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New holographic entropy bound from quantum geometry
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A new entropy bound, tighter than the standard holographic bound due to Bekenstein, is derived for space-
times with nonrotating isolated horizons from the quantum geometry approach, in which the horizon is de-
scribed by the boundary degrees of freedom of a three dimensional Chern-Simons theory.
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The holographic principle~HP! @1–8# and the holographic
entropy bound~EB! have been the subject of a good deal
attention lately. In its original form@1,2#, the HP asserts tha
the maximum possible number of degrees of freedom wit
a macroscopic bounded region of space is given by a qua
of the area~in units of Planck area! of the boundary. This
takes into account that a black hole for which this bound
is ~a spatial slice of! its horizon has an entropy which obey
the Bekenstein-Hawking area law and also the general
second law of black hole thermodynamics@4#. Given the
relation between the number of degrees of freedom and
tropy, this translates into a holographic EB valid genera
for space-times with boundaries.

The basic idea underlying both these concepts is a
work at whose vertices are variables that take only two v
ues~‘‘binary,’’ ‘‘Boolean’’ or ‘‘pixel’’ !, much like a lattice
with spin one-half variables at its sites. Assuming that
spin value at each site isindependentof that at any other site
~i.e., the spins arerandomly distributed on the sites!, the
dimensionality of the space of states of such a network
simply 2p for a network withp vertices. In the limit of arbi-
trarily largep, such a network can be taken to approxima
the macroscopic surface alluded to above, a quarter of wh
area bounds the entropy contained in it. Thus any theor
quantum gravity in which space-time might acquire a d
crete character at length scales of the order of Planck sca
expected to conform to this counting and hence to the H

Let us consider now a slightly altered situation: one
which the binary variables at the vertices of the netwo
considered are no longer distributed randomly but accord
to some other distribution. Typically, for example, one cou
distribute thembinomially, assuming, without loss of gene
ality, a large lattice with an even number of vertices. Co
sider now the number of cases for which the binary varia
acquires one of its two values, at exactlyp/2 of thep verti-
ces. In case of a lattice of spin 1/2 variables which can eit
point ‘‘up’’ or ‘‘down,’’ this corresponds to a situation of ne
spin zero, i.e., an equal number of spin-ups and spin-dow
Using standard formulas of binomial distributions, this nu
ber is
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p/2D @a~12a!#p/2, ~1!

wherea is the probability of an occurrence of a spin-up
any given vertex. Clearly, this number is maximum when
probability of occurrencea51/2; it is given byp!/ „(p/2)!…2.
Thus the number of degrees of freedom is now no longerp

but a smaller number. This obviously leads to a lowering
the entropy. For very largep corresponding to a macroscop
boundary surface, this number is proportional to 2p/p1/2. The
new EB can therefore be expressed as

Smax5 lnS expSBH

SBH
1/2 D , ~2!

where SBH5AH/4l P
2 is the Bekenstein-Hawking entropy

This is a tighter bound than that of Ref.@4# mentioned above.
The ‘‘tightening’’ of holographic EB is the subject of thi
paper. We shall show below that, in the quantum geome
framework, it is possible to have an even tighter bound th
that depicted in Eq.~2!.

There are, of course, examples of situations where the
is violated @5,6# and must be generalized. However, gen
alizations proposed so far@6# appear to be tied to fixed clas
sical background space-times, and may not hold when gr
tational fluctuations are taken into account@7#. In this note,
we restrict ourselves to the older version of the EB appro
ate to stationary space-times, but with allowance for the
istence of radiation in the vicinity of the boundary. In th
sense, the appropriate conceptual framework is that of
Isolated Horizon@9#. We consider generic 311 dimensional
isolated horizons without rotation, on which one assumes
appropriate class of boundary conditions. These bound
conditions require that the gravitational action be augmen
by the action of anSU(2) Chern-Simons theory living on
the isolated horizon@9#. Boundary states of the Chern
Simons theory contribute to the entropy. These states co
spond to conformal blocks of the two-dimensional We
Zumino model that lives on the spatial slice of the horizo
which is a 2-sphere of areaAH . The dimensionality of the
boundary Hilbert space has been calculated thus@10–12# by
counting the number of conformal blocks of two
dimensionalSU(2)k Wess-Zumino model for arbitrary leve
©2001 The American Physical Society19-1
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k and number of puncturesp on the 2-sphere. We shall show
from the formula for the number of conformal blocks sp
cialized to macroscopic black holes characterized by largk
and p @12#, that the restricted situation described above
sues, thus realizing a more stringent EB. We may men
that similar ideas relating the quantum geometry approac
the HP and EB have been pursued by Smolin@7#, although,
as far as we understand, the issue of tightening the Be
stein bound has not been addressed.

