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In this paper, we address the problem of scheduling jobs in a no-wait flow shop with sequence-dependent setup 
times with the objective of minimizing the make span and the total flow time. As this problem is well-known for being NP-
hard, we present two new constructive heuristics in order to obtain good approximate solutions for the problem in a short 
CPU time, named GAPH and QUARTS. GAPH is based on a structural property for minimizing make span and QUARTS breaks 
the problem in quartets in order to minimize the total flow time. Experimental results demonstrate the superiority of the 
proposed approaches over three of the best-know methods in the literature: BAH and BIH, from Bianco, Dell´Olmo and 
Giordani (1999) and TRIPS, by Brown, McGarvey and Ventura (2004).
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Abstract

INTRODUCTION

The first systematic approach to scheduling problems 
was undertaken in the mid-1950s. Since then, thousands of 
papers on different scheduling problems have appeared in 
the literature. The majority of these papers assumed that 
the setup time is negligible or part of the job processing 
time. Treating setup times separately from processing times 
allows operations to be performed simultaneously and 
hence improves resource utilization. This is, in particular, 
important in modern production management systems 
such as just-in-time (JIT), optimized production technology 
(OPT), group technology (GT), cellular manufacturing (CM), 
and time-based competition (ALLAHVERDI et al., 2008). 
Another important area in scheduling arises in no-wait flow 
shop problems (NWFSP), where jobs have to be processed 
without interruption between consecutive machines. There 
are several industries where the no-wait flow shop problem 
applies including the metal, plastic, and chemical industries. 
As noted by Hall and Sriskandarajah (1996), the first of two 
main reasons for the occurrence of a no-wait or blocking 
production environment lies in the production technology 
itself. In some processes, for example, the temperature 

or other characteristics (such as viscosity) of the material 
require that each operation follow the previous one 
immediately. According to Bianco .et al., (1999), flow shop 
no-wait scheduling problems are also motivated by concepts 
such as JIT and zero inventory in modern manufacturing 
systems.

A survey on NWFSP has been conducted by Hall and 
Sriskandarajah (1996), where several practical applications 
are shown. Allahverdi.et al., (1999, 2008) provided a 
comprehensive review of the literature on scheduling 
problems with setup times. The NWFSP with sequence 
dependent setup times with the objective of minimizing 
make span was first proposed by Bianco et al.,(1999). They 
showed how to reduce this problem to the asymmetric 
travelling salesman problem (ATSP) and presented two 
lower bounds and two heuristics, named BAH and BIH. The 
computational results showed that BIH outperformed BAH 
in the solutions quality. Kumar et al.,(2000) considered a 
NWFSP that used lot-streaming to improve productivity. 
They developed a TSP formulation for the multi-product 
and continuous-sized case and proposed a heuristic to 
obtain an optimal sequence for integer-sized sublots.  
Allahverdi et Aldowaisan (2000) found optimal solutions 
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for the  problem, where the setup and 
processing times satisfy certain conditions, and presented 
five heuristics for the general problem. Later, Allahverdi 

et Aldowaisan (2001) considered the  
problem and presented five heuristics that used a repeated 
insertion technique. Stafford et Tseng (2002) proposed two 
mixed-integer linear programming (MILP) models to solve 
the m-machine NWFSP with sequence dependent setup 
times in order to minimize the make span.  Aldowaisan 
et Allahverdi (2003) proposed six heuristics based on 
simulated annealing and genetic algorithms techniques 

for the  problem. The simulated annealing 
based heuristics performed better than the others. Fink 
et Voβ (2003) proposed three constructive heuristics and 
several meta-heuristics for the NWFSP with total flowtime 
as the criteria.  Shyu et al., (2004) presented an ant colony 

optimization algorithm for the  problem, 
and showed that their algorithm outperformed earlier 
heuristics.. Brown et al., (2004) presented a non-polynomial 
time solution method and a heuristic named TRIPS for the 
NWFSP with sequence independent setup times, considering 
for the performance measures both the total flow time 

and make spanRuiz et al.,(2005) addressed the  
problem and proposed two genetic algorithms, named GA 
and HGA..  França et al., (2006) considered the same problem 
as.  Bianco et al., (1999) and solved it by an evolutionary 
approach. Their genetic algorithm outperformed BIH.  Ruiz 
et Allahverdi (2007a) presented a domination relation for 

the  problem and proposed an iterated 
local search method and five heuristics for the same 
problem with m-machines. The results showed that three 
of their heuristics outperformed TRIPS and the ant colony 
algorithm of Shyu et al., (2004). Ruiz et Allahverdi (2007b) 
proposed seven heuristics and four genetic algorithms for 
the NWFSP with sequence independent setup times in order 
to minimize the maximum lateness. Their genetic algorithms 
outperformed the heuristics of  Ruiz et Allahverdi (2007a).  
Grabowski et Pempera (2007) developed and compared 

five heuristcs for the  problem. In order to 
decrease the computational effort, they used multimoves. 
Ruiz et Stüzle (2008) presented two simple local search 

based iterated greedy algorithms for both  and 

 problems, and showed that their algorithms 
performed better than GA and HGA.  Framinan et Nagano 

