
New Implementation of High-Level Correlated Methods
Using a General Block Tensor Library for
High-Performance Electronic Structure Calculations

Evgeny Epifanovsky,[a,b] Michael Wormit,[c,d] Tomasz Ku�s,[a] Arie Landau,[a]

Dmitry Zuev,[a] Kirill Khistyaev,[a] Prashant Manohar,[a,e] Ilya Kaliman,[a,f ]

Andreas Dreuw,[d] and Anna I. Krylov*[a]

This article presents an open-source object-oriented C11

library of classes and routines to perform tensor algebra.

The primary purpose of the library is to enable post-

Hartree–Fock electronic structure methods; however, the

code is general enough to be applicable in other areas of

physical and computational sciences. The library supports

tensors of arbitrary order (dimensionality), size, and symme-

try. Implemented data structures and algorithms operate on

large tensors by splitting them into smaller blocks, storing

them both in core memory and in files on disk, and apply-

ing divide-and-conquer-type parallel algorithms to perform

tensor algebra. The library offers a set of general tensor

symmetry algorithms and a full implementation of tensor

symmetries typically found in electronic structure theory:

permutational, spin, and molecular point group symmetry.

The Q-Chem electronic structure software uses this library to

drive coupled-cluster, equation-of-motion, and algebraic-

diagrammatic construction methods. VC 2013 Wiley Periodi-

cals, Inc.

DOI: 10.1002/jcc.23377

Introduction

Many-body quantum theory is used to compute the energy

and properties of multiparticle systems. Interactions within

such systems are described by the Hamiltonian, a many-body

operator that can be represented by a tensor in an appropri-

ate tensor space. In electronic structure theory,[1] the elec-

tronic Hamiltonian in the Schr€odinger equation contains one-

and two-electron interactions described by the kinetic energy

and Coulomb operators. Wave function-based methods treat

these operators explicitly by representing them as multidimen-

sional tensors. Thus, the programmable expressions for solving

the Schr€odinger equation are comprised mostly of tensor con-

tractions (generalized matrix multiplications), which dominate

the computational effort. For example, the correlation energy

in configuration interaction (CI), coupled-cluster (CC), or

second-order M�ller–Plesset perturbation theory (MP2) meth-

ods may be given by Ecorr5
P

ia ta
i fia1 1

4

P
ijab tab

ij hijjjabi, where

ta
i and tab

ij contain the amplitudes (expansion coefficients) of

the single- and double-excited determinants in a many-

electron wave function expansion, or their effective counter-

parts. fia are the elements of the Fock matrix and hijjjabi are

the antisymmetrized electron repulsion integrals in the molec-

ular orbital basis. hijjjabi and tab
ij are four-dimensional tensors

with antisymmetric properties: tab
ij 52tab

ji 5tba
ji 52tba

ij :

The primary challenge of implementing many-body meth-

ods arises from the complexity of the programmable expres-

sions, which consist of numerous tensor products. For

example, the CCSD (coupled-cluster with single and double

substitutions) amplitude equations involve more than 30 contrac-

tions between the amplitudes (T1 and T2) and the integrals. All of

them have to be programmed correctly and efficiently.

The requirements for a practical tensor library suitable for

electronic structure calculations, as well as possible algorithmic

solutions, were first outlined by Windus and Pople[2]: arbitrary

tensor order and types of contractions should be possible, ten-

sors should be stored on disk and processed by parts, and

symmetries (permutational, point-group, and spin) should be

[a] E. Epifanovsky, T. Ku�s, A. Landau, D. Zuev, K. Khistyaev, P. Manohar,

I. Kaliman, A. I. Krylov

Department of Chemistry, University of Southern California, Los Angeles,

California 90089

E-mail: krylov@usc.edu

[b] E. Epifanovsky

Department of Chemistry, University of California, Berkeley, California

94720

[c] M. Wormit

Centre of Theoretical Chemistry and Physics, Massey University, Auckland,

New Zealand

[d] M. Wormit, A. Dreuw

Interdisziplin€ares Zentrum f€ur Wissenschaftliches Rechnen Ruprecht-Karls

Universit€at Heidelberg, Heidelberg 69120, Germany

[e] P. Manohar

Department of Chemistry, Birla Institute of Technology and Science, Pilani,

Rajasthan 333031, India

[f ] I. Kaliman

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Contract/grant sponsor: National Science Foundation (CHE-0951634 and

OCI-1216644, A. I. K); Department of Energy through the DE-FG02-

05ER15685 grant and through Discovery through Advanced Computing

(SciDAC) program, AIK. Humboldt Research Foundation (Bessel Award) (to

AIK); Contract/grant sponsor: Humboldt Research Foundation (Feodor-

Lynen program) (to MW); Contract/grant sponsor: DST, India (to PM)

VC 2013 Wiley Periodicals, Inc.