We start with the formula for the number of conform
blocks of two-dimensionalSU(2)k Wess-Zumino model tha
lives on the punctured 2-sphere. For a set of punctureP
with spins $ j 1 , j 2 , . . . ,j p% at punctures$1,2,. . . ,p%, this
number is given by@10#

NP5
2

k12 (
r 50

k/2 )
l 51

p

sinS ~2 j l11!~2r 11!p

k12 D
FsinS ~2r 11!p

k12 D G p22 . ~3!

Observe now that Eq.~3! can be rewritten as a multiple sum

NP5S 2

k12D (
l 51

k11

sin2 u l

3 (
m152 j 1

j 1

••• (
mp52 j p

j p

expH 2i S (
n51

p

mnD u lJ , ~4!

whereu l[p l /(k12). Expanding the sin2 ul and interchang-
ing the order of the summations, this becomes

NP5 (
m152 j 1

j 1

••• (
mp52 j p

j p F d̄ ((
n51
p mn),02

1

2
d̄ ((

n51
p mn),1

2
1

2
d̄ ((

n51
p mn),21G , ~5!

where we have used the standard resolution of the peri
Kronecker deltas in terms of exponentials with periodk12,

d̄ ((
n51
p mn),m5S 1

k12D (
l 50

k11

expH 2i F S (
n51

p

mnD 2mGu lJ .

~6!

Our interest focuses on the limit of largek andp, appro-
priate to macroscopic black holes of large area. Observe,
of all, that ask→`, the periodic Kronecker delta’s in Eq.~6!
reduce to ordinary Kronecker deltas,

lim
k→`

d̄m11m21•••1mp ,m5dm11m21•••1mp ,m . ~7!

In this limit, the quantityNP counts the number ofSU(2)
singlet states, rather thanSU(2)k singlets states. For a give
set of punctures withSU(2) representations on them, th
number is larger than the corresponding number for the
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fine extension. This is desirable for the purpose of deduc
an upper bound on the number of degrees of freedom in
space-time.

Next, recall that the eigenvalues of the area operator
the horizon, lying within one Planck area of the classic
horizon areaAH , are given by

ÂH CS58pb l P
2(

l 51

p

@ j l~ j l11!#1/2CS , ~8!

wherel P is the Planck length,j l is the spin on thel th punc-
ture on the 2-sphere, andb is the Barbero-Immirzi paramete
@13#. We consider a large fixed classical area of the horiz
and ask what the largest value of number of puncturep
should be, so as to be consistent with Eq.~8!; this is clearly
obtained when the spin ateachpuncture assumes its lowe
nontrivial value of 1/2, so that the relevant number of pun
turesp0 is given by

p05
AH

4l P
2

b0

b
, ~9!

whereb051/pA3. We are, of course, interested in the ca
of very largep0.

Now, with the spins at all punctures set to 1/2, the num
of states for this set of puncturesP0 is given by

NP05 (
m1521/2

1/2

••• (
mp0

521/2

1/2 Fd ((
n51

p0 mn),0

2
1

2
d ((

n51

p0 mn),12
1

2
d ((

n51

p0 mn),21G ~10!

The summations can now be easily performed, with the
sult

NP05S p0

p0/2D 2S p0

~p0/221!
D . ~11!