(2008) studied the  problem and proposed 
a heuristic based on an analogy between the problem 
under consideration and the travelling salesman problem 
(TSP).  Pan et al., (2008) presented a discrete particle swarm 
optimization (DPSO) to solve the NWFSP with both make 
span and total flow timecriteria. The results showed that 
the algorithm outperformed the heuristics of  Grabowski 
et Pempera (2007) and  Fink et Voβ (2003).  Yaurima et 
al.,(2009) proposed a genetic algorithm for the hybrid 
flow shop problem with unrelated machines, sequence 
dependent setup times, availability constraints and limited 
buffer, and introduced a crossover operator and stopping 
criterion to improve the solution quality. Eren (2010) 
proposed an integer programming model to solve the flow 
shop problem with sequence dependent setup times. The 
objective function was the weighted sum of total completion 
time and the make span. The model could solve problems up 
to six machines and eighteen jobs. Wang (2010) considered 
the NWFSP with maximum lateness criterion and developed 
properties to reduce the time to evaluate a candidate in a 
tabu search approach. Framinan et al., (2010) addressed the 

 problem and proposed a constructive heuristic 
based on an analogy with the two-machine problem. 
The computational results showed that the heuristic 
outperformed existing ones regarding the solution quality.

In this paper, we consider the problem of scheduling 
a no-wait flow shop problem with sequence dependent 

setup times ( ), which consists of a set 
 of n jobs which are to be processed on a 

set  of m dedicated machines, 
each one being able to process only one job at a time. 
Job  consists of m operations , 
to be executed in this order, where operation  must 
be executed on machine k, with  processing time, 
immediately before operation . There is a sequence 

dependent setup time  between operations  and
 in machine k. We propose two new heuristic methods 

for the problem, GAPH and QUARTS, in order to minimize 
the make span and the total flow time, respectively. GAPH is 
based on a property of the scheduling problem that provides 
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the time break between the beginning of job 
 
 and the 

beginning of job  at machine k, where,  is the job of 
 occupying position i in σ. QUARTS breaks the problem in 

quartets, reducing the required computational effort to find 
the solution.

EXISTING CONSTRUCTIVE HEURISTICS FOR THE 
PROBLEM

In this section, we review the main contributions to the 
problem regarding constructive methods. More specifically, 
we explain in detail the constructive heuristics BAH and 
BIH, from Bianco et al., (1999) and TRIPS, from Brown et 
al.,(2004). BAH and BIH were made for the no-wait flow 
shopwith sequence-dependent setup times in order to 
minimize the make span, and were adapted in this work to 
also minimize the total flow time. TRIPS was made for the 
no-wait flow shop with sequence-independent setup times, 
to minimize both the make span and total flow time , and 
was adapted in this work to the no-wait flow shopwith 
sequence-dependent setup times.

BAH

BAH algorithm finds a feasible sequence in n iterations. 
At each iteration, given a partial sequence of the scheduled 
jobs computed in the previous iteration, the algorithm 
examines a set of candidates of the unscheduled jobs, and 
appends a candidate job to a partial sequence minimizing 
the time when the shop is ready to process an unscheduled 
job.

The pseudo-code of the heuristic is as follows:

Given a set  of n jobs, let σ be the set 
of programmed jobs and U be the set of non-programmed 
jobs. 

Step 1:  ;  ;

Step 2: While , do:

Step 2.1: Choose the job  to be added at the end 
of the sequence , such that the makespan/flowtime is 
minimum;

Step 2.2: Add job   to the end of the sequence σ;

Step 2.3:  .

BIH

The BIH algorithm also finds a sequence of n jobs on n 
iterations. But in this algorithm, at each iteration it considers 

a sequence of a subset of jobs, and finds the best sequence 
obtained inserting an unscheduled job in any position of the 
given sequence.

A more detailed description of the heuristic is as follows:

Given a set  of n jobs, let σ be the 
set of programmed jobs, U be the set of non-programmed 
jobs and h the relative insertion position.

Step 1:  ;  ;

Step 2: While , do:

Step 2.1: Choose the job  which can be inserted 
in the sequence , such that the make span/flow time is 
minimum. Let h be the relative insertion position;

Step 2.2: Insert job   at position h in the sequence σ;

Step 2.3:  .

TRIPS

TRIPS examines all possible three-job combinations from 
the set of unscheduled jobs  and chooses the sequence 

 that minimizes the three-job objective. Then, 
assigns job  to the last empty position in the sequence 
σ and removes   from U. The heuristic repeats the 
process, assigning one more job to σ for each set of triplets 
examined until only three jobs are left. Then, it selects the 
optimal sequence for these jobs and places them in the final 
positions of heuristic sequence σ.

The pseudo-code of the heuristic is as follows:

Given a set  of n jobs, let σ be the set 
of programmed jobs and U be the set of non-programmed 
jobs. 