Journal of Computational Chemistry 2013, 34, 2293–2309 2293

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

http://onlinelibrary.wiley.com/


taken into account. The first generation of a CC and equation-

of-motion (EOM) program called ccman,[3–21] which is a part of

Q-Chem,[22] has enabled numerous computational studies. The

code is based on a C11 BlockTensor library (A. I. Krylov, et al.,

Efficient C11 tensor library for coupled-cluster calculations,

unpublished.) developed in 1997–1998 following Windus and

Pople’s ideas. Similar libraries were developed by the

NWCHEM[23] (including optimization of tensor expressions[24]),

ACES III[25], and PSI4[26] teams.

The original BlockTensor library allows general types of pair-

wise contractions between tensors of arbitrary dimensionality

(it has been used for coding expressions involving up to six-

dimensional tensors[12,13]) and takes full advantage of permu-

tational (e.g., fij 5 fji or tab
ij 52tab

ji 52tba
ij 5tba

ji ) and point group

symmetry (Abelian subgroups). Spin symmetry (e.g., faa5fbb)

was not fully implemented. The BlockTensor library also

includes a variety of other tensor operations, such as additions,

scalar products, applying denominators (i.e., hijjjabi
Dijab

), scattering

lower-order tensors into higher-order ones (i.e., Cijij 5 cij). Sup-

port for frozen, restricted, and active orbital spaces is also

available.[4,5,12] The library stores the tensors on disk and proc-

esses them by parts. It is parallelized using OpenMP technol-

ogy; however, due to the limitations of the algorithms, the

resulting scalability is moderate (up to four cores).

Advances in computer architectures and hardware, as well as

software requirements for new electronic structure methods,

have revealed deficiencies in the old BlockTensor library

prompting an update of the library design. This article presents

a new efficient C11 general-purpose tensor algebra library (lib-

tensor). The new library features a straightforward program-

ming interface, full tensor symmetry (point group including

non-Abelian subgroups, permutational, and spin), flexible mem-

ory management via a separate virtual memory component,

and shared-memory parallel algorithms. The library is designed

to provide multiple points of extension making it possible to

add support for new tensor structures and symmetries, algo-

rithms, and computer architectures. Q-Chem 4 [27] features a

new generation of CI, CC, and EOM-CC methods in the ccman2

program (to distinguish it from an older suite of codes called

ccman), as well as algebraic-diagrammatic construction (ADC)

methods available through adcman. Both are implemented

using the new tensor library. The source code of libtensor is

available for free download [28], its use is permitted under the

terms of a Boost-like software license (no limitations on use, fur-

ther modification, or redistribution).

The goal of this article is to provide an overview of the

underlying algorithms and explain the library design and code

structure. We also give an example of using the library to

implement a many-body electronic structure code and guide-

lines on interfacing the library with other electronic structure

platforms. Finally, we present the results of performance

benchmarks and outline future developments.

Data Structures and Algorithms

This section presents the block tensor structure used in the

library, the handling of tensor symmetry, and the algorithms

of essential tensor algebra operations.

Overview

From a programmer’s point of view, tensors are multidimen-

sional arrays. Using examples relevant to electronic structure

theory, the Fock matrix is a two-dimensional symmetric tensor,

whereas coupled-cluster T2 amplitudes tab
ij and electron repul-

sion integrals hpqjjrsi are four-dimensional anti-symmetric

tensors.

Vectorizing a tensor by specifying a certain order to the

entries yields a trivial way of storing it as a one-dimensional

array in computer memory. For example, in a two-index N 3

M tensor with row-major ordering, the linear position of (i, j)

th element is i 3 M 1 j. Likewise, T2 5 tijab can be stored as a

linear array tI, where the linear position I5b1aNvir1jN2
vir1

iN2
virNocc. Note that this representation allows one to reinter-

pret the same linear array as different matrices: T2 can be

viewed as a Nocc3NoccNvirtNvirt, NoccNocc3NvirtNvirt, or

NoccNoccNvirt3Nvirt matrix.* As a consequence, with the right

order of tensor indices, it is possible to cast tensor contrac-

tions as matrix multiplies and, therefore, apply efficient matrix

multiplication kernels, such as GEMM provided by BLAS,[29]

without converting tensor data to another format.

