the distance between the parent and the child. A new solution (in

orange) is created in this hyper-rectangle. This new solution becomes the child and the old

child (i.e., the pink circle) becomes the parent. Since the new child (orange) outperforms

again its parent (pink), the process is repeated, but the size of the new hyper-rectangle

created (in green) is doubled because there has been improvement during two consecutive

children generations.

As we can see in Figure 4.9, the new hyper-rectangle contains the global optimum, thus

this strategy may locate it in a lower number of iterations than a scatter search without it.

Algorithm 16 shows a pseudocode of the go beyond strategy procedure.

Algorithm 16 go beyond strategy
Call the Solution Combination Method
Identify children, xchildren, outperforming their parents, xparent

for i=1 to |xchildren| do

xch = xi
children

xpr = xi
parent

improvement = 1
denom = 1
while f(xch) < f(xpr) do

Create a new solution, xchild new, in the rectangle defined by [xch − xpr−xch

denom
, xch]

xpr = xch

xch = xchild new

improvement = improvement + 1
if improvement = 2 then

denom = denom/2
improvement = 0

end if

end while

end for

Even if the go beyond strategy has been mainly designed to enhance the intensification,

the fact that the hyper-rectangles areas are increased if the new solutions improve the old ones

4.2. Methodology 63

(b) (Zoom)

Figure 4.9: go beyond strategy

during at least two consecutive iterations may make the search be more diverse, exploring

regions where different minima can be found.

64 Chapter 4. A scatter search heuristic for bioprocess optimization

4.2.9 Constraints handling

Constraint handling of stochastic optimization methods has been a subject of research since

these algorithms arose. Many different techniques have been proposed to handle problems

with constraints (e.g., see reviews of Michalewicz 1996; Coello Coello 2002; Yeniay 2005). In

our algorithm, we have implemented a simple strategy consisting of a static penalty function.

The objective function evaluated by the algorithm has the following form:

C(x) = f(x) + w · max {max{viol(h), viol(g)}} (4.20)

where x is the solution being evaluated, f(x) is the original objective function value, h is

the set of equality constraints and g is the set of inequality constraints. w is a penalization

parameter, which is constant during the optimization procedure (and usually has a high

positive value). We use the L−∞ norm of the constraints set to penalize the original objective

function. Other penalty function approaches usually use the L−1 (exact penalization) or the

L−2 (quadratic penalization). More sophisticated strategies might be implemented, although

we strongly rely on the local solvers used by our algorithm to achieve feasible optimal points.

4.2.10 Integer variables handling

Many problems in the chemical and biotechnological industry, such as process design, process

synthesis and multi-component blended-flow problems, lead to mixed integer nonlinear models

(Adjiman et al., 1997, 2000; Kallrath, 2000, 2005).

Although our algorithm is mainly designed for continuous problems, a rounding opera-

tor has been implemented for handling integer and binary variables. Glover et al. (2000b)

introduced an operator in scatter search to generate MIP solutions. Here we will use the

rounding operator described by Ugray et al. (2005). The Solution Combination Method used

by our algorithm does not take into account whether a decision variable has been declared

as an integer variable or not. Thus, a rounding method has to be considered for this kind of

variables before evaluating new solutions. For a decision variable xi with i ∈ [1, 2, ..., n], we

transform it to its closest allowed integer yi value by:

yi = lbi +

[

0.5 +
xi − lbi

sti

]

sti (4.21)

where lbi is the lower bound for the decision variable i, and sti is the step between two

consecutive integer values (usually 1). If the calculated yi is lower than the upper bound for

4.3. Application to benchmark problems 65

that decision variable, ubi, then yi is accepted as the rounded value. Otherwise, we make

yi = ubi.

4.2.11 Stopping criterion

The stopping criterion of our algorithm is taken as a combination of three conditions:

� Maximum number of evaluations exceeded.

� Maximum computational time exceeded.

� Specified value of the cost function reached.

By default, the algorithm will stop when any of these conditions is satisfied. Since the

Improvement Method is selectively applied, when the scatter search algorithm is over, before

abandoning the search, we apply the Improvement Method to the best solution found so far,

just to be sure that it is not skipped, or simply to refine the best solution. In this final local

search, the stopping tolerance assigned to the local solver is tighter than in the rest of the

local searches performed along the optimization procedure.

In Appendix A, some documentation about the Matlab implementation of our algorithm,

SSm, such as problem settings, options and application examples, is provided. Besides, two

extra tools included in the same toolbox are also documented: ssm multistart, for performing

multistart local searches with the local solvers implemented in SSm, and ssm test, to perform

many optimizations over a set of benchmark problems using the same set of parameters or

to test a single problem with different combinations of parameter values.

4.3 Application to benchmark problems

As a first test of our algorithm’s performance, it has been applied to a set of well known

unconstrained and constrained global optimization problems that have usually been used as

benchmark problems in the literature for testing optimization software. The mathematical

equations of all these test problems are listed in Appendix B. Additionally, to check its

applicability to mixed-integer optimization, a set of this type of problems from the process

engineering area has also been considered. For every problem tested in this section, the local

solver chosen was misqp.

66 Chapter 4. A scatter search heuristic for bioprocess optimization

4.3.1 Unconstrained problems

We have tested our algorithm over 40 unconstrained problem of different dimensions. Table

4.1 provides information about all these problems.

Number of Problem Problem
variables Number Name

x∗ f(x∗)

2 1 Branin (9.42478, 2.475)a 0.397887
2 B2 (0, 0) 0
3 Easom (π, π) -1
4 Goldstein and Price (0, -1) 3
5 Shubert (-7.7083, -7.0835)a -186.7309
6 Beale (3, 0.5) 0
7 Booth (1, 3) 0
8 Matyas (0, 0) 0
9 SixHumpCamelback (0.089840, -0.712659)a -1.03163
10 Schwefel(2) (420.9687, 420.9687) -837.9658
11 Rosenbrock(2) (1, 1) 0
12 Zakharov(2) (0, 0) 0

3 13 De Joung (0, 0, 0) 0
14 Hartmann(3,4) (0.114614, 0.555649, 0.852547) -3.86278

4 15 Colville (1, 1, 1, 1) 0
16 Shekel(5) (4, 4, 4, 4) -10.1532
17 Shekel(7) (4, 4, 4, 4) -10.4029
18 Shekel(10) (4, 4, 4, 4) -10.5364
19 Perm(4,0.5) (1, 2, 3, 4) 0
20 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0
21 Powersum (1, 2, 2, 3) 0

6 22 Hartmann(6,4) (0.20169, 0.150011, 0.47687, -3.32237
0.275332, 0.311652, 0.6573)

23 Schwefel(6) (420.9687,. . . , 420.9687) -2513.897
24 Trid(6) xi = i ∗ (7 − i) -50

10 25 Trid(10) xi = i ∗ (11 − i) -210
26 Rastrigin(10) (0,. . . , 0) 0
27 Griewank(10) (0,. . . , 0) 0
28 Sum Squares(10) (0,. . . , 0) 0
29 Rosenbrock(10) (1,. . . , 1) 0
30 Zakharov(10) (0,. . . , 0) 0

20 31 Rastrigin(20) (0,. . . , 0) 0
32 Griewank(20) (0,. . . , 0) 0
33 Sum Squares(20) (0,. . . , 0) 0
34 Rosenbrock(20) (1,. . . , 1) 0
35 Zakharov(20) (0,. . . , 0) 0

>20 36 Powell(24) (3, -1, 0, 1, 3,. . . , 3, -1, 0, 1) 0

37 Dixon and Price(25) xi = 2−
z−1

z , z = 2i−1 0
38 Levy(30) (1,. . . , 1) 0
39 Sphere(30) (0,. . . , 0) 0
40 Ackley(30) (0,. . . , 0) 0

aThis is one of several multiple optimal solutions.

Table 4.1: Unconstrained test problems

Following the same procedure as in Laguna and Mart́ı (2005), we have defined an opti-

mality gap as:

4.3. Application to benchmark problems 67

GAP = |f(x) − f(x∗)| (4.22)

where x is a heuristic solution and x∗ is the optimal solution. We say that a heuristic solution

is satisfactory if:

GAP ≤
{

ε if f(x∗) = 0
ε |f(x∗)| if f(x∗) 6= 0

(4.23)

We set ε = 0.0001. For each test function we perform 30 independent runs with a

maximum number of function evaluations of 106. In any case, the optimization stops before

achieving the maximum number of function evaluations if a satisfactory heuristic solution is

found. The results obtained for this set of unconstrained problems are shown in Table 4.2.

Our algorithm was able to find satisfactory solutions for most of the problems with a high

probability. However, it was not able to find good solutions for problem 31 in none of the 30

runs. For problem 26 (which is actually the same as problem 31: the Rastrigin function) only

one run out of 30 was successful. By changing the type of local search we were able to solve

these two problems. Instead of a gradient-based algorithm as misqp, a direct search method

(NOMADm) was used. This algorithm may be able to overcome small local minima in the

surroundings of the global optimum, thus increasing the probability of finding satisfactory

solutions.

4.3.2 Constrained problems

The next set of problems used for testing our algorithm’s performance is a collection of

constrained problems usually used for testing new optimization software. Table 4.3 provides

information about all these problems.

As for unconstrained problems, we perform 30 independent runs for each problems with

the default parameter values of our algorithm. In this case, we fix a maximum number func-

tion evaluations of 100000 in order to compare our results with those presented by Landa Be-

cerra and Coello-Coello (2006). In their study, these authors compare the results obtained

with a Cultured Differential Evolution, CDE, applied over the same set of problems. They

outperform other optimization algorithms and carry out 30 independent runs per problem

with a limit of 105 function evaluations each run. Table 4.4 shows our results compared with

those reported by these authors.

68 Chapter 4. A scatter search heuristic for bioprocess optimization

Results with SSm
Problem

Mean
Number f(x∗) Best Mean Worst % Success

Evaluations

1 0.397887 0.397887 0.397889 0.397896 100 236
2 0 1.10693e-009 5.11987e-006 7.90261e-005 100 3366
3 -1 -1 -9.99994e-001 -9.99935e-001 100 3949
4 3 3 3 3.00001 100 258
5 -186.7309 -186.7309 -186.7309 -186.7309 100 300
6 0 1.87494e-008 3.60511e-006 4.08401e-005 100 247
7 0 7.57705e-012 1.76946e-006 8.62196e-006 100 245
8 0 2.45572e-008 1.70451e-005 7.61722e-005 100 273
9 -1.03163 -1.03163 -1.03163 -1.03162 100 246
10 -837.9658 -837.9658 -837.9623 -837.9326 100 683
11 0 1.44532e-008 2.69161e-006 1.05570e-005 100 278
12 0 3.64625e-012 1.60548e-006 7.99405e-006 100 256
13 0 1.09026e-018 1.08278e-006 7.57465e-006 100 340
14 -3.86278 -3.86278 -3.86277 -3.86250 100 367
15 0 2.03938e-007 3.03223e-006 9.55533e-006 100 608
16 -10.1532 -10.1532 -10.1532 -10.1532 100 586
17 -10.4029 -10.4029 -10.4029 -10.4029 100 649
18 -10.5364 -10.5364 -10.5364 -10.5364 100 649
19 0 2.46504e-006 5.92432e-003 1.30655e-001 37 635689
20 0 7.20106e-007 2.63873e-005 9.61754e-005 100 4097
21 0 6.55970e-007 2.18288e-005 9.71297e-005 100 6118
22 -3.32237 -3.32237 -3.31044 -3.20316 90 132328
23 -2513.897 -2513.897 -2458.564 -2277.021 60 408437
24 -50 -50 -50 -50 100 752
25 -210 -210 -210 -210 100 1223
26 0 2.85055e-006 2.45423 6.96471 3 969903
26a 0 2.57876e-005 4.01953e-005 5.11601e-005 100 2943
27 0 1.60214e-006 1.16388e-005 2.80477e-005 100 18434
28 0 9.77524e-007 3.83435e-006 7.64475e-006 100 1381
29 0 1.06683e-006 1.06683e-006 1.06683e-006 100 2089
30 0 2.24968e-007 3.020977e-006 7.94442e-006 100 1248
31 0 3.97984 7.528523 15.9193 0 1000140
31a 0 4.51242e-005 7.08546e-005 9.79561e-005 100 10432
32 0 6.44905e-006 2.04312e-005 4.08787e-005 100 2753
33 0 1.00472e-006 3.88733e-006 6.90130e-006 100 2934
34 0 5.22079e-007 5.22079e-007 5.22079e-007 100 5573
35 0 2.31524e-008 3.49472e-006 9.00947e-006 100 2466
36 0 9.72116e-006 2.67765e-005 5.45857e-005 100 3772
37 0 1.72965e-006 5.55556e-001 6.66667e-001 17 835211
38 0 1.09245e-007 5.71577e-006 4.01198e-005 100 84167
39 0 5.47119e-015 5.647805e-007 1.50361e-006 100 3341
40 0 8.23867e-006 1.215999e-005 1.81072e-005 100 172538

aSolution found using a direct local search (NOMADm).

Table 4.2: Unconstrained test problems results

Results obtained by our algorithm are competitive compared with those obtained by

Landa Becerra and Coello-Coello (2006), which, at the same time, outperformed other state-

of-the-art algorithms. Except in g02 and the mean value of g01, our results are the same

quality or even better (see g05 and specially g13) than those reported by these authors, which

4.3. Application to benchmark problems 69

Number of Number of
Problem Number of

inequality equality f(x∗)
Name variables

constraints constraints

g01 13 9 0 -15
g02 20 2 0 -0.803619
g03 10 0 1 -1
g04 5 6 0 -30665.54
g05 4 2 3 5126.489
g06 2 2 0 -6961.814
g07 10 8 0 24.30621
g08 2 2 0 -0.095825
g09 7 4 0 680.6301
g10 8 6 0 7049.25
g11 2 0 1 0.75
g12 3 729 0 -1
g13 5 0 3 0.0539498

Table 4.3: Constrained test problems

Problem Results with SSm Results with CDE

Name
f(x∗)

Best Mean Best Mean

g01 -15 -15.00001 -14.66668 -15.00000 -15.00000
g02 -0.803619 -0.794662 -0.699783 -0.803619 -0.724886
g03 -1 -1.000049 -1.000034 -0.995413 -0.788635
g04 -30665.54 -30665.55 -30665.54 -30665.54 -30665.54
g05 5126.489 5126.498 5126.498 5126.571 5207.411
g06 -6961.814 -6961.821 -6961.815 -6961.814 -6961.814
g07 24.30621 24.30621 24.30621 24.30621 24.30621
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.6301 680.6300 680.6300 680.6301 680.6301
g10 7049.25 7049.25 7049.25 7049.25 7049.25
g11 0.75 0.749990 0.749991 0.749900 0.757995
g12 -1 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.0539498 0.0539495 0.143760 0.056180 0.288324

Table 4.4: Results for constrained problems, comparing with CDE

indicates that our algorithm is competitive for constrained problems. Note that in some

problems (e.g., g03 and g06) our algorithm reports better values than the global optimum.

This is because we allow by default a maximum constraint violation of 10−5 in the global

phase. Besides, the local solver has its own tolerance which may allow a slight violation of

constraints too.

4.3.3 Mixed-integer problems

To finish our algorithm’s testing we have selected a set of constrained mixed-integer opti-

mization problems arising from chemical engineering. The models used are written in AMPL

code and can be found in Sven Leyffer’s web page1. Table 4.5 shows information about this

1http://www-unix.mcs.anl.gov/∼leyffer/macminlp/

70 Chapter 4. A scatter search heuristic for bioprocess optimization

set of problems. Since, in some cases, the mathematical models describing the problems are

quite large, they are not included here. We instead provide the original reference for each

problem, where the model equations can be found.

Problem Problem Ref. ncv niv nbv f(x∗)
Number Name

1 mitp4 Asaadi (1973) 1 3 0 -40.957
2 mitp6 Asaadi (1973) 3 4 0 694.9
3 mitp8 Asaadi (1973) 4 6 0 37.219
4 mitp47 Kocis and Grossmann (1988) 2 0 3 7.6672
5 mitp49 Yuan et al. (1988) 3 0 4 4.5796
6 windfac Michna (2000) 11 3 0 0.254487
7 synthes1 Duran and Grossmann (1986) 5 0 3 6.00976
8 synthes2 Duran and Grossmann (1986) 6 0 5 73.0353
9 synthes3 Duran and Grossmann (1986) 9 0 8 68.0097
10 optprloc Duran and Grossmann (1986) 5 0 25 -8.06414
11 trimloss2 Harjunkoski et al. (1998) 6 0 31 5.3
12 batch Kocis and Grossmann (1988) 22 0 24 285507
13 spring Sandgren (1990) 5 1 11 0.846246

ncv = Number of continuous variables
niv = Number of integer variables
nbv = Number of binary variables

Table 4.5: Mixed-integer test problems

Problems 1-5 names use the same notation as in Exler and Schittkowski (2006). Problems

6-13 names were taken from Leyffer (2001) and from the same author’s web page. For this

set of mixed-integer problem we followed the same procedure as in Section 4.3.1. The same

optimality GAP is defined and 30 independent runs with a maximum number of 106 function

evaluations were fixed. The results obtained for this set of mixed-integer problems are shown

in Table 4.6.

As shown in Table 4.6, our algorithm is able to solve this set of mixed-integer benchmark

problems. Due to some errors in the dynamic library function calling problem 11, only 20

optimizations instead of 30 were performed for it. Problem 13 was the hardest to be solved.

Increasing the frequency of the local search call (i.e., making the search more aggressive), we

achieved a higher percentage of success. Note that in problems 6-8 the best value obtained

by our algorithm is better than the global solution. This is caused again by the default small

constraint violation allowed by our algorithm.

With this set of benchmark problems we finish the testing of our algorithm performance

with benchmark functions. We were able to solve all the proposed problem with a high

probability of success. Default parameter values were used for the test, although in some

4.3. Application to benchmark problems 71

cases special settings had to be considered to increase the success rate.

Problem f(x∗)
Results with SSm

Number
Best Mean Worst % Success Mean

Evaluations

1 -40.957 -40.957 -40.957 -40.957 100 541
2 694.9 694.9 694.9 694.9 100 1043
3 37.219 37.219 37.219 37.219 100 1467
4 7.6672 7.6672 7.6672 7.6672 100 53019
5 4.5796 4.5796 4.5796 4.5796 100 843
6 0.254487 0.254484 0.254487 0.254487 100 57954
7 6.00976 6.00972 6.00975 6.00976 100 1345
8 73.0353 73.0351 73.0353 73.0353 100 4188
9 68.0097 68.0097 68.0097 68.0097 100 14925
10 -8.06414 -8.06414 -8.06414 -8.06414 100 12359
11a 5.3 5.3 5.3 5.3 100 30639
12 285507 285507 285507 285507 100 46526
13 0.846246 0.846246 0.940063 1.82256 53 575033

13b 0.846246 0.84624 0.847983 0.859276 87 202028

aResults in 20 runs
bIncreasing the local search frequency

Table 4.6: Mixed-integer test problems results

Chapter 5

Improved scatter search for
computationally expensive process
models

One characteristic of many mathematical models describing industrial processes is that they

are computationally expensive to evaluate (i.e., each simulation can take minutes, or even

hours of CPU computation time on an ordinary PC). Thus, there is a need of fast algorithms

in terms of a reduced number of function evaluations (i.e., simulations) to avoid unaffordable

computation times for an optimization. One may consider global optimization methods

which employ surrogate-based approaches to reduce computation times, and which require

no knowledge of the underlying problem structure (see Section 1.2.4).

Although quadratic interpolation methods have been widely used as surrogate models in

global optimization applications (Simpson et al., 2001), the recent taxonomy of surrogate-

based optimization methods by Jones (2001b) indicates that the most promising techniques

are those based on kriging and radial basis functions (Gutmann, 2001; Björkman and Holm-

ström, 2000; Regis and Shoemaker, 2007a,b; Holmström, 2007). Some recent contributions

compare these and other metamodeling techniques in engineering problems (Simpson et al.,

2001; Jin et al., 2001; Wan et al., 2005; Egea et al., 2007c)

In this work, we will focus on kriging as a surrogate modeling technique to reduce the

number of simulations in global optimization.

73

74 Chapter 5. Improved scatter search for computationally expensive process models

5.1 Kriging

5.1.1 Theory

The term kriging originates from geostatistics and the method was named and formalized by

a French mathematician (Matheron, 1963) based on the on the Master’s thesis of Daniel Ger-

hardus Krige (Krige, 1951). Kriging can be defined as a probabilistic interpolation method

to create cheap-to-evaluate surrogate models from scattered observations minimizing the ex-

pected squared prediction error subject to being unbiased and being linear in the observations

(Jones, 2001b). Many examples of kriging implementations that illustrate its superiority over

other interpolation methods can be found in the literature (see for example Cox and John

1997; Jones et al. 1998; Sasena et al. 2002 and Martin and Simpson 2005).

Consider a real function, f , to be interpolated. Assume that f is a sample path of a

second-order Gaussian random process denoted by F . Thus for all x, f(x) is a realization

of the Gaussian random variable F (x). The covariance function of F plays a fundamental

role since it indicates how two values of f , say f(x) and f(y), should be close depending on

the distance between x and y. Kriging computes the best linear unbiased predictor of F (x)

using the observations of F on a set of points S = {x1, . . . , xn}. Denote by FS the vector

of observations [F (x1), . . . , F (xn)]T . The Kriging predictor is a linear combination of the

observations, which may be written as

F̂ (x) = λ(x)T FS (5.1)

with λ(x) being a vector of coefficients λ1, . . . , λn. These coefficients are chosen to obtain

the smallest variance of prediction error among all unbiased predictors. This leads to a con-

strained minimization problem, which can be solved by a Lagrangian formulation (Matheron,

1963). The vector λ(x) can be computed as the solution of the system of linear equations

(

K A
AT 0

) (

λ(x)
µ(x)

)

=

(

k(x)
a(x)

)

(5.2)

where K is the covariance matrix of the random vector FS, A is a matrix of known

functions a1, . . . , aq (usually polynomials of low degree) evaluated at the points of S, k(x)

is the covariance vector between F (x) and S, a(x) is the vector of a1, . . . , aq evaluated at

x, µ(x) is a vector of Lagrangian multipliers and 0 is a matrix of zeros. The computational

burden of computing kriging coefficients is O(n3N), with N being the number of points in

5.1. Kriging 75

which the kriging prediction is performed (Villemonteix et al., 2008). Thus, the computation

time needed for computing the prediction in a new set of points increases in a cubic way with

the number of observations.

Knowing the kriging coefficients, the predicted value of f given fS = (f(x1), . . . , f(xn))T

can be written as

f̂(x) = λ(x)T fS (5.3)

5.1.2 Covariance choice

The selection of a suitable covariance function is crucial for the success and accuracy of the

kriging prediction. For this purpose, it is usual to choose a parameterized covariance model

and to estimate its parameters based on the observations.

The use of a stationary, isotropic covariance model with one parameter to adjust regularity

makes it possible to model a large class of functions (Vazquez, 2005). Here we use the Matérn

covariance, with the following parameterization (Yaglom, 1987; Stein, 1999).

k(h) =
σ2

2ν−1Γ(ν)
=

(

2ν1/2h

ρ

)ν

Kν

(

2ν1/2h

ρ

)

(5.4)

where h is the Euclidean distance between two points, Kν is the modified Bessel function of

the second kind, ν controls the regularity, σ2 is the variance and ρ represents the range of

the covariance.

Before performing the kriging prediction, the parameters of the covariance must be es-

timated based on the observations. Assuming that the mean of F (x) is zero for the sake

of simplicity, this parameter estimation can be done calculating the maximum-likelihood es-

timate of the vector of covariance parameters, φ, by minimizing the negative log-likelihood

(Vecchia, 1998) that can be expressed as:

l(φ) =
n0

2
log 2π +

1

2
log detK(φ) +

1

2
fT

S K(φ)−1fS (5.5)

with n0 being the number of observations, fS the observations and K(φ) the covariance

evaluated with the set of parameters φ. In the general case where the mean of F (x) is not

zero, the covariance parameters can be estimated using other methods, as for example using

Restricted Maximum Likelihood (Dietrich and Osborne, 1991; Stein, 1999).

76 Chapter 5. Improved scatter search for computationally expensive process models

5.1.3 Illustrative examples

One of the advantages of kriging is that the variance of the prediction error at x can be

computed even without any evaluation of f . This is one of the strongest points of this

method compared to others: kriging provides a statistical framework that gives an idea of

the uncertainty associated to each prediction. This also helps us to know which points are

worth evaluating in different applications of the method (for example, in global optimization).

Figure 5.1 shows the kriging prediction of the sine function in the interval [−10 10]. The

blue line is the real function whereas the black line is the kriging prediction based on the

observations (red circles). For a point, xi, kriging provides a normal distribution function

(green line). The mean of the distribution is the kriging prediction and the variance is also

provided in the calculation process. With this distribution we can not only know which is

the prediction in every point provided some observations but also the uncertainty associated

to this prediction and thus the probability of finding a value lower than a threshold when

evaluating the real function.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1.5

−1

−0.5

0

0.5

1

1.5

Real Function

Observations

Kriging Prediction

Probability function for the expected value of f(xi)

x
i

Figure 5.1: Kriging prediction and Gaussian distribution for point xi (sine func-
tion)

A similar way of processing the statistical information provided by kriging is shown in

Figure 5.2. In this case 95% confidence intervals (in green) are plotted. They give us an idea

about the uncertainty of the prediction in each point of the search space. The intervals are

5.2. SSKm 77

obviously empty in the observations and they increase as they get further from them. These

intervals as well as the kriging prediction will be updated as the number of observations

increases to become more and more accurate.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Function

Observations

Kriging Predicition

95% Confidence Intervals

Figure 5.2: Kriging prediction and 95% confidence intervals (sine function)

5.2 SSKm

A new algorithm for global optimization of costly nonlinear continuous problems is presented

in this section. This methodology, and its associated software tool, SSKm (Scatter Search

with Kriging for Matlab), is able to manage this class of problems by linking a scatter

search method with a kriging interpolation. Thanks to the statistical information provided

by kriging, the algorithm is able to discard the evaluation of solutions that are not likely to

provide high quality function values. This makes the algorithm suitable for the optimization

of computationally costly problems, as it will be illustrated in Section 5.3 and in some of the

optimization problems presented in the Applications part of this work.

There are a number of reasons that justify the combination of these two techniques. On

the one hand, both of them have proved to be efficient in their respective fields (i.e., global

optimization in the case of scatter search, and prediction in the case of kriging). On the

other hand, kriging needs a careful selection of the points in which the prediction will be

78 Chapter 5. Improved scatter search for computationally expensive process models

done (Pardalos et al., 2000), in order to avoid investing computational effort in calculating

the kriging coefficients for points that will not be of interest. Scatter search operates on a

set of solution vectors that evolve during the search process (new solutions replace old ones

in the RefSet). These solutions have, by construction, good objective function values. Thus,

they are good candidates for the kriging prediction.

Since kriging provides statistical information about the prediction, it can be used to

create a performance index that may help us decide which points should be evaluated. In

some sense, this information is acting as a filter, thus the scatter search algorithm may not

contain all the advanced strategies presented in Chapter 4. We present some alternatives

specially designed to interact with the kriging module:

� The log var strategy (see Section 4.2.1) has been implemented. This log-normalization

may also help the prediction phase with kriging allowing a smoother correlation among

variables.

� Combinations are based on hyper-rectangles around the solutions to be combined (Sec-

tion 4.2.3).

� The Refset Update Method takes into account an Euclidean distance to avoid duplication

and clustering inside it (Section 4.2.4). This Euclidean distance allows the method to

replace other solutions in RefSet different from the worst one as long as the distance

is not violated. In this case the Euclidean distance is static since the conditions of the

dynamic distance defined in Chapter 4 (e.g., many function evaluations per iteration)

do not apply here.

� The RefSet rebuilding strategy based on orthogonality (Section 4.2.6) is used together

with the classical one based on distances.

Other specific characteristics of SSKm are the following:

� No Improvement Method has been implemented since the purpose of the algorithm is

to reduce the number of function evaluations as much as possible to locate the global

optimum.

� One of the most important aspects of using kriging for global optimization is the selec-

tion of the points in which the prediction will be performed. A straightforward strategy

5.2. SSKm 79

is to select a uniform set of points within the search space, but this would give every

area the same importance. Besides, we would need a huge number of points not to

miss any promising area, thus increasing the computation time too much. A selection

of points guided by an evolutionary algorithm such as scatter search ensures a good

balance between intensification and diversification to avoid spending too much time in

poor areas but ensuring some diversity. In this case the RefSet dimension (and thus the

number of solutions generated) is higher than in classical scatter search implementations

since we want to cover a big area of the search space for the kriging prediction. In our

algorithm, we use a constant number of elements in the RefSet without using memory

(i.e., a constant number of generated solutions for the prediction in each iteration).

� Since there is only one evaluation per iteration, the RefSet Update Method is different

than the one described in Chapter 4. Instead of selecting the best b elements which

comply with the filters among parents and children to generate the new RefSet, the

replacement is done on a one-by-one basis. When a new solution is evaluated, its

Euclidean distances to all the RefSet members are computed. If all these distances are

bigger than a fixed threshold, the new solution replaces the worst solution in RefSet

in terms of quality. If only one these distances violates the threshold but the new

evaluated solution is better in terms of quality than the RefSet solution close to it, the

former replaces the latter. Otherwise, there is no replacement in the current iteration.

� Many computationally expensive models involve numerical integration of set of ODE’s

or DAE’s. For different reasons, these integrations can be numerically unstable using

some sets of decision variables values. This can cause that the simulation does not

provide any value for the objective function. In traditional optimization methods, this

can be overcome by assigning a high value to the vector producing the simulation error.

Thus, it is automatically discarded for the next iteration (in minimization problems).

In surrogate model-based optimization this strategy is not adequate since the prediction

method makes use of all the evaluated vectors and their corresponding function values.

A wrong value of the function value may result in a very inaccurate surface not only in

that part of the search space but also in others. To avoid this, our algorithm discards

the vectors which produce simulation errors, not adding them to the observations.

� To keep track of the evaluations skipped due to the kriging information, the algorithm

80 Chapter 5. Improved scatter search for computationally expensive process models

saves the number of function evaluations that a classical scatter search implementation

using the same settings as our method would have done in the same problem.

� When the sign of the objective function value does not change for a problem and there

might be different orders of magnitude among objective function values, the user is

recommended to use a log-normalization of the function value (named log f in the

options) to help the prediction be smoother.

The termination criteria are the same as in SSm: the algorithm can stop either by number

of function evaluations, by computation time or by reaching a specified function value. In

Appendix A, the help file of the Matlab implementation of our algorithm is shown. Algorithm

17 shows the SSKm procedure in pseudocode.