Step 1:   ;  ; h ;

Step 2:  While h<n-2, do:

Step 2.1: Given that the first h jobs are assigned in 
sequence , compare all ordered triplets of jobs from ;

Step 2.2: Choose the triplet  such that the  
make span/flow time is minimized for jobs  in 
positions h+1, h+2, h+3, respectively, of sequence . 

Step 2.3: Place  in position h+1 of ; 

Step 2.4: h h+1; ;

Step 3: Assign  and  to the last two positions, 
respectively, of .
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A STRUCTURAL PROPERTY FOR THE NEW HEURISTIC 
FOR MAKESPAN 

Given a sequence σ of , 
 
is the job of  occupying 

position i in σ. The time break between the beginning of job 

 
 and the beginning of job  at machine k is 

, calculated as follows:

Defining  as the time break between the end 
of job 

 
and the beginning of job  at machine k, it 

can be calculated as follows:

 (1)

      (2)

       (3)

The GAP of the first job in the sequence on machine k is 
defined by expression (4):

       
 (4)

Figure 1 shows the time break between the end of job 
 

and the beginning of job 
 
on machine 2 ( ).

Figure 1 – Example of the GAP calculation

THE NEW HEURISTIC FOR MAKESPAN

The new heuristic proposed in this paper will be called 
GAPH – Gap Heuristic. The pseudo-code of the algorithm is 
given next:

Given a set  of n jobs, let U be the 

set of non-programmed jobs and  
be the sequence of  n jobs scheduled, where x = {1,2,3,4}. 

Calculate the  of each job i = 1, ..., n  to each job j 
= 1, ..., n at all m machines.

Step 1: UJ;   Ø;

Step 2: While U ≠ Ø, do:

Step 2.1: Calculate the total cost* on the last machine for 
all possible insertions of each job  in the sequence 

. Let h be the relative insertion position;

Step 2.2: Choose the job  that gives the lower total cost 
at position h;

Step 2.3: Insert job  at position h of the sequence ;

Step 2.4: U  U- ;

Step 3: UJ; Ø

Step 4: While U ≠ Ø, do:

Step 4.1: Calculate the total GAP** for all possible 
insertions of each job  in the sequence . Let h be 
the relative insertion position;

Step 4.2: Choose the job  that gives the lower total GAP 
at position h;

Step 4.3: Insert job  at position h of the sequence ;

Step 4.4: U  U- ;

Step 5: UJ; Ø;

Step 6: While U ≠ Ø, do:

Step 6.1: Calculate the sum of the GAPs on the last 
machine for all possible insertions of each job  in 
the sequence . Let h be the relative insertion position;

Step 6.2: Choose the job  that gives the lower sum of 

(3)

(2)

(1)
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The sum of the GAPs with the processing time 

of the job to be inserted on the last machine is: 

.

Figure 4 shows how the method works for each pair of 
steps (1-2; 3-4; 5-6; 7-8). In the example, jobs  and  were 
already scheduled ( ) and job  is scheduled on 
each possible position of the sequence (h).

the GAPs on the last machine at position h;

Step 6.3: Insert job  at position h of the sequence ;

Step 6.4: U  U- ;

Step 7: UJ; Ø;

Step 8: While U ≠ Ø, do:

Step 8.1: Calculate, for all possible insertions of each job 
 in the sequence , the sum of the GAPs with the 

processing time of the job on the last machine. Let h be the 
relative insertion position;

Step 8.2: Choose the job  that gives the lower 
sum of the GAPs with the processing time of the job on the 
last machine at position h;

Step 8.3: Insert job  at position h of the sequence .

Step 8.4: U  U- ;

Step 9: Choose, among the sequences 

, the one with the lower make span.

*The total cost on a k machine is defined as the scheduling 

total time on this machine. Thus, the total cost encompasses 

the sum of the GAPs on machine k with the scheduled 

operations processing times on that machine. Note that the 

total cost on the last machine is equivalent to the (see Figure 

2).

Figure 2 – Example of the total cost

**The total GAP is the sum of all GAPs in all machines. 

In Figure 3, the total GAP is: 

The sum of the GAPs on the last machine is: 

.

Figure 3 – Example of all the GAPs in the scheduling
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Figure 4 – Numerical example of how the method works

For example, if the method were on the second step, 
the sequence chosen would be the third one, that gives the 
lower total cost on the last machine.

DESCRIPTION OF THE NEW HEURISTIC FOR THE TOTAL 
FLOWTIME 

Brown et al., (2004) presented the TRIPS heuristic detailed 
above. TRIPS breaks the problem in triplets, reducing the 
required computational effort to find the solution. We made 
some modifications in this heuristic in order to improve its 
results. The main difference of the proposed heuristic is that 
it breaks the problem in quartets, instead of triplets. The 
new heuristic will be called QUARTS.

