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ABSTRACT

Traditional objective metrics for the quality measure of coded images such as the mean squared error (MSE)
and the peak signal-to-noise ratio (PSNR) do not correlate with the subjective human visual experience well, since
they do not take human perception into account. Quanti�cation of artifacts resulted from lossy image compression
techniques is studied based on a human visual system (HVS) model and the time-space localization property of the
wavelet transform is exploited to simulate HVS in this research. As a result of our research, a new image quality
measure by using the wavelet basis function is proposed. This new metric works for a wide variety of compression
artifacts. Experimental results are given to demonstrate that it is more consistent with human subjective ranking.

KEYWORDS: image quality assessment, compression artifact measure, visual �delity criterion, human visual
system (HVS), wavelets.

1 INTRODUCTION

The objective of lossy image compression is to store image data e�ciently by reducing the redundancy of image
content and discarding unimportant information while keeping the quality of the image acceptable. Thus, the tradeo�
of lossy image compression is the number of bits required to represent an image and the quality of the compressed
image. This is usually known as the rate-distortion tradeo�. The number of bits used to record the compressed
image can be measured easily. However, the \closeness" between the compressed and the original images is not
a pure objective measure, since human perception also plays an important role in determining the quality of the
compressed image. At present, the most widely used objective distortion measure is the mean squared error (MSE)
or the related peak signal-noise ratio (PSNR). It is well known that MSE does not correlate very well with the visual
quality perceived by human being. This can be easily explained by the fact that MSE is computed by adding the
squared di�erence of individual pixels without considering the visual interaction between adjacent pixels.

In comparison with the amount of research on new compression techniques, work on visual quality measure of
compressed images is amazingly little. Most visual quality assessments use rating scales ranging from \excellent"
to \unsatisfactory" in measuring the perceived image quality. Human assistance is needed in the establishment of
quality scales and the comparison between compressed images and the set of training images. It is di�cult to obtain
objective and quantitative measures by using this approach [15]. Results achieved are subjective and qualitative.



Some work tries to modify existing quantitative measures to accommodate the factor of human visual perception.
One is to improve MSE by putting di�erent weights to neighboring regions with di�erent distances to the focal pixel
[17]. Most of them can be viewed as a curve-�tting method to comply with the rating scale method. Since late
1970's, researchers have started to pay attention to the importance of the human visual system (HVS) and tried
to include the HVS model in the image quality metric [10], [11]. The development of the HVS model at that time
was not mature enough and the proposed model could not interpret human visual perceptual phenomena very well.
Recently, Karunasekera proposed an objective distortion measure to evaluate the blocking artifact of the block-based
compression technique [12]. Watson [23] and van den Branden Lambrecht [1], [22] proposed more complete models
and extended their use to compressed videos.

It has been shown by psychophysic experiments that the human visual system is comprised by many units, each
of which is sensitive to the contrast at some space-frequency localized region and functions independently. The
overall visual perception of the luminance or contrast of an object is the aggregate performance of the bandpass
frequency response of all units [4]. Based upon this space-frequency localized model, the visual perception of coding
artifacts can be interpreted as the perception of local frequency inconsistency. When an image is compressed and
decompressed, the decoded image has di�erent local frequency responses than the original image, thus resulting in
compression artifacts.

Since each cell can sense only a �nite region with respect to the focal pixel in an image, Fourier analysis is
not suitable for the modeling of HVS due to its global analytical property. This issue has been addressed and
inconsistency between theory and observed results by using the pure frequency analysis has been found. Another
observation is that the common bandwidth of cortical cells is 1 octave [4]. It is known from experiments that the
frequency resolution of the neighborhood is reduced by an octave when the distance from the focal point doubles [6].
This observation suggests the use of dyadic wavelets for the analysis and modeling of HVS.

In this work, we consider a wavelet approach for the modeling of HVS and then build an objective quality metric
based on this model. To be more precise, we �rst propose a new de�nition of contrast with respect to complex
images by taking the wavelet transform of the image, and using wavelet coe�cients to estimate the contrast at
each resolution in the image. By using the multiresolution and space-frequency localization properties, many known
inconsistencies in the psychophysical literature can be understood naturally. Known human visual system functions
such as the contrast sensitivity threshold [20] and the frequency masking e�ect [21] can also be incorporated in this
model. We then propose an objective metric to measure the extent of the perceived contrast in every resolution,
and derive an error measure by examining the weighted di�erences of wavelet components between the original and
compressed images at each resolution.