Algorithm 17 SSKm algorithm
1: Generate diverse solutions and evaluate them as the first observations
2: Form the first RefSet
3: Compute the best observation, fbest

4: Set estimation = 1
5: while not termination criterion do

6: Generate solutions by combinations of pairs of solutions in the RefSet
7: if estimation then

8: Estimate covariance parameters
9: end if

10: Compute kriging prediction and variance over generated solutions
11: Compute the performance index for each solution
12: Evaluate the solution, xnew with the maximum value of the performance index
13: if diff(estimation, real value) < ǫ then

14: estimation = 0
15: else

16: estimation = 1
17: end if

18: Add (xnew, f(xnew)) to the observations
19: Update fbest

20: Check Euclidean distances of the evaluated solution to the RefSet members
21: Sort Euclidean distances and RefSet by increasing distance values
22: if distances1 ≥ dth then

23: Replace the worst solution in RefSet by the new observation, xnew

24: else if distancesi ≥ dth with i ∈ [2, 3, . . . , b] and f(xnew) < f(x1
RefSet) then

25: Replace xi
RefSet (or the worst among them if there is more than one) by xnew

26: end if

27: Check termination criterion

28: end while

5.2. SSKm 81

5.2.1 Selection of a performance index for evaluating new points

One of the key points of the application of surrogate models in global optimization is to

choose the next point to be evaluated. This is a very important task since the budget in the

number of simulations when dealing with computationally expensive models is usually low.

Thus, the criterion for selecting the new points to evaluate must be robust and efficient.

Kriging provides fundamental information to create a performance index which helps us

choose new points to be evaluated. In a simple approach, we could select the point whose

kriging prediction is the best in terms of quality. However, in the first stages of the procedure,

when the number of observations is low, the kriging prediction might not be accurate enough

(see Figure 5.2), leading to important under- or over-estimations of the real function values.

The second parameter provided by the kriging is the variance of the prediction in every point

(i.e., the uncertainty associated to the prediction in every point). Choosing the variance as

a performance index does not seem to be a suitable option since it only gives information

about the relative distance of a point from the observations (and this can be qualitatively

substituted just by calculating Euclidean distances, thus saving the computational cost of

the kriging prediction).

Hence, an adequate performance index for the selection seems to be a combination between

these two parameters. The most relevant contributions about kriging for global optimization

use both parameters for defining their criteria to choose the new evaluated points. The

most popular criterion is the EGO algorithm (Jones et al., 1998) based on the expected

improvement, EI, which computes how much improvement is expected with respect to the

best observation so far if the function is evaluated in a new point. The EI is defined as:

EI(x) = σ̂(x)[uΦ(u) + φ(u)] (5.6)

with

u =
fmin − f̂(x)

σ̂(x)
(5.7)

where f̂(x) is the kriging prediction in the point x and σ̂(x) the variance of this prediction.

fmin is the best observation so far (in a minimization problem). Φ() and φ() denote the cumu-

lative distribution function (cdf) and the probability density function (pdf) of the standard

normal distribution, respectively.

The EI is the most used criterion for evaluating new points when using kriging as a

82 Chapter 5. Improved scatter search for computationally expensive process models

prediction method. Several modifications of this formulation have been proposed since its

foundation, like for example the one by Huang et al. (2006) to deal with stochastic models

or the generalized expected improvement (Sasena et al., 2002), formulated as:

EIg(x) = σ̂(x)

g
∑

k=0

(−1)k

(

g!

k!(g − k)!

)

ug−kTk (5.8)

where

Tk = −φ(u)uk−1 + (k − 1)Tk−2 (5.9)

starting with T0 = Φ(u) and T1 = −φ(u). u is the same expression as in Equation 5.7

The parameter g controls the intensification and diversification of the search. There is

no obvious method to select a proper value for g. Sasena et al. (2002) proposed a heuristic

method called cooling schedule to change the value of g during the search depending on the

number of iterations, making the search more global in the first stages and more local at the

end.

Other authors have used similar criteria. Egea et al. (2007b) used the probability of

improving the best observation to date as a selection criterion in their scatter search-based

algorithm. This is equivalent to the generalized expected improvement with g = 0. The point

to be evaluated is the one maximizing Φ(u). Davis and Ierapetritou (2007) balanced between

intensification and diversification by sampling points in three different sets: points with high

variance, points with good prediction values and points in which the kriging predictions

between two consecutive iterations are very different. Since they sample the same number of

points in every set in each iteration, this involves a minimum of 3 new evaluated points by

iteration. Villemonteix et al. (2008) presented a novel criterion based on a rigorous statistical

framework in which the following point to be evaluated is the one minimizing the uncertainty

on the location of the global optimum. This parameter-free strategy automatically balances

between intensification and diversification making use of the stepwise uncertainty reduction

strategy.

In this work, we propose another heuristic method which combines high variance with

probability of improving the best value so far to achieve a suitable balance between intensi-

fication and diversification. Like in the cooling schedule of Sasena et al. (2002), the search is

more focused on diversification in the first iterations and more focused in intensification in

the last iterations. Unlike in the cooling schedule, in which the value of g decreases depending

5.2. SSKm 83

on the number of iterations in a discrete way, here the variation is continuous. We define the

following performance index for each point in which the kriging prediction is done, in order

to choose the one maximizing it to perform the next function evaluation.

PIi = wΦ(ui) + (1 − w)
σ̂i

σ̂max
(5.10)

where i ∈ [1, 2, . . . , N] with N being the number of points in which the kriging prediction

is performed. σ̂max is the highest predicted variance among all these points and divides

the predicted variance of every point in N in order to normalize the second adding term of

Equation 5.10 and give it the same importance as the first term, which is a probability and

therefore it varies between 0 and 1. The weight w is controlling which term has the best

importance along the optimization procedure. A low value of w gives more importance to

the variance term (i.e., to diversification) whereas a high value of it focuses on maximizing

the probability of improving the best solution found (i.e., on intensification). In a general

case, w has the form of an increasing continuous function which depends on the progress of

the search. We propose a general exponential form for w as follows:

w =

(

n

nf

)p

or w =

(

t

tf

)p

(5.11)

where n is the number of function evaluations done so far and nf is the maximum number

of function evaluations allowed. Similarly, t is the computation time consumed so far and

tf is the maximum computation time allowed. w will have one or other form depending

on the stopping criterion selected. p is a positive real number which determines the balance

between intensification and diversification. Values of p close to 0 give more importance to the

intensification term from the beginning of the search and they are recommended for convex

problems or for problems in which the budget of function evaluations (or computation time)

is small. High values of p focus the search onto points with high predicted variance focusing

on intensification only in the last iterations. These high values are recommended for highly

multimodal problems or for applications with a large budget of simulations (or computation

time). In this work, we have used values of p between 0 (aggressive strategy) and 1 (robust

strategy). We have experimentally found that an intermediate value such as p = 0.5 provided

good balances during the search.

Figures 5.3 and 5.4 show how the next point to be evaluated is selected depending on

the stage of the search and the value of p. Figure 5.3 shows the optimization of a unidimen-

84 Chapter 5. Improved scatter search for computationally expensive process models

sional multimodal function with a budget of 20 function evaluations with an initial (uniform)

sampling of 5 observations. The blue line represents the real function. Observations are the

red solid circles and the kriging prediction is denoted by the black dotted line. In the sub

plot below, the performance index for the points in which the prediction has been done are

shown for different values of p. For a value of p = 0 (black line, aggressive search) the point

which maximizes the performance index is very close to the best observation (it focuses on

intensification). For a higher value of p (p = 1, red line) the point with the maximum perfor-

mance index (i.e., the lower bound of the decision variable) is different than in the previous

case. For the sake of comparison, we calculated the expected improvement of the same points

in which the kriging prediction has been done. The figure shows how its maximum value is

located in between the two best observations, thus not searching as globally as in the case of

our algorithm when p = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

x

f(
x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

x

P
e

rf
o

rm
a

n
c
e

 i
n

d
e

x

Real function

Observations

Kriging prediction

p = 0

p = 1

EI

Figure 5.3: Performance index calculation for n/nf = 0.25

Figure 5.4 shows the same example but having 15 initial uniformly distributed observa-

tions (for a total budget of 20 function evaluations). In this case, the value of n/nf is closer

to 1 and the performance indexes calculated with different values of p tend to be maximal in

the same point. Indeed, it can be checked that at this stage of the search the performance

indexes corresponding to p = 0 and p = 1, shown in the figure, have their global maximum

in the same point of the search space. For the last iterations of the search, the values of p

5.3. Application examples 85

have less and less importance and the value of the weight w converges to 1. In this case, the

expected improvement is maximized in the same area.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

x

f(
x
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

P
e

rf
o

rm
a

n
c
e

 i
n

d
e

x

Real function

Observations

Kriging prediction

p = 0

p = 1

EI

Figure 5.4: Performance index calculation for n/nf = 0.75

5.3 Application examples

5.3.1 Kriging prediction

In this section we will illustrate a kriging interpolation using a different number of initial

observations in the Michalewicz function (Michalewicz, 1992), defined by:

F (x) = −
2

∑

i=1

sin(xi)(sin(ix2
i /π))20 (5.12)

in the interval [0, π] for both x1 and x2.

Both the real function and kriging predictions for a different number of observations are

presented in Figure 5.5. The real function is plotted in Figure 5.5(a). Figures 5.5(b), 5.5(c)

and 5.5(d) plot the kriging prediction of the function in the same interval using n0 = 50, 100

and 200 observations (i.e., real function evaluations) within the same interval, respectively.

It can be observed that the larger the number of observations, the higher accuracy in the

prediction.

86 Chapter 5. Improved scatter search for computationally expensive process models

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

(a) Michalewicz function

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

(b) Kriging prediction for n0 = 50

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

(c) Kriging prediction for n0 = 100

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

(d) Kriging prediction for n0 = 200

Figure 5.5: Michalewicz function and its kriging approximation using a different
number of observations

5.3.2 Kriging-based global optimization

In this section, illustrative examples of the application of our algorithm for global optimization

are shown. We consider two benchmark problems to test the efficiency of our SSKm solution

method. For the sake of comparison, we apply two traditional optimization algorithms, one

deterministic, DIRECT (Jones, 2001a), and one stochastic, Differential Evolution (DE, Storn

and Price 1997), and two algorithms making use of surrogate models: rbfSolve (using radial

basis functions interpolation) and ego (using kriging interpolation), both included in the

Tomlab optimization toolbox (Holmström and Edvall, 2004). To test the new features of our

algorithm with respect to a previous advanced scatter search implementation we have also

applied the algorithm SSm.

The six-hump camel-back function (i.e., function 9 in Appendix B) has several local min-

ima and two global optima. For solving this problem we have applied our algorithm to this

function in the search space defined by the bounds [-1.9, -1.1] and [1.9, 1.1] by using an initial

5.3. Application examples 87

sampling of 20 diverse points and calculating 30 extra points for a total number of 50 points.

A total number of 50 function evaluations were also fixed for the other algorithms and the

same initial 20 points were used in all cases.

Table 5.1 shows the values of the two global optima as well as the closest points to them

achieved by each algorithm. Figure 5.6 presents the contour plots of the function and the

30 last points evaluated by each algorithm, represented as triangles (except for ego, which

stopped after 20 extra function evaluations).

Solver
GO1 GO2

x∗ f(x∗) x∗ f(x∗)

[-0.0898, 0.7126] -1.0316 [0.0898, -0.7126] -1.0316

DIRECT [-0.1407, 0.7333] -1.0191 [0.1407, -0.7333] -1.0191
DE [0.1900, 0.6233] -0.6902 [0.2956, -0.7333] -0.8774
SSm [0, 0.7196] -0.9987 [0, -0.6794] -0.9941

SSKm [-0.0891, 0.7089] -1.0315 [0.0706, -0.6973] -1.0314
rbfSolve (Thin plate splines) [-0.1068, 0.6678] -1.0143 [0.0846, -0.7034] -1.0309

rbfSolve (Cubic splines) [-0.1251, 0.6544] -0.9992 [0.0882, -0.7105] -1.0316
ego [-0.0853, 0.7142] -1.0315 [0.0851, -0.7121] -1.0315

Table 5.1: Solutions for the optimization of the six-hump camel-back function in
50 function evaluations

Table 5.1 and Figure 5.6 demonstrate the superiority of surrogate model-based algorithms

over the other three algorithms because they do not only achieve the best function values but

also locate most of the evaluations in the neighborhood of both global minima, whereas the

other methods present a bigger dispersion on their evaluations. SSKm presents the lowest

dispersion within its solutions whereas rbfSolve and ego evaluate several points touching

the bounds of the decision variables. This also shows the ability of surrogate model-based

optimization algorithms, not only for locating one global minimum, but also for locating

several global minima when they exist. This is a very interesting characteristic for robust

optimization purposes.

For the six-hump camel-back example, a value of p = 0 in SSKm was enough for finding

both global minima given that initial sampling. In order to illustrate how the algorithm per-

forms depending on the value of p a new experiment was carried out over another multimodal

function: the Branin function (i.e., function 1 in Appendix B). This function has three global

optima and, depending on the value of p, SSKm should be able to locate one or all of them.

The procedure was analogous as in the previous example: a set of 20 function evaluations

(red circles in the figures) were used as initial observations and the algorithms performed

88 Chapter 5. Improved scatter search for computationally expensive process models

30 new evaluations (black triangles), shown in Figure 5.7. In this case, the comparison was

carried out using only the surrogate model-based algorithms (i.e., rbfSolve and ego).

A value of p = 0 makes SSKm find two of the global minima. As we increase the value

of p, the new evaluations are being more scattered. For p = 0.5 the algorithm is able to

locate the three global minima. In the case of p = 0.75, the results are very similar but more

“outliers” start to appear near the bounds, which means that the algorithm is searching more

globally. The other surrogate model-based algorithms, rbfSolve and ego select more scattered

points to evaluate by default (i.e., similar to SSKm with p = 0.75), which results in a robust

search. Both rbfSolve (using cubic splines) and ego locate the three global optima in the

budget of function evaluations fixed.

5.4 Conclusions

In this chapter we have presented an improved scatter search algorithm combining a scatter

search procedure with a kriging interpolation. It has been specially designed for the opti-

mization of computationally expensive process models, in which the budget of simulations

is usually low. The scatter search phase selects a set of high quality solutions which evolve

whereas the kriging interpolation provides statistical information about the quality and un-

certainty associated with each point, in order to choose the next observation (i.e., function

evaluation). We have proposed a performance index using the information provided by krig-

ing which determines the next point to evaluate. The method increases the intensification in

the last iterations to refine the best solution found, but it can be tuned to perform a more

diverse search at the beginning (more suitable for multimodal problems) or to focus directly

on the intensification (recommended for unimodal problems). The method has been tested

and compared with other global optimization algorithms over two multimodal benchmark

functions, showing its ability to locate all the global optima in a small number of function

evaluations. As expected, comparisons show that surrogate model-based optimization algo-

rithms need less function evaluations to locate the global optimum of a function than other

global optimization methods.

5.4. Conclusions 89

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) DIRECT

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) DE

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) SSm

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) SSKm

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) rbfSolve (Thin plate splines)

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) rbfSolve (Cubic Splines)

x
1

x
2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(g) ego

Figure 5.6: Contour plot of the six-hump camel-back function with the evalua-
tions done by different global optimization algorithms

90 Chapter 5. Improved scatter search for computationally expensive process models

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(a) SSKm (p = 0)

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(b) SSKm (p = 0.5)

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(c) SSKm (p = 0.75)

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(d) rbfSolve (Thin plate splines)

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(e) rbfSolve (Cubic splines)

x
1

x
2

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

18

(f) ego

Figure 5.7: Contour plot of the Branin function using 20 initial observations
(red circles) and 30 extra evaluations (black triangles)

Part III

Applications

91

Chapter 6

Preliminary chapter

In the following chapters, a set of bioprocess optimization problems covering the different

types presented in Chapter 1 (i.e., parameter estimation, integrated design and control, and

dynamic optimization) will be used as case studies to test the performance of the algorithms

proposed in this work. This preliminary chapter presents the optimization methods used

for comparison with our algorithms and the procedure used to carry out the experimental

analysis.

6.1 Selected optimization methods

A set of different state-of-the-art global optimization methods has been selected to compare

their results with those obtained with the algorithms proposed in this study.

� CMAES: Covariance Matrix Adaptation Evolutionary Strategy. This is an evolution-

ary algorithm that makes use of the covariance matrix in a similar way to the inverse

Hessian matrix in a quasi-Newton method. This can improve the performance on ill-

conditioned problems by orders of magnitude (Hansen et al., 2003).

� DE: Differential Evolution. This is a heuristic algorithm for the global optimization of

nonlinear and (possibly) non-differentiable continuous functions presented by Storn and

Price (1997). This population-based method handles stochastic variables by means of a

direct search method which outperforms other popular global optimization algorithms,

and it is widely used by the evolutionary computation community.

93

94 Chapter 6. Preliminary chapter

� SRES: Stochastic Ranking Evolutionary Strategy. This algorithm consists of a (µ, λ)

evolutionary strategy combined with an approach to balance objective and penalty

functions stochastically (Runarsson and Yao, 2000). In the (µ, λ)-ES algorithm, the

evaluated objective and the penalty functions for each individual are used to rank the

individuals in a population, and the best (highest ranked) µ individuals out of λ are

selected for the next generation. This feature makes it especially appealing for the case

of constrained problems.

� DIRECT: DIviding RECTangles. This is a deterministic global optimization algorithm

based on a modification of the Lipschitzian optimization scheme to solve difficult global

optimization problems (Jones, 2001a). The search is performed by dividing the space

into hyper-rectangles and is specifically designed for those cases in which the objective

function is non-smooth, no derivative information is available, or its evaluation requires

several different simulations to be performed. The algorithm operates by systematically

dividing the optimization domain into hyper-rectangles, and evaluating the objective

function in their centers. There are two phases to an iteration of DIRECT : first,

hyper-rectangles are identified as potentially optimal (i.e., it is expected that they

contain a global solution); the second phase consists of dividing potentially optimal

hyper-rectangles into smaller ones. The objective function is evaluated in the centers

of new hyper-rectangles and the search is directed towards unexplored regions of the

domain. We will use glcDirect, the DIRECT implementation of Holmström and Edvall

(2004) in our computational testing.

� OQNLP: OptQuest-NLP. This is and optimization engine released by OptTek Sys-

tems, Inc. As described in Laguna and Mart́ı (2002), this is a generic optimizer that

overcomes the deficiency of black box systems and successfully embodies the principle of

separating the method from the model. In such a context, the optimization problem is

defined outside the complex system. Therefore, the evaluator can change and evolve to

incorporate additional elements of the complex system, while the optimization routines

remain the same. Hence, there is a complete separation between the model used to

represent the system and the procedure that solves optimization problems formulated

around the model. The optimization technology embedded in this algorithm is also

scatter search. The method is organized to (1) capture information not contained sepa-

6.1. Selected optimization methods 95

rately in the original points, (2) take advantage of auxiliary heuristic solution methods

(to evaluate the combinations produced and to actively generate new points), and (3)

make dedicated use of strategy instead of randomization to carry out component steps.

In our testing we use the implementation known as OQNLP (Ugray et al., 2005) which

uses OptQuest to provide starting points for any gradient-based local NLP solver. This

procedure combines the superior accuracy and feasibility-seeking behavior of gradient-

based local NLP solvers with the global optimization abilities of scatter search. In a

recent review by Neumaier et al. (2005) comparing several GO solvers over a set of 1000

constrained GO problems, OQNLP obtained the best performance among the stochas-

tic methods. Furthermore, it solved the highest percentage of problems with a high

number of decision variables.

� rbfSolve: This algorithm, included in the Tomlab optimization toolbox (Holmström

and Edvall, 2004), solves costly global optimization problems using a radial basis func-

tions interpolation algorithm (Gutmann, 2001; Björkman and Holmström, 2000). It

fits a response surface (based on splines) from data collected by evaluating the objec-

tive function at some points and then applies a global optimization algorithm, glcFast

(Holmström and Edvall, 2004), which is a DIRECT implementation, and a local algo-

rithm, npsol (Gill et al., 1998), using different initial points over that surrogate model.

The first set of points to create the response surface may be given by the user or selected

by the algorithm based on different strategies.

� ego: Also included in the Tomlab optimization toolbox, this algorithm solves costly

global optimization problems using the Efficient Global Optimization (EGO) algorithm

(Jones et al., 1998), based on kriging interpolation. The idea of the EGO algorithm is

to first fit a response surface to data collected by evaluating the objective function at a

few points. Then, EGO selects those points maximizing the expected improvement (see

Section 5.2.1) to be evaluated.

In the following chapters, the performance of these global optimization algorithms in a set

of bioprocess engineering optimization problems will be compared with the performance of

the algorithms proposed in this work. In the next section, some notes regarding the procedure

followed to carry out this experimental part are depicted. They explain the protocol used for

doing the tests as well as other details to take into account, and they should be read before

96 Chapter 6. Preliminary chapter

the following chapters of this work.

6.2 Procedure followed in the experiments

In this section we highlight some aspects of the procedure followed to test the case studies

presented in the following chapters. The same protocol was used in every problem. The

reader should take into account the following points:

� For every problem, a multistart procedure with the SQP method fmincon (n2fb in

double precision for the case of parameter estimation problems) was performed over a

set of diverse initial points (usually 100) in order to check the practical multimodality

of the problem. It consists in applying the local search algorithm to a set of initial

points uniformly distributed within the bounds (including the initial point used for

every problem).

� A fixed number of function evaluations was set for every problem. These numbers are

shown in Table 6.1.

Problem Section Maximum evaluations

Parameter estimation

α-pinene 7.1 10000
HIV 7.2 30000

3-step pathway 7.3 20000

Integrated design and control

Constrained WWTP 8.2 15000
COST WWTP PI tuning 8.3.2 400
COST WWTP op. design 8.3.3 800
COST WWTP MINLP 8.3.3 1500

Dynamic optimizationa

Ethanol 9.2 20000, 40000, 60000
Penicillin 9.3 55000, 90000, 250000
Drying 9.4 20000, 60000, 200000

Microwave 9.5 12000, 40000, 60000

aThree discretization levels per problem.

Table 6.1: Maximum number of function evaluations fixed for every problem

� For stochastic solvers (i.e., CMAES, DE, SRES and SSm) a set of 10 runs was per-

formed. The OQNLP implementation that we used in this study does not allow to

change the seed of the random numbers generator. The best, mean (as recommended

6.2. Procedure followed in the experiments 97

by Birattari and Dorigo 2007) and worst objective function value found in all the opti-

mization are reported.

� For the best objective function value found, its corresponding decision vector together

with the variable bounds used in every problem are also reported.

� Convergence curves showing the convergence rate of every solver to their best found

solutions are presented (usually in log-scale). In order to have a fair comparison among

every solver’s efficiency, the same initial point (usually the middle point between the

variable bounds) was used, except for glcDirect, which does not accept any user’s given

initial point.

� Default parameters were used for our proposed algorithms, SSm and SSKm (see Ap-

pendix A). For some problems, parameter values different from defaults ones are used.

In those cases, they are explicitly mentioned.

� For the rest of solvers, default parameters provided by their authors are also used. In

case of the population-based algorithms DE and SRES, some parameters have to be

chosen by the user. The chosen parameters are shown in Table 6.2.

DE SRES

VTR = -inf λ = 10*nvar

NP = 10*nvar µ = λ/7
F = 0.85 pf = 0.45
CR = 1 varphi = 1
strategy = 3

Table 6.2: Selected parameters for DE and SRES

� For solvers not handling constraints (i.e., CMAES and DE) a modification of the scripts

was carried out to allow them to be applicable to constrained problems. In particular,

the implemented strategy was the same as the one used by SSm. Thus, a static penalty

term is added to the objective function value: the maximum absolute violation of the

constraints multiplied by 106 is added to the actual function value. In every case, a

maximum constraint violation of 10−5 is considered as acceptable.

Chapter 7

Parameter estimation problems

The concept of estimating parameters may be rather confusing if we take into account that

a parameter is considered as a constant in mathematical models. Therefore, estimating a

constant does not seem to make sense. When we talk about estimating parameters, we

consider them as the decision variables in the optimization procedure, but as constants during

the process which is being simulated. A typical example is the estimation of constant rates

in (bio)chemical reactions: the estimated values (among the possible set of values defined by

their bounds), will be used as constants and will determine the value of other variables (i.e.,

species concentrations) which are not calculated in the optimization procedure (even if they

can define some kind of constraint which may have an influence in the optimization).

Estimating the parameters of a nonlinear dynamic model is more difficult than for the

linear case, as no general analytic result exists. Biological models are often dynamic and

highly nonlinear. Thus, in order to find the estimates, we must resort to nonlinear optimiza-

tion techniques where a measure of the distance between model predictions and experimental

data is used as the optimality criterion to be minimized. The criterion selection will depend

on the assumptions about the data disturbance and on the amount of information provided

by the user.

When estimating parameters of dynamical systems a number of difficulties may arise, like

convergence to local solutions if standard local methods are used, very flat objective function

in the neighborhood of the solution, over-determined models, badly scaled model functions

or non-differentiable terms in the systems dynamics (Schittkowski, 2002).

99

100 Chapter 7. Parameter estimation problems

Due to the nonlinear and constrained nature of the systems dynamics, these problems

are very often multimodal (non-convex). Thus, traditional gradient based methods, like

Levenberg-Marquardt or Gauss-Newton, may fail to identify the global solution and may

converge to a local minimum when a better solution exists just a small distance away. More-

over, in the presence of a bad fit, there is no way of knowing if it is due to a wrong model

formulation, or if it is simply a consequence of local convergence. Thus, there is a distinct

need for using global optimization methods which provide more guarantees of converging

to the globally optimal solution. Advances in global optimization for parameter estimation

of dynamic systems have been recently made in both deterministic (Esposito and Floudas,

2000b; Lin and Stadtherr, 2006) and stochastic (Moles et al., 2003b; Rodŕıguez-Fernández

et al., 2006a,b) methods.

The importance of using global optimization methods for parameter estimation in bio-

logical systems has been increasingly recognized in recent years (Moles et al., 2003b; Zwolak

et al., 2005; Tsai and Wang, 2005; Polisetty et al., 2006).

7.1 Isomerization of α-pinene

7.1.1 Introduction

In this case study, we want to estimate 5 rate constants, (p1, ..., p5), of a complex biochemical

reaction originally studied by Box et al. (1973), which is also part of COPS (Collection of

large-scale Constrained Optimization ProblemS), maintained by Dolan et al. (2004).

Figure 7.1 contains the proposed reaction scheme for this homogeneous chemical reaction

describing the thermal isomerization of α-pinene (y1) to dipentene (y2) and allo-ocimene (y3)

which in turn yields α- and β-pyronene (y4) and a dimer (y5).

This process was studied by Fuguitt and Hawkins (1947), who reported the concentrations

of the reactant and the four products at eight time intervals. If the chemical reaction orders

are known, then mathematical models can be derived giving the concentration of the various

species as a function of time. Hunter and McGregor (1967) assumed first-order kinetics and

derived the following linear equations for the five responses:

dy1

dt
= −(p1 + p2)y1 (7.1)

dy2

dt
= p1y1 (7.2)

7.1. Isomerization of α-pinene 101

dy3

dt
= p2y1 − (p3 + p4)y3 + p5y5 (7.3)

dy4

dt
= p3y3 (7.4)

dy5

dt
= p4y3 − p5y5 (7.5)

Figure 7.1: Mechanism for thermal isomerization of α-pinene

Assuming this model to be appropriate, the initial conditions for the five species are

known, and we can estimate the unknown coefficients, p1, ..., p5, by minimization of a cost

function which is usually a weighted distance measure between the experimental values cor-

responding to the measured variables and the predicted values for those variables. For this

problem the cost function can be formulated as:

J(p) =

5
∑

j=1

8
∑

i=1

(yj(p, ti) − ỹji)
2 (7.6)

Box et al. (1973) tried, in a first instance, to solve this problem without analyzing the

multiresponse data, finding parameter values which provided an unsatisfactory data fit. Since

ignoring possible dependencies among the responses can lead to difficulties when estimating

the parameters (e.g., multiple local minima, very flat objective function, etc.), they described

a method for detecting and handling these linear relationships. They showed that there are

dependencies in the data, and, thus, only three independent linear combinations of the five

responses are used in the identification, improving the fit of the data significantly. This

102 Chapter 7. Parameter estimation problems

analysis of multiresponse data, although efficient, requires a considerable effort specially to

uncover the dependencies causes once they have been found, and a deep understanding of the

model (that can no longer be considered as a black-box) is essential. Moreover, it becomes

unaffordable when the model complexity increases.

Tjoa and Biegler (1991) also considered this problem and used a robust local estimation

approach to estimate the unknown parameters. They considered the entire data set in order

to assess the performance of this method with dependencies in the data, finally reaching the

same parameters reported by Box et al. (1973). However, the initial value considered for

the parameters was very close to the truly optimal solution, which explains why this local

method reached the global optimum without getting trapped in a local solution. As pointed

out by Averick et al. (1991), the solution of this problem is not difficult to obtain from initial

values of p which are close to the global solution, but it becomes increasingly difficult to solve

from more remote starting points.

7.1.2 Numerical results

The lower bounds considered for the five parameters arise from physical considerations, pi = 0,

and we took the upper bounds to be pi = 1, far from the best known solution (p1 = 5.93e−5,

p2 = 2.96e − 5, p3 = 2.05e − 5, p4 = 2.75e − 4, p5 = 4.00e − 5, f(p) = 19.872). As initial

point, we chose pi = 0.5. The histogram resulting from the multistart procedure is shown in

Figure 7.2.

The multistart procedure achieves the global solution 3 times out of 100 runs. Table 7.1

shows the results obtained by the different GO methods applied and Figure 7.3 presents the

convergence curves for the best solution obtained by every method. For this problem, the

log var option was activated for all decision variables in SSm to generate the initial set of

diverse solutions covering different orders of magnitude.

Solver Best Mean Worst Mean Mean
Evaluations CPU time (s)

CMAES 31113 31393 32945 10004 130
DE 348.56 22515 31951 10000 127

glcDirect 36218 - - 9996 119
OQNLP 31252 - - 10000 119
SRES 31251 32651 41864 10000 121
SSm 19.872 19.872 19.872 9518 122

Table 7.1: Results for the α-pinene isomerization problem

7.1. Isomerization of α-pinene 103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

10

20

30

40

50

60

70

80

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 7.2: Histogram of solutions obtained from the multistart procedure using
n2fb for the α-pinene isomerization problem

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

Figure 7.3: Convergence curves for the different solvers in the α-pinene isome-
rization problem

The results show that SSm was the only method that found the best known solution

in the budget of function evaluations fixed. Actually, it found this solution in all the runs.

Convergence curves show how SSm provided better values than the other solvers in less

104 Chapter 7. Parameter estimation problems

computation time. DE also provided a good value, but not as good as SSm’s best. The rest

of solvers got stuck in local minima. The only deterministic solver used in this comparison,

glcDirect, presented the poorest results even if the dimension of the problem is rather small.