There is a simple intuitive way to understand the result e
bodied in Eq.~11!. This formula simply counts the numbe
of ways of makingSU(2) singlets fromp0 spin 1/2 repre-
sentations. The first term corresponds to the number of st
with net J3 quantum numberm50 constructed by placing
m561/2 on the punctures. However, this term by its
overcountsthe number ofSU(2) singlet states, because eve
nonsinglet states~with net integral spin, forp is an even
integer! have a netm50 sector. Besides having a sector wi
total m50, states with net integer spin have, of course
sector with overallm561 as well. The second term bas
cally eliminates these nonsinglet states withm50 by count-
ing the number of states with netm561 constructed from
m561/2 on thep0 punctures. The difference then is the n
number ofSU(2) singlet states that one is interested in f
that particular set of punctures.

To get to the entropy from the counting of the number
conformal blocks, we need to calculateNbh5(P NP, where,
the sum is over all sets of punctures. Then,Sbh5 ln Nbh.
9-2
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It may be pointed out that the first term in Eq.~11! also
has another interpretation. It represents the counting
boundary states for an effectiveU(1) Chern-Simons theory
It counts the number of ways unit positive and negat
U(1) charges can be placed on the punctures to yield a
ishing total charge. This would then correspond to an
tropy bound given by the same formula~2! above for bino-
mial distribution of charges.

On the other hand, the combination of both terms in E
~11!, which corresponds to counting of states in theSU(2)
Chern-Simons theory, yields an even tighter bound for
tropy than that in Eq.~2!. One can show that@14,15#, the
contribution toNbh for this set of puncturesP0 with all spins
set to 1/2, is by far the dominant contribution; contributio
from other sets of punctures are far smaller in comparis
Thus the entropy of an isolated horizon is given by the f
mula derived in Ref.@12#. We may mention that very re
cently Carlip @16,17# has presented compelling argumen
that this formula may possibly be of a universal charac
Here, the formula follows readily from Eq.~11! and Stirling
approximations for factorials of large integers. The num
of puncturesp0 is rewritten in terms of areaAH through Eq.
~9! with the identificationb5b0 ln 2. This allows us to write
the entropy of an isolated horizon in terms of a power se
in horizon areaAH :

Sbh5 ln NP05
AH

4l p
2 2

3

2
lnS AH

4l p
2D 2

1

2
lnS p

8~ ln 2!3D2O~AH
21!.

~12!

Notice that the constant term here is negative and so is
orderAH

21 term. This then implies that the entropy is bou
from above by a tighter bound which can be written in ter
of Bekenstein-Hawking entropy (SBH5AH/4l p

2) as

Smax5 lnS expSBH

SBH
3/2 D . ~13!

Inclusion of other than spin 1/2 representations on the pu
tures does not affect this bound. For example, we may p
spin 1 on one or more punctures and spin 1/2 on the rest.
number of ways singlets can be made from this set of re
sentations can be computed in a straightforward way. Add
these new states to the already counted ones above
changes the constant and orderAH

21 terms in formula~12!.
-

04401
of

e
n-
-

.

-

n.
-

r.

r

s

he

s

c-
ce
he
e-
g
ust

However, these additional terms continue to be negative,
hence the entropy bound~13! still holds.1

The steps leading to the EB now follows the standa
route of deriving the Bekenstein bound~see, e.g., Ref.@7#!:
We assume, for simplicity, that the spatial slice of the bou
ary of an asymptotically flat space-time has the topology o
2-sphere on which is induced a spherically symme
2-metric. Let this space-time contain an object whose
tropy exceeds the bound. Certainly, such a space-time ca
have an isolated horizon as a boundary, since then, its
tropy would have been subject to the bound. But, in t
case, its energy should be less than that of a black hole w
has the 2-sphere as its~isolated! horizon. Let us now add
energy to the system, so that it does transform adiabatic
into a black hole with the said horizon, but without affectin
the entropy of the exterior. But we have already seen ab
that a black hole with such a horizon must respect the bou
it follows that the starting assumption that the object, to b
gin with, had an entropy violating the bound is not tenab

There is, however, an important caveat in the forego
argument. Strictly speaking, there is as yet no derivation
the second law of black hole mechanics within the fram
work of the isolated horizon. However, this is perhaps no
conceptual roadblock as far as deriving the EB is concern
One has to assume that if matter or radiation crosses
isolated horizon adiabatically in small enough amounts,
isolated character of the horizon will not be seriously a
fected. This is perhaps not too drastic an assumption. T
for a large class of space-times, one may propose Eq.~13! as
the new holographic entropy bound.