This paper is organized as follows. In Section 2, we brie
y review existing HVS theory and models. Then, the
wavelet approach is introduced to simulate the localization phenomenon of HVS in Section 3. A new HVS model
based on wavelets is proposed and an image quality assessment system is described in Section 4. Experimental results
are given in Section 5 to demonstrate that this new metric works for a wide range of compression artifacts and that
the resulting measure is consistent with human subjective ranking.

2 MODEL FOR HUMAN VISUAL SYSTEM (HVS)

2.1 Contrast thresholds

Human visual systems (HVS) response to light stimuli of surroundings. One important observation is that visual
perception is sensitive to luminance di�erence rather than the absolute luminance. Let Lmax and Lmin be the
maximum and minimum luminances of the waveform around the point of interest. Michelson's contrast, de�ned as

C =
Lmax � Lmin

Lmax + Lmin

; (1)

is found to be nearly constant when used to represent the just noticeable luminance di�erence.

Psychophysic experiments showed that HVS is comprised by many units, each of which is focused on a certain



point in the vision �eld and only sensitive to the contrast in a certain frequency band. The overall visual perception
of object luminance or contrast is the aggregate performance of each cell's frequency response [4]. Since HVS cannot
provide in�nite luminance resolution, a contrast threshold exists in each frequency band. The contrast threshold
value is a function of the spatial frequency which can be determined experimentally. A typical contrast sensitivity
curve, de�ned as the reciprocal of the contrast curve, is shown in Fig. 1 [4]. As shown in the �gure, HVS has the
highest luminance resolution around 3-10 cycles per degree, and the sensitivity attenuates at both high and low
frequency ends. An image artifact can be sensed if its contrast is above the threshold at speci�c spatial frequencies.
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Figure 1: A typical contrast sensitivity curve of human beings.

2.2 Suprathreshold contrast

The subthreshold stimuli, i.e. stimuli with a contrast lower than the threshold, cannot be sensed by human.
The suprathreshold contrast is of concern in this subsection. Visual response to the suprathreshold contrast involves
human subjective rating. Even though it is di�cult to �nd an precise formula for its modeling, it is generally agreed
that the estimated response R is a function of the spatial frequency and follows a power law [14]:

R = k(C �CT )
p
; (2)

where C is the suprathreshold contrast, CT is the contrast threshold, and the exponent p varies between 0.38 and some
value more than 1.0 [7]. Moreover, the contrast constancy phenomenon [9] states that the suprathreshold response
is almost constant for a given contrast at a wide range of spatial frequencies. These two seemingly contradicting
observations were mediated �rst by Cannon [26] and then by Georgeson's 3-stage model [8].

2.3 Channel interactions

Although cells narrowly tune to di�erent frequency bands, they are not strictly band-limited, and interactions
among adjacent frequency channels were well observed in the literature. Two primary e�ects were often discussed in
the literature. They are the summation e�ect and the masking e�ect.

The summation e�ect is an inter-channel e�ect saying that the neighboring frequency channels contribute to the
total contrast. Therefore, a subthreshold contrast may still produce a small response if there exist other excitory
stimuli in nearby frequency channels. This e�ect can be modeled as a contrast threshold CT decrease [13]:

CT =

 
NX
i=0

jCTijsi
! 1

si

;

where CTi is the contrast sensitivity threshold of the ith closest channel, N is the total neighboring channels a�ecting



the perception of the target channel, CT0 represents the original contrast without summation and si's are the
exponential components to be determined.

The masking e�ect is another inter-channel e�ect which states that the visibility of a stimuli at some frequency
could be impaired by the presence of other stimuli in nearby frequency channels. One well-known example in
compressed image artifact analysis is that the blocking artifact of block-based compression schemes, which consists
of high-frequency edge components, is less visible in the texture regions. This e�ect can be viewed as a modi�cation
of contrast threshold and modeled as an exponential function of both their frequency and contrast di�erences [1],
[21]:

CT = CT0

 
NX
i=0

�
Ci

CT0

�m1;i
�
fi
f0

�m2;i

!
; (3)

where CTi, CT0, N have the same de�nition as in the subthreshold summation case, Ci and fi are the actual
contrast and the spatial frequency of the ith closest channel, respectively, and m1;i's and m2;i's are the coe�cients
to be determined. The validity of Eqn. (3) will be examined in Section 5.2.