Figure 7.4 shows a comparison between the model predicted values and the experimental

data reported by Fuguitt and Hawkins (1947) corresponding to the concentration of the

reactant and the four products. The parameters estimated with SSm allow to reproduce

almost exactly the experimental data.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Time (min)

C
o
n
c
e
n
tr

a
ti
o
n
 (

%
 w

e
ig

h
t)

alpha−pinene

dipentene

allo−ocimene

pironene

dimere

Figure 7.4: Experimental data vs. predicted values using the parameters esti-
mated with SSm

7.2 Inhibition of HIV proteinase

7.2.1 Introduction

This problem deals with the estimation of a number of rate constants of a model for the

reaction mechanism of irreversible inhibition of HIV proteinase, as originally studied by

Kuzmic (1996). In Figure 7.5, the mechanism is depicted: the HIV proteinase (E) is added

to a solution of an irreversible inhibitor (I) and a fluorogenic substrate (S). The enzyme is

only active in a dimer form, the product is a competitive inhibitor for the substrate and the

inhibitor is irreversible.

The problem considers an experiment where HIV proteinase (assay concentration 0.004

7.2. Inhibition of HIV proteinase 105

Figure 7.5: Mechanism of irreversible inhibition of HIV proteinase

µM) was added to a solution of an irreversible inhibitor and a fluorogenic substrate (25

µM). The fluorescence changes were monitored for one hour in each of the five experiments

conducted at four different concentrations of the inhibitor (0, 0.0015, 0.003, and 0.004 µM in

replicate).

We considered the same problem solved by Kuzmic (1996) and Mendes and Kell (1998),

fitting five of the rate constants to the experimental data. In this fit, a certain degree of

uncertainty (± 50 %) in the value of the initial concentrations of substrate and enzyme

(titration errors) was also assumed. In addition, the offset (baseline) of the fluorimeter was

also considered as a degree of freedom. Given that there are five time course curves, there

are a total of 20 adjustable parameters: the five rate constants, five initial concentrations of

enzyme, five initial concentrations of substrate and five offset values.

The mathematical model consists of a set of 9 nonlinear ODE’s with ten parameters. This

can be described as follows:

d[M]

dt
= −2k11[M][M] + 2k12[E] (7.7)

d[P]

dt
= k3[ES] − k41[P][E] + k42[EP] (7.8)

d[S]

dt
= −k21[S][E] + k22[ES] (7.9)

d[I]

dt
= −k51[I][E] + k52[EI] (7.10)

d[ES]

dt
= k21[S][E] − k22[ES] − k3[ES] (7.11)

106 Chapter 7. Parameter estimation problems

d[EP]

dt
= k41[P][E] − k42[EP] (7.12)

d[E]

dt
= k11[M][M] − k12[E] − k21[S][E] + k22[ES] + k3[ES] (7.13)

−k41[P][E] + k42[EP] − k51[I][E] + k52[EI]

d[EI]

dt
= k51[I][E] − k52[EI] − k6[EI] (7.14)

d[EJ]

dt
= k6[EI] (7.15)

Like in the previous case, the cost function to be minimized is formulated as:

J(p) =
20

∑

j=1

5
∑

i=1

(yj(p, ti) − ỹji)
2 (7.16)

By minimization of the sum-of-squares function of the residuals between the measured

and the simulated data, the best known solution (f(x) = 0.0211) was obtained by Mendes

and Kell (1998) using simulated annealing, with a computational cost of 3 million simulations.

The next best solution (f(x) = 0.0213) was obtained using a Levenberg-Marquardt method

in a considerable shorter computational time (4000 simulations) although this method is only

guaranteed to converge to the global minimum if started in its vicinity.

7.2.2 Numerical results

The histogram depicting the multistart procedure to check the multimodality of the problem

is shown in Figure 7.6. It shows the practical multimodality of the problem. The multistart

procedure obtains function values near to the best known solution, improving the results

obtained by Mendes and Kell (1998) (the best value reported is f(x) = 0.019968). The

multistart procedure was able to find solutions with similar function values in 14 runs out of

100.

In this case, we used the same local solver (n2fb in double precision) in our algorithm SSm.

The local search frequency was increased by setting opts.local.n1=0 and opts.local.n2=0

(see Appendix A for information about these parameters).

Table 7.2 shows the results obtained by the different GO methods applied and Figure 7.7

presents the convergence curves for the runs achieving the best solution obtained by every

method. In Table 7.3, the values of the bounds and the best solution obtained by SSm are

shown.

In this small budget of function evaluations, SSm is the only algorithm which achieves

a better value than the one reported by Mendes and Kell (1998). In the rest of runs, the

7.2. Inhibition of HIV proteinase 107

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 7.6: Histogram of solutions obtained from the multistart procedure using
n2fb in double precision for the inhibition of HIV proteinase problem

Solver Best Mean Worst Mean Mean
Evaluations CPU time (s)

CMAES 0.49588 1.6014 3.4060 30017 1104
DE 0.32965 0.73351 1.05645 30000 844

glcDirect 10.490 - - 33082 3004
OQNLP 1.4266 - - 30000 2631
SRES 0.28157 0.35943 0.42693 30000 924
SSm 0.019764 0.020599 0.020825 29345 1294

Table 7.2: Results for the inhibition of HIV proteinase problem

solutions were of the same order. The rest of solvers provided solutions at least one order of

magnitude higher.

Despite the fact that SSm converged in every run to solutions with very good values of

the cost function, the values of the parameters were not always the same (see examples in

Table 7.4) indicating a very flat objective function in the region of parameter space near the

optimum. This indicates the lack of identifiability for this problem. This characteristic is

reported and explained in Rodŕıguez-Fernández et al. (2006a). However, it is worth noting

the very good correlation between the experimental and predicted data for the best decision

vector (see Figure 7.8).

108 Chapter 7. Parameter estimation problems

Parameter Best SSm solution Lower Bound Upper Bound

k3 6.66e+0 0.00e+0 1.00e+5

k42 9.31e+4 0.00e+0 1.00e+5

k22 6.34e+2 0.00e+0 1.00e+5

k52 3.59e+4 0.00e+0 1.00e+5

k6 3.68e+3 0.00e+0 1.00e+5

S0 (exp 1) 2.47e+1 1.25e+1 3.75e+1

S0 (exp 2) 2.35e+1 1.25e+1 3.75e+1

S0 (exp 3) 2.71e+1 1.25e+1 3.75e+1

S0 (exp 4) 1.58e+1 1.25e+1 3.75e+1

S0 (exp 5) 1.40e+1 1.25e+1 3.75e+1

E0 (exp 1) 5.50e-3 2.00e-3 6.00e-3

E0 (exp 2) 5.33e-3 2.00e-3 6.00e-3

E0 (exp 3) 6.00e-3 2.00e-3 6.00e-3

E0 (exp 4) 4.35e-3 2.00e-3 6.00e-3

E0 (exp 5) 3.99e-3 2.00e-3 6.00e-3

offset (exp 1) -5.26e-3 -2.00e-1 4.00e-1

offset (exp 2) -6.21e-3 -2.00e-1 4.00e-1

offset (exp 3) -1.71e-2 -2.00e-1 4.00e-1

offset (exp 4) -8.24e-3 -2.00e-1 4.00e-1

offset (exp 5) 3.15e-3 -2.00e-1 4.00e-1

Table 7.3: Bounds and best solution for the inhibition of HIV proteinase problem

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

Figure 7.7: Convergence curves for the different solvers in the inhibition of HIV
proteinase problem

7.3. Three-step biochemical pathway 109

Results SSm

Parameter J=0.019764 J=0.019967

k3 6.66e+0 5.53e+0

k42 9.31e+4 2.46e+2

k22 6.34e+2 4.63e+1

k52 3.59e+4 4.55e+2

k6 3.68e+3 6.24e+4

S0 (exp 1) 2.47e+1 2.47e+1

S0 (exp 2) 2.35e+1 2.35e+1

S0 (exp 3) 2.71e+1 2.71e+1

S0 (exp 4) 1.58e+1 1.67e+1

S0 (exp 5) 1.40e+1 1.41e+1

E0 (exp 1) 5.50e-3 5.38e-3

E0 (exp 2) 5.33e-3 5.17e-3

E0 (exp 3) 6.00e-3 6.00e-3

E0 (exp 4) 4.35e-3 4.25e-3

E0 (exp 5) 3.99e-3 3.97e-3

offset (exp 1) -5.26e-3 -5.56e-3

offset (exp 2) -6.21e-3 -5.31e-3

offset (exp 3) -1.71e-2 -1.73e-2

offset (exp 4) -8.24e-3 -1.11e-2

offset (exp 5) 3.15e-3 4.42e-4

Table 7.4: Parameters for two solutions in the inhibition of HIV proteinase
problem

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

S
ig

n
a
l

Exp. 1

Exp. 2

Exp. 3

Exp. 4

Exp. 5

Figure 7.8: Experimental data vs. predicted values using the parameters esti-
mated with SSm

7.3 Three-step biochemical pathway

7.3.1 Introduction

This case study, considered as a challenging benchmark problem by Moles et al. (2003b), in-

volves a biochemical pathway with three enzymatic steps, including the enzymes and mRNAs

110 Chapter 7. Parameter estimation problems

explicitly. Figure 7.9 contains a diagram illustrating the network of reactions and kinetics

effects (feedback loops).

S M1 M2 P

E1 E2 E3

G1 G2 G3

Figure 7.9: Three-step biochemical pathway scheme

The identification problem consists of the estimation of 36 kinetic parameters of the

nonlinear biochemical dynamic model (8 nonlinear ODEs) which describes the variation of

the metabolite concentration over time.

The mathematical formulation of this dynamic nonlinear model is described by:

dG1

dt
=

V1

1 +
(

P
Ki1

)ni1
+

(

Ka1
S

)na1

− k1 G1 (7.17)

dG2

dt
=

V2

1 +
(

P
Ki2

)ni2
+

(

Ka2
M1

)na2
− k2 G2 (7.18)

dG3

dt
=

V3

1 +
(

P
Ki3

)ni3
+

(

Ka3
M2

)na3
− k3 G3 (7.19)

dE1

dt
=

V4 G1

K4 + G1
− k4 E1 (7.20)

dE2

dt
=

V5 G2

K5 + G2
− k5 E2 (7.21)

7.3. Three-step biochemical pathway 111

dE3

dt
=

V6 G3

K6 + G3
− k6 E3 (7.22)

dM1

dt
=

kcat1 E1

(

1
Km1

)

(S − M1)

1 + S
Km1

+ M1
Km2

−
kcat2 E2

(

1
Km3

)

(M1 − M2)

1 + M1
Km3

+ M2
Km4

(7.23)

dM2

dt
=

kcat2 E2

(

1
Km3

)

(M1 − M2)

1 + M1
Km3

+ M2
Km4

−
kcat3 E3

(

1
Km5

)

(M2 − P)

1 + M2
Km5

+ P
Km6

(7.24)

where M1, M2, E1, E2, E3, G1, G2 y G3 represent the concentration of the 8 implied species

in the different biochemical reactions. The cost function to be minimized is:

J =

n
∑

i=1

m
∑

j=1

wij((yteor(i) − yexp(i))j)
2 (7.25)

where m is the number of experiments and n is the number of data per experiment (m = 16

and n = 20 for this problem). wij are the weights to normalize the contribution of each term.

They were calculated as wij = 1/(max(yexp(i))j). Substrate and product concentration (S

and P , respectively) act as control variables and they are considered constants for every

experiment since their concentrations are very high compared to the other species. They

have fixed initial values for every experiment as shown in Table 7.5.

Exp. S conc. P conc. Exp. S conc. P conc.

1 0.1 0.05 9 2.1544 0.05
2 0.1 0.13572 10 2.1544 0.13572
3 0.1 0.36840 11 2.1544 0.36840
4 0.1 1.0 12 2.1544 1.0
5 0.46416 0.05 13 10 0.05
6 0.46416 0.13572 14 10 0.13572
7 0.46416 0.36840 15 10 0.3684
8 0.46416 1.0 16 10 1.0

Table 7.5: S and P concentration values for all the experiments

All the necessary data to implement this problem (including the experimental data) can

be found in the web page maintained by Julio R. Banga 1. Moles et al. (2003b) tried to solve

this problem using several deterministic and stochastic global optimization algorithms. They

found that only a certain type of stochastic algorithms, evolution strategies (implemented as

1http://www.iim.csic.es/∼julio/GR03 statement.txt

112 Chapter 7. Parameter estimation problems

the SRES code), was able to successfully solve it, although at a rather large computational

cost. Rodŕıguez-Fernández et al. (2006b) presented a two-phase hybrid method which con-

verged to better solutions, with speeds higher than more than one order of magnitude with

respect to the previous results. Making use of our proposed algorithm, SSm, those results

have been improved with computation time savings of two orders of magnitude, as shown in

the next section.

7.3.2 Numerical results

The histogram resulting from the multistart procedure applied to this problem is shown in

Figure 7.10. The best solution found by the multistart procedure (f = 10.17) is very far from

the global optimum, which is 0.000 for this problem.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

20

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 7.10: Histogram of solutions obtained from the multistart procedure
using n2fb for the three-step biochemical pathway problem

This is a very difficult problem as demonstrated by the previous studies published. The

global solution has been found after a very long computation time. A number of reasons make

this problem so difficult, such as the presence of large flat areas, many local minima near the

global one, a very narrow area of the basin of attraction of the global optimum compared

to the search space and high function values very close to it, which make the algorithms

neglect this area when searching around. For these reasons, we tuned our algorithm to make

it more efficient. Instead of using the Euclidean distance to prevent stagnation, we used the

7.4. Conclusions 113

tolerance-based criterion (i.e., a solution must be different in all dimensions with respect to

the RefSet members, using a relative tolerance, to join it). The relative tolerance fixed was

10−2. Besides, the linear combinations proved to be more efficient for this problem than

the hyper-rectangles based. These two modifications from the default parameters make the

search more aggressive because less solutions apply to enter the RefSet. Thus, it is regenerated

more often. Again, a specific local search algorithm for parameter estimation, n2fb, was used

as Improvement Method. The final refinement was done with the same algorithm in double

precision.

Table 7.6 shows the results obtained by the different GO methods applied and Figure 7.11

presents the convergence curves for the runs achieving the best solution obtained by every

method. In Table 7.7, the values of the bounds and the best solution obtained by SSm are

shown.

Solver Best Mean Worst Mean Mean
Evaluations CPU time (s)

CMAES 211.6 599.7 863.5 40019 258
DE 274.4 399.7 478.1 20160 297

glcDirect 328.8 - - 42660 302
OQNLP 54.05 - - 20160 69
SRES 290.7 406.3 513.8 20160 220
SSm 0.000 0.001 0.014 17454 180

Table 7.6: Results for the three-step biochemical pathway problem

Again, SSm is the only algorithm able to locate the global optimum in the budget of

function evaluations fixed. Its results clearly improve previous results published for this

problem. It finds the global solution reducing the computation time needed in three and two

orders of magnitude compared to the results of Moles et al. (2003b) and Rodŕıguez-Fernández

et al. (2006b), respectively, as it is illustrated in Figure 7.12.

Figure 7.13 shows a comparison between the predicted and experimental data for the 10th

experiment, evidencing the accuracy of the fit. The representation of the dynamic behavior

for the other experiments is quite similar and is not included here for the sake of brevity.

7.4 Conclusions

The results of the application of the different global optimization algorithms over the set

of parameter estimation problems considered demonstrate the superiority of our proposed

methodology to solve this type of nonlinear dynamic problems. In all cases, our method

114 Chapter 7. Parameter estimation problems

Parameter Best SSm solution Lower Bound Upper Bound

V1 1 1e-12 1e+3
Ki1 1 1e-12 1e+3
ni1 2 1e-1 1e+1
Ka1 1 1e-12 1e+3
na1 2 1e-1 1e+1
k1 1 1e-12 1e+3
V2 1 1e-12 1e+3

Ki2 1 1e-12 1e+3
ni2 2 1e-1 1e+1
Ka2 1 1e-12 1e+3
na2 2 1e-1 1e+1
k2 1 1e-12 1e+3
V3 1 1e-12 1e+3

Ki3 1 1e-12 1e+3
ni3 2 1e-1 1e+1
Ka3 1 1e-12 1e+3
na3 2 1e-1 1e+1
k3 1 1e-12 1e+3
V4 0.1 1e-12 1e+3
K4 1 1e-12 1e+3
k4 0.1 1e-12 1e+3
V5 0.1 1e-12 1e+3
K5 1 1e-12 1e+3
k5 0.1 1e-12 1e+3
V6 0.1 1e-12 1e+3
K6 1 1e-12 1e+3
k6 0.1 1e-12 1e+3

kcat1 1 1e-12 1e+3
Km1 1 1e-12 1e+3
Km2 1 1e-12 1e+3
kcat2 1 1e-12 1e+3
Km3 1 1e-12 1e+3
Km4 1 1e-12 1e+3
kcat3 1 1e-12 1e+3
Km5 1 1e-12 1e+3
Km6 1 1e-12 1e+3

Table 7.7: Bounds and best solution for the three-step biochemical pathway
problem

found the best known solutions and presented the fastest convergence rate (in some cases

improving the convergence rate by several orders of magnitude). The fact that our method-

ology combines a local search (i.e., the Improvement Method) with a global evolutionary

phase helps to accelerate the convergence to the best known solutions. The use of a specific

local algorithm for parameter estimation problems such as n2fb makes SSm a powerful tool to

solve this kind of problems. Further, the different options implemented make the algorithm

robust enough to handle problems of different types and levels of difficulty.

7.4. Conclusions 115

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

10
4

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

Figure 7.11: Convergence curves for the different solvers in the three-step bio-
chemical pathway problem

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Moles et al. (2003)

Rodríguez−Fernández et al. (2006)

SSm

Figure 7.12: Comparison of convergence curves for the three-step biochemical
pathway problem

116 Chapter 7. Parameter estimation problems

0 20 40 60 80 100 120
0

0.5

1

1.5
M1

M2

E1

E2

E3

G1

G2

G3

Figure 7.13: Experimental data vs. predicted values in one experiment using
the parameters estimated with SSm

Chapter 8

Integrated design and control
problems

8.1 Introduction

The problem of integrated design and control optimization of process plants is discussed in this

chapter. We consider it as a nonlinear programming problem subject to differential-algebraic

constraints (see Section 1.1.2). This class of problems is frequently multimodal and “costly”

(i.e., computationally expensive to evaluate). Two challenging Wastewater Treatment Plants

(WWTPs) benchmark models are used here to evaluate the performance of the optimization

techniques proposed in this work.

The simultaneous (integrated) bioprocess design approach, considering operability, con-

trol and economic issues, has been widely recognized in recent years. The aim is to obtain

profitable and operable process and control structures in a systematic way. Both the process

design characteristics, control strategies, control structure and controller’s tuning parameters

have to be selected optimally in order to minimize the total cost of the system while satisfying

a large number of feasibility constraints in the presence of time-varying disturbances. Conse-

quently, the use of global optimization techniques is strongly advisable. Recent contributions

dealing with the integrated design of WWTPs can be found in Rigopoulos and Linke (2002)

and Alasino et al. (2007).

Biochemical processes are difficult to control due to the sensitivity of the microorganisms

and the lack of full knowledge to control intracellular processes by modifying the external

117

118 Chapter 8. Integrated design and control problems

conditions (Bogle et al., 1996). A number of control strategies have been proposed to meet the

strict standards that WWTPs must comply with, while also trying to reduce costs. Relevant

examples from the recent literature of attempts to optimize the controllers of these plants

are:

� ad hoc extensive simulation studies (Ladiges et al., 1999; Carucci et al., 1999; Schütze

et al., 2002; Ladiges and Günner, 2003; Cappai et al., 2004; Butler and Schütze, 2005).

Strictly speaking these may not be called optimizations, because there is no evidence

that a locally or globally best solution is found.

� Dynamic optimization design strategies using local gradient-based (Chachuat et al.,

2001) or evolutionary (Balku and Berber, 2006) optimization methods, often based on

simplified models and without use of any control strategy.

� Global optimization methods for multiobjective optimal control of wastewater systems

(Moles et al., 2003a; Send́ın et al., 2004; Fu et al., 2008).

� An integrated approach for the optimization of control strategies, where a small selec-

tion of global and local optimization methods was used (Schütze. et al., 1999; Schütze

et al., 2001).

Evaluation of these and similar strategies, either in practice or by simulation, is a real

problem due to the lack of a standard with respect to evaluation criteria, process complexity

and large variations in plant configuration.

8.2 Problem WWTP1: Simultaneous design and control of a
WWT plant

8.2.1 Introduction

This case study represents an alternative configuration of a real wastewater treatment plant

placed in Manresa (Spain), as described by Gutiérrez and Vega (2000). The plant is formed

by two aeration tanks, acting as bioreactors, and two settlers (see Figure 8.1).

A flocculating microbial population (biomass) is kept inside each bioreactor, transforming

the biodegradable pollutants (substrate), with the aeration turbines providing the necessary

level of dissolved oxygen. The effluents from the aeration tanks are separated in their as-

sociated settlers into a clean water stream and activated sludge, which is recycled to the

8.2. Problem WWTP1: Simultaneous design and control of a WWT plant 119

��

�� �� ��

����������

��

��� ���� ����
�	

��
��� �� ��� ������ ��

���

��

��

���
���
���

���
���
���

����

����
�� �� �� �� ��

��	 ���

Figure 8.1: WWT plant scheme

corresponding aeration tank. Since the activated sludge is constantly growing, more is pro-

duced that can be recycled to the tanks, so the excess is eliminated via a purge stream (qp).

The objective of the control system is to keep the substrate concentration at the output (s2)

under a given admissible value. The main disturbances come from large variations in both

the flowrate and substrate concentration (qi and si) of the input stream. Although there are

several possibilities for the manipulated variable, here we have considered the flowrate of the

sludge recycle to the first aeration tank, as considered by Gutiérrez and Vega (2000).

The process dynamic model is derived from a first principles approach. The overall model

consists of 33 DAEs (14 of them are ODEs) and 44 variables. The value of three flowrates

(qr2, qr3 and qp) are fixed at their steady-state values corresponding to a certain nominal

operational conditions. Therefore, this leaves 8 design variables for the integrated design

problem, namely v1, v2 (volume of the aeration tanks, m3), ad1, ad2 (areas of the settlers,

m2), fk1, fk2 (aeration factors) and kp, τi (the proportional gain and the integral time of the

PI controller, respectively). More complex formulations are possible, but our objective is to

illustrate how this problem of medium size is already very challenging for many GO methods.

The nonlinear mathematical model arises from the mass balances (8.1-8.6) in the aerated

tanks. They represent the changes in the oxygen concentration (c1, c2), biomass (x1, x2) and

organic substrate. Similarly, equations 8.7-8.12 represent the mass balances in the settlers,

where three different and increasing levels of biomass concentration are considered (xd1, xb1,

xr1 and xd2, xb2, xr2). Finally, equations 8.13 and 8.14 describe the integral term of the

controller and the ISE (Integral Squared Error).

dx1

dt
=

yy · µ · s1 · x1

ks + s1
− kc · x1 −

kd · x2
1

s1
+

q12 · (xir1 − x1)

v1
(8.1)

dx2

dt
=

yy · µ · s2 · x2

ks + s2
− kc · x2 −

kd · x2
2

s2
+

q22 · (xir2 − x2)

v2
(8.2)

120 Chapter 8. Integrated design and control problems

ds1

dt
= −µ · s1 · x1

ks + s1
+ fkd · (kd · x2

1

s1
+ kc · x1) +

q12 · (sir1 − s1)

v1
(8.3)

ds2

dt
= −µ · s2 · x2

ks + s2
+ fkd · (kd · x2

2

s2
+ kc · x2) +

q22 · (sir2 − s2)

v2
(8.4)

dc1

dt
= kla · fk1 · (cs − c1) −

k01 · µ · x1 · s1

ks + s1
− q12 · c1

v1
(8.5)

dc2

dt
= kla · fk2 · (cs − c2) −

k01 · µ · x2 · s2

ks + s2
+

q1 · c1

v2
− q22 · c2

v2
(8.6)

dxd1

dt
=

(q12 − q2) · xb1 − q1 · xd1

ad1 · ld1
− vsd1

ld1
(8.7)

dxb1

dt
=

q12 · x1 − q1 · xb1 − q2 · xb1

ad1 · lb1
+

vsd1 − vsb1

lb1
(8.8)

dxd2

dt
=

(q22 − q3) · xb2 − qsal · xd2

ad2 · ld2
− vsd2

ld2
(8.9)

dxb2

dt
=

q22 · x2 − qsal · xb2 − q3 · xb2

ad2 · lb2
+

vsd2 − vsb2

lb2
(8.10)

dxr1

dt
=

q2 · (xb1 − xr1)

ad1·lr1
+

vsb1

lr1
(8.11)

dxr2

dt
=

q3 · (xb2 − xr2)

ad2 · lr2
+

vsb2

lr2
(8.12)

dI

dt
=

kp

τi
· (s2s − s2) (8.13)

d(ISE)

dt
= (s2s − s2) · (s2s − s2) (8.14)

The algebraic equation 8.15 corresponds to the control law (qr1s is its stationary value),

whereas equations 8.18-8.21 specify the settling velocity of the sludge. Equations 8.22-8.28 are

the balances among the system flow rates (m3/h). Equation 8.33 represents the perturbation

to the inlet (substrate) considered in the ISE calculation. This perturbation is introduced

25 hours after the plant is working in steady state.

qr1 = qr1s + kp · (s2s − s2) + I (8.15)

sr1 =
s1 · q2 + qr3 · s2

qr
(8.16)

xr =
xr1 · q2 + xr2 · qr3

qr
(8.17)

vsd1 = nnr · xd1 · eaar·xd1 (8.18)

vsb1 = nnr · xb1 · eaar·xb1 (8.19)

vsd2 = nnr · xd2 · eaar·xd2 (8.20)

vsb2 = nnr · xb2 · eaar·xb2 (8.21)

q2 = qr1 + qp − qr3 (8.22)

8.2. Problem WWTP1: Simultaneous design and control of a WWT plant 121

q3 = qr3 + qr2 (8.23)

q12 = qi + qr1 (8.24)

q22 = q1 + qr2 (8.25)

qsal = qi − qp (8.26)

q1 = q12 − q2 (8.27)

qr = q2 + qr3 (8.28)

xir1 =
qi · xi + qr1 · xr

q12
(8.29)

sir1 =
qi · si + qr1 · sr1

q12
(8.30)

xir2 =
q1 · xd1 + xr2 · qr2

q22
(8.31)

sir2 =
q1 · s1 + s2 · qr2

q22
(8.32)

si =

{

si,s t < 25h
si,s + (10 − 10 · e−2.5t) t ≥ 25h

}

(8.33)

Apart from the DAEs, which act as equality constraints, the optimization problem is

subject to a set of inequality constraints referring to residence time and other relations which

should be within some defined limits:

2.5 ≤ v1

q12
≤ 8.0 (8.34)

0.001 ≤ qi · si + qr1 · sr1

v1 · x1
≤ 0.6 (8.35)

0.001 ≤ (qi + qr3 − qp) · s1 + qr2 · s2

v2 · x2
≤ 0.06 (8.36)

q12

ad1
≤ 1.5 (8.37)

q22

ad2
≤ 1.5 (8.38)

3.0 ≤ v1 · x1 + ad1 · lr1 · xr1

qp · xr1 · 24
≤ 10.0 (8.39)

3.0 ≤ v2 · x2 + ad2 · lr2 · xr2

qp · xr2 · 24
≤ 10.0 (8.40)

0.5 ≤ q2 + q3

qi
≤ 0.9 (8.41)

0.03 ≤ qp

q2 + q3
≤ 0.07 (8.42)

Additionally, there is a set of 30 double inequality constraints which define valid ranges

122 Chapter 8. Integrated design and control problems

for the state variables (see Table 8.1). All these constraints must be checked before and after

introducing the perturbation, giving a total number of 120 inequality constraints.

var lb ub var lb ub var lb ub

x1 500 3000 xb2 30 3000 xir2 200 2000
x2 200 3000 xr2 1000 10000 sir2 30 500
s1 25 300 sr1 20 1000 q2 200 3000
s2 20 125 xr 2000 8750 q3 200 3000
c1 1 8 vsd1 100 2000 q12 50 3500
c2 1 8 vsb1 300 3000 q22 50 3500
xd1 10 300 vsd2 10 2000 qsal 100 3000
xb1 50 3000 vsb2 100 3000 q1 50 3000
xr1 3000 10000 xir1 400 2500 qr 50 2000
xd2 3 300 sir1 50 100 qr1 50 3000

Table 8.1: Bounds for the inequality constraints for the state variables

The integrated design problem is formulated as an NLP-DAEs, where the objective func-

tion to be minimized is a weighted sum of economic (φecon) and controllability cost terms

(measured here as the ISE):

C = w1 · ISE + φecon = w1 · ISE + (w2 · v2
1) +

(w3 · v2
2) + (w4 · ad2

1) + (w5 · ad2
2) + (8.43)

(w6 · fk2
1) + (w7 · fk2

2)

where the ISE is the integral square error, ISE =
∫ ∞
0 e2(t) · dt. The ISE is evaluated

considering a step disturbance to the input substrate concentration, si, whose behavior is

taken from the real plant (similarly to Schweiger and Floudas 1997). The minimization is

subject to several sets of constraints.

� The 33 model DAEs (system dynamics), acting as differential-algebraic equality con-

straints.

� 32 inequality constraints which impose limits on the residence times and biomass load

in the aeration tanks, the hydraulic capacity in the settlers, the sludge ages in the

decanters, and the recycle and purge flow rates, respectively.

� An additional set of 120 double inequality constraints on the state variables (see Table

8.1).

8.2. Problem WWTP1: Simultaneous design and control of a WWT plant 123

A weighting vector wi = [103, 2 · 10−5, 2 · 10−5, 1 · 10−5, 1 · 10−5, 12, 12] was considered

for the optimization runs, which implies a similar contribution of each term in the objective

function.

8.2.2 Numerical results

The histogram depicting the multistart procedure using a SQP method (fmincon) to check

the multimodality of the problem is shown in Figure 8.2. Only solutions with function values

lower than 10000 are plotted in the histogram.

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 8.2: Histogram of solutions obtained from the multistart procedure using
fmincon for problem WWTP1

The histogram shows the practical non-convexity of the problem and the best value re-

ported (f(x) = 1738.7) is far from the best known solutions (around 1538) reported by Moles

et al. (2003a) and Egea et al. (2007a). The Improvement Method was deactivated in SSm be-

cause it consumes excessive running time without significant solution improvement. However,

a final refinement phase was activated using the direct search solver fminsearch. The reason

for these special settings is the presence of discontinuities in the problem, which makes local

algorithms fail or converge prematurely. Due to some execution errors, the local search was

also deactivated in OQNLP. Egea et al. (2007a) already reported better results deactivating

the local search for this problem.

124 Chapter 8. Integrated design and control problems

Table 8.2 shows the results obtained by the different GO methods applied and Figure 8.3

presents the convergence curves for the runs achieving the best solution obtained by every

method. The initial point used for this problem was chosen to obtain a feasible solution, and

it is reported together with the bounds and the best found vector in Table 8.3.