Correlated methods in electronic structure theory, such as

CC, CI, EOM, and ADC, are best formulated in terms of linear

tensor algebra, where Fock, Coulomb, cluster, and excitation

operators are represented as tensors in the basis of molecular

orbitals. In the typical variants of CC and EOM theories, the

CCSD and EOM-CCSD methods, the size of the dataset grows

as the fourth power of the number of basis set functions.

Thus, in many interesting applications it is impossible to fit the

problem in a computer’s RAM entirely. This problem can be

addressed by partitioning the tensor into smaller pieces, swap-

ping them between disk and RAM, and using divide-and-

conquer-type algorithms to perform tensor algebra,[2] as illus-

trated in Figure 1. This approach generalized to tensors of

arbitrary dimensions is the essence of libtensor’s design.

Tensors: Definitions and connection to many-body

formalisms

Let T be a tensor of order N: T 2 Vð1Þ � Vð2Þ � � � � � VðNÞ,
where VðkÞ are vector spaces. After choosing basis sets fv

ðkÞ
i g

spanning each mode of the tensor space, T can be repre-

sented as a multidimensional table of scalars T with entries

ti1 i2���iN
5hT ; v

ð1Þ
i1
� v

ð2Þ
i2
� � � � � v

ðNÞ
iN
i. The dimensionality of this

array is equal to the order of the tensor.

In this article, we use the term “tensor” for the multidimen-

sional array that represents a tensor. Expressions “tensor

dimensionality”, “n-index tensor”, and “order-n tensor” refer to

the order of the tensor.

Many-body operators, wave function expansions, and other

objects in electronic structure theory can be represented as

tensors in some basis, typically a spin-orbit or spinless

*In tijab and other examples, indices i, j span occupied and a, b

span virtual molecular orbital subspaces: i; j 2 1…Nocc; a; b 2
1…Nvirt; Nocc and Nvir denote the number of occupied and virtual

orbitals, respectively.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2294 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



molecular orbital basis, atomic orbital basis, or their combina-

tion. Permutational symmetry is only allowed between modes

that correspond to the same vector space, and in general all

modes of a tensor can correspond to different vector spaces.

For example, the Fock matrix is a two-dimensional symmetric

tensor in the atomic or full molecular orbital basis set, the

coupled-cluster tijab amplitudes and antisymmetrized electron

repulsion integrals are four-index partially antisymmetric ten-

sors in the spin-orbit basis (here partially means symmetry

only with respect to certain, not all, index permutations, that

is, in tijab only i, j and a, b are related by permutational

antisymmetry).

Dense tensors

The most basic data structure for a tensor is obtained through

vectorization by specifying a certain order to the tensor

entries. Any ordering can be used as long as it provides a

unique bidirectional mapping between the multidimensional

tensor indices and the linear indices. The tensor library uses

the row-major order† extended to more than two dimensions

as follows. Starting from a d-dimensional tensor ai1 i2���id
, vectori-

zation is done for the first mode by slicing the tensor. The

result is a vector that contains N1 elements, each being (d 2

1)-dimensional tensor:

ai1 i2���id
5
�

a
ð1Þ
i2���id

a
ð2Þ
i2���id

� � � a
ðN1Þ
i2���id

�

Then each vector entry is expanded along their own first

index (which is the second index in the original tensor) so the

resulting vector contains (d 2 2)-dimensional tensors as its ele-

ments. The length of this vector is N1N2. The process continues

until a vector of scalars is obtained. An n 3 m matrix (second-

order tensor) aij is thus vectorized into a�
I : aij5a�

I : I5im1j.

a11 a12 � � � a1m

a21 a22 � � � a2m

� � . .
.

�

an1 an2 � � � anm

0
BBBBBBB@

1
CCCCCCCA

! ða11 a12 � � � a1m a21 a22 � � � a2m � � � an1 an2 � � � anmÞ

Similarly, tensor tijab containing coupled-cluster (or any two-

body) amplitudes can be stored as a one-dimensional array t�I,

where the linear position I of each entry is computed as

I5b1aNvir1jN2
vir1iN2

virNocc.

The data structure that represents a tensor in this format is

called the dense tensor because it stores all the entries with-

out attempting to take advantage of symmetry or any other

special properties that result in sparsity. The dense tensor con-

sists of an array of data and an object that describes the shape

of the tensor (the number of elements along each mode).