2.4 Spatial inhomogeneity

Most research results which led to the contrast threshold curve as shown in Fig. 1 were obtained with foveal vision,
i.e. measured very close the �xation point. However, peripheral vision researches showed that the perceived image
gradually blurs with increasing distance from the �xation point. In other words, the spatial frequency sensitivity
of the vision system decreases as the eccentricity from the focal point increases [6], [13], and it was shown that
the equal-sensitivity neighborhood radius is inversely proportional to the spatial frequency, i.e. the product of the
spatial frequency and the resolvable radius from the focal point is almost constant [6]. Direct consequences of this
inhomogeneity phenomenon are that the resolvable region in the vision �eld varies with the spatial frequency and
that contrasts at di�erent resolutions play di�erent roles in the visual system regarding their respective ranges.

3 SIGNAL LOCALIZATION AND WAVELET REPRESENTATION

3.1 Space-frequency localization

Limited by their spatial location on the retina, the receptors can only focus on their own certain regions of the
visual �eld. The frequency response of the �xation point is characterized by the typical contrast threshold function
as shown in Fig. 1, but the high frequency response will further attenuate as the eccentricity from the focal point
increases. Therefore, the frequency response of visual stimuli is not only band-limited in the frequency domain but
also space-localized in the spatial domain.

The commonly used Fourier frequency analysis is, however, a global process which gives all spatial components
the same weighting. It is well known as Heisenberg's uncertainty principle that the localization in both spatial and
frequency domains cannot be achieved simultaneously. Gabor transform, which is a Gaussian-windowed Fourier
transform, was proved to achieve the limit of the Heisenberg inequality. Gabor gratings were thus widely used in
modern psychophysical experiments.

The parameters of the Gaussian window were chosen at researchers' preferences and various degrees of localization
were achieved [19]. That is, by varying the Gaussian envelope parameters, the passbands of Gabor gratings were
overlapped to a di�erent extent. There are some limitations in the Gabor representation. First, it is di�cult to
analyze the stimuli whose frequency responses fall in the overlapped band. Second, since the Gabor �lter is an IIR
(in�nite impulse response) �lter, truncation is still needed for practical implementation. Thus, the localization is not
fully ensured after truncation. To overcome these di�culties, we adopt a wavelet approach for signal analysis in the
next section.



3.2 Wavelet approach

The wavelet transform provides a good space-frequency localization property [2] and can be implemented by using
the multichannel �lter banks. Compactly supported wavelets such as the Daubecheis �lters [2] can be implemented
with FIR (�nite impulse response) �lters. The space-frequency localization is optimized among all possible FIR �lters
with the given length for the Daubechies �lters. Another useful property of the wavelet �lter is that the frequency
response of the contrast threshold can be easily obtained by properly choosing the wavelet basis. Vision researches
with Gabor �ltering usually used the response amplitude, represented by dBs, to approximate the contrast threshold
function de�ned by (1) [1]. However, the e�ect of this approximation has not yet been thoroughly investigated.

The Haar wavelet is the simplest basis function in the compactly supported wavelet family. It provides a capability
to compute the contrast directly from the responses of the low and high frequency subbands. For the Haar wavelet,
the �lter coe�cients for the low and high frequency �lter banks are given by

h0[n] =

�
1p
2

n = �1; 0;
0 otherwise

(4)

h1[n] =

8<
:

1p
2

n = 0;

� 1p
2

n = �1;
0 otherwise,

(5)

respectively. Assume that a discrete-time input signal x[n] is the staircase contrast pattern

x[n] =

�
Lmax n < 0
Lmin n � 0;

(6)

The responses y0;0[n] and y1;0[n] at the 0th resolution after �ltering with h0[n] and h1[n], respectively, are

y0;0[n] =

8<
:

p
2Lmax n < �1
1p
2
(Lmax + Lmin) n = �1p

2Lmin n > 0;

(7)

y1;0[n] =

�
1p
2
(Lmax � Lmin) n = �1

0 otherwise.
(8)

Then, the contrast C0 at the interval (�1; 0) and the 0th (�nest) resolution can be computed by the ratio of y1;0[n]
and y0;0[n]:

C0 =
Lmax � Lmin

Lmax + Lmin

=
y1;0[�1]
y0;0[�1] :

At the 1st (second �nest) resolution, the low frequency band response y0;0[n] is downsampled by two, and fed into
the same �lter bank. The responses are

y0;1[n] =

8<
:

2Lmax n < �1
Lmax + Lmin n = �1
2Lmin n > �1;

(9)

y1;1[n] =

�
Lmax � Lmin n = �1
0 otherwise.