In order to choose the two first jobs, QUARTS examines 
all possible four-job combinations from the set of jobs J 
and chooses the sequence  that minimizes 
the total flow time. Then assigns jobs  and  to the first 
and second positions of σ, respectively, and removes them 
from the set of non-scheduled jobs. In the next iteration, 
the job scheduled in the second position of σ will be the first 
position (  of all possible four-job combinations 

 . The job in the second position ( ) of the 
quartet with the lowest flow time is then scheduled in the 
next empty position of σ and is removed from the set of 

non-scheduled jobs. Repeating this process, QUARTS assigns 
one job in  at each iteration, and the job scheduled in the 
previous iteration is always the first one of the quartets of 
the current iterations, until only three jobs are left. Select 
the optimal sequence for these jobs and place them in the 
final positions of heuristic sequence σ. Then, QUARTS tries 
to improve the solution found through a neighborhood 
insertion and a neighborhood permutation search 
procedures, described as follows:

• Neighborhood Insertion Search:

Insert each job  in the sequence σ at the (n-1)² 
possible positions, being n the number of jobs. Choose 
the insertion that obtains the lower total flowtime.

• Neighborhood Permutation Search:

This search exchanges pairs of tasks in the sequence 

, at the  possible positions. Choose the 
insertion that obtains the lower total flowtime.

The pseudo-code of the algorithm is given next:

Given a set  of n jobs, let U be the 

set of non-programmed jobs and  be 
the sequence of n jobs scheduled. 
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Step 1: UJ;  ; h .

Step 2: 

Step 2.1: Calculate the total flow time for all possible four-
job combination of U;

Step 2.2: Choose the quartet   that gives 
the lower flow time and assign  and  in positions 1 and 
2 of σ, respectively;

Step 2.3: h h+2;  ; .

Step 3: While h<n-2, do:

Step 3.1: ;

Step 3.2: Calculate the flow time for all quartets 
  of U;

Step 3.3: Choose the quartet that gives the lower flow 
time and assign  to the position h of σ;

Step 3.4: h h+1;  ;

Step 4: Assign  to the last positions, respectively, 
of σ. Calculate the total flow time.

Step 4.1: Calculate the total GAP** for all possible 
insertions of each job  in the sequence . Let h be 
the relative insertion position;

Step 4.2: Choose the job  that gives the lower total GAP 

at position h;

Step 4.3: Insert job  at position h of the sequence ;

Step 4.4: U  U- ;

Step 5: Neighborhood insertion search: Considering 

all insertion neighborhood of sequence σ, determine the 

sequence  that gives the lower total flow time. If the total 

flow time of the sequence  is lower than the sequence σ, 

then σ  .

Step 6: Neighborhood permutation search: Considering 

all insertion neighborhood of sequence σ, determine the 

sequence  that gives the lower total flow time. If the 

total flow time of the sequence  is lower than the 

sequence σ, then σ  .

Figures 5, 6 and 7 give an example of the method, in a 

problem with 5 jobs and 3 machines.

First of all, QUARTS calculates the flow time of all quartets 

 . Then, it picks up the one with the lowest flow 

time. Figure 5 shows the selected quartet (  ).

Figure 5 – First selected quartet

The first and second jobs of the quartet    
are then programmed in the first and second positions of 
the set of programmed jobs (σ), and are removed from the 
set of non-programmed jobs (U). In the next iteration, job   
will be the first position of all quartets. 

After calculating the flow time of all quartets 
, QUARTS picks up the one with the lowest flow time. Figure 
6 shows the selected quartet (  ).

Figure 6 – Second selected quartet
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As there are only three jobs to be programmed, all of the 

non-programmed jobs of this quartet will be programmed 

in the last positions of σ. Thus,   will be 

programmed in the third, fourth and fifth  positionsof 
, respectively, and removed from U. So, the final sequence 

will be , } (Figure 7). 

Figure 7 – Final sequence

Then, the heuristic tries to improve the result with the 
neighborhood insertion and permutation searches.

COMPUTATIONAL EXPERIENCE

The computational experience was carried out in two 
parts. In part I, we tested GAPH, BIH, BAH and TRIPS with 
the make span criteria. In part II, we tested QUARTS, BIH, 
BAH and TRIPS with the total flow time criteria. As stated, 
TRIPS heuristic was adapted to the no-wait flow time with 
sequence-dependent setup times problem, and BAH and 
BIH were adapted in order to also minimize the total flow 
time. 

The heuristics were tested in the well-known tested of 
Taillard (1993). This tested contains twelve sets for a given 
combination of jobs and machines, i.e., n {20,50,100,200,500} 
and m {5,10,20}. We performed four experiments, one for 
each of the four different sequence-dependent Taillard-
based instance sets from. (Ruiz et al. ,(2005). The tests 
contain four different processing times to sequence-
dependent setup times ratios. For example, the instance set 
SSD-10 is composed of one hundred twenty instances where 
the processing times are those of Taillard’s benchmark and 
where the sequence-dependent setup times are 10% of the 
processing times. In the instance set SSD-50, the setup times 
are 50% of the processing times and the instance sets SSD-
100 and SSD-125 have setup times that are 100% and 125% 
of the processing times respectively. So for example, if the 
processing times in Taillard’s instances are generated from 
a uniform distribution in the range [1; 99], in the SSD-10 
instance set the setup times are uniformly distributed in the 
range [1; 9] ([1; 49], [1; 99] and [1; 124] for the instance sets 
SSD-50, SSD-100 and SSD-125 respectively). Thus, we have 
four problem sets and a total of 480 different instances. The 
five hundred job instance was rather large and we chose to 
solve only the first one hundred ten instances (up to  two 
hundred jobs and twenty machines).