Solver Best Mean Worst Mean Mean
Evaluations CPU time (s)

CMAES 1537.8 1540.7 1551.4 15002 357
DE 1537.8 1537.8 1537.8 15040 364

glcDirect 2201.8 - - 15988 138
OQNLP 1663.6 - - 20000 373
SRES 1537.8 1538.0 1539.0 15040 335
SSm 1537.8 1538.2 1539.0 15006 276

Table 8.2: Results for problem WWTP1

Parameter Best SSm solution Lower Bound Upper Bound Initial point

v1 5493.01 1500 10000 8843.95

v2 3982.54 1500 10000 7520.32

ad1 2295.62 1000 4000 3994.72

ad2 4000 1000 4000 3447.27

fk1 0.0677195 0 1 0.7822

fk2 0.0118226 0 1 0.7636

kp -99.9992 -100 -0.005 -9.507

τi 0.732842 0.5 100 10.7606

J 1537.8 13746

Table 8.3: Bounds, initial point and best SSm solution for problem WWTP1

Results for this problem show that many optimization methods present similar behavior

in both, best solution found and convergence rate. DE presents the most consistent values,

with no dispersion among the 10 runs. The deterministic method, glcDirect, provides the

poorest result in the budget of function evaluations fixed.

To illustrate the improvements achieved by applying global optimization to the integrated

design and control of the plant, a comparison between both indexes contained in the objective

function before and after the optimization are shown in Table 8.4. Both the ISE and the

economic term are clearly improved with respect to the initial operating point.

Index Value with x0 Value with xbest
SSm

C 13745.6 1537.8

ISE 10.7574 0.4044

φecon 2988.16 1133.43

Table 8.4: Initial and optimized indexes for problem WWTP1

8.3. Problem WWTP-COST: a computationally expensive model 125

10
0

10
1

10
2

10
3

10
3

10
4

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

Figure 8.3: Convergence curves for the different solvers in problem WWTP1

8.3 Problem WWTP-COST: a computationally expensive model

8.3.1 Introduction

In order to enhance the development and acceptance of new control strategies, the Interna-

tional Water Association (IWA) Task Group on Respirometry, together with the European

COST work group, proposed a standard simulation benchmarking methodology for evalu-

ating the performance of activated sludge plants. The COST 624 work group defines the

benchmark as a protocol to obtain a measure of performance of control strategies for acti-

vated sludge plants based on numerical, realistic simulations of the controlled plant. According

to this definition, the benchmark consists of a description of the plant layout, a simulation

model and definitions of controller performance criteria. The layout of this benchmark plant

combines nitrification with predenitrification by a five compartment reactor with an anoxic

zone (see Figure 8.4). A secondary settler composed by 10 layers separates the microbial

culture from the liquid being treated. A basic control strategy consisting of 2 PI controllers

is proposed to test the benchmark. Its aim is to control the dissolved oxygen level in the

final compartment of the reactor (AS Unit 5) by manipulation of the oxygen transfer, and

to control the nitrate level in the last anoxic compartment (AS Unit 2) by manipulating the

internal recycle flow rate (Jeppsson, 1996).

126 Chapter 8. Integrated design and control problems

PI

PI

Dissolved

Oxygen
Nitrate

External recycle

Internal recycle

Anoxic section Aerated section

ASU 1 ASU 2 ASU 3 ASU 4 ASU 5

Waste

Clarifier

Figure 8.4: WWT COST plant scheme

In this work, a Simulink implementation of the benchmark model by Jeppsson was used

for the simulations (for more information about the implementation, see Alex et al. 1999;

Copp 2001; Jeppsson and Pons 2004). Each function evaluation consists in an initialization

period of 100 days to achieve steady state, followed by a period of 14 days of dry weather

and a third period of 14 days of rainy weather. Calculations of the controllers performance

criterion are based on data from the last 7 rain days.

Since each simulation of this benchmark model takes a significant time on a standard

PC (about 90 seconds in a PC-PIV 2,4 GHz), it is an illustrating example to evaluate the

surrogate-based optimization algorithms such as rbfSolve, ego (see Section 6.1) and SSKm

(see Chapter 5).

The system dynamics is described by algebraic mass balance equations, ordinary differ-

ential equations for the biological processes in the bioreactors as defined by the ASM1-model

(Henze et al., 1987), and the double-exponential settling velocity function (Takács et al.,

1991) as a fair presentation of the settling process. The overall process is formed by 8 sub-

processes and is described by a set of more than 100 DAE’s with 13 state variables. For the

sake of brevity, the detailed model of the full plant and the parameters and design variables

values are not shown but they can be found in the IWA Task Group on Benchmarking of

Control Strategies for WWTPs web page1.

Given the physical design and the control strategy of the plant, there is a number of oper-

ating variables over which we can apply optimization techniques to minimize a performance

1http://www.ensic.inpl-nancy.fr/benchmarkWWTP/Bsm1/Benchmark1.htm

8.3. Problem WWTP-COST: a computationally expensive model 127

index of the plant. In this work we have considered the variables listed in Table 8.5. Default

values are proposed by the benchmark authors.

Variable Description Symbol Default Units
value

v1 Proportional gain O2 controller K(O) 500 d−1(g(−COD)m−3)
v2 Integral time O2 controller τi(O) 0.001 d
v3 Antiwindup constant O2 controller τt(O) 0.0002 d
v4 Proportional gain N controller K(N) 15000 m3d−1(gNm−3)−1

v5 Integral time N controller τi(N) 0.05 d
v6 Antiwindup constant N controller τt(N) 0.03 d
v7 Aeration factor ASU1 KLa1 0 d−1

v8 Aeration factor ASU2 KLa2 0 d−1

v9 Aeration factor ASU3 KLa3 240 d−1

v10 Aeration factor ASU4 KLa4 240 d−1

v11 External recycle flow rate Qr 18446 m3d−1

v12 Purge flow rate Qw 385 m3d−1

va
13 Settler input layer Lfeed 5 -

aInteger variable.

Table 8.5: Operational variables for the WWTP COST benchmark

For the optimization of this model, convergence curves will be plotted with respect of

the number of simulations instead of the computation time. The reason is that, for some

simulations, the numerical integration fails, producing an algebraic loop which can involve

several hours of computation time. Besides, the overhead introduced by every optimization

method can be considered negligible compared to the time needed for each simulation. Due

to the small budget of simulations fixed for the problems involving the COST benchmark,

the local search was deactivated in our algorithm.

8.3.2 Subproblem WWTP-COST1: PI Tuning

In a first approach, we will try to optimize the control performance of the plant, tested by

using the ISE (Integral Square Error). Both the nitrate level and oxygen level controllers

will be optimized with respect to their controller parameters, that is, the gain K (i.e., v1 and

v4) and integral time constant τi (i.e., v2 and v5). The problem is formulated as follows:

min J(v) = c · W T · ISE (8.44)

subject to the system dynamics. W T ∈ R
1×2 contains the weighting coefficients and

ISE ∈ R
2×1 contains the integral squared errors of the two PI controllers. The weighting

vector W T , the integral square error, ISE, and the decision variables vector are as follows:

128 Chapter 8. Integrated design and control problems

W T = [w1 w2] =

[

1000

1001

1

1001

]

(8.45)

ISE =

[

ISEO

ISEN

]

(8.46)

ISE(.) =

∫ tf

t0

ε (τ)2(.) dτ (8.47)

v =

[

vO

vN

]

=









K(O)

τi(O)

K(N)

τi(N)









(8.48)

The weighting vector is chosen such that the ISEO equals to the ISEN part when using

the benchmark default settings provided by the COST project (Copp, 2001). Boundaries on

the decision variables (vL and vU) are chosen such that the process dynamics do not show

(exceptional) unstable behavior:

vL = [100 7.0 · 10−4 100 1.0 · 10−2]T (8.49)

vU = [1000 7.0 · 10−1 50000 1.0]T (8.50)

The objective function values are normalized with respect to the performance obtained

with the tuned controller settings provided by the COST project (i.e., default values of Table

8.5) using the constant parameter c = 1.1845 · 103 to obtain a function value equal to one

when using default values for the decision variables (i.e., J(vCOST = 1)).

The histogram (in log-scale) depicting the multistart procedure to check the non-convexity

of the problem is shown in Figure 8.5. Due to the high computational cost of every simulation,

the number of initial points used in the multistart procedure was only 40. The histogram

shows the practical non-convexity of the problem and the best value reported (f(x) = 0.7463)

outperforms the value obtained with default parameters but not the solutions obtained ap-

plying global optimization methods, as shown below.

Table 8.6 shows the results obtained by the different GO methods applied and Figure 8.6

presents the convergence curves for the runs achieving the best solution obtained by every

method. The initial point used for this problem is reported together with the best found

vectors in Table 8.7. For the sake of comparison, the initial set of 42 points (including the

initial one) to create the first surrogate surface was used for rbfSolve, ego and SSKm.

8.3. Problem WWTP-COST: a computationally expensive model 129

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 8.5: Histogram of solutions obtained from the multistart procedure using
fmincon for problem WWTP-COST1

Mean Mean
Solver Best Mean Worst

Evaluations CPU time (h)

CMAES 0.5313 0.7690 1.8751 402 7.75
DE 0.5399 0.5693 0.6834 400 8.03

glcDirect 0.5565 - - 400 11.04
OQNLP 0.6350 - - 400 11.00
SRES 0.6815 1.2895 1.6848 400 8.51
SSm 0.5340 0.6171 0.7672 400 9.65

rbfSolvea 0.6530 - - 388 10.84

rbfSolveb 0.5287 - - 283 8.05
ego 0.7797 - - 355 9.92

SSKmc 0.5293 0.5347 0.5606 400 8.55

aUsing thin plate splines
bUsing cubic splines
cResults for p = 0

Table 8.6: Results for problem WWTP-COST1

Parameter Best rbfSolve solution Best SSKm solution Initial point

K(O) 539.82 470.46 750.62

τi(O) 7 · 10−4 7 · 10−4 0.50691

K(N) 19975 20246 27831

τi(N) 0.027052 0.026625 0.093233

J 0.5287 0.5293 35.91

Table 8.7: Best solutions provided by SSKm and rbfSolve for problem WWTP-
COST1

130 Chapter 8. Integrated design and control problems

0 50 100 150 200 250 300 350 400 450

10
0

10
1

10
2

Number of simulations

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
CMAES

DE

glcDirect

OQNLP

SRES

SSm

rbfSolve
b

SSKm

ego

Figure 8.6: Convergence curves for the different solvers in problem WWTP-
COST1

As shown in Table 8.6, two of the surrogate model-based solvers (i.e., rbfSolve and SSKm)

present the best results. However, Figure 8.6 shows a faster convergence rate of SSKm with

respect of the rest of solvers. Indeed, it achieves a solution in the order of the best ones in

less than 100 simulations.

To illustrate the improvements achieved by applying global optimization to the minimiza-

tion of the controllers ISE ’s, Table 8.8 shows the values obtained with the default parameters

provided by the benchmark authors (not with the initial point used for the optimizations)

compared with those obtained with the optimized controllers parameters (the best result ob-

tained by rbfSolve). The evolution of the ISE ’s for both solutions is also provided in Figure

8.7.

Index Value with vCOST Value with vrbfSolveb

J 0.9985 0.5287

ISEN 0.8335 0.4415

ISE0 1.1055 · 10−5 5.9025 · 10−6

Table 8.8: Initial and optimized indexes for problem WWTP-COST1

8.3. Problem WWTP-COST: a computationally expensive model 131

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (d)

IS
E

N

Optimized parameters

Default parameters

(a) N-controller

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−5

Time (d)

IS
E

O

Optimized parameters

Default parameters

(b) O-controller

Figure 8.7: ISE evolution comparison for default and optimized parameters

8.3.3 Operational design

Subproblem WWTP-COST2: NLP Problem

After having tested the different optimization algorithms over the COST benchmark model,

the next step is to pose a more complicated problem in terms of design (and also in terms of

number of decision variables). The new formulated objective function will be more complex

and will take into account not only controllability aspects but also the process economy.

The selected decision variables for this extended problem will be, apart from the controllers

parameters chosen in the previous section, the aeration factors of the aerated tanks (i.e.,

KLa3 and KLa4), the external recycling flow rate, Qr, and the sludge purge flow rate, Qw.

The new optimization problem is formulated as follows:

min C(v) = w1 · φcont + w2 · φecon (8.51)

where φcont is the same term defined in Equation 8.44. φecon takes into account the

different terms which define the operating costs of the process, such as effluent quality, EQ,

aeration and pumping energies, AE and PE, and the amount of sludge for disposal, Psludge.

Vanrolleghem and Gillot (2002) defined particular economic costs derived from each of these

indexes. Based on the relations among these costs, we have defined φecon as:

φecon = 2 · EQ + AE + PE + 3 · Psludge (8.52)

w1 and w2 are chosen for both terms, φcont and φecon, to be in the same order of magnitude

when using the default values for the decision variables. As in the previous section, the

132 Chapter 8. Integrated design and control problems

optimization problem is subject to the system dynamics and the bounds for the decision

variables. For the controllers parameters we use the same bounds as in the previous case

(i.e., equations 8.49 and 8.50). Upper bounds for these new considered decision variables

were chosen taking into account the recommendations of the benchmark authors, whereas

the lower bounds were chosen to avoid systematic numerical integration errors along the

optimizations. These bounds, together with the initial point used for the optimizations are

shown in Table 8.9

Lower Upper Initial Point
Variable

bound bound (J = 119430)

K(O) 100 1000 955.12

τi(O) 0.0007 0.7 0.16234

K(N) 100 50000 30381

τi(N) 0.01 1.0 0.49112

KLa3 160 360 338.26

KLa4 160 360 312.42

Qr 10000 36892 22275

Qw 100 1844.6 132.28

Table 8.9: Bounds and initial point for WWTP-COST2 problem

The histogram (in log-scale) depicting the multistart procedure to check the multimodality

of the problem is shown in Figure 8.8. The number of initial points used was also 40 for the

same reasons given in the previous section. The histogram shows the practical multimodality

of the problem and the best value reported (f(x) = 35521) does not improve the value

obtained using default values for the decision variables (f(x) = 35225).

Table 8.10 shows the results obtained by the different GO methods applied and Figure

8.9 presents the convergence curves for the best solution obtained by every method. For the

sake of comparison, the initial set of 66 points (including the initial one) to create the first

surrogate surface was used for rbfSolve, ego and SSKm.

As shown in Table 8.10, only SSm and two surrogate model-based methods (i.e., rbfSolve

and SSKm) are able to reduce the function value under 34000. In particular, SSKm obtains

the best solution for this budget of simulations. A value of p = 0.5 seems to be more suitable

for this problem, providing a smaller dispersion over the 10 optimizations performed. How-

ever, Figure 8.9 shows that, even if SSKm and rbfSolve provide the best function values, they

do not present the fastest convergence rate as expected. The reason might be an inadequate

initial sampling for building the first surrogate surface and also the number of initial obser-

vations to build it, which are two crucial elements regarding the efficiency of the methods.

8.3. Problem WWTP-COST: a computationally expensive model 133

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

3.5

4

Objective Function Value

F
re

q
u

e
n

c
y

Histogram

Figure 8.8: Histogram of solutions obtained from the multistart procedure using
fmincon for WWTP-COST2 problem

Mean Mean
Solver Best Mean Worst

Evaluations CPU time (h)

CMAES 34852 35531 37561 802 24.55
DE 34393 34773 35380 800 27.86

glcDirect 35402 - - 800 20.72
OQNLPa 40902 - - 800 35.18

SRES 34530 35950 37271 800 27.25
SSm 33926 34690 35574 800 28.04

rbfSolveb 34884 - - 492 39.63
rbfSolvec 33970 - - 677 35.11

ego 34612 - - 800 24.25

SSKmd 33633 41363 36506 800 23.62
SSKme 33544 34223 35383 800 30.05

aLocal search deactivated
bUsing thin plate splines
cUsing cubic splines
dResults for p = 0
eResults for p = 0.5

Table 8.10: Results for WWTP-COST2 problem

However, the other surrogate model-based optimization method tested (ego) shows a fast

initial convergence rate although the final value provided is not as good as those provided by

SSKm and rbfSolve. The best vector found by SSKm is the following:

134 Chapter 8. Integrated design and control problems

0 100 200 300 400 500 600 700 800

10
5

Number of simulations

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
CMAES

DE

glcDirect

OQNLP
a

SRES

SSm

rbfSolve
c

SSKm
e

ego

Figure 8.9: Convergence curves for the different solvers in WWTP-COST2 prob-
lem

vSSKm = [690.046 0.0009 19557 0.02128 181.88 184.54 16624 370.09]T (8.53)

To illustrate the improvements achieved by applying global optimization to this problem,

Table 8.11 shows the values obtained with the default parameters provided by the benchmark

authors compared with those obtained with the optimized controllers parameters (the best

result obtained by SSKm).

Value with Value with
Index

vCOST vSSKme

C 35225 33544

φcont 0.9985 0.5888

ISEN 0.8335 0.4533
ISE0 1.1055 · 10−5 4.4718 · 10−5

φecon 34227 32965

EQ (kg poll units/d) 9032 8902
AE (kWh/d) 7173 5577
PE (kWh/d) 1919 2394
Psludge (kg/d) 2347 2397

Table 8.11: Initial and optimized indexes for WWTP-COST2 problem

As it usually occurs in multiobjective optimization problems, some of the objectives can

8.3. Problem WWTP-COST: a computationally expensive model 135

not be reduced at the same time. Some of the indexes (e.g., PE or Psludge) present worst

values after the optimization because they are competing with other indexes to reduce the

objective function value. A multiobjective optimization approach for this problem would

give us an idea of the different solutions in the pareto front to be able to choose the most

interesting amongst them.

Subproblem WWTP-COST3: MINLP problem

To finish this chapter, an extension of the previous problem is proposed. In this case, all

the variables shown in Table 8.5 will be used as decision variables. Some of the bounds

are extended to allow a possible change of plant configuration (e.g., the anoxic tanks could

become aerated and vice versa, changing from a pre-denitrification to a post-denitrification

configuration). The objective function used will be the same as in the previous problem. For

the sake of comparison with a previous work (Exler et al., 2007), the initial point used for

this case will be the default one provided by the benchmark authors, and shown in Table 8.5.

The histogram (in log-scale) depicting the multistart procedure to check the non-convexity

of the problem is shown in Figure 8.8. The number of initial points used was also 40 and the

local solver used for this case was misqp.

10
4

10
5

10
6

10
7

10
8

0

0.5

1

1.5

2

2.5

3

Objective Function Value

F
re

q
u
e
n
c
y

Histogram

Figure 8.10: Histogram of solutions obtained from the multistart procedure
using misqp for WWTP-COST3 problem

The histogram shows the practical non-convexity of the problem and the best value re-

136 Chapter 8. Integrated design and control problems

ported (f(x) = 44937) is very far from the value obtained using default values for the decision

variables (f(x) = 35225).

The optimization solvers used in this work do not handle integer variables, thus for testing

the performance of SSm, results obtained by Exler et al. (2007) will be compared with ours.

These authors presented results for this problem using a tabu search-based algorithm, MITS,

and compared their results with those obtained by OQNLP and minlpBB (Leyffer, 2001).

The best SSm solution, which provided a function value of 33104, as well as the bounds used

for this problems are shown in Table 8.12.

Lower Upper
Variable

bound bound
x∗

SSm

K(O) 100 1000 522.71

τi(O) 0.0007 0.7 0.002537

τt(O) 0.0001 0.7 0.189337

K(N) 100 50000 14366

τi(N) 0.01 1.0 0.045639

τt(N) 0.0001 0.07 0.033363

KLa1 0 360 0

KLa2 0 360 71.07

KLa3 0 360 126.02

KLa4 0 360 183.46

Qr 0 36892 10316

Qw 0 1844.6 199.9

Lfeed 1 10 7

Table 8.12: Bounds and best SSm solution for WWTP-COST3 problem

SSm best solution outperforms the MITS results of Exler et al. (2007) which, at the same

time, outperformed OQNLP and minlpBB. It is to note that the solution vector provided by

SSm achieves a better function value by slightly modifying the default plant configuration

(see values of Table 8.5 for comparison). Indeed, some aeration is now introduced in tank

2 whereas it is considerably reduced in tanks 3 and 4. Figure 8.11 shows the convergence

curves for these three algorithms in the fixed number of simulations.

Like in the previous example, the improvements in the different performance index ap-

plying the optimized vector with respect to the results obtained with default values for the

decision variables, are shown in Table 8.13. In this case, savings are mainly produced in the

aeration and pumping energies.

8.4. Conclusions 137

0 500 1000 1500
3.3

3.35

3.4

3.45

3.5

3.55
x 10

4

Number of Simulations

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

minlpBB

OQNLP

MITS

SSm

Figure 8.11: Convergence curves for SSm compared with those obtained by
Exler et al. (2007)

Value with Value with
Index

vCOST vSSm

C 35225 33104

φcont 0.9985 1.2402

ISEN 0.8335 0.9356
ISE0 1.1055 · 10−5 1.1334 · 10−4

φecon 34227 31863

EQ (kg poll units/d) 9032 9185
AE (kWh/d) 7173 4964
PE (kWh/d) 1919 1456
Psludge (kg/d) 2347 2358

Table 8.13: Initial and optimized indexes for WWTP-COST3 problem

8.4 Conclusions

Unlike in the parameter estimation problem section, in which our algorithm is clearly superior

to the rest, the differences among solvers are smaller in this set of problems. In any case,

our algorithm was competitive, providing the best solution in some cases and showing a low

dispersion among its results. In the case of the computationally expensive model (the COST

benchmark) the application of SSKm led to the best results in the small budget of simulations

fixed. It is to note that, for this set of problems, the local search turned out to be inefficient,

due to the presence of discontinuities (i.e., in problem WWTP1 because points violating the

path constraints are directly rejected using a death-penalty approach as in Moles et al. 2003a)

138 Chapter 8. Integrated design and control problems

or to the small number of simulations allowed (i.e., in the WWTP-COST benchmark).

Chapter 9

Dynamic optimization problems

9.1 Introduction

Dynamic optimization of bioprocesses has received major attention in recent years. A relevant

example is the dynamic optimization of fed-batch bioreactors (Banga et al., 2003a). Dynamic

optimization allows the computation of the optimal operating policies to maximize a prede-

fined performance index such as productivity or other economic indexes (Banga et al., 2005).

Most bioprocesses present a nonlinear dynamic nature and constraints in both the state and

the control variables (see Section 1.1.1), which calls for the use of robust dynamic optimiza-

tion techniques in order to successfully obtain their optimal operating policies. Numerical

methods for the solution of dynamic optimization problems are usually classified under three

categories: dynamic programming, indirect and direct approaches. Dynamic programming

(Bellman, 2003) is not practically applicable to problems of realistic size or is computation-

ally too expensive. Indirect (classical) approaches are based on the transformation of the

original optimal control problem into a two-point boundary value problem (BVP) using the

necessary conditions of Pontryagin (Bryson and Ho, 1975). The resulting boundary value

problems can be very difficult to solve, especially when state constraints are present. Direct

approaches transform the original dynamic optimization problem into a non-linear program-

ming problem using either control vector parameterization (Vassiliadis et al., 1994a,b) or

complete parameterization (Cuthrell and Biegler, 1989). From these methods, the control

vector parameterization (CVP) approach seems to be the most convenient for dealing with

large scale ODE systems (Balsa-Canto et al., 2004), such as those resulting from distributed

139

140 Chapter 9. Dynamic optimization problems

systems.

The CVP approach proceeds dividing the time horizon into a number of ρ time intervals.

The control variables are then approximated within each interval by means of basic functions,

usually low order polynomials (see Figure 9.1), with fixed or variable length over time. This

parameterization transforms the original (infinite dimensional) dynamic optimization problem

into a non-linear programming problem where the systems dynamics (differential equality

constraints) must be integrated for each evaluation of the performance index.

In this work we will use Piecewise Constant approximation, PC (i.e., zero order polyno-

mial) with fixed-length time intervals and fixed final time. Different number of intervals will

be used for each problem in order to check the scalability of the different global optimization

methods.

Real control

PC controls

C
o
n
tr

o
l

Time

Figure 9.1: Scheme of the CVP approach

NLPs arising from the application of direct approaches (such as CVP) are frequently

multimodal. Therefore, gradient based local optimization techniques (such as SQP methods)

may converge to local optima.

Global optimization methods are robust alternatives to local methods. Recent advances

in global deterministic methods for dynamic optimization have been achieved in recent years

(Esposito and Floudas, 2000a; Singer et al., 2001; Papamichail and Adjiman, 2002; Chachuat

et al., 2006) but they still need some requirements regarding the functions differentiability

and the path constraints type to be handled. Besides, the computational effort is still a

barrier for the application of these methods. Stochastic global optimization methods have

9.2. Fed-batch reactor for ethanol production 141

been successfully applied to dynamic optimization problems (Banga and Seider, 1996; Banga

et al., 1997; Roubos et al., 1999; Rajesh et al., 2001; Sarkar and Modak, 2004; Zhang et al.,

2005; Faber et al., 2005; Shelokar et al., 2008). Other approaches using hybrid methods have

shown very good results too (Banga and Seider, 1996; Balsa-Canto et al., 2005; Banga et al.,

2005).

9.2 Fed-batch reactor for ethanol production

9.2.1 Introduction

This system is a fed-batch bioreactor for the production of ethanol from the anaerobic glucose

fermentation by Saccharomyces cerevisiae. The dynamic optimization of this process with

fixed final time was studied by Hong (1986), Chen and Hwang (1990a,b) Luus (1993a) and

Banga et al. (1997). The objective is to find the feed rate which maximizes the yield of

ethanol. Mathematically, it can be stated as:

Find u(t) to maximize

J(u) = y3(tf)y4(tf) (9.1)

subject to the system dynamics, described by:

ẏ1 = p1y1 − u

(

y1

y4

)

(9.2)

ẏ2 = −10 p1y1 + u

(

150 − y2

y4

)

(9.3)

ẏ3 = p2y1 − u

(

y3

y4

)

(9.4)

ẏ4 = u (9.5)

with

p1 =

(

0.408

1 + y3/16

)(

y2

0.22 + y2

)

(9.6)

p2 =

(

1

1 + y3/71.5

)(

y2

0.44 + y2

)

(9.7)

where y1 represents the microbial population concentration, y2 is the substrate concentra-

tion, y3 the product concentration (all of them in g/L) and y4 is the volume (in L), which must

satisfy the following end-point constraint: y4(tf) ≤ 200 for tf = 54h (optimal time calculated

142 Chapter 9. Dynamic optimization problems

by Chen and Hwang 1990a). The initial state of the system is given by y(0) = [0 150 0 10]T

and the limits for the control variable are: 0 ≤ u(t) ≤ 12

9.2.2 Numerical results

For this problem (and the rest of problems considered in this work) several authors proved its

non-convex nature. Therefore, the multistart procedure carried out in the previous chapters

will not be repeated here. Three levels of discretization were used for every problem in this

chapter. In this case we used ρ=10, 20 and 40.

The system of ODE’s of this problem was solved using a Runge-Kutta-Felhberg method

implemented in the routine RKF45 (Shampine and Watts, 1977) with absolute and relative

integration tolerances of 10−7. From the different local search methods available in SSm,

SQP-based algorithms were the most competitive for this problem. In particular, fsqp and

misqp provided excellent solutions in a small number of function evaluations. However, fsqp’s

convergence rate was rather low for the level of discretization ρ = 40, therefore misqp was

the chosen method to perform the local search in this problem. Table 9.1 presents results for

every solver with the different levels of discretization.

CMAES DE glcDirect OQNLP SRES SSm

Best 20316.11 20316.08 20203.74 20316.11 20305.96 20316.11
ρ = 10 Mean 19889.67 20100.72 - - 20093.14 20291.38

Worst 18996.02 19672.46 - - 19554.01 20192.48

Best 20412.14 20404.36 19738.01 20412.19 20327.11 20412.19
ρ = 20 Mean 20273.76 20383.95 - - 20237.58 20412.19

Worst 19953.39 20341.29 - - 20095.71 20412.19

Best 20430.84 20375.32 19544.88 20444.47 20214.40 20444.86
ρ = 40 Mean 20360.73 20239.27 - - 19726.07 20444.86

Worst 20110.08 19902.08 - - 19466.64 20444.86

Table 9.1: Results for the ethanol production problem

SSm obtains the best results for this problem for every level of discretization (together

with CMAES for ρ = 10 and OQNLP for ρ = 10 and 20) with the smallest dispersion in the

results. Figure 9.2 shows the convergence curves for all solvers in every discretization level.

It must be noted that CMAES presents a fast convergence rate compared with the rest of

solvers in every case.

Figure 9.3 shows the control profiles resulting from the best solution found for every

discretization level. In this case, all of them correspond to the solutions found by SSm.

9.2. Fed-batch reactor for ethanol production 143

10
−1

10
0

10
1

10
2

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x 10
4

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(a) ρ = 10

10
0

10
1

10
2

10
3

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x 10
4

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(b) ρ = 20

10
0

10
1

10
2

10
3

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x 10
4

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(c) ρ = 40

Figure 9.2: Convergence curves for the ethanol production problem

144 Chapter 9. Dynamic optimization problems

0 10 20 30 40 50
0

2

4

6

8

10

12

Time (h)

C
o

n
tr

o
l

(a) ρ = 10, SSm solution

0 10 20 30 40 50
0

2

4

6

8

10

12

Time (h)

C
o

n
tr

o
l

(b) ρ = 20, SSm solution

0 10 20 30 40 50
0

2

4

6

8

10

12

Time (h)

C
o
n
tr

o
l

(c) ρ = 40, SSm solution

Figure 9.3: Optimal control profiles for the ethanol production problem

9.3 Fed-batch fermenter for penicillin production

9.3.1 Introduction

This problem deals with the dynamic optimization of a fed-batch fermenter for the produc-

tion of penicillin through anaerobic glucose fermentation. The dynamic optimization of this

process with fixed final time was studied by Banga et al. (1997), Cuthrell and Biegler (1989)

and Luus (1993b). The optimal control problem is to maximize the total amount of penicillin

produced using the feed rate of substrate as the control variable. Mathematically, it can be

stated as:

Find u(t) to maximize

J(u) = y2(tf)y4(tf) (9.8)

9.3. Fed-batch fermenter for penicillin production 145

subject to the system dynamics, described by:

ẏ1 = h1y1 −
u · y1

500y4
(9.9)

ẏ2 = h2y1 − 0.01y2 −
u · y2

500y4
(9.10)

ẏ3 = −h1y1

0.47
− h2y1

1.2
− 0.029y1y3

0.0001 + y3
+

u

y4

(

1 − y3

500

)

(9.11)

ẏ4 = u/500 (9.12)

with

h1 =
0.11y3

0.006y1 + y3
(9.13)

h2 =
0.0055y3

0.0001 + y3(1 + 10y3)
(9.14)

where y1, y2 and y3 are, respectively, the biomass, penicillin and substrate concen-

trations (in g/L). y4 is the fermenter volume (in L). The vector of initial conditions is

y(0) = [1.5 0 0 7]T .