(10)

Again, we can compute the contrast at this resolution as

C1 =
Lmax � Lmin

Lmax + Lmin

=
y1;1[�1]
y0;1[�1] :

Following this way, we can compute the contrast at any resolution by simply dividing the high band response by
the low band response at n = �1. Fig. 2 illustrates this constant-ratio relationship across resolutions.
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Figure 2: Contrast computation using �lter responses, where (a) is the original staircase signal, (b) and (c) are low
and high band responses at the 0th resolution, (d), (e), (f) and (g) are responses at the 1st and 2nd resolutions.

There are several reasons to de�ne multiple contrasts in di�erent resolutions. First of all, since human contrast
sensitivity is highly dependent on the spatial frequency, multiple contrasts can be used to address di�erent variations
at di�erent resolutions across the image [18]. Second, the spatial inhomogeneity phenomenon detailed in Section 2.4
requires the response in di�erent frequency bands to have di�erent supported radii. Furthermore, it was shown that
each frequency channel in the HVS has the bandwidth of about 1 octave [18]. The dyadic wavelet transform satis�es
these requirements naturally. Finally, perfect reconstruction is possible with responses obtained from di�erent scales,
and no visual information will be lost during the process. In contrast, to perfectly reconstruct the visual information
using the Gabor analysis, all �lters must have the same length and, as a result, the space-frequency localization
property is less 
exible.

4 PROPOSED QUALITY MEASURE SYSTEM

The proposed quality measure system is shown in Fig. 3. Both the original image and the distorted image
are passed through the system for dyadic wavelet decomposition. Contrasts were computed at every resolution of
interest. The contrast threshold adjustments due to the masking e�ect are then made according to Eqn. (3) at each
resolution. The summation e�ect is not implemented in the system at present since its e�ect is much less signi�cant
than the masking e�ect in the frequency range of natural images.

To model spatial inhomogeneity, one has to �nd the weights to each frequency band as a function of distance
to the �xation point. Since a continuous weighting function is too involved mathematically, discrete stack structure
approximations were used in practical implementations when applied to complex images [6]. The staircase model
approximates the weighting function as a step function of the distance to the fovea. The resolvable suprathreshold
contrast radius obtained from experiments [5] and its staircase approximation are shown in Fig. 4. We see that the
staircase function with a constant radius-frequency product �ts the experimental data pretty well. The weights of
each channel is set to unity, and the visual information out of the radius at a speci�c spatial frequency, as shown in
the dash-dotted staircase line in Fig. 4, is discarded.
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Figure 3: Contrast sensitivity threshold of the Gabor and Haar �lters.

Although Georgeson's 3-stage model [8] is more complete, it requires additional work on parameter estimation.
Instead, the power law as described in (2) is used with Cannon's result [26] at the last stage. The exponent p varies
from 0.45 to 0.5 with respect to the distance from the actual contrast to the threshold. Here a constant value 0.45
is used for p.

Let the subscripts c and o represent the compressed image and the original image, respectively. Then, the quality
error measure is

D =
1

HV

0
@ NX
k=1

VX
j=1

HX
i=1

(Rc;k(i; j) �Ro;k(i; j))
2

1
A ; (11)

where V and H are the vertical and horizontal sizes of the image, respectively, and N is the number of �ltering
channels. The resulting error measure D is dimensionless since the contrast itself is dimensionless.

It is known that HVS is also orientation-dependent. In other words, the contrast sensitivity threshold as well
as perceived contrast vary with respect to the grating orientation [27]. This feature is not implemented in our
system since experimental results at di�erent orientations are not available at present, but it can be incorporated
conveniently into the system by using the summation of more channels with di�erent orientations.

5 EXPERIMENTAL RESULTS

5.1 Validation of the Haar wavelet

Since the cortical cells have a Gaussian-shaped reception pro�le [3], it is often used as an evidence that the
Gabor �lter is preferable in the vision experiment. Since the Haar �lter does not possess the same Gaussian-shaped
passband as the Gabor �lter does, one may suspect the validity of using the Haar �lter in vision analysis. To validate



Data from García−Pérez, 1988

Bilinear approximation      

Staircase approximation     

2 4 8 16 32
0

10

20

30

40

50

Spatial frequency (cycle/deg)

R
ad

iu
s 

(d
eg

)

Figure 4: Experimental data from Garc��a-P�erez (1988) and the corresponding staircase model approximation.

the use of the Haar wavelet, psychophysical experiments were conducted on a 17" Silicon Graphics color graphic
display GDM-17E11. The luminance range of the display was adjusted from 0 to 80 cd=m2 (candela/squared meter)
by using a Photoresearch spectroradiometer. There were 256 discrete gray scales present in the experiments. The
relationship of the luminance versus the gray scale is shown in Fig. 5. This curve was used to compute the actual
contrast in the following experiments.
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Figure 5: The plot of the luminance versus the gray level for the color graphic display used in experiments.