The instances in the tested have been solved by the 
selected heuristics (coded in Python). Part I was solved in a 
computer with a Pentium IV 3.00GHz processor and 512MB 
RAM, and Part II in a computer with a Intel Core 2 Duo 
2.20GHz/2.20GHz processor and 4.00GB RAM.

Tables 1 and 2 summarize the result obtained for the 
make span criteria and Tables three and four for the total 
flow time criteria in terms of the success percentage, the 
average relative percentage deviation (ARPD), and the 
average CPU time.

The success rate is defined by the ratio between the 
number of problems for which a particular method was 
the best solution and the total number of problems solved. 
Therefore, when two methods get the best solution for 
the same problem, their percentages of success are both 
improved.

The ARPD consists of averaging the RPD over a number of 
instances with the same number of jobs. We have grouped 
the results for a given number of jobs and different machines, 
as the number of machines had almost no influence in the 
results. For a given objective function , the RPD obtained 
by a heuristic H on a given instance is computed as follows:

   
      (5)

where:

  is the makespan/total flowtime computed by 
method h;

  is the best makespan/total flowtime computed 
by the methods.

As we can see from the results in Tables 1 and 2, the 
proposed heuristic obtains better results than the rest of the 
constructive heuristics. Over all configurations, the maximal 
ARPD from the best solution found was 0.14% for GAPH 
(when TRIPS found the best solution) and 2.48% for BIH. The 
maximal ARPD for BAH was 15.87% and 9.27% for TRIPS. All 
success rates for BAH were zero, and TRIPS only got the best 
solution once. So, we can conclude that BAH and TRIPS are 
not competitive with the other heuristics tested.
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Table 1 – Comparison of results in Taillard´s testbed SSD-10 and SSD-50 (Makespan)

SSD-10  SSD-50

n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

20x5

0.00* 60 0 100  0 60 0 100

15.54** 1.83 9.27 0 13.13 1.27 7.23 0

0.03*** 0.11 0.34 0.27  0.03 0.11 0.34 0.27

20x10

0 50 0 100 0 70 0 100

15.87 2.48 8.23 0 14.21 1.59 8.09 0

0.06 0.15 0.37 0.31  0.06 0.15 0.36 0.31

20x20

0 60 0 100 0 70 0 100

13.42 0.42 8.82 0 13.21 0.88 8.37 0

0.18 0.26 0.43 0.43  0.17 0.26 0.42 0.43

Average

0 56.67 0 100 0 66.67 0 100

14.94 1.58 8.77 0 13.51 1.25 7.9 0

0.09 0.17 0.38 0.34  0.09 0.17 0.37 0.34

50x5

0 70 0 100 0 50 0 100

11.74 0.41 5.77 0 9.8 0.98 5.44 0

0.17 2.87 14.3 7.92  0.16 2.89 14.11 7.96

50x10

0 90 0 100 0 80 0 100

13.42 0.08 6.67 0 11.31 0.08 5.57 0

0.4 3.09 14.45 8.3  0.4 3.14 14.22 8.35

50x20

0 80 0 100 0 90 0 100

13.92 0.1 8.41 0 12.22 0.03 7.6 0

1.16 3.84 14.85 9.1  1.17 3.88 14.66 9.15

Average

0 80 0 100 0 73.33 0 100

13.03 0.2 6.95 0 11.11 0.37 6.2 0

0.58 3.27 14.53 8.44  0.57 3.3 14.33 8.49

100x5

0 70 0 100 0 60 0 100

10.11 0.73 6.08 0 8.27 0.36 5.32 0

0.83 40.7 226.25 119.23  0.67 40.75 225.78 121.01

100x10

0 40 0 100 0 30 0 100

11.16 0.85 7.07 0 8.68 0.43 6.68 0

1.67 39.97 226.09 118.98  1.69 40.17 226.26 118.94

100x20

0 60 0 100 0 80 0 100

11.42 0.26 7.54 0 9.81 0.14 6.74 0

5.6 43.73 225.7 122.87  5.07 43.82 226.89 123.65

Average

0 56.67 0 100 0 56.67 0 100

10.89 0.61 6.9 0 8.92 0.31 6.25 0

2.7 41.47 226.01 120.36  2.48 41.58 226.31 121.2

200x10

0 50 0 100 0 80 0 100

8.11 0.33 6.08 0 6.68 0.12 4.58 0

6.88 611.5 3799.28 1837.43  6.81 612.89 3759.58 1839.95
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200x20

0 70 0 100 0 80 0 100

8.68 0.11 5.52 0 7.43 0.02 4.4 0

21.63 626.84 3681.3 1834.39  20.81 629.81 3653.72 1843.07

Average

0 58.89 0 100 0 72.22 0 100

9.23 0.35 6.16 0 7.68 0.15 5.07 0

10.4 423.17 2568.86 1264.06  10.03 424.11 2546.54 1268.07

* Success Rate (%);** ARPD (%);*** Average CPU time (second).