The final product is destined to human consumption. Therefore, it must be produced

under certain conditions to avoid harmful effects. For that reason, the concentrations of the

present species are subject to a set of path constraints, which are:

0 ≤ y1 ≤ 40 (9.15)

0 ≤ y3 ≤ 25 (9.16)

0 ≤ y4 ≤ 10 (9.17)

Bounds for the control variable are defined as 0 ≤ u ≤ 50 and the total process time is

fixed in tf = 132 h.

9.3.2 Numerical results

The system of ODE’s of this problem was solved using LSODE (Livermore solver for ordinary

differential equations, Hindmarsh 1983) with a BDF (Backward Differentiation Formulae)

method, suitable for stiff problems, with absolute and relative integration tolerances of 10−7.

For this problem, a direct search local method provided better results than a gradient-based

one, thus we used fminsearch as local solver. Table 9.2 presents results for every solver with

the different levels of discretization.

146 Chapter 9. Dynamic optimization problems

CMAES DE glcDirect OQNLP SRES SSm

Best 87.934 87.934 87.258 87.775 87.927 87.931
ρ = 10 Mean 87.837 87.914 - - 87.688 87.906

Worst 87.340 87.835 - - 87.348 87.889

Best 87.948 88.013 84.490 87.400 87.671 87.998
ρ = 20 Mean 87.841 87.955 - - 86.900 87.885

Worst 87.599 87.767 - - 85.064 87.796

Best 87.914 87.926 80.657 87.547 82.709 87.999
ρ = 40 Mean 87.861 87.802 - - 82.709 87.863

Worst 87.745 87.565 - - 82.709 87.595

Table 9.2: Results for the penicillin production problem

DE provided the best results and smallest dispersion for the levels of discretization ρ = 10

and 20. For ρ = 40, SSm provided the best solution.

Figure 9.4 shows the convergence curves for all solvers in every discretization level.

OQNLP presented the fastest initial convergence rate even if the final values provided were

not as good as those obtained by other solvers (e.g., DE, SSm or CMAES)

Figure 9.5 shows the control profiles resulting from the best solution found for every

discretization level: DE for ρ =10, 20 and SSm for ρ =40.

9.4 Drying operation

9.4.1 Introduction

In this section we will consider a food convective drying problem, similar to the one formulated

by Banga and Singh (1994). In particular, the aim is to dry a cellulose slab (see Figure 9.6)

maximizing the retention of a nutrient (ascorbic acid).

It is assumed that the transport of water within the solid is the controlling mechanism,

and that the driving force is the gradient of moisture content. Thus, the governing equation

will be Fick’s equation for diffusion (Fick’s second law):

dm

dt
= ∇ (D∇m) (9.18)

Due to the small thickness of the slab as compared with the other dimensions, we can

consider a semi-infinite system where the moisture content depends only on the position with

respect to the minor (thickness) dimension. Moreover, in order to take the shrinking effect

into account, the diffusivity D is assumed to be a nonlinear function of both the moisture

content and the temperature, thus Equation 9.18 reads:

9.4. Drying operation 147

10
0

10
1

10
2

−88

−87

−86

−85

−84

−83

−82

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(a) ρ = 10

10
0

10
1

10
2

10
3

−88

−87

−86

−85

−84

−83

−82

CPU Time (s)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(b) ρ = 20

10
1

10
2

10
3

−88

−87

−86

−85

−84

−83

−82

−81

−80

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(c) ρ = 40

Figure 9.4: Convergence curves for the penicillin production problem

148 Chapter 9. Dynamic optimization problems

0 20 40 60 80 100 120
0

10

20

30

40

50

Time (h)

C
o

n
tr

o
l

(a) ρ = 10, DE solution

0 20 40 60 80 100 120
0

10

20

30

40

50

Time (h)

C
o

n
tr

o
l

(b) ρ = 20, DE solution

0 20 40 60 80 100 120
0

10

20

30

40

50

Time (h)

C
o
n
tr

o
l

(c) ρ = 40, SSm solution

Figure 9.5: Optimal control profiles for the penicillin production problem

dm

dt
= D

(

∂2m

∂x2

)

+
∂D

∂m

(

∂m

∂x

)2

(9.19)

being m the moisture content. D is considered to be dependent of the temperature and m.

Its value is calculated following Luyben et al. (1982):

D = Dref · exp

[

−ED

R

(

1

Ts
− 1

Tref

)]

(9.20)

where Dref y ED are functions of the moisture content:

Dref = exp

(

−b1 + b2m

1 + b3m

)

(9.21)

ED =

(

b4 + b5m

1 + b6m

)

(9.22)

The average moisture content of the slab is calculated using:

9.4. Drying operation 149

air flow

Tdb

Ts , m

L1 = 3.4 cm

L2 = 3.5 cm

L3 = 0.2 cm

air flow

Tdb

Ts , m

L1 = 3.4 cm

L2 = 3.5 cm

L3 = 0.2 cm

Figure 9.6: Air drying of a cellulose slab

mavg =
1

L

∫ L

0
m(x)dx (9.23)

ms =
ρ0L1L2L3

mavg,0 + 1
(9.24)

The temperature of the slab is assumed to be uniform. Therefore, an energy balance gives

(thin slab assumption):

(msCps + msmavgCpw)
dTs

dt
= hA (Tdb − Ts) + msλw

(

dmavg

dt

)

(9.25)

where the latent heat of vaporization, λw, depends on temperature:

λw = α1 − α2Ts (9.26)

The heat transfer coefficient and the surface area are variable during drying, so hA is

estimated using an empirical linear function of moisture:

hA = A0 (p1mavg + p2) (9.27)

where:

150 Chapter 9. Dynamic optimization problems

A0 = 2 (L1L2 + L1L3 + L2L3) (9.28)

where L1, L2 and L3 are the slab dimensions and p1, p2 are the model parameters calculated

by Mishkin et al. (1982). The nutrient degradation (ascorbic acid) is supposed to be described

by first order kinetics (Villota and Karel, 1980a,b).

dCAA

dt
= −kAACAA (9.29)

where kAA is a function of the temperature and the moisture content:

ln kAA = a1m + a2T
−3 + a3m

3 + a4m
2T−1 + a5mT−2 + a6m

3T−3 + a7 (9.30)

The complete mathematical model is as follows:

Γ(m,T, mavg, CAA, Tdb, x, t) = 0 (9.31)

The dynamic optimization problem associated with the process consists of finding the dry

bulb temperature, Tdb, along the time to maximize the ascorbic acid retention, retAA, at the

final time, tf (with tf=1250 minutes).

max
Tdb

retAA (tf) (9.32)

subject to the system dynamics:

retAA (t) =
CAA,avg(t)

CAA,0
=

1

L1

∫ L1

0 CAA (x, t) dx

CAA,0
(9.33)

The problem has an end-point constraint related with the average moisture content at

the final time:

mavg(tf) ≤ mavg,f (9.34)

where mavg,f = 0.1 Kg/Kg of dry solid. The bounds for the control variable, Tdb, are 60 ≤
Tdb(t) ≤ 95 (in �).

9.5. Microwave heating of foods 151

9.4.2 Numerical results

To solve the system of PDE’s describing this model, the numerical method of lines (NMOL,

Schiesser 1991) was used. The resulting ODE system was solved using LSODES (Hindmarsh,

1980) which uses disperse algebra. The integration tolerances (absolute and relative) were

10−7. Due to the inefficiency of the local solvers for this problem, the local search was deac-

tivated for SSm, performing a final local refinement with the direct search solver fminsearch.

OQNLP also provided better solutions deactivating its local search, thus only these results

are presented in Table 9.3.

CMAES DE glcDirect OQNLP SRES SSm

Best 0.20002 0.20003 0.19979 0.19875 0.20001 0.20003
ρ = 10 Mean 0.19710 0.19683 - - 0.19894 0.19694

Worst 0.19108 0.18939 - - 0.19579 0.18742

Best 0.19997 0.19913 0.19329 0.15483 0.19989 0.20010
ρ = 20 Mean 0.19696 0.19608 - - 0.19878 0.19687

Worst 0.19298 0.19185 - - 0.19728 0.19326

Best 0.19952 0.19859 0.18848 0.15102 0.19001 0.19788
ρ = 40 Mean 0.19751 0.19442 - - 0.18796 0.19618

Worst 0.19522 0.19103 - - 0.18623 0.19311

Table 9.3: Results for the drying process problem

SSm provided the best results for the levels of discretization ρ = 10 (with DE) and 20.

For ρ = 40, CMAES provided the best solution. It is to note that SRES showed the best

mean value along the number of runs performed for ρ = 10 and 20. Figure 9.7 shows the

convergence curves for all solvers in every discretization level.

Figure 9.8 shows the control profiles resulting from the best solution found for every

discretization level: SSm for ρ = 10, 20 and CMAES for ρ = 40. The control profiles

show that smaller levels of discretization (e.g., ρ = 3) could achieve similar results in less

computational effort. Initial low temperatures avoid a quick degradation of the ascorbic acid

and favor the internal heat diffusion and water transport inside the food. The moisture

content raises during this first stage and, therefore, the temperature needs to be increased to

obtain the average moisture content at the final time imposed by the constraint.

9.5 Microwave heating of foods

9.5.1 Introduction

This section deals with the optimization of the heating process of foods in a combined

microwave-convection oven. In particular, the product considered is a cylinder with radius

152 Chapter 9. Dynamic optimization problems

10
1

10
2

−0.21

−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(a) ρ = 10

10
1

10
2

10
3

−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(b) ρ = 20

10
1

10
2

10
3

−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

−0.12

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(c) ρ = 40

Figure 9.7: Convergence curves for the drying process problem

9.5. Microwave heating of foods 153

0 200 400 600 800 1000 1200
60

70

80

90

Time (min)
C

o
n

tr
o

l

(a) ρ = 10, SSm solution

0 200 400 600 800 1000 1200
60

70

80

90

Time (min)

C
o

n
tr

o
l

(b) ρ = 20, SSm solution

0 200 400 600 800 1000 1200
60

70

80

90

Time (min)

C
o
n
tr

o
l

(c) ρ = 40, CMAES solution

Figure 9.8: Control profiles for the drying process problem

Rm and height Zm. These heating mechanisms complement each other: while microwaves

favor the internal heating, convection acts in the surface. Thus, both mechanisms may be

optimally combined to maximize the uniformity in the product temperature, avoiding cold

or hot points (typical in microwave processing) and their possible effects over the security

and/or quality of the final product.

We will try to solve an optimal control problem similar to the one proposed by Saa

et al. (1998) and Banga et al. (1999), where the objective is to obtain the profiles for the

microwave power, P0(t), and the oven temperature, Toven(t) to maximize the uniformity of

the final temperature, for a final time of 270 seconds.

In particular, the mathematical model used was formulated by Lin et al. (1995) in which it

is assumed that the equation governing the heating process in a combined oven is the second

Fourier’s law with a term, Φ, of energy generation arising from the microwave heating:

154 Chapter 9. Dynamic optimization problems

Cpρ̃
∂T

∂t
= k

(

1

r

∂T

∂r
+

∂2T

∂r2
+

∂2T

∂z2

)

+ Φ (9.35)

The thermal conductivity, k, is assumed to be constant and the generation term, Φ, is

based on Lambert’s law (Ohlsson and Bengtsson, 1971). Besides, Lin et al. (1995) added a

correction term due to the internal wave reflection. Here it is assumed that the product has

a uniform initial temperature, T (r, z) = T0 = 25 �. Heating by convection is imposed by the

boundary conditions

k
∂T

∂r
= h (Toven − T) for r = Rm (9.36)

k
∂T

∂z
= h (Toven − T) for z = Zm (9.37)

Due the radial and axial symmetry, the internal temperature distribution of the product

can be fully described with the temperature change in a quarter of the transverse section of

the z axis. Besides, the product is considered homogeneous, as expressed by the following

equations:

∂T

∂r
= 0 for r = 0 (9.38)

∂T

∂z
= 0 for z = 0 (9.39)

The incident power in the product’s surface is considered as constant and orthogonal to

it. The term of heat generation for a cylindrical geometry is given by the equations

Φr(r, T) = 2β(T)
Rm

r
Pr

[

e−2β(T)(Rm−r) + e−2β(T)(Rm+r)
]

(9.40)

Φz(z, T) = 2β(T)Pz

[

e−2β(T)(Zm−z) + e−2β(T)(Zm+z)
]

(9.41)

Φ(r, z, T) = Φr(r, T) + Φz(z, T) (9.42)

with

Pr = P0/ (4πRmZm) (9.43)

Pz = 0.107P0/ (8πRmRm) (9.44)

9.5. Microwave heating of foods 155

To avoid the central singularity of Equation 9.40 when r → 0, the radial component of

the heat generation term is calculated with

Φr(r, T) =

{

2β(T)Rm

r Pr

[

e−2β(T)(Rm−r) + e−2β(T)(Rm+r)
]

if r > ε

2β(T)Rm

ε Pr

[

e−2β(T)(Rm−ε) + e−2β(T)(Rm+ε)
]

if r ≤ ε
(9.45)

with ε = 3.5 · 10−2 · Rm. Themophysical parameters and product dimensions were taken

from Chen et al. (1993). The mathematical model described above can be formulated as:

Ψ(T, P0, Toven, r, z, t) = 0 (9.46)

The optimal control problem is formulated to find P0(t) and Toven(t) to minimize:

J = Tdif (tf) = Tmax(tf) − Tmin(tf) (9.47)

subject to the system dynamic and an inequality constraint related with the minimum desired

final temperature:

Tmin(tf) ≥ TSET
min = 60 (9.48)

The bounds for the control variables are 0 ≤ P0 ≤ 190 (in W) and 25 ≤ Toven ≤ 200 (in �).

9.5.2 Numerical results

Like in the previous example, the system of PDE’s describing this model was transformed

into an ODE’s system using the numerical method of lines (NMOL) and was solved using

LSODES with integration tolerances (absolute and relative) of 10−7. Also, the local search

was deactivated for SSm, performing a final local refinement with the direct search solver

fminsearch. Since there are two control variables in this example, the discretization levels

considered are ρ = 5, 10 and 20, in order to evaluate the same number of decision variables

used in the previous case studies of this chapter. Table 9.4 shows the results obtained by

every solver for the different levels of discretization.

DE provided the best results for the levels of discretization ρ = 5 and 10, and the best

mean value for all cases. For ρ = 20, SSm provided the best solution. Figure 9.9 shows the

convergence curves for all solvers in every discretization level.

Figure 9.10 shows the control profiles resulting from the best solution found for every

discretization level: DE for ρ = 5, 10 and SSm for ρ = 20. The optimal control profiles for

156 Chapter 9. Dynamic optimization problems

CMAES DE glcDirect OQNLP SRES SSm

Best 3.6691 3.6665 6.5338 3.6988 3.6702 3.6718
ρ = 5 Mean 3.6780 3.6685 - - 3.6992 3.6816

Worst 3.6938 3.6793 - - 3.7829 3.7268

Best 3.4526 3.4351 6.6787 3.4784 3.4578 3.4374
ρ = 10 Mean 3.4684 3.4422 - - 3.4733 3.4498

Worst 3.4963 3.4537 - - 3.5073 3.4626

Best 3.3840 3.3680 6.6859 3.4921 3.9809 3.3615
ρ = 20 Mean 3.4891 3.3886 - - 4.0575 3.4522

Worst 3.6759 3.4095 - - 4.1485 3.9080

Table 9.4: Results for the combined oven problem

the microwave power show the same behavior in every case and are easy to implement in

practice.

9.6 Conclusions

The results obtained in this section show that our algorithm is also competitive for dynamic

optimization problems, achieving the best results in most of the cases and showing the best

mean values in many of them. Providing the different discretization levels considered, it has

also proved to have a good scalability with the problem size. The algorithm DE performs

very well in this set of problems too, regarding both best and mean values. According to

the convergence curves, CMAES presents the fastest convergence rate in general, even if the

final results are not as good as those provided by SSm and DE.

9.6. Conclusions 157

10
1

10
2

10
3

10
1

10
2

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(a) ρ = 5

10
1

10
2

10
3

10
1

10
2

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(b) ρ = 10

10
2

10
3

10
4

10
1

10
2

CPU Time (s)

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

CMAES

DE

glcDirect

OQNLP

SRES

SSm

(c) ρ = 20

Figure 9.9: Convergence curves for the combined oven problem

158 Chapter 9. Dynamic optimization problems

0 50 100 150 200 250
0

50

100

150

200

Time (s)

C
o
n
tr

o
l

T
oven

(ºC)

P
0
 (W)

(a) ρ = 5, DE solution

0 50 100 150 200 250
0

50

100

150

200

Time (s)

C
o
n
tr

o
l

T
oven

 (ºC)

P
0
 (W)

(b) ρ = 10, DE solution

0 50 100 150 200 250
0

50

100

150

200

Time (s)

C
o

n
tr

o
l

T
oven

 (ºC)

P
0
 (W)

(c) ρ = 20, SSm solution

Figure 9.10: Control profiles for the combined oven problem

Chapter 10

Executive summary of results

In this chapter we provide a summary of the results obtained in Chapters 7, 8 and 9. The

table below shows a summary of the performance of the different algorithms used in this

work in the different types of problems tested, reporting the number of times that each

solver obtained the best solution and the best mean value along the different runs (only for

continuous problems). SSm obtains the highest score for both best and mean values. Besides,

for the MINLP problem arising from the operational design of the WWT COST benchmark

model, SSm was able to outperform the best published solutions.

A more rigorous comparison can be done by making use of the performance profiles

methodology (Dolan and Moré, 2002). Following Auger and Hansen (2005), we define the

success performance FE for a solver on a specific problem by:

FE = evalmean · #all runs(10)

#successful runs
(10.1)

where a run is considered successful if it obtained the optimal solution with a relative error

≤ 0.1% (in our problems, we consider it as the best solution found by any of the solvers).

With this definition the best success performance FEbest is given by the lowest value of FE

for every problem. The figure below shows the empirical distribution function of the success

performance FE/FEbest over all the problems.

Performance profiles methodology ranks SSm in the first place for the set of problems

considered in the third part of this work compared with the rest of solvers tested.

159

160 Chapter 10. Executive summary of results

Solver Type of problems # best # mean

Parameter estimation 0 0
Integrated design and control 1 0
Dynamic optimization 5 1

CMAES

Total 6 1

Parameter estimation 0 0
Integrated design and control 2 0
Dynamic optimization 5 5

DE

Total 7 5

Parameter estimation 0 -
Integrated design and control 0 -
Dynamic optimization 0 -

glcDirect

Total 0 -

Parameter estimation 0 -
Integrated design and control 0 -
Dynamic optimization 2 -

OQNLP

Total 2 -

Parameter estimation 0 0
Integrated design and control 1 0
Dynamic optimization 0 2

SRES

Total 1 2

Parameter estimation 3 3
Integrated design and control 1 0
Dynamic optimization 7 4

SSm

Total 11 7

rbfSolvea Integrated design and control 1 -

egoa Integrated design and control 0 -

SSKma Integrated design and control 1 2

aOnly applied for the WWT COST benchmark.

Summary of results

1 10 20 30 40 50 6070
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FE / FE
best

E
m
p
i
r
i
c
a
l

D
i
s
t
r
i
b
u
t
i
o
n

o
v
e
r

t
e
s
t

p
r
o
b
l
e
m
s

CMAES

DE

OQNLP

SRES

SSm

Performance profiles

Part IV

Conclusions

161

Conclusions

This work deals with the global optimization of processes related with biotechnological and

food industries. Due to the structure of the mathematical models describing these processes,

the optimization of these systems is a complex task.

Here we have developed a scatter search-based methodology for mixed-integer nonlinear

optimization problems, which intends to be effective for solving global optimization problems

from the biotechnological and food industries. The procedure treats the objective function

as a black box, making the search algorithm context-independent. We have expanded and

advanced knowledge associated with the implementation of scatter search procedures. In

particular:

� We have used a more general solution combination method which drives the search to

other directions of the search space apart from those defined by every pair of solutions

in the population.

� Different filters to prevent premature stagnation and/or getting stuck in flat areas have

been included.

� A new population rebuilding strategy taking into account relative search directions has

also been developed.

� We have designed different mechanisms to intensify the search such as the as the “in-

tensification” and the go beyond strategy.

� The procedure has also been extended to handle integer variables as well as continuous

ones.

� The methodology has been implemented in Matlab under the name of SSm (Scatter

Search for Matlab) and has successfully been tested over a set of benchmark problems.

163

164

Regarding the global optimization of computationally expensive process models:

� We have combined kriging and scatter search methodologies to develop a global op-

timization method for computationally expensive process models. The evolutionary

framework of the scatter search procedure automatically selects a set of points that

balance between intensification and diversification in which the kriging prediction is

performed.

� We have also proposed a new performance index making use of the statistical informa-

tion provided by kriging, and different patterns of search with guidelines depending on

the type of optimization problems faced.

� The method, through its associated software tool implemented in Matlab, SSKm (Scat-

ter search with kriging for Matlab), has been tested over a set of two benchmark mathe-

matical functions and has proved to be efficient in locating not only the global optimum

but all of them (if they exist) in a few number of function evaluations.

In the last part of this work, the proposed methodologies described above have been

tested by applying their software implementations to different global optimization problems

from the biotechnological and food industries, covering the most relevant type of problems

arising in these areas (i.e., parameter estimation, integrated design and control and dynamic

optimization). In order to have an idea about their efficiency, they have been compared

with other state-of-the-art global optimization methods. The results obtained have led to the

following conclusions:

� The proposed methodologies are efficient and robust for the kind of problems intended

to solve, specially in the case of parameter estimation problems.

� For some problems (i.e., the estimation of parameters in a biochemical pathway or the

integrated design of the WWT COST benchmark), the results obtained outperformed

the best solutions found in literature (for the first case, in several orders of magnitude

in terms of convergence rate).

� In all cases our algorithms were competitive, being the most efficient among the tested

ones in many of the examples.

165

Future research will be focused on the auto-tuning of the methods parameters, as well

as on testing of new designs for some of their parts. For the case of the algorithm for

computationally expensive process models, a dynamic population could be useful at the

beginning and at the end of the search. The use of a different covariance for big problems

should also be considered for problems with a high number of variables (e.g., > 50). A

transformation of the data (e.g., log or inverse) could be also added for those cases in which

the correlation is not adequate.

166

Conclusiones

Este trabajo trata sobre la optimización global de procesos relacionados con las industrias

biotecnológica y alimentaria. Debido a la estructura de los modelos matemáticos que descri-

ben dichos procesos, la optimización de estos sistemas es una tarea compleja.

Se ha desarrollado un método basado en búsqueda dispersa (scatter search en inglés)

para problemas de optimización no lineal mixta entera, cuyo propósito es ser efectiva para

resolver problemas de optimización global de industrias biotecnológicas y alimentarias. El

método trata la función objectivo como una caja negra, haciendo al algoritmo de búsqueda

independiente del tipo de problema tratado. Se ha ampliado el conocimiento asociado a la

implementación de algortimos basados en scatter search. En concreto:

� Se ha implementado un método de combinación de soluciones más general que dirige

la búsqueda hacia otras direcciones distintas a las definidas por cada par de soluciones

en el conjunto de referencia (RefSet).

� Se han incluido diferentes filtros prevenir el estancamiento prematuro de las soluciones

y para evitar quedar atrapados en zonas planas del espacio de búsqueda.

� Se ha desarrollado una nueva estrategia de regeneración de la población que tiene en

cuenta las diferentes direcciones relativas de búsqueda.

� Se han diseñado diferentes mecanismos para intensificar la búsqueda.

� El método se ha extendido para el manejo de variables enteras además de continuas.

� La metodoloǵıa se ha implemtado en Matlab bajo el nombre de SSm (Scatter Search

for Matlab en inglés) y ha sido testado de forma satisfactoria sobre un conjunto de

problemas de banco de pruebas.

Respecto a la optimización global de procesos computacionalmente costosos de simular:

167

168

� Se han combinado las metodoloǵıas de scatter search y kriging para desarrollar un algo-

ritmo de optimización global para modelos computacionalmente costosos. El marco evo-

lutivo proporcionado por scatter search hace que el método seleccione automáticamente

un conjunto de puntos que aportan tanto intensificación como diversificación en la

búsqueda, en los cuales se lleva a cabo la predicción por kriging.

� Se ha propuesto un nuevo ı́ndice de evaluación que hace uso de la información estad́ıstica

proporcionada por el kriging, y diferentes patrones de búsqueda con indicaciones de-

pendiendo del tipo de problema tratado.

� El método, mediante su herramienta de software asociada implementada en Matlab,

SSKm (Scatter search with kriging for Matlab en inglés), ha sido probada sobre varios

problemas de banco de pruebas, mostrando su eficiencia para localizar no sólo el óptimo

global sino todos los que haya (si los hay) en un reducido número de evaluaciones de la

función objetivo.

En la última parte de este trabajo, las metodoloǵıas propuestas han sido evaluadas me-

diante sus implementaciones en software, aplicándolas a diferentes problemas de optimización

global de procesos biotecnológicos y alimentarios, cubriendo los tipos de problemas más re-

levantes que surgen en estas áreas (estimación de parámetros, diseño integrado con control y

optimización dinámica). Para tener una idea de la eficiencia de los métodos, estos han sido

comparados con otros algoritmos de optimización global que constituyen el estado actual.

Los resultados obtenidos han conducido a las siguientes conclusiones:

� Las metodoloǵıas propuestas son eficientes y robustas para el tipo de problemas que se

quiere resolver, especialmente en el caso de problemas de estimación de parámetros.

� Para algunos problemas (por ejemplo, la estimación de parámetros en una ruta bioqúımica

o el diseño integrado del modelo COST), los resultados obtenidos superan las mejores

soluciones encontradas en la bibliograf́ıa (en el primer caso, en dos órdenes de magnitud

en términos de velocidad de convergencia).

� En todos los casos los algoritmos propuestos son competitivos, siendo los más eficientes

de entre todos los métodos testados en la mayoŕıa de los casos.

El trabajo futuro se centrará en el autoajuste de los parámetros de los métodos propuestos,

aśı como en el testeo de nuevos diseños para algunas de sus partes. Para el caso del algoritmo

169

para modelos computacionalmente costosos, un tamaño de población variable podŕıa ser útil

al principio y al final de la búsqueda. El uso de un modelo de covarianza diferente para

problemas de gran tamaño debeŕıa ser considerado también para problemas con elevado

número de variables (por ejemplo, > 50). Una transformación de los datos (por ejemplo,

logaŕıtmica o inversa) podŕıa ser beneficiosa en los casos en los que la correlación no es

adecuada.

170

Part V

Appendices

171

Appendix A

Software documentation

A.1 Introduction

SSm seeks the global minimum of a MINLP problem specified by

min
x

f(x, p1, p2, ..., pn)

subject to

ceq = 0

cL ≤ c(x) ≤ cU

xL ≤ x ≤ xU

where x is the vector of decision variables, and xL and xU its respective bounds. p1, . . . , pn

are optional extra input parameters to be passed to the objective function (see examples in

Sections A.4.3 and A.4.5). ceq is a set of equality constraints. c(x) is a set of inequality con-

straints with lower and upper bounds, cL and cU . Finally, f(x, p1, p2, ..., pn) is the objective

function to be minimized.

173

174 Appendix A. Software documentation

A.2 SSm toolbox

A.2.1 SSm problem definition

Setting Description

problem.f String containing the name of the objective function

problem.x L Vector containing the lower bounds of the variables

problem.x U Vector containing the upper bounds of the variables

problem.x 0 Vector containing the given initial point (optional)

problem.neq Number of equality constraintsa

problem.c L Vector defining the lower bounds of the inequality constraints

problem.c U Vector defining the upper bounds of the inequality constraints

problem.int var Number of integer variablesb

problem.bin var Number of binary variablesb

problem.vtr Objective function value to be reached (optional)

aIn problems with equality constraints they must be declared before inequality constraints
bFor mixed integer problems, the variables must be defined in the following order: [cont., int., bin.]

Table A.1: SSm problem settings

A.2.2 User options

Option Description Default

opts.maxeval Maximum number of function evaluations 1000

opts.maxtime Maximum CPU time in seconds 60

Print each iteration on screen:
opts.iterprint

0: Deactivated; 1: Activated
1

Plots convergence curves:
opts.plot

0: Deactivated; 1: Real time; 2: Final results
0

Weight that multiplies the penalty term added to the
opts.weight

objective function in constrained problems
106

Indexes of the variables which will be analyzed using a
opts.log var

logarithmic distribution instead of a uniform one
[]

Maximum violation constraints violation allowed. This is
opts.tolc

also used as a tolerance for the local search
10−5

Saves Results, problem and options in a .mat file
opts.save report

0: Does not save report; 1: Saves report
0

opts.report name String specifying the report name ’ssm report.mat’

Table A.2: SSm user options

A.2.3 Global options

Option Description Default

opts.dim refset Number of elements in RefSet ’auto’
(

d2
−d

10·nvar
≥ 0

)

Number of solutions generation by the diversificator
opts.ndiverse

in the initial stage
’auto’ (10 · nvar)

A.2. SSm toolbox 175

Type of RefSet initialization:
0: Take bounds, middle point and fill by Euclidean distance
1: Evaluate all the diverse solutions, take the dim refset/2

opts.initiate

best solutions and fill by Euclidean distance

0

Type of combination of RefSet elements:
opts.combination 1: Hyper-rectangles combinations 1

2: Linear combinations

Type of RefSet regeneration:
1: Regeneration by distance diversity
2: Regeneration by direction diversity

opts.regenerate

3: Randomly alternates 1 and 2

3

Number of RefSet elements deleted when regenerating
the RefSet

’standard’ : Delete dim refset/2 (the worst half RefSet

members)
’aggressive’ : Delete dim refset − 1 (all of them except the

opts.delete

best solution found)

’standard’

opts.intens Iteration interval between intensifications 10

opts.tolf Function tolerance for joining the RefSet 10−4

Criteria for diversification in the RefSet
opts.diverse criteria

1: Euclidean distance; 2: Tolerances
1

Variable tolerance for joining the RefSet when the
opts.tolx

Euclidean distance is deactivated
10−3 for all variables

Table A.3: SSm global options

A.2.4 Local options

Option Description Default

Solver to perform the local search
opts.local.solver 0 (No local search); ’fmincon’; ’constrnew’;’nomad’; ’solnp’ ’fmincon’

’n2fb’; ’dn2fb’;’dhc’; ’fsqp’;’ipopt’,’misqp’,’lsqnonlin’

Level of tolerance in local search: 2
opts.local.tol

1: Relaxed; 2: Medium; 3: Tight (3 in final stage)

Print each iteration of local solver on screen (only for
opts.local.iterprint local solvers that allow it): 0

0: Deactivated; 1: Activated

Number of function evaluations before applying local
opts.local.n1

search for the first time
100 · nvar

Minimum number of function evaluations in the global
opts.local.n2

phase between two local searches
200 · nvar

Applies local search to the best solution found once the same as
opts.local.finish

optimization is finished opts.local.solver

Applies only local search to the best solution found to
opts.local.bestx date (if it is not a local minimum), ignoring filters: 0

0: Deactivated; 1: Activated

Activation of merit filter for local search:
opts.local.merit filter

0: Deactivated; 1: Activated
1

Activation of distance filter for local search:
opts.local.distance filter

0: Deactivated; 1: Activated
1

opts.local.thfactor Merit filter relaxation parameter 0.2

opts.local.maxdistfactor Distance filter relaxation parameter 0.2

176 Appendix A. Software documentation

Apply distance filter relaxation after this number of
opts.local.wait maxdist limit

function evaluations without success in passing the filter
20

Apply merit filter relaxation after this number of
opts.local.wait th limit

function evaluations without success in passing the filter
20

Table A.4: SSm local options

When using n2fb (or dn2fb) and lsqnonlin as local solvers, the objective function value

must be formulated as the square of the sum of differences between the experimental and

predicted data (i.e.,
∑ndata

i=1 (yexpi − yteori)
2). Besides, a third output argument must be

defined in the objective function: a vector containing those residuals (i.e., R = [(yexp1 −
yteor1), (yexp2 − yteor2), . . . , (yexpndata − yteorndata)]). In Section A.4.5 an application ex-

ample illustrates the use of these local methods.