Finally, we should mention that we prefer to think of th
above holographic principle and the consequent entr
bound as ‘‘weak’’ rather than ‘‘strong’’ in the sense of Sm
lin @7#.
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1Using the Cardy formula with the prefactor~á la Carlip @17#!
appears@18# to lead to entropy corrections for certain black hol
not in accord with Eq.~13! @although the bound~2! is indeed re-
spected#. This could be an artifact of the application of the Car
formula. We refrain from further comment on these works, sin
the precise relation of the Cardy formula approach to the pre
framework is not clear.
,’’
@1# J. Wheeler,It from Bit, Sakharov Memorial Lecture on Phys
ics, Vol. 2, edited by L. Keldysh and V. Feinberg~Nova Sci-
ence Publisher, Huntington, NY, 1992!.

@2# G. ’t Hooft, in Salam Festschrift, edited by A. Alo, J. Ellis, and
S. Randjbar-Daemi~World Scientific, Singapore, 1993!,
gr-qc/9310026.
@3# L. Susskind, J. Math. Phys.36, 6377~1995!.
@4# J. Bekenstein, Phys. Rev. D7, 2333~1973!; 9, 3292~1974!.
@5# W. Fischler and L. Susskind, ‘‘Holography and Cosmology

hep-th/9806039.
9-3



,’’

ev
,
n-

ts
-

In-

k
kar,

n
A.
ild

DAS, KAUL, AND MAJUMDAR PHYSICAL REVIEW D 63 044019
@6# R. Bousso, Class. Quantum Grav.17, 997 ~2000!, and refer-
ences therein.

@7# L. Smolin, ‘‘The strong and weak holographic principles
hep-th/0003056, and references therein.

@8# J. Bekenstein, Phys. Lett. B481, 339 ~2000!.
@9# A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. R

Lett. 80, 904 ~1998!; A. Ashtekar, J. Baez, and K. Krasnov
‘‘Quantum Geometry of Isolated Horizons and Black Hole E
tropy,’’ gr-qc/0005126; L. Smolin, J. Math. Phys.36, 6417
~1995!.

@10# R. K. Kaul and P. Majumdar, Phys. Lett. B439, 267 ~1998!.
@11# P. Majumdar, Indian J. Phys., B43, 147 ~1998!; R. K. Kaul,

‘‘Topological field theories—a meeting ground for physicis
and mathematicians,’’ inQuantum Field Theory: A 20th Cen
tury Profile, edited by A. N. Mitra~Hindustan Book Agency,
India and Indian National Science Academy, New Delhi,
04401
.

dia, 2000!, pp. 211–232, hep-th/9907119.
@12# R. K. Kaul and P. Majumdar, Phys. Rev. Lett.84, 5255~2000!.
@13# J. F. Barbero, Phys. Rev. D54, 1492~1996!; G. Immirzi, Nucl.

Phys. B~Proc. Suppl.! 57, 65 ~1997!.
@14# A. Ashtekar, A. Corichi, and K. Krasnov, ‘‘Isolated blac

holes: the classical phase space,’’ gr-qc/9905089; A. Ashte
C. Beetle, and S. Fairhurst, Class. Quantum Grav.17, 253
~2000!.

@15# A. Ashtekar~private communication!.
@16# S. Carlip, Class. Quantum Grav.16, 3327~1999!.
@17# S. Carlip, Class. Quantum Grav.17, 4175~2000!.
@18# J. Jing and M-L. Yau, ‘‘Statistical entropy of the static dilato

black holes from Cardy formulas,’’ gr-qc/0005105; S. Das,
Ghosh, and P. Mitra, ‘‘Statistical entropy of Schwarzsch
black strings and black holes,’’ hep-th/0005108.
9-4