Because this structure is so simple, most tensor algebra algo-

rithms are trivial. Only the contraction algorithm requires spe-

cial attention.

The most basic algorithm to contract two dense tensors can

be implemented as a series of nested loops that run over all

inner and outer indices as shown in the top panel of Figure 2.

This straightforward algorithm is not cache efficient and as a

result its performance is bound by memory bandwidth on

modern computer architectures. The problem can be

alleviated by finding and replacing innermost loops by a

Figure 1. An example of block-tensor (or tiling) representation of a two-

index tensor (e.g., Fock matrix). The tensor is represented as a tensor of

small tensors (blocks). The data in each tensor is stored as a one-

dimensional array. The blocking structure facilitates implementation of per-

mutational and point-group symmetries (e.g., only unique nonzero ij blocks

are stored and computed), parallelization (operations on different blocks

can be performed by different processors), as well as multiple orbital

spaces. Contractions and other operations on the actual data (i.e., individ-

ual blocks stored as linear arrays) can be performed by the GEMM

subroutine.

Figure 2. Simple algorithms for the contraction of two dense tensors

cijkl5
P

pq aipkqbjplq . The top panel shows a naive nested-loop algorithm

with four outer loops running over the outer indices i, j, k, l, and two inner

loops running over p, q. In the bottom panel, the same effect is achieved

by three nested loops over i, j, p; loops over k, l, and q are replaced with a

single kernel that multiplies k 3 q and q 3 l matrices. A(i,p) extracts a k 3

q submatrix for given i and p. B(j,p) extracts a l 3 q submatrix, C(i,j)

extracts a k 3 l submatrix.

†The row-major order follows the C/C11 convention, whereas

Fortran employs the column-major order. A practical upshot is

that when a linear array representing an N 3 M matrix in C/C11

is passed to a Fortran routine, it will be interpreted as a trans-

posed M 3 N matrix. Therefore, to perform matrix multiplication

C 5 A 3 B using GEMM, one needs to make a GEMM call request-

ing CT 5 BT 3 AT and passing the pointers to the original (non-

transposed) C, B, and A.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2295

http://onlinelibrary.wiley.com/


high-performance matrix multiplication kernel acting on the

slices of tensors as shown in the bottom panel of Figure 2. If

the GEMM routine is used, matrix multiplications can be done

in place avoiding the overhead of actually making slices

A(i, p),B(j, p), and C(i, j), which is achieved by passing pointers

to input arrays with appropriate offsets and strides.

The performance of the contraction algorithm that uses

matrix multiplications internally is critically dependent on

whether the kernel can achieve peak efficiency, which means

that the multiplied matrices have to be fairly large. Both the

original BlockTensor library and the library described in this

article have adopted an approach, in which the tensors are

permuted prior to the multiplication so that all contraction

indices are grouped together in order for the contraction to

be cast as a matrix multiplication. Consider a contraction of

aipkq and bjplq over p and q:

cijkl5
X

pq

aipkqbjplq

First the arguments are permuted to yield

a�
ikpq5aipkq b�

jlpq5bjplq

Then the indices i and k can be combined into one index
I 2 1…NiNk , and similarly indices j and l are combined into J,
p and q become P. Going to the combined indices amounts
to simply reshaping the data arrays without affecting the
data itself. The contraction is thus written as a matrix
multiplication

c�IJ5
X

P

a�
IPb�

JP
�C5�A �B†

To recover the result, matrix c�IJ is permuted back into tensor

cijkl

cijkl5c�ikjl

This permute-multiply approach is general and can be

applied to any tensor contraction. The permutation step is the

primary overhead, but it is possible to avoid it when the ten-

sors can be readily reshaped as suitable matrices. For example,

none of these contractions require permutation of the data:

X
ab

tab
ij hkljjabi

X
ij

tab
ij hijjjcdi

X
ija

tab
ij hijjjadi

X
jab

tab
ij hkjjjabi:

They can be performed by passing to GEMM the original

nonpermuted linear arrays and specifying proper dimensions

of the combined indices.