Table 2 - Comparison of results in Taillard´s testbed SSD-100 and SSD-125 (Makespan)

SSD-100  SSD-125

n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

20x5

0 20 0 100  0 60 10 90

9.95 1.08 5.71 0 10.54 0.85 5.08 0.14

0.02 0.11 0.34 0.27  0.02 0.11 0.33 0.27

20x10

0 50 0 100 0 50 0 100

12.2 1.09 6.82 0 11.46 1.03 5.62 0

0.07 0.14 0.36 0.31  0.06 0.15 0.36 0.31

20x20

0 60 0 100 0 50 0 100

12.15 0.35 7.57 0 11.85 0.93 6.63 0

0.18 0.26 0.42 0.43  0.18 0.26 0.42 0.44

Average

0 43.33 0 100 0 53.33 3.33 96.67

11.44 0.84 6.7 0 11.28 0.94 5.78 0.05

0.09 0.17 0.37 0.34  0.09 0.17 0.37 0.34

50x5

0 50 0 100 0 30 0 100

9.51 0.8 4.38 0 9.21 1.32 5.7 0

0.17 2.88 14.11 8.01  0.17 2.88 14.11 8.02

50x10

0 70 0 100 0 60 0 100

8.98 0.13 4.01 0 9.97 0.93 4.99 0

0.39 3.12 14.27 8.37  0.4 3.11 14.3 8.34

50x20

0 80 0 100 0 90 0 100

9.95 0.04 5.53 0 9.07 0.01 5.44 0

1.19 3.85 14.71 9.13  1.16 3.85 14.74 9.13

Average

0 66.67 0 100 0 60 0 100

9.48 0.32 4.64 0 9.41 0.75 5.38 0

0.58 3.28 14.36 8.5  0.58 3.28 14.38 8.5

100x5

0 30 0 100 0 20 0 100

7.32 0.71 4.4 0 7.14 1.02 4.44 0

0.68 41.16 223.3 122.54  0.67 40.93 223.37 118.93

100x10

0 60 0 100 0 70 0 100

7.38 0.17 4.88 0 7.05 0.24 3.81 0

1.75 40.67 226.42 119.35  2.03 40.36 227.38 119.32
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100x20

0 70 0 100 0 90 0 100

8.05 0.37 5.37 0 6.82 0.08 4.47 0

5.18 43.87 228.77 123.35  5.19 44.09 229.54 123.4

Average

0 53.33 0 100 0 60 0 100

7.58 0.42 4.89 0 7 0.44 4.24 0

2.54 41.9 226.16 121.75  2.63 41.8 226.76 120.55

200x10

0 40 0 100 0 30 0 100

6.37 0.59 4.21 0 5.59 0.56 3.44 0

6.87 613.21 3780.1 1853.66  7.03 618 3793.94 1836.08

200x20

0 60 0 100 0 60 0 100

6.55 0.09 3.45 0 5.7 0.09 3.15 0

21.19 632.35 3657.28 1846.33  21.13 633.6 3649.61 1844.22

Average

0 51.11 0 100 0 50 0 100

6.83 0.36 4.18 0 6.1 0.36 3.61 0

10.2 424.95 2554.51 1273.91  10.26 424.02 2556.77 1266.95

One interesting characteristics from the experimental 
analysis is that the methods seem to be unaffected by 
distribution of processing or setup times, i.e., there are no 
better methods depending on the specific distribution of 
processing or setup times.

Comparing GAPH with BIH, we observe that GAPH always 
gets equal or better results than BIH. The minimum success 
rate of GAPH was 90%, while the minimum of BIH was 20%.

With respect to the CPU time, TRIPS require much more 

computational effort than GAPH and BIH. As it can be 
observed in Tables 1 and 2, for the biggest problem analyzed 
(200x20), the average CPU time of TRIPS was nearly 3660s, 
while TRIPS required nearly 630s and GAPH required nearly 
1850s.

Finally, our proposal heuristic is statistically better than 
the rest of the heuristics, although it is more time consuming 
than BIH. GAPH always gets the better result, and is more 
efficient than TRIPS.