A.2.5 SSm output

SSm’s output is a structure (called Results by default) containing the following fields:

� Results.fbest: Best objective function value found.

� Results.xbest: Vector providing the best function value found.

� Results.cpu time: CPU Time (in seconds) consumed in the optimization.

� Results.f : Vector containing the best objective function value after each iteration.

� Results.x: Matrix containing the best vector after each iteration.

� Results.time: Vector containing the CPU time consumed after each iteration.

� Results.neval: Vector containing the number of evaluations after each iteration.

� Results.numeval: Total number of function evaluations.

� Results.local solutions: Matrix of local solutions found.

� Results.local solutions values: Function values of the local solutions.

� Results.end crit: Criterion to finish the optimization:

– 1: Maximal number of function evaluations achieved.

A.2. SSm toolbox 177

– 2: Maximum allowed CPU time achieved.

– 3: Value to reach achieved.

A.2.6 Guidelines for using SSm

Although SSm default options have been chosen to be robust for a high number of problems,

the tuning of some parameters may help increase the efficiency for a particular problem. Here

is presented a list of suggestions for parameter choice depending on the type of problem the

user has to face.

� If the problem is likely to be convex, an early local search can find the optimum in short

time. For that it is recommended to set the parameter opts.local.n1 = 0. Besides,

setting opts.local.n2 = 0 too, the algorithm increases the local search frequency,

becoming an “intelligent” multistart.

� When the bounds differ in several orders of magnitude, as is the case of many parameter

estimation problems, the distance filter based on Euclidean distances might be ineffi-

cient. Choosing the tolerances-based distance filter (i.e., opts.diverse criteria = 2)

may help explore different parts of the search space. In those cases, the user should rely

on a powerful local search to obtain refined solutions. Also, decision variables indexes

may be included in log var.

� For problems with discontinuities and/or noise, the local search should either be deac-

tivated or performed by a direct search method. In those cases, activating the option

opts.local.bestx = 1 may help reduce the computation time wasted in useless local

searches, performing one every time the search goes into a new basin of attraction.

� When the function values are very high in absolute value, the weight (opts.weight)

should be increased to be at least 3 orders of magnitude higher than the mean function

value of the solutions found.

� When the search space is very big compared to the area in which the global solution may

be located, a first investment in diversification may be useful. For that, a high value

of opts.ndiverse can help finding good initial solutions to create the initial RefSet.

A preliminary run with aggressive options can locate a set of good initial solutions

for a subsequent optimization with more robust settings. This aggressive search can be

178 Appendix A. Software documentation

performed by reducing the size of the RefSet (opts.dim refset), setting a high function

tolerance for joining the RefSet (opts.tolf), and setting opts.delete = ’aggressive’.

A more robust search is produced increasing the RefSet size.

� When the solutions are very scattered and the best solution in RefSet (fbest) is close

to the global optimum but does not improve as fast as we wish, the intensification

frequency (opts.intens) can be increased to create solutions close to the best one.

� If local searches are very time-consuming, their tolerance can be relaxed by reducing

the value of opts.local.tol not to spend a long time in local solution refinements.

� When there are many local solutions close to the global one, the distance filter for the

local search may be deactivated (opts.local.distance filter = 0) or the relaxation

should be higher by decreasing opts.local.maxdistfactor.

In order to reduce the complexity associated to the high number of parameters in-

cluded in SSm, three different basic strategies can be chosen by just adjusting the option

opts.strategy. Setting this option cancels all the option setting that could have previ-

ously been made and uses pre-defined sets of options to perform different types of search.

opts.strategy may have the three following numerical values:

1. Efficient and fast search. Recommended for unimodal problems or problems in which

we need a fast solution (in terms of CPU time or number of function evaluations).

2. Default SSm options. It offers a compromise between intensification and diversification

and is recommended for most of the problems. Note that choosing this options cancels

other possible options previously defined by the user.

3. Robust search. Recommended for searching in different areas of the search space. This

strategy sacrifices the speed of the convergence to the global optimum by searching in

different areas.

A.3 Extra tools

A.3.1 ssm multistart

This tool allows the user to perform a multistart optimization procedure with any of the local

solvers implemented in the SSm toolbox using the same problem declaration as with SSm.

The script ssm_multistart has the same input arguments as ssm_kernel.

A.3. Extra tools 179

>> Results_multistart=multistart(problem,opts)

The structure problem has the same fields as in SSm (except problem.vtr which

does not apply here). The structure opts has only a few fields compared with SSm (i.e.,

opts.ndiverse, opts.local.solver, opts.local.tol and opts.local.iterprint). They all

work like in SSm except opts.ndiverse, which indicates the number of initial points cho-

sen for the multistart procedure. A histogram with the final solutions obtained and their

frequency is presented at the end of the procedure.

The output structure Results multistart contains the following fields:

� .fbest: Best objective function value found after the multistart optimization.

� .xbest: Vector providing the best function value.

� .x0: Matrix containing the vectors used for the multistart optimization.

� .f0: Vector containing the objective function values of the vectors in Results multistart.x0.

� .func: Vector containing the objective function values obtained after every local search.

� .xxx: Matrix containing the vectors provided by the local optimizations.

� .no conv: Matrix containing the initial points that did not converge to any solution.

� .nfuneval: Matrix containing the number of function evaluations performed in every

optimization.

A.3.2 ssm test

This tool allows the user to perform a number of optimizations using SSm for different

problems. It is useful to test the performance of SSm with a problem using different sets of

options or to check the same set of options with different problems.

>> ssm_test(nproblem,noptim,pnames,lb,ub,problem,opts,test,param);

The following input parameters must be defined:

� nproblem: Number of problems to be tested (if we are testing the same problem n

times, set nproblem = n, not 1).

� noptim: Number of optimizations to perform per problem.

� pames: Cell array containing the names of the problems as strings.

180 Appendix A. Software documentation

� lb: Cell array containing the lower bounds for all problems.

� ub: Cell array containing the upper bounds for all problems.

� problem: Matrix and structure containing problem settings for each problem. These

settings are declared like in SSm but using indexes. For example, if we want to set an ini-

tial point for problem 3 we would type problem(3).x_0=[x_0_1 x_0_2, ..., x_0_n].

� opts: General options for all problems. They are declared exactly the same way as in

SSm.

� test: Matrix and structure declaring specific options for individual problems.

� param: Structure declaring extra input parameters to be passed to every problem.

ssm test generates two output .mat files, called Results testssm XXX.mat and test-

summay XXX.mat (where XXX is a number related to the date and time when the test

was performed), containing the following variables:

� Results testssm XXX.mat: Problem settings, options and results (with the same

outputs as in SSm) for each run under the format prob px, opts px and res px ry

respectively, where x is the problem number and y is the run number.

� testsummary XXX.mat: Summary of some results:

– fbest px: Vector containing the best value found in each run for problem x.

– neval px: Vector containing the number of evaluations in each run for problem

x.

– time px: Vector containing the CPU time consumed in each run for problem x.

– best values: Vector containing the best function value found for each problem

after all the runs.

– worst values: Vector containing the worst function value found for each problem

after all the runs.

– mean values: Vector containing the mean function value found for each problem

after all the runs.

A.4. Application examples 181

A.4 Application examples

A.4.1 Unconstrained problem

min
x

f(x) = x2
1 − 2.1x4

1 + 1/3x6
1 + x1x2 − 4x2

2 + 4x4
2

subject to

−1 ≤ x1, x2 ≤ 1

The objective function is defined in ex1.m. Note that being an unconstrained problem,

there is only one output argument, f .

ex1.m script
function f=ex1(x)

f=4*x(1).*x(1)-2.1*x(1).^4+1/3*x(1).^6+x(1).*x(2)-4*x(2).*x(2)+4*x(2).^4;

return

The solver is called in main_ex1.m. This problem has two known global optima in x∗ =

(0.0898,−0.7127) and x∗ = (−0.0898, 0.7127) with f(x∗) = −1.03163.

Options set:

� Maximum number of function evaluations set to 500.

� Maximum number of initial diverse solutions set to 40.

� Local solver chosen: solnp.

� Local solver for final refinement: fmincon.

� Show the information provided by local solvers on screen.

A.4.2 Constrained problem

min
x

f(x) = −x1 − x2

182 Appendix A. Software documentation

main ex1.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex1’; %mfile containing the objective function

problem.x_L=-1*ones(1,2); %lower bounds

problem.x_U=ones(1,2); %upper bounds

opts.maxeval=500;

opts.ndiverse=40;

opts.local.solver=’solnp’;

opts.local.finish=’fmincon’;

opts.local.iterprint=1;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Resuls=ssm_kernel(problem,opts);

subject to

x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3

0 ≤ x1 ≤ 4

The objective function is defined in ex2.m. Note that being a constrained problem, there

are two output argument, f and g.

ex2.m script
function [f,g]=ex2(x)

f=-x(1)-x(2);

g(1)=x(2)-2*x(1).^4+8*x(1).^3-8*x(1).^2;

g(2)=x(2)-4*x(1).^4+32*x(1).^3-88*x(1).^2+96*x(1);

return

The solver is called in main_ex2.m. The global optimum for this problem is located in

x∗ = [2.32952, 3.17849] with f(x∗) = −5.50801.

Options set:

� Maximum number of function evaluations set to 750.

� Increase frequency of local solver calls. The first time the solver is called after 100

function evaluations. From that moment, a minimum number of 20 function evaluations

will be performed between two consecutive local searches.

A.4. Application examples 183

main ex2.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex2’; %mfile containing the objective function

problem.x_L=[0 0]; %lower bounds

problem.x_U=[3 4]; %upper bounds

problem.c_L=[-inf -inf];

problem.c_U=[2 36];

opts.maxeval=750;

opts.local.n1=100;

opts.local.n2=20;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Results=ssm_kernel(problem,opts);

A.4.3 Constrained problem with equality constraints

min
x

f(x) = −x4

subject to

x4 − x3 + x2 − x1 + k4x4x6 = 0

x1 − 1 + k1x1x5 = 0

x2 − x1 + k2x2x6 = 0

x3 + x1 − 1 + k3x3x5 = 0

x0.5
5 + x0.5

6 ≤ 4

0 ≤ x1, x2, x3, x4 ≤ 1

0 ≤ x5, x6 ≤ 16

with k1 = 0.09755988, k3 = 0.0391908 k2 = 0.99k1 and k4 = 0.9k3. The objective

function is defined in ex3.m. Note that equality constraints must be declared before inequality

constraints. Parameters k1, . . . , k4 are passed to the objective function through the main

script, therefore they do not have to be calculated in every function evaluation. See the input

arguments below.

The solver is called in main_ex3.m. The global optimum for this problem is located in

x∗ = [0.77152, 0.516994, 0.204189, 0.388811, 3.0355, 5.0973] with f(x∗) = −0.388811.

Options set:

� Number of equality constraints set to 4 in problem.neq.

184 Appendix A. Software documentation

ex3.m script
function [f,g]=ex3(x,k1,k2,k3,k4)

f=-x(4);

%Equality constraints

g(1)=x(4)-x(3)+x(2)-x(1)+k4*x(4).*x(6);

g(2)=x(1)-1+k1*x(1).*x(5);

g(3)=x(2)-x(1)+k2*x(2).*x(6);

g(4)=x(3)+x(1)-1+k3*x(3).*x(5);

%Inequality constraint

g(5)=x(5).^0.5+x(6).^0.5;

return

� Fields problem.c_L and problem.c_U only contain bounds for inequality constraints.

� Maximum computation time set to 7 seconds.

� Local solver chosen: solnp.

� Parameters k1, . . . , k4 are passed to the main routine as input arguments.

main ex3.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex3’;

problem.x_L=[0 0 0 0 0 0];

problem.x_U=[1 1 1 1 16 16];

problem.neq=4;

problem.c_L=-inf;

problem.c_U=4;

opts.maxeval=1e7;

opts.maxtime=7;

opts.local.solver=’solnp’;

%========================= END OF PROBLEM SPECIFICATIONS =====================

k1=0.09755988;

k3=0.0391908;

k2=0.99*k1;

k4=0.9*k3;

[Results]=ssm_kernel(problem,opts,k1,k2,k3,k4);;

A.4.4 Mixed integer problem

min
x

f(x) = x2
2 + x2

3 + 2x2
1 + x2

4 − 5x2 − 5x3 − 21x1 + 7x4

A.4. Application examples 185

subject to

x2
2 + x2

3 + x2
1 + x2

4 + x2 − x3 + x1 − x4 ≤ 8

x2
2 + 2x2

3 + x2
1 + 2x2

4 − x2 − x4 ≤ 10

2x2
2 + x2

3 + x2
1 + 2x2 − x3 − x4 ≤ 5

Integer variables: x2, x3 and x4. In the function declaration (ex4.m) they must have the

last indexes.

ex4.m script
function [f,g]=ex4(x)

f = x(2)^2 + x(3)^2 + 2*x(1)^2 + x(4)^2 - 5*x(2) - 5*x(3) - 21*x(1) + 7*x(4);

g(1) = x(2)^2 + x(3)^2 + x(1)^2 + x(4)^2 + x(2) - x(3) + x(1) - x(4);

g(2) = x(2)^2 + 2*x(3)^2 + x(1)^2 + 2*x(4)^2 - x(2) - x(4);

g(3) = 2*x(2)^2 + x(3)^2 + x(1)^2 + 2*x(2) - x(3) - x(4);

return

The solver is called in main_ex4.m. The global optimum for this problem is located in

x∗ = [2.23607, 0, 1, 0] with f(x∗) = −40.9575.

Options set:

� An initial point is specified.

� The number of integer variables is specified (mandatory).

� For mixed integer problems the only solver available is misqp.

� Increase the number of function evaluations so that the stop criterion is determined by

the CPU time (30 seconds).

A.4.5 Dynamic parameter estimation problem using n2fb

Here we will illustrate the use of SSm using n2fb as local solver. In particular, the problem

considered is the isomerization of α-pinene (Section 7.1). In order to use n2fb as local solver,

in the script alfa_pinene.m there must be three output arguments: apart from the objective

function and the constraints (empty in this case), a vector R containing the squares of the

residuals must be defined.

The solver is called in main_alfa_pinene.m

Options set:

186 Appendix A. Software documentation

main ex4.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex4’;

problem.x_L=[0 0 0 0];

problem.x_U=[10 10 10 10];

problem.x_0=[3 4 5 1];

problem.int_var=3;

problem.c_L=[-inf -inf -inf];

problem.c_U=[8 10 5];

opts.maxeval=1e7;

opts.maxtime=30;

opts.local.solver=’misqp’;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Results=ssm_kernel(problem,opts);

alfa pinene.m script
function [f,g,R] = alfa_pinene(x,t,yexp);

%Integration of the ODE’s, providing yteor

%Objective function formulated in the right way for n2fb

f = sum(sum((yteor-yexp).^2));

g=[];

%Build the vector R, needed for using n2fb

R=(yteor-yexp);

R=reshape(R,numel(R),1);

return

� An initial point is specified.

� All the variables are declared as log var.

A.4.6 ssm multistart application

An application of ssm multistart with the problem ex3 using solnp as local solver is presented

in the script main_multistart_ex3.m. The number of initial points chosen is 25.

A.4.7 test ssm application

This example will perform a test for problems ex1 -ex5 described above. The code for doing

this test is presented in the script main_test.m

A.4. Application examples 187

main alfa pinene.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’alfa_pinene’;

problem.x_L=zeros(1,5);

problem.x_U=ones(1,5);

problem.x_0=0.5*ones(1,5);

opts.maxtime=1e6;

opts.maxeval=1e4;

opts.log_var=[1:5];

opts.local.solver=’n2fb’;

%========================= END OF PROBLEM SPECIFICATIONS =====================

%time intervals

t=[0.0 1230.0 3060.0 4920.0 7800.0 10680.0 15030.0 22620.0 36420.0];

% Distribution of species concentration

% y(1) y(2) y(3) y(4) y(5)

yexp=[100.0 0.0 0.0 0.0 0.0

88.35 7.3 2.3 0.4 1.75

76.4 15.6 4.5 0.7 2.8

65.1 23.1 5.3 1.1 5.8

50.4 32.9 6.0 1.5 9.3

37.5 42.7 6.0 1.9 12.0

25.9 49.1 5.9 2.2 17.0

14.0 57.4 5.1 2.6 21.0

4.5 63.1 3.8 2.9 25.7];

Results=ssm_kernel(problem,opts,t,yexp);

main multistart ex3.m script
%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex3’;

problem.x_L=[0 0 0 0 0 0];

problem.x_U=[1 1 1 1 16 16];

problem.neq=4;

problem.c_L=-inf;

problem.c_U=4;

opts.ndiverse=25;

opts.local.solver=’solnp’;

opts.local.iterprint=1;

opts.local.tol=3;

%===

k1=0.09755988;k3=0.0391908;k2=0.99*k1;k4=0.9*k3;

Results_multistart=ssm_multistart(problem,opts,k1,k2,k3,k4);

188 Appendix A. Software documentation

main test.m script
nproblem=5; %Number of problems to be tested

noptim=1; %Number of optimization per problem

pnames={’ex1’, ’ex2’, ’ex3’, ’ex4’,’ex5’}; %Name of all problems

%Lower and upper bounds for all problems

lb={-1*ones(1,2), [0 0], [0 0 0 0 0 0], [0 0 0 0], zeros(1,5)};

ub={ones(1,2), [3 4], [1 1 1 1 16 16], [10 10 10 10], ones(1,5)};

%Specific problem settings

%Problem 1

problem(1).vtr=-1.031628; %Value to reach for problem 1

%Problem 2

problem(2).c_L=[-inf -inf]; %Lower bounds for problem 2 nonlinear inequality constraints

problem(2).c_U=[2 36]; %Upper bounds for problem 2 nonlinear inequality constraints

%Problem 3

problem(3).neq=4; %Number of nonlinear equality constraints in problem 3

problem(3).c_L=-inf; %Lower bounds for problem 3 nonlinear inequality constraints

problem(3).c_U=4; %Upper bounds for problem 3 nonlinear inequality constraints

problem(3).vtr=-0.3888; %Value to reach for problem 3

%Problem 4

problem(4).x_0=[3 4 5 1]; %Initial point for problem 4

problem(4).int_var=3; %Number of integer variables in problem 4

problem(4).c_L=[-inf -inf -inf];%Lower bounds for problem 4 nonlinear inequality constraints

problem(4).c_U=[8 10 5]; %Upper bounds for problem 4 nonlinear inequality constraints

%Problem 5

problem(5).vtr=19.8722; %Value to reach for problem 5

%Options for all problems

opts.maxeval=1e5; %Maximum number of function evaluations for all problems

opts.maxtime=3; %Maximum computation time for all problems

%Specific options for some problems

test(3).local.solver=’solnp’; %Specific local solver for problem 3

test(4).local.solver=’misqp’; %Specific local solver for problem 4

test(5).maxtime=100; %Increase the optimization time for problem 5

test(5).log_var=[1:5]; %Declare all variables as log_var for problem 5

test(5).local.solver=’n2fb’; %Specific local solver for problem 5

%Extra input parameters for some problems

%Problem 3

k1=0.09755988; k3=0.0391908; k2=0.99*k1; k4=0.9*k3;

param{3}={k1,k2,k3,k4};

%Problem5

%time intervals

t=[0.0 1230.0 3060.0 4920.0 7800.0 10680.0 15030.0 22620.0 36420.0];

% Distribution of species concentration

% y(1) y(2) y(3) y(4) y(5)

yexp=[100.0 0.0 0.0 0.0 0.0

88.35 7.3 2.3 0.4 1.75

76.4 15.6 4.5 0.7 2.8

65.1 23.1 5.3 1.1 5.8

50.4 32.9 6.0 1.5 9.3

37.5 42.7 6.0 1.9 12.0

25.9 49.1 5.9 2.2 17.0

14.0 57.4 5.1 2.6 21.0

4.5 63.1 3.8 2.9 25.7];

param{5}={t,yexp};

%Call testssm

ssm_test(nproblem,noptim,pnames,lb,ub,problem,opts,test,param);

A.5. Help files 189

A.5 Help files

A.5.1 SSm help file

%Function : SSm beta 3.3

%Written by : Process Engineering Group IIM-CSIC (jegea@iim.csic.es)

%Created on : 15/06/2005

%Last Update: 03/03/2008

%

%Global optimization algorithm for MINLP’s based on Scatter Search

%

% SSm attempts to solve problems of the form:

% min F(x) subject to: ceq(x) = 0 (equality constraints)

% x c_L <= c(x) <= c_U (inequality constraints)

% x_L <= x <= x_U (bounds on the decision variables)

%

%Please have a look at the manual before using SSm

%

% USAGE: Results = ssm_kernel(problem,opts,p1,p2,....,pn);

%

%INPUT PARAMETERS:

%****************

% problem - Structure containing problem settings

% problem.f = Name of the file containing the objective

% function

% problem.x_L = Lower bounds of decision variables

% problem.x_U = Upper bounds of decision variables

% problem.x_0 = Initial point(s) (optional)

%

% Additionally, fill the following fields if your problem has

% non-linear constraints

% problem.neq = Number of equality constraints (do not define it

% if there are no equality constraints)

% problem.c_L = Lower bounds of nonlinear inequality constraints

% problem.c_U = Upper bounds of nonlinear inequality constraints

% problem.int_var = Number of integer variables

% problem.bin_var = Number of binary variables

% problem.vtr = Objective function value to be reached (optional)

%

%NOTE: The order of decision variables is x=[cont int bin]

%

% opts - Structure containing options (if set as opts=[] defaults options

% will be loaded) Type "ssm_kernel" or "ssm_kernel(’defaults’)" to

% get the default options

%

% User options

% opts.maxeval = Maximum number of function evaluations

% (Default 1000)

% opts.maxtime = Maximum CPU time in seconds (Default 60)

% opts.iterprint = Print each iteration on screen: 0-Deactivated

% 1-Activated (Default 1)

% opts.plot = Plots convergence curves: 0-Deactivated,

% 1-Plot curves on line, 2-Plot final results

% (Default 0)

% opts.weight = Weight that multiplies the penalty term added

% to the objective function in constrained

% problems (Default 1000)

% opts.log_var = Indexes of the variables which will be used

% to generate diverse solutions in different

190 Appendix A. Software documentation

% orders of magnitude

% opts.tolc = Maximum absolute violation of the constraints

% (Default 1e-5)

% opts.save_report= Saves Results, problem and opts in a .mat

% file (Default 0)

% opts.report_name= Report name (Default ’ssm_report.mat’)

%

% Global options

% opts.dim_refset = Number of elements in Refset

% (automatically calculated)

% opts.ndiverse = Number of solutions generated by the

% diversificator (Default 10*nvar)

% opts.initiate = Type of Refset initialization

% (Default 0)

% 0: Take bounds, middle point and fill

% by euclidean distance

% 1: Evaluate all the diverse

% solutions,take the dim_refset/2 best

% solutions and fill by euclidean

% distance

% opts.combination = Type of combination of Refset

% elements (Default 1)

% 1: hyper-rectangles

% 2: linear combinations

% opts.regenerate = Type of Refset regeneration (Default

% 3)

% 1: Regeneration by distance diversity

% 2: Regeneration by direction

% diversity

% 3: Randomly alternates 1 and 2

% opts.delete = Maximum number of Refset elements

% deleted when regenerating Refset

% (Default ’standard’)

% ’standard’: Maximum deleted elements=

% dim_refset/2 (half of the elements)

% ’aggressive’: Delete dim_refset-1

% (all of them except the best solution

% found)

% opts.intens = Iteration interval between

% intensifications (default 10)

% opts.tolf = Function tolerance for joining the

% Refset (default 1e-4)

% opts.diverse_criteria = Criterion for diversification in the

% Refset (Default 1)

% 1: euclidean distance

% 2: tolerances

% opts.tolx = Variable tolerance for joining the

% Refset when the euclidean distance is

% deactivated(default 1e-3 for all

% variables)

% Local options

% opts.local.solver = Choose local solver

% 0: Local search deactivated

% ’fmincon’(Default),’constrnew’

% ’fminsearch’,’nomad’, ’solnp’

% ’n2fb’,’dn2fb’,’dhc’,’fsqp’

% ’ipopt’,’misqp’,’lsqnonlin’

% opts.local.tol = Level of tolerance in local

% search

A.5. Help files 191

% opts.local.iterprint = Print each iteration of local

% solver on screen

% opts.local.n1 = Number of function

% evaluations before applying

% local search for the 1st time

% (Default 100*nvar)

% opts.local.n2 = Minimum number of function

% evaluations in the global

% phase between 2 local calls

% (Default 200*nvar)

% opts.local.finish = Applies local search to the

% best solution found once the

% optimization if finished

% (same values as

% opts.local.solver)

% opts.local.bestx = When activated (i.e. =1) only

% applies local search to the

% best solution found to

% date,ignoring filters

% (Default=0)

% opts.local.merit_filter = Activation of merit filter

% for local search (Default 1)

% 0: Filter deactivated

% 1: Filter activated

% opts.local.distance_filter = Activation of distance filter

% for local search (Default 1)

% 0: Filter deactivated

% 1: Filter activated

% opts.local.thfactor = Merit filter relaxation

% parameter (Default 0.2)

% opts.local.maxdistfactor = Distance filter relaxation

% parameter (Default 0.2)

% opts.local.wait_maxdist_limit = Apply distance filter

% relaxation after this number

% of function evaluations

% without success in passing

% filter (Default 20)

% opts.local.wait_th_limit = Apply merit filter relaxation

% after this number of function

% evaluations without success in

% passing filter (Default 20)

%

% opts.strategy = If >0, it selects different

% set of options to perform

% different types of searches

% 1: Fast and efficient

% 2: Average (default options)

% 3: Robust

%

%

% p1,p2... : optional input parameters to be passed to the objective

% function

%

%

%OUTPUT PARAMETERS:

%*****************

% A file called "ssm_report.mat" is generated containing.

%

% problem - Structure containing problem settings

192 Appendix A. Software documentation

% opts - Structure containing all options

% Results - Structure containing results

%

% Fields in Results

% Results.fbest = Best objective function value

% found after the optimization

% Results.xbest = Vector providing the best

% function value

% Results.cpu_time = Time in seconds consumed in the

% optimization

% Results.f = Vector containing the best

% objective function value after each

% iteration

% Results.x = Matrix containing the best vector

% in each iteration

% Results.time = Vector containing the cpu time

% consumed after each iteration

% Results.neval = Vector containing the number of

% function evaluations after each

% iteration

% Results.numeval = Number of function evaluations

% Results.local_solutions = Local solutions found by the

% local solver (in rows)

% Results.local_solutions_values = Function values of the local

% solutions

% Results.end_crit = Criterion to finish the

% optimization

% 1: Maximal number of function

% evaluations achieved

% 2: Maximum allowed CPU Time

% achieved

% 3: Value to reach achieved

%

% NOTE: To plot convergence curves type:

% stairs(Results.time,Results.f) or stairs(Results.neval,Results.f)

A.5.2 SSKm help file

%Function : SSkm lite beta

%Written by : Process Engineering Group IIM-CSIC (jegea@iim.csic.es)

%Created on : 11/09/2007

%

%Global Optimization Algorithm for unconstrained costly continuous problems

%based on Scatter Search and Kriging.

%

% SSm attempts to solve problems of the form:

% min F(x) subject to: x_L <= x <= x_U (bounds on the decision variables)

%

% USAGE: [fbest,xbest,cpu_time]=sskm_lite(problem,opts);

%

%INPUT PARAMETERS:

%*****************

% problem - Structure containing problem

% problem.f = Name of the file containing the objective function

% problem.x_L = Lower bounds of decision variables

% problem.x_U = Upper bounds of decision variables

% problem.x_0 = Initial point(s) (optional)

% problem.f_0 = Function values of initial point(s) (optional)

A.5. Help files 193

% problem.vtr = Objective function value to be reached (optional)

%

% NOTE:The dimension of f_0 and x_0 maybe different. For example, if

% we want to introduce 5 initial points but we only know the values

% for 3 of them, x_0 would have 5 rows whereas f_0 would have only 3

% elements. It is mandatory that the first 3 rows of x_0 correspond

% to the values of f_0

% If your problem has constraints please introduce them as a penalty

% term in the objective function

%

% opts - Structure containing options (if not defined, defaults options

% will be loaded)

% User options

% opts.maxeval = Maximum number of function evaluations (Default 1000)

% opts.maxtime = Maximum CPU time in seconds (Default 60)

% opts.plot = Plots convergence curves 0-Deactivated 1-Plot

% convergence curves (Default 0)

% opts.log_x = Vector containing the indexes of the variables

% whose logarithm will be used to make the

% surrogate surface smoother and to search in

% differents orders of magnitude. Only possible if

% the decision variables are always positive.