By operating on larger matrices, the permute-multiply algo-

rithm reduces the multiplication runtime through better CPU

utilization, but that is offset by having to permute the tensors

so that they are properly matricized. The scaling of the permu-

tation operation is more favorable than that of matrix multipli-

cations: for N 3 N matrices, the permutation takes O(N2)

memory operations, whereas matrix multiplication requires

O(N3) floating point operations. Therefore, for sufficiently large

matrices, the multiplication step always dominates. In addition,

the number of actual data permutations can be kept to a min-

imum. For example, it is possible to build in a selector that

will automatically choose an algorithm that has better

expected performance based on the input tensors and type of

contraction. Currently, in a typical CC calculation matrix multi-

plications account for 70–90% of CPU time with permutations

taking an additional 5–10%.

Other tensor algebra operations, such as additions, element-

wise products, generalized inner products, etc. usually require

less performance tuning because of their low overall share of

the total computational cost. As a rule, simple nested loop-

based algorithms suffice. However, following performance

profiling, certain optimizations can be done for these opera-

tions as well. The library combines vector and matrix algebra

BLAS kernels to perform some additions and multiplications.

The strategy of using BLAS here is different than in the case of

contractions; because permuting tensor elements is unjustified,

BLAS routines are applied directly to tensor data multiple

times in a loop to achieve a cumulative effect, similar to the

contraction method presented in Figure 2. As an example,

consider the addition of two three-dimensional tensors:

cijk5aijk1bjik . It can be done by looping over indices i and j

and using BLAS vector addition for index k, which is faster

than preparing a permuted bijk or running three nested loops.

Block tensors

In order to be practical in larger calculations, a tensor format

needs to be well suited for divide-and-conquer algorithms.

The simple dense tensor is a poor fit in this respect. The lack

of any built-in ability to handle symmetry or sparsity further

reduces its applicability. A general strategy to address these

problems is to break down large tensors into smaller and

much lighter pieces. The details of how that is done distin-

guish different approaches.

One class of partitioning recipes is to split a large tensor

into an array of reduced-dimensionality tensors, such as fibers

(vectors) or slices (matrices), as illustrated in Figure 3. An auxil-

iary array is used to map the index of an entry to the appro-

priate slice where the entry can be located. The biggest

shortcoming of this partitioning method is that it introduces

an imbalance between two types of tensor modes: those that

make up lower-dimensional objects and those that are used

for indexing. This makes handling symmetry in tensors particu-

larly difficult.

Figure 3. Partitioning of a cubic tensor (left) into reduced-dimensionality

objects: fibers (center) or slices (right).

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2296 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



Another way of partitioning a tensor, particularly well suited

for distributed storage, is the cyclic layout as implemented, for

example, in Cyclops Tensor Framework (CTF).[30] The cyclic dis-

tribution defines a period m along each mode of the tensor,

and each fragment is assigned a phase p < m. The fragment

then contains entries p, m 1 p, 2m 1 p and so on. With

appropriate padding, all the fragments have the same size and

the permutational symmetry of the original tensor. This

approach, while valuable in the cases of high-order permuta-

tional symmetry, by itself does not take advantage of tensor

sparsity that arises from spin and point group symmetries.

However, because the fragment tensors inherit the symmetry

and sparsity of the full tensor, combining the cyclic layout

with the blocked structure described below allows one to

leverage the strength of both partitioning schemes.

This section presents the block tensor, an approach that parti-

tions the modes of a tensor consistently‡ so that the subtensors

(“blocks”) have the same dimensionality as the original tensor.

The approach, first introduced by Windus and Pople[2] and then

used in BlockTensor library and SIAL,[25] is thus a multidimen-

sional generalization of matrix tiling as illustrated in Figure 4.

Such implementation of block tensors enables a block

sparse structure, in which only nonzero dense blocks are

stored in memory. Zero blocks are not stored explicitly

(marked as zero in auxiliary data structures) and are ignored

appropriately when performing tensor algebra operations,

reducing both storage requirements and computational cost.

Tensor symmetry is supported by the block tensor structure

through relationships between blocks. For example, in a real

symmetric matrix (two-index tensor) A the following holds:

aij 5 aji; the blocks will be equal up to a permutation of

entries: Aij5AT
ji , where Aij is a submatrix of A. Section on sym-

metry below discusses this in more detail.

Structure of block tensors. Block tensor A combines a tensor

space T, a set of symmetry relationships S, and a set of non-

zero canonical blocks B that contain actual data (tensor

entries): A(T, S, B). The tensor space specifies the number of

elements along each dimension of the tensor and the posi-

tions at which the tensor is to be split into blocks

(subtensors).