Table  3 - Comparison of results in Taillard´s testbed SSD-10 and SSD-50 (Total Flowtime)

SSD-10  SSD-50

n x m BAH BIH TRIPS QUARTS  BAH BIH TRIPS QUARTS

20 x 5

0.00* 0.00 20.00 90.00  0.00 0.00 30.00 90.00

12.26** 7.55 0.71 0.09 11.49 6.69 0.41 0.17

0.02*** 0.08 0.32 0.41  0.02 0.09 0.32 0.41

20 x 10

0.00 0.00 20.00 100.00 0.00 0.00 10.00 100.00

11.45 6.22 0.53 0.00 9.04 5.01 0.62 0.00

0.05 0.09 0.32 0.43  0.05 0.10 0.32 0.43

20 x 20

0.00 0.00 30.00 90.00 0.00 10.00 20.00 80.00

10.18 4.87 0.44 0.00 8.44 5.23 0.47 0.14

0.14 0.19 0.36 0.47  0.15 0.19 0.36 0.48

Average

0.00 0.00 23.33 93.33 0.00 3.33 20.00 90.00

11.29 6.21 0.56 0.03 9.65 5.64 0.50 0.10

0.07 0.12 0.33 0.44  0.07 0.13 0.33 0.44

50 x 5

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

17.32 7.72 0.34 0.00 18.44 7.02 0.40 0.00

0.12 2.01 12.87 15.99  0.12 2.08 12.94 16.30
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50 x 10

0.00 0.00 0.00 100.00 0.00 0.00 20.00 80.00

20.24 7.90 0.39 0.00 17.64 6.90 0.24 0.11

0.31 2.35 13.00 16.65  0.31 2.27 13.07 16.75

50 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

18.51 6.95 0.68 0.00 17.08 6.07 0.64 0.00

0.92 2.86 13.98 16.91  0.91 2.84 14.27 17.16

Average

0.00 0.00 0.00 100.00 0.00 0.00 6.67 93.33

18.69 7.52 0.47 0.00 17.72 6.66 0.43 0.04

0.45 2.41 13.28 16.52  0.45 2.40 13.43 16.74

100 x 5

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

22.93 8.11 0.27 0.00 24.94 6.85 0.17 0.00

0.50 32.12 217.34 258.54  0.51 32.78 215.95 259.79

100 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

24.09 7.20 0.52 0.00 21.25 6.14 0.46 0.00

1.25 33.01 216.13 265.60  1.26 32.48 216.72 265.86

100 x 20

0.00 0.00 10.00 90.00 0.00 0.00 10.00 90.00

25.07 6.06 0.36 0.21 20.88 5.07 0.26 0.04

3.70 35.35 218.32 265.61  3.72 35.70 218.47 268.15

Average

0.00 0.00 3.33 96.67 0.00 0.00 3.33 96.67

24.03 7.12 0.39 0.07 22.36 6.02 0.30 0.01

1.82 33.49 217.26 263.25  1.83 33.65 217.05 264.60

200 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

28.80 6.27 0.21 0.00 26.12 5.47 0.34 0.00

5.15 511.98 3494.11 4133.52  5.17 513.02 3490.31 4130.08

200 x 20

0.00 0.00 10.00 90.00 0.00 0.00 0.00 100.00

31.86 6.04 0.13 0.04 27.83 5.83 0.09 0.00

14.90 515.71 3537.08 4164.64  14.82 515.82 3517.09 4158.26

Average

0.00 0.00 5.00 95.00 0.00 0.00 0.00 100.00

30.33 6.16 0.17 0.02 26.97 5.65 0.22 0.00

10.03 513.85 3515.60 4149.08  10.00 514.42 3503.70 4144.17

Table  4 - Comparison of results in Taillard´s testbed SSD-100 and SSD-125 (Total Flowtime)

SSD-100  SSD-125

n x m BAH BIH TRIPS QUARTS  BAH BIH TRIPS QUARTS

20 x 5

0.00 0.00 30.00 100.00  0.00 0.00 70.00 100.00

15.47 5.21 0.38 0.00 17.89 7.11 0.29 0.00

0.02 0.08 0.32 0.42  0.02 0.09 0.32 0.43

20 x 10

0.00 0.00 30.00 90.00  0.00 0.00 30.00 90.00

10.57 5.79 0.55 0.02 11.05 5.80 0.34 0.20

0.05 0.09 0.33 0.43  0.05 0.09 0.32 0.44
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20 x 20