Both Gabor and Haar �ltered patches were used in the experiments. The spatial frequency range of the test
patches was from 0.069 to 19.2 cycles per degree, which covers virtually the whole frequency band we would sense
from digital images. The result is shown in Fig. 6, where the sensitivity threshold, de�ned as the reciprocal of the
contrast threshold, is plotted as a function of spatial frequency. The closeness of these two curves shows that the
Haar �lter has a comparable performance in comparison with the Gabor �lter. This experimental result clearly
demonstrates that the Haar �lter can also be used in the quality assessment system.
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Figure 6: Contrast sensitivity threshold by using the Gabor and Haar �lters.

5.2 Suprathreshold masking

The masking e�ect can be viewed as a function of the ratio of target signal and masking signal frequencies
[24] or as a function of the ratio of target signal and masking signal contrasts [25]. We constructed (3) based on
the assumption that these two e�ects are separable. To verify this assumption, psychophysical experiments were
conducted to �nd the parameters of this model.

The contrast ratio Cmask=C, where Cmask and C represent the contrast of masking signal and target signal,
respectively, ranged from 0.5 to 2.5. The frequency ratio fmask=f , meanwhile, ranged from �3 to 3 octaves. To
isolate individual e�ects, we �rst �xed the frequency ratio, and varied the contrast of each signal to investigate the
e�ect of the contrast ratio. The result is shown in Fig. 7 (a), and an exponential �tting function was determined
using the data. As shown in Fig. 7 (a), we see that when the contrast of masking signal becomes larger with respect
to the target signal, the contrast sensitivity decreases (or equivalently the least detectable contrast increases) [25].

We then varied both the contrast ratio and the frequency ratio of target and masking signals. During the
computation process, we scaled experimental data with respect to their contrast ratios according to Fig. 7 (a). The
scaled data showed very little deviation, thus indicating that (3) is a very good approximation to the masking model.
The means of experimental data and �tting functions are shown in Fig. 7 (b), which are in good agreement with
those in [24]. From the �tting functions, the sensitivity threshold changes for frequency ratios of �2, �1, 1, 2, and
3 octaves are o.96, 0.84, 0.76, 0.87, and , respectively.

5.3 Application to compression image artifacts

The new image quality assessment system was constructed according to Fig. 3 with parameters determined by
above experiments. Compressed Lena images of size 256� 256 were used for image quality assessment. Two types
of compression schemes were applied. One is the DCT-based compression with the JPEG default quantization table
and a quantization factor of 5, coded at 0.34 bpp with PSNR=26.43. The other is wavelet-compressed Lena by using
the embedded zerotree wavelet (EZW) algorithm proposed by Shapiro, coded at 0.32 bpp with PSNR=28.47. These
two images are shown in Fig. 8.

Since the HVS contrast sensitivity threshold is characterized by the spatial frequency, de�ned as cycles per degree,
one should expect the quality measure varies with the ratio of D, the distance between the observer and the image,
andW , the width of the image. Fig. 9 showed the relation between the ratio and the quality measure. As the distance
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Figure 7: Illustration of the masking e�ect: sensitivity threshold changes under di�erent (a) contrast and (b)
frequency ratios.

between the observer and the image increases, the spatial frequencies of the details (high frequency components)
become even higher that the visual system attenuation will fail to perceive the compression artifact. Therefore, the
error will approach zero as the viewing distance increases. On the other hand, once the viewing distance is decreased
to a certain extent, the whole details of the image to the pixel level are perceivable. The quality measure will be
thus almost constant when the viewing distance is smaller than this distance, until the inhomogeneity phenomenon
and the HVS attenuation at low frequencies take over at extremely close distances, which will lower the perceived
error by a quite small extent. The \best" viewing distance shown in the �gure is about 6{10 times the image width,
which is consistent with the rule of thumb in practical image viewing situations.

We can also see from Fig. 9 that the EZW-compressed image has a lower quality error measure than that of the
JPEG-compressed image, although the compression ratio is smaller. This is consistent with the subjective ranking
of human observers.

6 CONCLUSION

In this research, we proposed a new approach to model human visual system (HVS) by wavelet transform.
Haar wavelets were proved to provide exact contrast values at each resolution, and the masking e�ect and spatial
inhomogeneity were conveniently incorporated into the HVS model by multiresolution analysis. Experiments showed
that Haar �lters have comparable performance with the Gabor �lters. The resulting new metric was successful in
measuring compressed image artifacts.
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