Symmetry S is a set of mappings i 7!fj;Uijg such that for

subtensors Ai and Aj the equality Ai 5 Uij(Aj) holds, where i

and j are multi-indices and Uij is a transformation that consists

of a permutation and an elementwise operation on the tensor

elements. The elementwise operation is usually scalar multipli-

cation (often, a sign change), but may also involve complex

conjugation in the case of tensors with complex entries.

B is a mapping i 7!Ai, where i is a multi-index and Ai is a

subtensor of A. In practice, it is not necessary to store all Ai,

but keeping only nonzero symmetry-unique blocks is suffi-

cient. For example, consider a real square matrix M 5 mij that

consists of two blocks along each dimension so that Mij are

submatrices of M:

M5
½M11� ½M12�

½M21� ½M22�

 !
(1)

If M is symmetric (mij 5 mji) and blocking is done equally

along both dimensions, submatrix M21 can be obtained from

M12 : M215MT
12; the submatrices on the diagonal are them-

selves symmetric square matrices. In order to restore the entire

matrix M, it is then sufficient to store blocks M11, M12, and

M22. This list can be shortened further if some of the blocks

only contain zero entries.

The library does not impose any limitations on the type of

tensors that are used as blocks in a block tensor. Typically,

block tensors with dense blocks are used, but sparse, symmet-

ric, and other kinds of blocks with intrinsic structure are possi-

ble. All block tensor structures and algorithms are

implemented in the library in a templated form with an

assumption that all blocks have the same type (i.e., no mixing

of dense and sparse blocks). However, this limitation could be

trivially removed by introducing a special type of tensor that

wraps multiple other block types. The following example of a

general block tensor contraction algorithm demonstrates how

block tensor operations can be expressed in terms of individ-

ual blocks without knowing their type.

Contraction of block tensors. Consider the contraction of two

block tensors A and B to form some block tensor C. Assume

that all the related dimensions, inner and outer, agree on their

blocking (there is no loss of generality because if some dimen-

sions are split in any two block tensors differently, they can be

brought into agreement by re-tiling using the union of split

points). Let block tensors A, B, and C consist of smaller tensors

Aik, Bkj, and Cij, respectively. Indexes i and j are used to collec-

tively designate all outer indices in A and B; k designates all

inner tensor indices. It can be shown that the contraction can

be written as the sum of pairwise block contractions:

Cij5
X

k

Aik Bkj

Symmetry and sparsity in block tensors A and B have two

major implications. Noncanonical blocks (replicas) need to be

Figure 4. Two-dimensional (left) and three-dimensional (right) block tensors

formed by partitioning tensors evenly along each mode. The blocks do not

have to have equal sides as long as blocking is consistent. For example,

the tiling patterns of the occupied and virtual orbital spaces may be natu-

rally different, but they should be kept consistent among all tensors.

‡Consistent partitioning means that the modes representing

the same vector spaces are tiled using the same spacings; how-

ever, the spacings themselves are often different in order to lever-

age spin and point group symmetries when the orbitals of the

same spin and irreducible representation are blocked together.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2297

http://onlinelibrary.wiley.com/


obtained from canonical blocks by applying a necessary trans-

formation. Terms that contain zero blocks can be excluded

from the calculation. The next section discusses symmetry in

block tensors in more detail.

The calculation of C starts by computing its symmetry group

from the symmetries of A and B. Then, nonzero canonical blocks

Cij are calculated in parallel using the following procedure. For

each value of k, canonical blocks Ai0k0 and Bk0 j0 that correspond to

Aik and Bkj, respectively, are found together with their transfor-

mations Ua
ik and Ub

kj, so that Aik5Ua
ik Ai0k0 and Bkj5Ub

kjBk0 j0 . If any of

Ai0k0 or Bk0 j0 is found to be exactly zero, the contraction term with

the current value of k is dropped. Otherwise, it is added to a list

of contractions, which contains these quintuples:

Lij5fðk;Ai0k0 ; Bk0 j0 ;Ua
ik;Ub

kjÞg

List Lij is then processed to combine any duplicating con-

tractions and remove canceling terms, resulting in a shorter

list of quintuples L0ij . This step ensures that only the required

minimum of block contractions is performed minimizing the

number of floating point operations. L
0

ij is used to assemble

the block Cij. If L0ij51, then Cij is not calculated and marked as

a zero block in C.