0.00 0.00 40.00 90.00 0.00 0.00 10.00 100.00

8.57 4.66 0.34 0.00 8.96 4.54 0.32 0.00

0.14 0.20 0.36 0.47  0.14 0.20 0.36 0.48

Average

0.00 0.00 33.33 93.33 0.00 0.00 36.67 96.67

11.54 5.22 0.43 0.01 12.63 5.82 0.32 0.07

0.07 0.12 0.34 0.44  0.07 0.13 0.33 0.45

50 x 5

0.00 0.00 10.00 100.00 0.00 0.00 60.00 70.00

25.77 7.76 0.29 0.00 27.32 8.15 0.24 0.46

0.12 2.04 12.97 16.67  0.13 2.05 12.96 16.55

50 x 10

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

19.1 6.58 0.24 0.00 19.69 6.80 0.30 0.00

0.31 2.29 13.11 16.82  0.31 2.22 13.10 16.93

50 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

16.28 4.78 0.30 0.00 15.37 4.83 0.24 0.00

0.92 2.87 14.26 17.25  0.92 2.85 14.10 17.47

Average

0.00 0.00 3.33 100.00 0.00 0.00 20.00 90.00

20.38 6.37 0.28 0.00 20.79 6.59 0.26 0.15

0.45 2.40 13.45 16.91  0.45 2.37 13.39 16.98

100 x 5

0.00 0.00 0.00 100.00 0.00 0.00 30.00 100.00

30.5 6.37 0.13 0.00 33.78 6.68 0.05 0.00

0.50 33.21 215.57 265.68  0.51 32.97 218.75 267.20

100 x 10

0.00 0.00 0.00 100.00 0.00 0.00 10.00 90.00

23.51 5.69 0.16 0.00 23.67 6.08 0.12 0.06

1.27 32.70 217.09 269.60  1.27 32.78 217.73 271.06

100 x 20

0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00

19.67 4.71 0.22 0.00 18.91 4.27 0.16 0.00

3.71 34.97 219.34 269.38  3.72 35.02 218.98 270.50

Average

0.00 0.00 0.00 100.00 0.00 0.00 13.33 96.67

24.56 5.59 0.17 0.00 25.45 5.68 0.11 0.02

1.83 33.63 217.33 268.22  1.83 33.59 218.48 269.58

200 x 10

0.00 0.00 20.00 80.00 0.00 0.00 0.00 100.00

27.88 5.17 0.07 0.04 28.71 5.69 0.05 0.00

5.18 511.11 3502.32 4158.17  5.15 512.84 3522.19 4165.47

200 x 20

0.00 0.00 0.00 100.00 0.00 0.00 20.00 80.00

24.30 5.27 0.09 0.00 24.30 5.27 0.09 0.00

14.91 514.98 3528.10 4166.21  14.87 515.03 3518.97 4178.01

Average

0.00 0.00 10.00 90.00 0.00 0.00 10.00 90.00

26.09 5.22 0.08 0.02 26.50 5.48 0.07 0.00

10.05 513.05 3515.21 4162.19  10.01 513.94 3520.58 4171.74
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As can be seen from the results in Tables 3 and 4, 
QUARTS heuristic obtains better results than the rest of 
the constructive heuristics. The success rate of QUARTS is 
superior to all heuristics, in all problems tested. QUARTS 
obtained the best solution in 95.23% of all problems tested, 
while TRIPS only obtained the best solution in 12.27% of 
them. We observed that TRIPS success rate decays with 
the increase of the number of jobs, indicating that this 
method works better for small problems. BAH and BIH are 
not competitive with the other heuristics tested. All success 
rates for BAH were zero, and BIH only got the best solution 
once. 

Considering the ARPD, BAH has the highest values. Its 
ARPD exceeds 30% in some cases. The second method with 
the highest ARPD is BIH, with an ARPD of 5% in average. 
Analyzing TRIPS, we can see that its higher ARPD is 0.71%, 
and its ARPD average is 0.31%. Despite TRIPS success rate 
decays with the increase of jobs, its ARPD shows that the 
method gets better results with the increase of jobs. Its 
ARPD decays with the increase of jobs. The ARPD analysis 
ratifies the superiority of QUARTS, regarding the solution 
quality. Its ARPD average is 0.04%, about 8 times lower than 
TRIPS. 

With respect to the CPU time, BAH is the fastest method, 
followed by BIH. The average CPU time of BAH was about 
2.5s, while BIH required nearly 104s. Comparing TRIPS and 
QUARTS, we can see that TRIPS is a little faster than QUARTS. 
The average CPU time of TRIPS was about 702s, while 
QUARTS required 833s. As we can see in Tables 3 and 4, the 
CPU time of both methods always have the same order of 
precision. So, the difference between them is not significant.    

Finally, among the four methods evaluated in this 
computational experiment for the total flow time criteria, 
we can see that QUARTS is the better one, regarding the 
solution quality. In average, its success rate is 95.10% and 
its ARPD is 0.04%, while the methods BAH, BIH and TRIPS 
have success rates of 0%, 0.23% and 12.27% and ARPDs of 
19.93%, 6.10% and 0.31%, respectively. With respect to the 
CPU time, although TRIPS is a little bit faster than QUARTS, 
this difference is insignificant. Thus, we can conclude that 
QUARTS is the better constructive heuristic for the total flow 
time criteria.

CONCLUSION

In this paper, we dealt with the problem of scheduling 
a no-wait flow shop with sequence-dependent setup times 
with both make span and total flow time objectives by means 
of constructive heuristics. We presented two new heuristics, 
named GAPH and QUARTS, for the make span and total 
flow time criteria, respectively, and carried out extensive 
computational experiment. The results showed that GAPH 

and QUARTS get better results than the other constructive 
heuristics tested. Henceforth, it can be concluded that the 
proposed heuristics obtain high solution quality comparing 
to the existing constructive heuristics for the problems, in 
acceptable computational times.
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