% opts.log_f = Takes the logarithm of the function values to

% make the surrogate surface smoother. Only

% possible if the function values are always

% positive. 0-Deactivated (default), 1-Activated

%

% Global options

% opts.dim_refset = Number of elements in Refset (Default 10)

% opts.ndiverse = Number of solutions generated by the

% diversificator (Default 100)

% opts.combination = Type of combination of Refset elements

% 1-pseudo-linear combinations (default),

% 2: linear combinations

%

%OUTPUT PARAMETERS

%*****************

% Results - Structure containing results

% Results.fbest = Best objective function value found after the

% optimization

% Results.xbest = Vector providing the best function value

% Results.cpu_time = Time in seconds consumed in the optimization

% Results.x = Matrix containing the vectors that provided

% successful simulations

% Results.crash = Matrix containing the vectors that provided a

% simulation error

% Results.func = Vector containing all the function

% evaluations

% Results.time = Vector containing the cpu time consumed after

% each evaluation

% Results.f = Vector containing the best objective function

% value found

% Results.numeval = Number of function evaluations

% Results.numeval_ss = Number of function evaluations done by

% Scatter Search in the same problem

% Results.end_crit = Criterion to finish the optimization

% 1: Maximal number of function evaluations achieved

% 2: Maximal computation time achieved

% 3: "Value to reach" achieved

194 Appendix A. Software documentation

%

%NOTE: To plot convergence curves type: stairs(Results.time,Results.f) or

% stairs(1:Results.numeval,Results.f)

Appendix B

Test Functions of Section 4.3

B.1 Unconstrained problems

1. Branin

Minimize f(x) =
(

x2 −
(

5
4π2

)

x2
1 +

(

5
π

)

x1 − 6
)2

+ 10
(

1 − 1
8π

)

cos (xi) + 10

Subject to −5 ≤ xi, x2 ≤ 15 for i = 1, 2

2. B2

Minimize f(x) = x2
1 + 2x2

2 − 0.3 cos (3πx1) − 0.4 cos (4πx2) + 0.7

Subject to −50 ≤ xi ≤ 100 for i = 1, 2

3. Easom

Minimize f(x) = − cos (x1) cos (x2) exp
(

−
(

(x1 − π)2 + (x2 − π)2
))

Subject to −100 ≤ xi ≤ 100 for i = 1, 2

4. Goldstein and Price

Minimize f(x) =
(

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)

)

(

30 + (2x1 − 3x2)
2 (

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)

)

Subject to −2 ≤ xi ≤ 2 for i = 1, 2

5. Shubert

Minimize f(x) =

(

5
∑

j=1
j cos ((j + 1)x1 + j)

)(

5
∑

j=1
j cos ((j + 1)x2 + j)

)

Subject to −10 ≤ xi ≤ 10 for i = 1, 2

195

196 Appendix B. Test Functions of Section 4.3

6. Beale

Minimize f(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2)

2 + (2.625 − x1 + x1x
3
2)

2

Subject to −4.5 ≤ xi ≤ 4.5 for i = 1, 2

7. Booth

Minimize f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

Subject to −10 ≤ xi ≤ 10 for i = 1, 2

8. Matyas

Minimize f(x) = 0.26(x2
1 + x2

2) − 0.48x1x2

Subject to −5 ≤ xi ≤ 10 for i = 1, 2

9. Six Hump Camel Back

Minimize f(x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2

Subject to −5 ≤ xi ≤ 5 for i = 1, 2

10, 23. Schwefel(n)

Minimize f(x) = −
n
∑

i=1

(

−xi sin
√

|xi|
)

Subject to −500 ≤ xi ≤ 500 for i = 1, . . . , n

11, 29, 34. Rosenbrock(n)

Minimize f(x) =
n/2
∑

i=1
100(x2i − x2

2i−1)
2 + (1 − x2i−1)

2

Subject to −10 ≤ xi ≤ 10 for i = 1, . . . , n

12, 30, 35. Zakharov(n)

Minimize f(x) =
n
∑

j=1
x2

j +

(

n
∑

j=1
0.5jxj

)2

+

(

n
∑

j=1
0.5jxj

)4

Subject to −5 ≤ xi ≤ 10 for i = 1, . . . , n

13. De Joung

Minimize f(x) = x2
1 + x2

2 + x2
3

Subject to −2.56 ≤ xi ≤ 5.12 for i = 1, 2, 3

14. Hartman(3,4)

Minimize f(x) = −
4

∑

i=1
ci exp

(

−
3

∑

j=1
aij (xj − pij)

2

)

B.1. Unconstrained problems 197

Subject to 0 ≤ xi ≤ 1 for i = 1, 2, 3

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

15. Colville

Minimize f(x) = 100(x2 − x2
1)

2 + (1 − x1)
2 + 90(x4 − x2

3)
2 + (1 − x3)

2+
10.1

(

(x2 − 1)2 + (x4 − 1)2
)

+ 19.8(x2 − 1)(x4 − 1)

Subject to −10 ≤ xi ≤ 10 for i = 1, . . . , 4

16-18. Shekel(n)

Minimize f(x) = −
n
∑

i=1

(

(x − ai)
T (x − ai) + ci

)−1
; x = (x1, x2, x3, x4)

T ;ai =
(

a1
i , a

2
i , a

3
i , a

4
i

)T

Subject to 0 ≤ xi ≤ 10 for i = 1, . . . , 4

i aT
i ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

19. Perm(n, β)

Minimize f(x) =
n
∑

k=1

(

n
∑

i=1

(

ik + β
)

(

(

xi

i

)k − 1
)

)2

Subject to −n ≤ xi ≤ n for i = 1, . . . , n

20. Perm0(n, β)

Minimize f(x) =
n
∑

k=1

(

n
∑

i=1
(i + β)

(

xk
i −

(

1
i

)k
)

)2

Subject to −n ≤ xi ≤ n for i = 1, . . . , n

21. PowerSum(b1, . . . , bn)

198 Appendix B. Test Functions of Section 4.3

Minimize f(x) =
n
∑

k=1

((

n
∑

i=1
xk

i

)

− bk

)2

Subject to 0 ≤ xi ≤ n for i = 1, . . . , n

22. Hartmann(6,4)

Minimize f(x) = −
4

∑

i=1
ci exp

(

−
6

∑

j=1
aij (xj − pij)

2

)

Subject to 0 ≤ xi ≤ 1 for i = 1, . . . , 6

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.10 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

24-25. Trid(n)

Minimize f(x) =

(

n
∑

i=1
(xi − 1)2

)

−
n
∑

i=2
xixj

Subject to −n2 ≤ xi ≤ n2 for i = 1, . . . , n

26-31. Rastrigin(n)

Minimize f(x) = 10n +
n
∑

i=1

(

x2
i − 10 cos (2πxi)

)

Subject to −2.56 ≤ xi ≤ 5.12 for i = 1, . . . , n

27-32. Griewank(n)

Minimize f(x) =
n
∑

i=1

x2
i

4000 −
n
∏

i=1
cos

(

xi√
i

)

+ 1

Subject to −300 ≤ xi ≤ 600 for i = 1, . . . , n

28-33. Sum Squares(n)

Minimize f(x) =
n
∑

i=1
ix2

i

Subject to −5 ≤ xi ≤ 10 for i = 1, . . . , n

36. Powell(n)

Minimize f(x) =
n/4
∑

j=1
(x4j−3 + 10x4j−2)

2 + 5(x4j−1 − x4j)
2 + (x4j−2 − 2x4j−1)

4 + 10(x4j−3 − x4j)
4

Subject to −4 ≤ xi ≤ 5 for i = 1, . . . , n

B.2. Constrained problems 199

37. Dixon and Price(n)

Minimize f(x) =
n
∑

i=1
i(2x2

i − xi−1)
2 + (x1 − 1)2

Subject to −10 ≤ xi ≤ 10 for i = 1, . . . , n

38. Levy(n)

Minimize f(x) = sin2(πy1) +
k−1
∑

i=1
(yi − 1)2 (1 + 10 sin2(πyi + 1)) + (yk − 1)2(1 + sin2(2πxk))

Subject to yi = 1 + xi−1
4 for i = 1, . . . , n

−10 ≤ xi ≤ 10 for i = 1, . . . , n

39. Sphere(n)

Minimize f(x) =
n
∑

i=1
x2

i

Subject to −2.56 ≤ xi ≤ 5.12 for i = 1, . . . , n

40. Ackley(n)

Minimize f(x) = 20 + e − 20e
−0.2

√

1
n

n
∑

i=1
x2

i

− e
1
n

n
∑

i=1
cos(2πxi)

Subject to −15 ≤ xi ≤ 30 for i = 1, . . . , n

B.2 Constrained problems

1. g01

Minimize f(x) = 5
4

∑

i=1
xi − 5

4
∑

i=1
x2

i − 5
1

∑

i=5
3xi

Subject to g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0
0 ≤ xi ≤ 1 (i = 1, . . . , 9); 0 ≤ xi ≤ 100 (i = 11, 12, 13); 0 ≤ x13 ≤ 1

2. g02

Minimize f(x) = −
∣

∣

∣

∣

∑n
i=1 cos4 (xi)−2

∏n
i=1 cos2 (xi)√

∑n
i=1 ix2

i

∣

∣

∣

∣

200 Appendix B. Test Functions of Section 4.3

Subject to g1(x) = 0.75 −
n
∏

i=1
xi ≤ 0

g2(x) =
n
∑

i=1
xi − 7.5n ≤ 0

0 ≤ xi ≤ 10 (i = 1, . . . , 20)

3. g03

Minimize f(x) = − (
√

n)
n

n
∏

i=1
xi

Subject to h1(x) =
n
∑

i=1
x2

i − 1 = 0

0 ≤ xi ≤ 1 (i = 1, . . . , 10)

4. g04

Minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 − 110 ≤ 0
g4(x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0
g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0
78 ≤ x1 ≤ 102; 33 ≤ x2 ≤ 45; 27 ≤ xi ≤ 45 (i = 3, 4, 5)

5. g05

Minimize f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

Subject to g1(x) = −x4 + x3 − 0.55 ≤ 0
g2(x) = −x3 + x4 − 0.55 ≤ 0
h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0
0 ≤ x1 ≤ 1200; 0 ≤ x2 ≤ 1200; −0.55 ≤ xi ≤ 0.55 (i = 3, 4)

6. g06

Minimize f(x) = (x1 − 10)3 + (x2 − 20)3

Subject to g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
13 ≤ x1 ≤ 100; 0 ≤ x2 ≤ 100

7. g07

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

B.2. Constrained problems 201

Subject to g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0
−10 ≤ xi ≤ 10; (i = 1, . . . , 10)

8. g08

Minimize f(x) = sin3(2πx1) sin(2πx2)
x3
1(x1+x2)

Subject to g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0
0 ≤ xi ≤ 10; (i = 1, 2)

9. g09

Minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

Subject to g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) == −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
g4(x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0
−10 ≤ xi ≤ 10; (i = 1, . . . , 7)

10. g10

Minimize f(x) = x1 + x2 + x3

Subject to g1(x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(x) = −1 + 0.01(x8 − x5) ≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0
100 ≤ x1 ≤ 10000; 1000 ≤ xi ≤ 10000 (i = 2, 3); 10 ≤ xi ≤ 1000 (i = 4, . . . , 8)

11. g11

Minimize f(x) = x2
1 + (x2 − 1)2

Subject to h1(x) = x2 − x2
1 = 0

−1 ≤ xi ≤ 1 (i = 1, 2)

12. g12

Minimize f(x) = −(100 − (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100

202 Appendix B. Test Functions of Section 4.3

Subject to g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0
0 ≤ xi ≤ 10(i = 1, 2, 3); p, q, r = 1, . . . , 9

13. g13

Minimize f(x) = ex1x2x3x4x5

Subject to h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0
h3(x) = x13 + x3

2 + 1 = 0
−2.3 ≤ xi ≤ 2.3(i = 1, 2);−3.2 ≤ xi ≤ 3.2(i = 3, 4, 5)

Part VI

Bibliography

203

Bibliography

Abramson, M. A. (2002). Pattern Search Algorithms for Mixed Variable General Constrained

Optimization Problems. PhD thesis, Rice University.

Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (1997). Global optimization of

MINLP problems in process synthesis and design. Computers and Chemical Engineering,

21(SUPPL.1):S445–S450.

Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (2000). Global optimization of mixed-

integer nonlinear problems. AIChE Journal, 46(9):1769–1797.

Alasino, N., Mussati, M. C., and Scenna, N. (2007). Wastewater treatment plant synthesis

and design. Industrial and Engineering Chemistry Research, 46(23):7497–7512.

Alex, J., Beteau, J. F., Copp, J., Hellinga, C., Jeppsson, U., Marsili-Libelli, S., Pons, M. N.,

Spanjers, H., and Vanhooren, H. (1999). Benchmark for evaluating control strategies

in wastewater treatment plants. In ECC’99 (European Control Conference), Karlsruhe

(Germany).

Ali, M. M., C., S., and Törn, A. (1997). Application of stochastic global optimization algo-

rithms to practical problems. Journal of Optimization Theory and Applications, 95(3):545–

563.

Angira, R. and Santosh, A. (2007). Optimization of dynamic systems: A trigonometric

differential evolution approach. Computers and Chemical Engineering, 31(9):1055–1063.

Asaadi, J. (1973). A computational comparison of some non-linear programs. Mathematical

Programming, 4(1):144–154.

Auger, A. and Hansen, N. (2005). Performance evaluation of an advanced local search evo-

205

206 BIBLIOGRAPHY

lutionary algorithm. In IEEE Congress on Evolutionary Computation, IEEE CEC 2005,

volume 2, pages 1777–1784.

Averick, B. M., Carter, R. G., and Moré, J. J. (1991). The MINPACK-2 test problem

collection. Technical Report ANL/MCS-TM-273, Argonne National Laboratory.

Babu, B. V. and Angira, R. (2006). Modified differential evolution (MDE) for optimization

of non-linear chemical processes. Computers and Chemical Engineering, 30(6-7):989–1002.

Bailey, J. E. (1998). Mathematical modeling and analysis in biochemical engineering: Past

accomplishments and future opportunities. Biotechnology Progress, 14(1):8–20.

Balku, S. and Berber, R. (2006). Dynamics of an activated sludge process with nitrification

and denitrification: Start-up simulation and optimization using evolutionary algorithm.

Computers and Chemical Engineering, 30(3):490–499.

Balsa-Canto, E., Banga, J. R., Alonso, A. A., and Vassiliadis, V. B. (2004). Dynamic opti-

mization of distributed parameter systems using second-order directional derivatives. In-

dustrial and Engineering Chemistry Research, 43(21):6756–6765.

Balsa-Canto, E., Vassiliadis, V. S., and Banga, J. R. (2005). Dynamic optimization of single-

and multi-stage systems using a hybrid stochastic-deterministic method. Industrial and

Engineering Chemistry Research, 44(5):1514–1523.

Banga, J. R., Alonso, A. A., and Singh, R. P. (1997). Stochastic dynamic optimization of

batch and semicontinuous bioprocesses. Biotechnology Progress, 13(3):326–335.

Banga, J. R., Balsa-Canto, E., Moles, C. G., and Alonso, A. A. (2003a). Dynamic opti-

mization of bioreactors - a review. Proceedings of the Indian National Science Academy,

69A(3-4):257–265.

Banga, J. R., Balsa-Canto, E., Moles, C. G., and Alonso, A. A. (2003b). Improving food

processing using modern optimization methods. Trends in Food Science and Technology,

14(4):131–144.

Banga, J. R., Balsa-Canto, E., Moles, C. G., and Alonso, A. A. (2005). Dynamic optimiza-

tion of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology,

117(4):407–419.

BIBLIOGRAPHY 207

Banga, J. R., Moles, C. G., and Alonso, A. A. (2003c). Global optimization of bioprocesses

using stochastic and hybrid methods. In Floudas, C. A. and Pardalos, P. M., editors, Fron-

tiers In Global Optimization, volume 74 of Nonconvex Optimization and Its Applications,

pages 45–70. Kluwer Academic Publishers, Hingham, MA, USA.

Banga, J. R., Saa, J., and Alonso, A. A. (1999). Model-based optimization of microwave

heating of bioproducts. In 7th International Conference On Microwave and High Frequency

Heating, Valencia (Spain).

Banga, J. R. and Seider, W. D. (1996). Global optimization of chemical processes using

stochastic algorithms. In Floudas, C. A. and Pardalos, P. M., editors, State of the Art in

Global Optimization, pages 563–583. Kluwer Academic Publishers, Dordrecht, The Nether-

lands.

Banga, J. R. and Singh, R. P. (1994). Optimization of air drying of foods. Journal of Food

Engineering, 23(2):189–211.

Bansal, V., Perkins, J. D., Pistikopoulos, E. N., Ross, R., and Van Schijndel, J. M. G. (2000).

Simultaneous design and control optimisation under uncertainty. Computers and Chemical

Engineering, 24(2-7):261–266.

Barton, P. I., Banga, J. R., and Galán, S. (2000). Optimization of hybrid discrete/continuous

dynamic systems. Computers and Chemical Engineering, 24(9-10):2171–2182.

Bellman, R. E. (2003). Dynamic Programming. Dover Publications, Incorporated.

Benali, M., Hammache, A., Aubé, F., Dipama, J., and Cantave, R. (2007). Dynamic multi-

objective optimization of large-scale industrial production systems: An emerging strategy.

International Journal of Energy Research, 31(12):1202–1225.

Beyer, H. G. (1996). Toward a Theory of Evolution Strategies: Self-Adaptation. Evolutionary

Computation, 3(3):311–347.

Beyer, H. G. and Schwefel, H. P. (2002). Evolution strategies - a comprehensive introduction.

Natural Computing, 1(1):3–52.

Biegler, L. T. and Grossmann, I. E. (2004). Retrospective on optimization. Computers and

Chemical Engineering, 28(8):1169–1192.

208 BIBLIOGRAPHY

Birattari, M. and Dorigo, M. (2007). How to assess and report the performance of a stochastic

algorithm on a benchmark problem: Mean or best result on a number of runs? Optimization

Letters, 1(3):309–311.

Björkman, M. and Holmström, K. (2000). Global optimization of costly nonconvex functions

using radial basis functions. Optimization Engineering, 1(4):373–397.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys, 35(3):268–308.

Bogle, I. D. L., Cockshott, A. R., Bulmer, M., Thornhill, N., Gregory, M., and Dehghani, M.

(1996). A process systems engineering view of biochemical process operations. Computers

and Chemical Engineering, 20(6-7):943–949.

Box, G. E. P., Hunter, W. G., MacGregor, J. F., and Erjavec, J. (1973). Some problems

associated with the analysis of multiresponse data. Technometrics, 15:33–51.

Brooks, S. (1958). A discussion of random methods for seeking maxima. Operations Research,

6:244–251.

Bryson, A. E. and Ho, Y.-C. (1975). Applied optimal control: Optimization, estimation, and

control. Hemisphere Pub. Corp., Washington and New York.

Butler, D. and Schütze, M. (2005). Integrating simulation models with a view to optimal

control of urban wastewater systems. Environmental Modelling and Software, 20(4 SPEC.

ISS.):415–426.

Cappai, G., Carucci, A., and Onnis, A. (2004). Use of industrial wastewaters for the op-

timization and control on nitrogen removal processes. Water Science and Technology,

50(6):17–24.

Carucci, A., Rolle, E., and Smurra, P. (1999). Management optimisation of a large wastewater

treatment plant. Water Science and Technology, 39(4):129–136.

Cavin, L., Fischer, U., Mǒsat́, A., and Hungerbühler, K. (2005). Batch process optimization

in a multipurpose plant using tabu search with a design-space diversification. Computers

and Chemical Engineering, 29(8):1770–1786.

BIBLIOGRAPHY 209

Chachuat, B., Roche, N., and Latifi, M. A. (2001). Dynamic optimisation of small size wastew-

ater treatment plants including nitrification and denitrification processes. Computers and

Chemical Engineering, 25(4-6):585–593.

Chachuat, B., Singer, A. B., and Barton, P. I. (2006). Global methods for dynamic opti-

mization and mixed-integer dynamic optimization. Industrial and Engineering Chemistry

Research, 45(25):8373–8392.

Chelouah, R. and Siarry, P. (2003). Genetic and nelder-mead algorithms hybridized for a

more accurate global optimization of continuous multiminima functions. European Journal

of Operational Research, 148(2):335–348.

Chen, C. T. and Hwang, C. (1990a). Optimal control computation for differential-algebraic

process systems with general constraints. Chemical Engineering Communications, 97:9–26.

Chen, C. T. and Hwang, C. (1990b). Optimal on-off control for fed-batch fermentation

processes. Industrial and Engineering Chemistry Research, 29(9):1869–1875.

Chen, D.-S. D., Singh, R. K., Haghighi, K., and Nelson, P. E. (1993). Finite element anal-

ysis of temperature distribution in microwaved cylindrical potato tissue. Journal of Food

Engineering, 18(4):351–368.

Chiou, J.-P. and Wang, F.-S. (1999). Hybrid method of evolutionary algorithms for static

and dynamic optimization problems with application to a fed-batch fermentation process.

Computers and Chemical Engineering, 23(9):1277–1291.

Chunfeng, W. and Xin, Z. (2002). Ants foraging mechanism in the design of multiproduct

batch chemical process. Industrial and Engineering Chemistry Research, 41(26):6678–6686.

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: A survey of the state of the art. Computer Methods in

Applied Mechanics and Engineering, 191(11-12):1245–1287.

Coleman, T. F. and Li, Y. (1994). On the convergence of interior-reflective newton methods

for nonlinear minimization subject to bounds. Mathematical Programming, 67(1-3):189–

224.

Copp, J. (2001). The COST Simulation Benchmark - Description and Simulator Manual.

COST (European Cooperation in the field of Scientific and Technical Research), Brussels.

210 BIBLIOGRAPHY

Costa, L. and Oliveira, P. (2001). Evolutionary algorithms approach to the solution of mixed

integer non-linear programming problems. Computers and Chemical Engineering, 25(2-

3):257–266.

Cox, D. D. and John, S. (1997). SDO: A statistical method for global optimization. In

Alexandrov, N. and Hussaini, M., editors, Multidisciplinary Design Optimization: State of

the Art, pages 315–329. SIAM, Philadelphia, PA.

Csendes, T. (1988). Nonlinear parameter estimation by global optimization - efficiency and

reliability. Acta Cybernetica, 8(4):361–370.

Cuthrell, J. E. and Biegler, L. T. (1989). Simultaneous optimization and solution methods

for batch reactor control profiles. Computers and Chemical Engineering, 13(1-2):49–62.

Davis, E. and Ierapetritou, M. (2007). A kriging method for the solution of nonlinear pro-

grams with black-box functions. AIChE Journal, 53(8):2001–2012.

de la Maza, M. and Yuret, D. (1994). Dynamic hill climbing. AI Expert, 9(3):26–31.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). An adaptive non-linear least-squares

algorithm. ACM Transactions on Mathematical Software, 7(3):348–368.

Dennis, J. E. J. (1977). Nonlinear least squares and equations. In Jacobs, D., editor, State

of the Art in Numerical Analysis, pages 269–312. Academic Press.

Dietrich, C. R. and Osborne, M. R. (1991). Estimation of covariance parameters in kriging

via restricted maximum likelihood. Mathematical Geology, 23(1):119–135.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance

profiles. Mathematical Programming, Series B, 91(2):201–213.

Dolan, E. D., Moré, J. J., and Munson, T. S. (2004). Benchmarking optimization problems

with cops 3.0. Technical Report ANL/MCS-TM-273, Argonne National Laboratory.

Dorigo, M. (1992). Ottimizzazione, apprendimento automatico, ed algoritmi basati su

metafora naturale. PhD thesis, Politecnico di Milano, Italy.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA.

BIBLIOGRAPHY 211

Dréo, J., Aumasson, J. P., Tfaili, W., and Siarry, P. (2007). Adaptive learning search, a new

tool to help comprehending metaheuristics. International Journal on Artificial Intelligence

Tools, 16(3):483–505.

Dréo, J., Petrowski, A., Taillard, E., and Siarry, P. (2006). Metaheuristics for Hard Opti-

mization Methods and Case Studies. Springer.

Dréo, J. and Siarry, P. (2006). An ant colony algorithm aimed at dynamic continuous opti-

mization. Applied Mathematics and Computation, 181(1):457–467.

Duran, M. A. and Grossmann, I. E. (1986). Outer-approximatino algorithm for a class of

mixed-integer nonlinear programs. Mathematical Programming, 36(3):307–339.

Eberhart, R. C., Shi, Y., and Kennedy, J. (2001). Swarm Intelligence. Morgan Kaufmann.

Egea, J. A., Rodŕıguez-Fernández, M., Banga, J. R., and Mart́ı, R. (2007a). Scatter search

for chemical and bio-process optimization. Journal of Global Optimization, 37(3):481–503.

Egea, J. A., Vazquez, E., Banga, J. R., and Mart́ı, R. (2007b). Improved scatter search for

the global optimization of computationally expensive dynamic models. Journal of Global

Optimization, In press(doi:10.1007/s10898-007-9172-y).

Egea, J. A., Vries, D., Alonso, A. A., and Banga, J. R. (2007c). Global optimization for

integrated design and control of computationally expensive process models. Industrial and

Engineering Chemistry Research, 46:9148–9157.

Esposito, W. R. and Floudas, C. A. (2000a). Deterministic global optimization in nonlinear

optimal control problems. Journal of Global Optimization, 17(1-4):97–126.

Esposito, W. R. and Floudas, C. A. (2000b). Global optimization for the parameter esti-

mation of differential-algebraic systems. Industrial and Engineering Chemistry Research,

39(5):1291–1310.

Exler, O., Antelo, L. T., Egea, J. A., Alonso, A. A., and Banga, J. R. (2007). A tabu

search-based algorithm for mixed-integer nonlinear problems and its application to in-

tegrated process and control system design. Computers and Chemical Engineering, In

Press(doi:10.1016/j.compchemeng.2007.10.008).

212 BIBLIOGRAPHY

Exler, O. and Schittkowski, K. (2006). MISQP: A fortran implementation of a trust region

SQP algorithm for mixed-integer nonlinear programming - user’s guide, version 2.1-. Tech-

nical report, Department of Computer Science University of Bayreuth, Bayreuth, Germany.

Exler, O. and Schittkowski, K. (2007). A trust region SQP algorithm for mixed-integer

nonlinear programming. Optimization Letters, 1(3):269–280.

Faber, R., Jockenhövel, T., and Tsatsaronis, G. (2005). Dynamic optimization with simulated

annealing. Computers and Chemical Engineering, 29(2):273–290.

Feo, T. A. and Resende, M. G. C. (1989). Probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8(2):67–71.

Feo, T. A. and Resende, M. G. C. (1995). Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6(2):109–133.

Fleurent, C., Glover, F., Michelon, P., and Valli, Z. (1996). Scatter search approach for

unconstrained continuous optimization. In Proceedings of the 1996 IEEE International

Conference on Evolutionary Computation, pages 643–648.

Floudas, C. A. (2000). Deterministic Global Optimization: Theory, Methods and Applications.

Kluwer Academics, The Netherlands.

Floudas, C. A., Akrotirianakis, I. G., Caratzoulas, S., Meyer, C. A., and Kallrath, J. (2005).

Global optimization in the 21st century: Advances and challenges. Computers and Chem-

ical Engineering, 29(6):1185–1202.

Floudas, C. A. and Pardalos, P. M. (2000). Recent developments in deterministic global

optimization and their relevance to process design. AICHE Symposium Series, 96(323):84–

98.

Fraga, E. S. (2006). Hybrid methods for optimisation. In Zilinskas, J. and Bogle, I. D. L.,

editors, Computer Aided Methods for Optimal Design and Operations, pages 1–14. World

Scientific, New Jersey.

Fraga, E. S. and Senos Matias, T. R. (1996). Synthesis and optimization of a nonideal dis-

tillation system using a parallel genetic algorithm. Computers and Chemical Engineering,

20(SUPPL.1):S79–S84.

BIBLIOGRAPHY 213

Fraga, E. S. and Žilinskas, A. (2003). Evaluation of hybrid optimization methods for the

optimal design of heat integrated distillation sequences. Advances in Engineering Software,

34(2):73–86.

Fu, G., Butler, D., and Khu, S. T. (2008). Multiple objective optimal control of integrated

urban wastewater systems. Environmental Modelling and Software, 23(2):225–234.

Fuguitt, R. E. and Hawkins, J. E. (1947). Rate of thermal isomerization of α-pinene in the

liquid phase. J. A. C. S., 69:461.

Garćıa, M. S. G., Balsa-Canto, E., Alonso, A. A., and Banga, J. R. (2006). Computing

optimal operating policies for the food industry. Journal of Food Engineering, 74(1):13–23.

Garrard, A. and Fraga, E. S. (1998). Mass exchange network synthesis using genetic algo-

rithms. Computers and Chemical Engineering, 22(12):1837–1850.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1989). Constrained nonlinear

programming. In Nemhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J., editors,

Optimization, volume 1 of Handbooks in Operations Research and Management Science,

pages 171–210. Elsevier North-Holland, Inc., New York, NY, USA.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1998). User’s guide for npsol

5.0: A fortran package for nonlinear programming. Technical Report SOL 86-1, Systems

Optimization Laboratory, Stanford University.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision

Sciences, 8:156–166.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research, 13(5):533–549.

Glover, F. (1989). Tabu search part i. ORSA Journal on Computing, 1(3):190–206.

Glover, F. (1990). Tabu search part ii. ORSA Journal on Computing, 2(1):4–32.

Glover, F. (1994). Tabu search for nonlinear and parametric optimization (with links to

genetic algorithms). Discrete Applied Mathematics, 49(1-3):231–255.

214 BIBLIOGRAPHY

Glover, F. (1998). A template for scatter search and path relinking. In Hao, J. K., Lutton,

E., Ronald, E., Schoenauer, M., and Snyers, D., editors, Artificial Evolution, volume 1363

of Lecture Notes in Computer Science, pages 13–54. Springer Verlag.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Norwell, MA.

Glover, F., Laguna, M., and Mart́ı, R. (2000a). Fundamentals of scatter search and path

relinking. Control and Cybernetics, 29(3):652–684.

Glover, F., Laguna, M., and Mart́ı, R. (2003). Scatter search. In Ghosh, A. and Tsutsui, S.,

editors, Advances in Evolutionary Computation: Theory and Applications, pages 519–537.

Springer-Verlag, New York.

Glover, F., Laguna, M., and Mart́ı, R. (2007). Principles of tabu search. In Gonzalez, T.,

editor, Approximation Algorithms and Metaheuristics, volume 23, pages 1–12. Chapman

& Hall/CRC.

Glover, F., Løkketangen, A., and Woodruff, D. L. (2000b). Scatter search to generate diverse

MIP solutions. In Laguna, M. and González Velarde, J. L., editors, Computing tools

for modeling optimization and simulation, pages 299–320. Kluwer Academic Publishers,

Boston.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning.

Addison Wesley Longman.

Gras, R., Hernandez, D., Hernandez, P., Zangge, N., Mescam, Y., Frey, J., Martin, O.,

Nicolas, J., and Appel, R. D. (2003). Cooperative metaheuristics for exploring proteomic

data. Artificial Intelligence Review, 20(1):95–120.

Groep, M. E., Gregory, M. E., Kershenbaum, L. S., and Bogle, I. D. L. (2000). Performance

modeling and simulation of biochemical process sequences with interacting unit operations.

Biotechnology and Bioengineering, 67(3):300–311.

Grossmann, I. E. (1996). Global Optimization in Engineering Design. Kluwer Academic

Publishers.

Gutiérrez, G. and Vega, P. (2000). Integrated design of activated sludge process taking

into account the closed loop controllability. In Proceedings of ESCAPE-10, pages 63–69,

Firenze.

BIBLIOGRAPHY 215

Gutmann, H.-M. (2001). A radial basis function method for global optimization. Journal of

Global Optimization, 19(3):201–227.

Guus, C., Boender, E., and Romeijn, H. E. (1995). Stochastic methods. In Horst, R. and

Pardalos, P. M., editors, Handbook of Global Optimization, pages 829–869. Kluwer Aca-

demic Publishers.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary

Computation, 11(1):1–18.

Harjunkoski, I., Westerlund, T., Pörn, R., and Skrifvars, H. (1998). Different transformations

for solving non-convex trim-loss problems by MINLP. European Journal of Operational

Research, 105(3):594–603.