For illustration, consider the contraction
P

cd tcd
ij habjjcdi from

CC equations. There is antisymmetry in both T2 amplitudes and

the integrals with respect to the permutation of indices in pairs

(i, j), (a, b), and (c, d) (for simplicity let us disregard that

habjjcdi5hcdjjabi). The contraction algorithm ensures that in

this case only canonical blocks ði < 5jÞ and ða < 5bÞ are com-

puted, and the summation is only done over ðc < 5dÞ, resulting

in the optimal number of block contractions. The resulting num-

ber of floating point operations is, however, slightly larger than

the required minimum. It is due to extra work done for diagonal

blocks, which have intrinsic symmetry that is not taken into

account. In practice, this has not been a problem because the

amount of this extra work is at least one order of magnitude less

than the total work, and its relative contribution becomes less

and less important as the size of the problem grows larger.

Symmetry

The intrinsic symmetry of a block tensor A is represented via

relations or mappings between tensor blocks. These mappings

partition the full set of tensor blocks of A into disjoint subsets,

so that any pair of blocks for which a mapping exists belong to

the same subset. For each subset only one block, called the

canonical block, has to be stored, while all other blocks can be

constructed from the canonical block and respective mappings.

For example, in the case of T2 amplitudes, it is sufficient to only

store blocks T ab
ij for which i � j and a � b, all other blocks can be

recovered through the permutational symmetry of T2:

T ab
ij 52T ab

ji 52T ba
ij 5T ba

ji

Consider again the symmetric matrix M [eq. (1)]. There is

one mapping M12 ! M21 due to permutational symmetry. The

four blocks of M can be separated into three subsets:

s15fM11g s25fM12;M21g s35fM22g

Together, the subsets form the set of all blocks in

M: s5[i si , and have no common blocks among them. It is

enough to store only one block per each subset to be able to

restore the whole matrix M.

Symmetry mappings between blocks are defined by a col-

lection of abstract symmetry elements which is assigned to a

block tensor during initialization. Every symmetry element

establishes a certain class of mappings. Currently, symmetry

elements for three different symmetry types have been imple-

mented: permutational symmetry, spin symmetry, and point

group symmetry (Fig. 5).

Permutational symmetry. The symmetry element for permuta-

tional symmetry defines mappings by means of a permutation

P and an element-wise transformation S (usually multiplica-

tion by 61). As shown in Figure 5 (left), for every block Bi, per-

mutation P creates a mapping to another block Bj with j5Pi

and Bj5SPBi (i and j being multi-indices). As a similar map-

ping may also exist from Bj to Bk with k5Pj; Bk can be con-

structed from Bi by combining the two mappings so that

Bk5S2P2Bi . If the step is repeated several times, the block Bi

will eventually map onto itself after n steps, that is, Bi5SnBi .

This results in a sequence of blocks than can be constructed

in its entirety from one single member of the sequence. How-

ever, for the blocks in the sequence to be nonzero, the ele-

mentwise transformation has to fulfill the condition Sn51,

which is trivially satisfied in the case of permutational

symmetry.

Spin symmetry. The symmetry element for spin symmetry

defines mappings between tensor blocks in terms of mappings

between superblocks. A superblock is a set of tensor blocks

obtained by partitioning the block tensor evenly along each

dimension similar to the way a tensor is partitioned into ten-

sor blocks. Figure 5 (middle) shows a two-dimensional block

tensor partitioned into aa, ab, and bb superblocks. This creates

a second layer of block structure upon which the mappings

are defined by means of two multi-indices I and J of super-

blocks and an elementwise transformation S. As a result, every

tensor block in superblock I is mapped onto the equivalent

tensor block in superblock J such that AI;i5SAJ;i holds for all

multi-indices i in the superblocks I and J. This already demon-

strates that all superblocks defined by the symmetry element

have to have the same block structure. In addition to the map-

pings between two superblocks, one superblock can also be

mapped to zero, thereby defining all tensor blocks in the

superblock as zero, such as ab blocks in Fock matrix or non-

Ms 5 0 blocks (e.g., abbb) in T2. In nonrelativistic calculations,

the superblock structure is such that every dimension is split

into two parts, one for each spin value.

For such commonly used two-index tensors as Fock matrix,

the present scheme ensures that only the aa block is stored

and computed, which is exactly the same as in fully spin-

adapted implementations. Thus, the size of the stored data

equals approximately ðNocc1NvirtÞ2=2, where Nocc and Nvirt

denote the number of occupied and virtual molecular orbitals,

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2298 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



respectively, to be compared with 23ðNocc1NvirtÞ2=25

ðNocc1NvirtÞ2 in spin-unrestricted calculations. However, in the

case of four-index tensors such as T2, this symmetry element

creates less savings in storage and number of operations than

a fully spin-adapted code. In the spin-unrestricted calculations,

the size of T2 is 6
4 N2

occN2
virt (aaaa, bbbb, and abab spin blocks).