Hedar, A. (2004). Studies on Metaheuristics for Continuous Global Optimization Problems.

PhD thesis, Kyoto University, Japan.

Henze, M., GradyJr, C. P. L., Gujer, W., Marais, G. V. R., and T., M. (1987). Activated

sludge model n 1. IAWQ Scientific and Technical Report 1, IAWQ, London (Great Britain).

Herrera, F. and Lozano, M. (2000). Gradual distributed real-coded genetic algorithms. IEEE

Transactions on Evolutionary Computation, 4(1):43–62.

Herrera, F., Lozano, M., and Molina, D. (2006). Continuous scatter search: An analysis

of the integration of some combination methods and improvement strategies. European

Journal of Operational Research, 169(2):450–476.

Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential

equation solvers. ACM-SIGNUM Newsletter, 15(4):10–11.

Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ode solvers. In Steple-

man, R., editor, Scientific Computing. North Holland, Amsterdam, The Netherlands.

www.netlib.org/odepack/lsode.f.

Hirsch, M. J., Meneses, C. N., Pardalos, P. M., and Resende, M. G. C. (2007). Global

optimization by continuous grasp. Optimization Letters, 1(2):201–212.

216 BIBLIOGRAPHY

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of

Michigan Press.

Holmström, K. (2007). An adaptive radial basis algorithm (ARBF) for expensive black-box

global optimization. Journal of Global Optimization, In press(doi:10.1007/s10898-007-9256-

8).

Holmström, K. and Edvall, M. M. (2004). The tomlab optimization environment. In Kall-

rath, J., editor, Modeling Languages in Mathematical Optimization, volume 88 of Applied

Optimization, chapter 19, pages 369–378. Kluwer Academic Publishers, Boston, MA.

Hong, J. (1986). Optimal substrate feeding policy for a fed batch fermentation with substrate

and product inhibition kinetics. Biotechnology and Bioengineering, 28(9):1421–1431.

Huang, D., Allen, T. T., Notz, W. I., and Zeng, N. (2006). Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,

34(3):441–466.

Hunter, W. G. and McGregor, J. F. (1967). The estimation of common parameters from

several responses: Some actual examples. Technical report, The Department of Statistics,

University of Winsconsin.

Jayaraman, V. K., Kulkarni, B. D., Karale, S., and Shelokar, P. (2000). Ant colony framework

for optimal design and scheduling of batch plants. Computers and Chemical Engineering,

24(8):1901–1912.

Jeppsson, U. (1996). Modelling Aspects of Wastewater Treatment Processes. PhD thesis,

Industrial Electrical Engineering and Automatics (IEA), Lund Institute of Technology

(LTH).

Jeppsson, U. and Pons, M. N. (2004). The cost benchmark simulation model-current state

and future perspective. Control Engineering Practice, 12(3):299–304.

Jiang, S., Ziver, A. K., Carter, J. N., Pain, C. C., Goddard, A. J. H., Franklin, S., and Phillips,

H. J. (2006). Estimation of distribution algorithms for nuclear reactor fuel management

optimisation. Annals of Nuclear Energy, 33(11-12):1039–1057.

BIBLIOGRAPHY 217

Jin, R., Chen, W., and Simpson, T. W. (2001). Comparative studies of metamodelling tech-

niques under multiple modelling criteria. Structural and Multidisciplinary Optimization,

23(1):1–13.

Jones, D. R. (2001a). DIRECT global optimization algorithm. In Floudas, C. A. and Pardalos,

P. M., editors, Encyclopedia of optimization, pages 431–440. Kluwer Academic Publishers,

Dordrecht.

Jones, D. R. (2001b). A taxonomy of global optimization methods based on response surfaces.

Journal of Global Optimization, 21(4):345–383.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expen-

sive black-box functions. Journal of Global Optimization, 13(4):455–492.

Kallrath, J. (2000). Mixed integer optimization in the chemical process industry: Experience,

potential and future perspectives. Chemical Engineering Research and Design, 78(6):809–

822.

Kallrath, J. (2005). Solving planning and design problems in the process industry using

mixed integer and global optimization. Annals of Operations Research, 140(1):339–373.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE International

Conference on Neural Networks, pages 1942–1948.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220:671–680.

Kocis, G. R. and Grossmann, I. E. (1988). Global optimization of nonconvex mixed-integer

nonlinear programming (MINLP) problems in process synthesis. Industrial and Engineering

Chemistry Research, 27(8):1407–1421.

Kookos, I. K. (2004). Optimization of batch and fed-batch bioreactors using simulated an-

nealing. Biotechnology Progress, 20(4):1285–1288.

Krige, D. G. (1951). A statistical approach to some mine valuations and allied problems at

the witwatersrand. Master’s thesis, University of Witwatersrand.

Kuzmic, P. (1996). Program DYNAFIT for the analysis of enzyme kinetic data: application

to hiv proteinase. Analytical Biochemistry, 237:260–273.

218 BIBLIOGRAPHY

Ladiges, G. and Günner, C. (2003). Theoretical and practical results of the optimisation of

hamburg’s wwtps with dynamic simulation. Water Science and Technology, 47(12):27–33.

Ladiges, G., Guünner, C., and Otterpohl, R. (1999). Optimisation of the hamburg wastewater

treatment plants by dynamic simulation. Water Science and Technology, 39(4):37–44.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1999). Convergence properties

of the nelder-mead simplex method in low dimensions. SIAM Journal on Optimization,

9(1):112–147.

Laguna, M. and Mart́ı, R. (2002). The OptQuest callable library. In Voss, S. and L., W. D.,

editors, Optimization Software Class Libraries. Kluwer Academic Publishers, Boston.

Laguna, M. and Mart́ı, R. (2003). Scatter Search: Methodology and Implementations in C.

Kluwer Academic Publishers, Boston.

Laguna, M. and Mart́ı, R. (2005). Experimental testing of advanced scatter search designs for

global optimization of multimodal functions. Journal of Global Optimization, 33(2):235–

255.

Landa Becerra, R. and Coello-Coello, C. A. (2006). Cultured differential evolution for con-

strained optimization. Computer Methods in Applied Mechanics and Engineering, 195(33-

36):4303–4322.

Larrañaga, P. and Lozano, J. A. (2001). Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation.

Lasdon, L. and Plummer, J. C. (2008). Multistart algorithms for seeking feasibility. Com-

puters and Operations Research, 35(5):1379–1393.

Leyffer, S. (2001). Integrating SQP and branch-and-bound for mixed integer nonlinear pro-

gramming. Computational Optimization and Applications, 18(3):295.

Lin, B. and Miller, D. (2004). Tabu search algorithm for chemical process optimization.

Computers and Chemical Engineering, 28(11):2287–2306.

Lin, Y. and Stadtherr, M. A. (2006). Deterministic global optimization for parameter esti-

mation of dynamic systems. Industrial and Engineering Chemistry Research, 45(25):8438–

8448.

BIBLIOGRAPHY 219

Lin, Y. E., Anantheswaran, R. C., and Puri, V. M. (1995). Finite element analysis of mi-

crowave heating of solid foods. Journal of Food Engineering, 25(1):85–112.

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-coded memetic algo-

rithms with crossover hill-climbing. Evolutionary Computation, 12(3):273–302.

Luus, R. (1993a). Application of dynamic programming to differential-algebraic process

systems. Computers and Chemical Engineering, 17(4):373–377.

Luus, R. (1993b). Piecewise linear continuous optimal control by iterative dynamic program-

ming. Industrial and Engineering Chemistry Research, 32(5):859–865.

Luyben, K. C. A. M., Liou, J. K., and Bruin, S. (1982). Enzyme degradation during drying.

Biotechnology and Bioengineering, 24(3):533–552.

Mart́ı, R. (2003). Multi-start methods. In Glover, F. and Kochenberger, G., editors, Handbook

of Metaheuristics, pages 355–368. Kluwer Academic Publishers.

Mart́ı, R. and Laguna, M. (2003). Scatter search: Diseño básico y estrategias avanzadas.

Revista Iberoamericana de Inteligencia Artificial, 19:123–130.

Mart́ı, R., Laguna, M., and Glover, F. (2006). Principles of scatter search. European Journal

of Operational Research, 169(2):359–372.

Martin, J. D. and Simpson, T. W. (2005). Use of kriging models to approximate deterministic

computer models. AIAA Journal, 43(4):853–863.

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58:1246–1266.

Matyas, J. (1965). Random optimization. Automation Remote Control, 26:246–253.

Melián, B., Moreno Pérez, J. A., and Moreno Vega, J. M. (2003). Metaheuŕısticas: una visión

global. Revista Iberoamericana de Inteligencia Artificial, 19:7–28.

Mendes, P. and Kell, D. B. (1998). Non-linear optimization of biochemical pathways: applica-

tions to metabolic engineering and parameter estimation. Bioinformatics, 14 (10):869–883.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs.

Springer.

220 BIBLIOGRAPHY

Michalewicz, Z. (1996). Evolutionary algorithms for constrained parameter optimization

problems. Evolutionary Computation, 4(1):1–32.

Michalewicz, Z., Logan, T., and Swaminathan, S. (1994). Evolutionary operators for continu-

ous convex parameter spaces. Proceedings of the Third Annual Conference on Evolutionary

Programming, pages 84–97.

Michalewicz, Z. and Siarry, P. (2008). Feature cluster on adaptation of discrete metaheuristics

to continuous optimization. European Journal of Operational Research, 185(3):1060–1061.

Michna, M. (2000). Model of the winding factor of the electrical machines. Technical report,

Polytechnika Gdanska.

Mishkin, M., Karel, M., and Saguy, I. (1982). Applications of optimization in food dehydra-

tion. Food Technology, 36(7):101–109.

Moles, C. G., Gutierrez, G., Alonso, A. A., and Banga, J. R. (2003a). Integrated pro-

cess design and control via global optimization: a wastewater treatment plant case study.

Chemical Engineering Research and Design, 81:507–517.

Moles, C. G., Mendes, P., and Banga, J. R. (2003b). Parameter estimation in biochemical

pathways: a comparison of global optimization methods. Genome Research, 13:2467–2474.

Molina, D., Herrera, F., and Lozano, M. (2005). Adaptive local search parameters for real-

coded memetic algorithms. In IEEE Congress on Evolutionary Computation, IEEE CEC

2005, volume 1, pages 888–895.

Moré, J. J. (1978). The levenberg-marquardt algorithm: implementation and theory. In

Watson, G. A., editor, Numerical Analysis, number 630 in Lecture Notes in Mathematics,

pages 105–116. Springer-Verlag, Berlin.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms. C3P Report 826, Caltech Concurrent Computation Program.

Mühlenbein, H. and Paass, G. (1996). From recombination of genes to the estimation of distri-

butions i. binary parameters. In PPSN IV: Proceedings of the 4th International Conference

on Parallel Problem Solving from Nature.

BIBLIOGRAPHY 221

Najafpour, G. (2006). Biochemical Engineering and Biotechnology. Elsevier Science, The

Netherlands.

Neumaier, A., Shcherbina, O., Huyer, W., and Vinkó, T. (2005). A comparison of complete

global optimization solvers. Mathematical Programming, 103(2).

Ohlsson, T. and Bengtsson, N. E. (1971). Microwave heating profiles in food. Microwave

Energy Applications Newsletter, 4(6):1–8.

Osman, I. H. and Kelly, J. P. (1996). Meta-heuristics: Theory and applications. Kluwer

Academic Publishers, Boston.

Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations

Research, 63:513623.

Ourique, C. O., Biscaia Jr., E. C., and Pinto, J. C. (2002). The use of particle swarm optimiza-

tion for dynamical analysis in chemical processes. Computers and Chemical Engineering,

26(12):1783–1793.

Panier, E. and Tits, A. L. (1993). On combining feasibility, descent and superlinear conver-

gence in inequality constrained optimization. Mathematical Programming, 59:261–276.

Papamichail, I. and Adjiman, C. S. (2002). A rigorous global optimization algorithm for

problems with ordinary differential equations. Journal of Global Optimization, 24:1–33.

Pardalos, P. M., Romeijn, H. E., and Tuy, H. (2000). Recent developments and trends in

global optimization. Journal of Computational and Applied Mathematics, 124(1-2):209–

228.

Park, C. and Lee, T.-Y. (2004). Optimal control by evolutionary algorithm technique

combined with spline approximation method. Chemical Engineering Communications,

191(2):262–277.

Pinter, J. (1996). Global Optimization in Action. Continuous and Lipschitz Optimization:

Algorithms, Implementations and Applications. Kluwer Academics, Netherlands.

Polisetty, P. K., Voit, E. O., and Gatzke, E. P. (2006). Identification of metabolic system

parameters using global optimization methods. Theoretical Biology and Medical Modelling,

3:4.

222 BIBLIOGRAPHY

Ponsich, A., Azzaro-Pantel, C., Domenech, S., and Pibouleau, L. (2007). Some guidelines for

genetic algorithm implementation in MINLP batch plant design problems. In Siarry, P.

and Michalewicz, Z., editors, Advances in Metaheuristics for Hard Optimization, Natural

Computing Series, pages 293–315. Springer.

Preux, P. and Talbi, E.-G. (1999). Towards hybrid evolutionary algorithms. International

Transactions in Operational Research, 6:557–570.

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution A Practi-

cal Approach to Global Optimization. Natural Computing Series. Springer-Verlag, Berlin,

Germany.

Price, W. L. (1983). Global optimization by controlled random search. Journal of Optimiza-

tion Theory and Applications, 40(3):333348.

Rajesh, J., Gupta, K., Kusumakar, H. S., Jayaraman, V. K., and Kulkarni, B. D. (2001).

Dynamic optimization of chemical processes using ant colony framework. Computers and

Chemistry, 25(6):583–595.

Rajesh, J., Gupta, K., Kusumakar, H. S., Jayaraman, V. K., and Kulkarni, B. D. (2003). A

tabu search based approach for solving a class of bilevel programming problems in chemical

engineering. Journal of Heuristics, 9(4).

Rastrigin, L. A. and Rubinstein, Y. (1969). The comparison of random search and stochastic

approximation while solving the problem of optimization. Automatic Control, 2:2329.

Rechenberg, I. (1973). Evolutionsstrategie Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. Frommann-Holzboog.

Regis, R. G. and Shoemaker, C. A. (2007a). Improved strategies for radial basis function

methods for global optimization. Journal of Global Optimization, 37(1):113–135.

Regis, R. G. and Shoemaker, C. A. (2007b). Parallel radial basis function methods for the

global optimization of expensive functions. European Journal of Operational Research,

127(2):514–535.

Rich, E. and Knight, K. (1991). Artificial Intelligence. McGraw-Hill.

BIBLIOGRAPHY 223

Rigopoulos, S. and Linke, P. (2002). Systematic development of optimal activated sludge

process designs. Computers and Chemical Engineering, 26(4-5):585–597.

Rinnooy-Kan, A. H. G. and Timmer, G. T. (1987). Stochastic global optimization methods.

Part I: Clustering methods. Mathematical Programming, 39:27.

Rodŕıguez-Acosta, F., Regalado, C., and Torres, N. (1999). Non-linear optimization of

biotechnological processes by stochastic algorithms. Application to the maximization of

the production rate of ethanol, glycerol and carbohydrates by saccharomyces cerevisiae.

Journal of Biotechnology, 68(1):15–28.

Rodŕıguez-Fernández, M. (2006). Modelado e Identificación de Bioprocesos. PhD thesis,

University of Vigo, Spain.

Rodŕıguez-Fernández, M., Balsa-Canto, E., Egea, J. A., and Banga, J. R. (2007). Identifia-

bility and robust parameter estimation in food process modeling: Application to a drying

model. Journal of Food Engineering, 83(3):374–383.

Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2006a). Novel metaheuristic for pa-

rameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics, 7:483+.

Rodŕıguez-Fernández, M., Mendes, P., and Banga, J. R. (2006b). A hybrid approach for

efficient and robust parameter estimation in biochemical pathways. BioSystems, 83:248–

265.

Roubos, J. A., Van Straten, G., and Van Boxtel, A. J. B. (1999). An evolutionary strategy for

fed-batch bioreactor optimization: concepts and performance. Journal of Biotechnology,

67(2-3):173–187.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary opti-

mization. IEEE Transactions on Evolutionary Computation, 4:284–294.

Saa, J., Alonso, A. A., and Banga, J. R. (1998). Optimal control of microwave heating using

mathematical models of medium complexity. In Automatic Control of Food and Biological

Processes (AcoFop IV), Göteborg (Sweden).

Sakizlis, V., Perkins, J. D., and Pistikopoulos, E. N. (2004). Recent advances in optimization-

based simultaneous process and control design. Computers and Chemical Engineering,

28(10):2069–2086.

224 BIBLIOGRAPHY

Sandgren, E. (1990). Nonlinear integer and discrete programming in mechnical design opti-

mization. Journal of Mechanisms, Transmissions, and Automation in Design, 112(2):223–

229.

Sarkar, D. and Modak, J. M. (2004). Optimization of fed-batch bioreactors using genetic

algorithm: Multiple control variables. Computers and Chemical Engineering, 28(5):789–

798.

Sasena, M., Papalambros, P., and Goovaerts, P. (2002). Exploration of metamodeling sam-

pling criteria for constrained global optimization. Engineering Optimization, 34:263–278.

Sastry, K. and Goldberg, D. (2005). Genetic algorithms. In Burke, E. K. and Kendall,

G., editors, Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques, pages 97–125. Springer, New York, NY, USA.

Schiesser, W. E. (1991). The numerical method of lines. Academic Press, New York, USA.

Schittkowski, K. (2002). Numerical data fitting in dynamical systems - A practical introduc-

tion with applications and software. Kluwer Academic Publishers.

Schütze., Butler, D., and Beck, M. B. (1999). Optimisation of control strategies for the urban

wastewater system - an integrated approach. Water Science and Technology, 39(9):209–216.

Schütze, M., Butler, D., and Beck, M. B. (2001). Parameter optimisation of real-time control

strategies for urban wastewater systems. Water Science and Technology, 43(7):139–146.

Schütze, M., Butler, D., Beck, M. B., and Verworn, H. . (2002). Criteria for assessment of

the operational potential of the urban wastewater system. Water Science and Technology,

45(3):141–148.

Schweiger, C. A. and Floudas, C. A. (1997). Interaction of design and control: Optimization

with dynamic models. In Hager, W. W. and Pardalos, P. M., editors, Optimal Control:

Theory, Algorithms, and Applications, pages 388–435. Kluwer Academic Publishers.

Send́ın, O. H., Moles, C. G., Alonso, A. A., and Banga, J. R. (2004). Multi-objective inte-

grated design and control using stochastic global optimization methods. In Seferlis, P. and

Georgiadis, M. C., editors, The integration of process design and control, pages 555–581.

Elsevier, Amsterdam-Boston.

BIBLIOGRAPHY 225

Shampine, L. F. and Watts, H. A. (1977). The art of writing a runge-kutta code, part 1. In

Rice, J. R., editor, Mathematical Software III, pages 257–275. Academic Press, New York.

Shelokar, P. S., Jayaraman, V. K., and Kulkarni, B. D. (2008). Multicanonical jump walk

annealing assisted by tabu for dynamic optimization of chemical engineering processes.

European Journal of Operational Research, 185(3):1213–1229.

Shimizu, K. (1996). A tutorial review on bioprocess systems engineering. Computers and

Chemical Engineering, 20(6-7):915–941.

Shuler, M. L. and Kargi, F. (1992). Bioprocess Engineering. Prentice Hall, Englewood Cliffs,

New Jersey.

Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K. (2001). Metamodels for

computer-based engineering design: Survey and recommendations. Engineering with Com-

puters, 17(2):129–150.

Singer, A. B., Bok, J. K., and Barton, P. I. (2001). Convex underestimators for variational

and optimal control problems. Computer Aided Chem. Eng., 9:767–772.

Socha, K. and Dorigo, M. (2008). Ant colony optimization for continuous domains. European

Journal of Operational Research, 185(3):1155–1173.

Srinivas, M. and Rangaiah, G. P. (2007). Differential evolution with tabu list for global

optimization and its application to phase equilibrium and parameter estimation problems.

Industrial and Engineering Chemistry Research, 46(10):3410–3421.

Steffens, M. A., Fraga, E. S., and Bogle, I. D. L. (2000). Synthesis of bioprocesses using

physical properties data. Biotechnology and Bioengineering, 68(2):218–230.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New

York.

Storn, R. and Price, K. (1997). Differential evolution - a simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization, 11:341–359.

Sun, D. Y. and Lin, P. M. (2006). The solution of time optimal control problems by simulated

annealing. Journal of Chemical Engineering of Japan, 39(7):753–766.

226 BIBLIOGRAPHY

Taillard, E. D., Gambardella, L. M., Gendreau, M., and Potvin, J.-Y. (2001). Adaptive

memory programming: A unified view of metaheuristics. European Journal of Operational

Research, 135(1):1–16.

Takács, I., Patry, G. G., and Nolasco, D. (1991). A dynamic model of the clarification-

thickening process. Water Research, 25(10):1263–1271.

Talbi, E.-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8:541564.

Teh, Y. S. and Rangaiah, G. P. (2003). Tabu search for global optimization of continuous

functions with application to phase equilibrium calculations. Computers and Chemical

Engineering, 27(11):1665–1679.

Tfaili, W. and Siarry, P. (2008). A new charged ant colony algorithm for continuous dynamic

optimization. Applied Mathematics and Computation, In press, Corrected Proof.

Tjoa, I. B. and Biegler, L. T. (1991). Simultaneous solution and optimization strategies for

parameter estimation of differential-algebraic equation systems. Industrial and Engineering

Chemistry Research, 30(2):376–385.

Törn, A. A. (1973). Global optimization as a combination of global and local search. In Pro-

ceedings of Computer Simulation Versus Analytical Solutions for Business and Economic

Models.

Trafalis, T. B. and Kasap, S. (1996). An affine scaling scatter search approach for continuous

global optimization problems. In Dagli, C. H., Akay, M., Chen, C. L. P., Fernandez,

B. R., and Ghosh, J., editors, Intelligent Engineering Systems Through Artificial Neural

Networks, volume 6, pages 1027–1032. ASME Press.

Trafalis, T. B. and Kasap, S. (2002). A novel metaheuristics approach for continuous global

optimization. Journal of Global Optimization, 23(2):171–190.

Tsai, K. and Wang, F. (2005). Evolutionary optimization with data collocation for reverse

engineering of biological networks. Bioinformatics, 21(7):1180–1188.

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Mart́ı, R. (2005). A multistart

scatter search heuristic for smooth NLP and MINLP problems. In Rego, C. and Alidaee,

B., editors, Adaptive Memory and Evolution: Tabu Search and Scatter Search, pages 25–58.

Kluwer Academic Publishers.

BIBLIOGRAPHY 227

Vanrolleghem, P. A. and Dochain, D. (1998). Bioprocess model identification. In Van Impe,

J. F., Vanrolleghem, P. A., and Iserentant, D. M., editors, Advanced Instrumentation, data

interpretation, and control of biotechnological process, pages 251–318. Kluwer Academic

Publishers.

Vanrolleghem, P. A. and Gillot, S. (2002). Robustness and economic measures as control

benchmark performance criteria. Water Science and Technology, 45(4-5):117–126.

Vassiliadis, V. S., Sargent, R. W. H., and Pantelides, C. C. (1994a). Solution of a class of mul-

tistage dynamic optimization problems. 1. problems without path constraints. Industrial

and Engineering Chemistry Research, 33(9):2111–2122.

Vassiliadis, V. S., Sargent, R. W. H., and Pantelides, C. C. (1994b). Solution of a class of

multistage dynamic optimization problems. 2. problems with path constraints. Industrial

and Engineering Chemistry Research, 33(9):2123–2133.

Vazquez, E. (2005). Modélisation comportementale de systèmes non-linéaires multivariables

par méthodes á noyaux et applications. PhD thesis, Paris XI Orsay University.

Vecchia, A. V. (1998). Estimation and model identification for continuous spatial processes.

Journal of the Royal Statistical Society, B(50):297–312.

Villemonteix, J., Vazquez, E., and Walter, E. (2008). An informational approach to the

global optimization of expensive-to-evaluate functions. Journal of Global Optimization,

Accepted:In Press.

Villota, R. and Karel, M. (1980a). Prediction of ascorbic acid retention during drying. i.

moisture and temperature distribution in a model system. Journal of Food Processing and

Preservation, 4:111–134.

Villota, R. and Karel, M. (1980b). Prediction of ascorbic acid retention during drying. ii.

simulation of retention in a model system. Journal of Food Processing and Preservation,

4:141–159.

Vrugt, J. A. and Robinson, B. A. (2007). Improved evolutionary optimization from genetically

adaptive multimethod search. PNAS, 104(3):708–711.

228 BIBLIOGRAPHY

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Mathematical Programming,

106(1):25–57.

Wan, X., Pekny, J. F., and Reklaitis, G. V. (2005). Simulation-based optimization with

surrogate modelsapplication to supply chain management. Computers and Chemical En-

gineering, 29(6):1317–1328.

Wang, C., Quan, H., and Xu, X. (1999). Optimal design of multiproduct batch chemical

processes using tabu search. Computers and Chemical Engineering, 23(3):427–437.

Wang, F.-S., Su, T.-L., and Jang, H.-J. (2001). Hybrid differential evolution for problems of

kinetic parameter estimation and dynamic optimization of an ethanol fermentation process.

Industrial and Engineering Chemistry Research, 40(13):2876–2885.

Wang, K., Salhi, A., and Fraga, E. S. (2004). Process design optimisation using embedded

hybrid visualisation and data analysis techniques within a genetic algorithm optimisation

framework. Chemical Engineering and Processing, 43(5):663–675.

Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions I:

Basic results. Springer Series in Statistics. Springer-Verlag, Inc., New York.

Ye, Y. (1987). Interior algorithms for linear, quadratic and linearly constrained non-linear

programming. PhD thesis, Stanford University.

Yeniay, O. (2005). Penalty function methods for constrained optimization with genetic algo-

rithms. Mathematical and Computational Applications, 10(1):45–56.

Yuan, X., Zhang, S., Piboleau, L., and Domenech, S. (1988). Une methode d’optimization

nonlineare en variables mixtes pour la conception de procedes. RAIRO, 22:31.

Zelinka, I., Vasek, V., Kolomaznik, K., and Dostal, P. (2001). Memetic algorithm and global

optimization of chemical reactor. In PC Control 2001, 13th International Conference on

Process Control, High Tatras, Slovakia.

Zhang, B., Chen, D., and Zhao, W. (2005). Iterative ant-colony algorithm and its applica-

tion to dynamic optimization of chemical process. Computers and Chemical Engineering,

29(10):2078–2086.

BIBLIOGRAPHY 229

Zhou, Z., Ong, Y. S., Lim, M. H., and Lee, B. S. (2007). Memetic algorithm using

multi-surrogates for computationally expensive optimization problems. Soft Computing,

11(10):957–971.

Zwolak, J. W., Tyson, J. J., and Watson, L. T. (2005). Globally optimised parameters for a

model of mitotic control in frog egg extracts. IEE Proceedings Systems Biology, 152(2):81–

92.

230 BIBLIOGRAPHY

Part VII

Publications

231

Publications

Publications in international journals

� Exler, O., Antelo, L. T., Egea, J. A., Alonso, A. A., and Banga, J. R. (2007). A

tabu search-based algorithm for mixed-integer nonlinear problems and its application

to integrated process and control system design. Computers and Chemical Engineering,

In Press(doi:10.1016/j.compchemeng.2007.10.008).

� Egea, J. A., Vazquez, E., Banga, J. R., and Mart́ı, R. (2007). Improved scatter search

for the global optimization of computationally expensive dynamic models. Journal of

Global Optimization, In press(doi:10.1007/s10898-007-9172-y).

� Egea, J. A., Vries, D., Alonso, A. A., and Banga, J. R. (2007). Global optimization for

integrated design and control of computationally expensive process models. Industrial

and Engineering Chemistry Research, 46:9148-9157.

� Rodŕıguez-Fernández, M., Balsa-Canto, E., Egea, J. A., and Banga, J. R. (2007). Iden-

tifiability and robust parameter estimation in food process modeling: Application to a

drying model. Journal of Food Engineering, 83(3):374-383.

� Egea, J. A., Rodŕıguez-Fernández, M., Banga, J. R., and Mart́ı, R. (2007). Scat-

ter search for chemical and bio-process optimization. Journal of Global Optimization,

37(3):481-503.

� Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2006). Novel metaheuristic for

parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics,

7:483+.

233

234

Book chapters

� Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2006). Novel metaheuristic

for parameter estimation and optimal experimental design in Systems Biology. In:

Understanding and Exploiting Systems Biology in Bioprocesses and Biomedicine, pp.

103-117. M. Cánovas, J. L. Iborra and A. Manjón (Eds.), Fundación Cajamurcia,

Murcia (Spain).

Contributions to international congresses

� Egea, J. A., Vazquez, E., Banga, J. R., and Mart́ı, R. (2007). Improved scatter search

for the global optimization of computationally expensive dynamic models. Fifth Inter-

national Conference on Advances in Global Optimization: Methods and Applications

(AGO2007), July 13-17, 2007, Mykonos (Greece).

� Exler, O., Banga, J. R., Egea, J. A., Antelo, L. T. and Alonso, A. A. (2006). Metaheuris-

tics for integration of process and control system design. 9th Conference on Process

Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction

(PRESS 2006), August, 27-31, 2006, Prague (Czech Republic).

� Egea, J. A. (2006). An Optimization Approach for Integrated Design and Parameter

Estimation in Process Engineering. 5th Conference of PhD Students in Computer

Science, June 27-30, 2006, Szeged (Hungary).

� Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2006). Novel metaheuristic

for parameter estimation and optimal experimental design in Systems Biology. 1st

International Symposium on Systems Biology, June 1-2, 2006, Murcia, (Spain).

� Egea, J. A., Vries, D., Alonso, A. A., and Banga, J. R. (2005). Global Optimiza-

tion for Integrated Design and Control of Computationally Expensive Process Models.

European Control Conference (ECC 2005), December 12-15, 2005, Seville (Spain).

� Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2005). Novel metaheuristic for

parameter estimation in nonlinear dynamic biological systems. European Conference

on Mathematical and Theoretical Biology - ECMTB05, July 18-22, 2005, Dresden,

(Germany).

235

Articles in preparation

� Schlüter, M., Egea, J. A., and Banga, J. R. (2008). Extended Ant Colony Optimization

for non-convex Mixed Integer Nonlinear Programming. Submitted to Computers and

Operations Research.

� Egea, J. A., Garćıa, M. S. G., Balsa-Canto, E., and Banga, J. R. (2008). Global

Dynamic Optimization in Chemical Engineering using the Scatter Search Metaheuristic.

To be submitted to Industrial and Engineering Chemistry Research.

� Schlüter, M., Antelo, L. T., Egea, J. A., Alonso, A. A., and Banga, J. R. (2008). An

Ant Colony Optimization based algorithm for the integrated process and control system

design. To be submitted to Industrial and Engineering Chemistry Research.