In the spin-restricted case, we store aaaa and abab blocks,

totaling in 3
4 N2

occN2
virt. In a fully spin-adapted code, one needs

to store only the abab block, which is 1
2 N2

occN2
virt before anti-

symmetrization. Thus, in the present implementation the size

of the stored T2 amplitudes is 1 1
2 times larger than should be

possible in a fully spin-integrated code.

Molecular point group symmetry. The third symmetry element

type has been implemented to mark tensor blocks that are zero

due to molecular point group symmetry. It assigns sets of labels

to every dimension of a block tensor so that the ith block along

a given dimension is associated with the ith label of the dimen-

sion (see Figure 5, right panel). Thus, every block of an N-dimen-

sional block tensor is associated with a set of N labels. In

addition, the symmetry element contains an evaluation rule and

a product table for labels. The evaluation rule defines a general

rule how the N labels associated with a block determine

whether the block is zero or nonzero. Usually, this entails form-

ing a product of labels as specified by the product table and

checking that the result belongs to a given set of labels. This

allows one to target any irreducible representation (or a number

of them) of the point group symmetry.

This way every block can be marked as zero or nonzero by

evaluating the N associated labels using the evaluation rule and

the product table. In order to relate the symmetry element to

point group symmetry, a few assumptions have to be made con-

cerning the structure of the block tensor. First of all, the block

tensor has to describe a physical system that is invariant under

the symmetry operations of a given point group (in other words,

the tensor and the underlying system must agree on the point

group symmetry). Second, the individual indices of a tensor ele-

ment have to represent basis functions that can be associated

with an irreducible representation of the point group. If the ten-

sor indices along each dimension are ordered such that within

each block the associated irreducible representations are identi-

cal, the block labels of the symmetry element can be directly

identified with irreducible representations of the point group.

Accordingly, the product table is the table of direct products of

the irreducible representations.

Symmetry operations. In addition to the symmetry element

types themselves, symmetry operations have been imple-

mented for each symmetry element type in order to automati-

cally determine the symmetry of a block tensor that results

from a tensor operation. As the result symmetry has to be

established for every possible tensor operation, in principle,

one symmetry operation would have to be implemented for

every symmetry element type and every tensor operation

available. To avoid the resulting large number of possibilities,

six basic symmetry operations have been identified from

which more complex symmetry operations can be constructed:

(1) permutation operation to change the order of tensor indi-

ces in the symmetry element types, (2) direct product, (3)

direct sum operation to combine two symmetry elements of

the same type, (4) fusion operation to merge two or more ten-

sor dimensions into one, (5) trace operation to remove tensor

dimensions by summing over them, and (6) symmetrization

operation to introduce further permutational symmetry in a

tensor. This set should be sufficient to construct the result

symmetries of most, if not all, possible tensor operations. For

example, the result symmetry of an addition of two tensors

can be obtained by combining the direct sum and merge

operations. Likewise, the symmetry of the contraction of two

tensors is computed by building the symmetry of the direct

product and tracing out the contracted indices.

Besides already available symmetry element types and

respective symmetry operations, the tensor library also pro-

vides necessary interfaces to add custom symmetry element

types without modifying existing structures. Naturally, a set of

basic symmetry operations has to be implemented for every

new symmetry element type.

Library Design and Code Structure

The primary purpose of the tensor algebra library is to provide

a set of general computational routines with a programming

interface that facilitates the creation of portable electronic

structure codes. The library serves to reduce the effort

Figure 5. Illustration of the three symmetry element types available as part of the tensor library: permutational symmetry (left), spin symmetry (middle),

point group symmetry (right). For a block tensor of rank 2, the block structure is shown indicating the simplifications due to each symmetry element type.

Orange blocks are canonical blocks which are stored, white blocks can be constructed from the canonical blocks, and grey blocks are marked as zero by

the symmetry element.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2299

http://onlinelibrary.wiley.com/


required for prototyping, supporting the code, and migrating

from one computational platform to another.

The library is organized in layers (Fig. 6). The top level pro-

vides a user-friendly C11 interface to program complex ten-

sor contraction expressions, which are then translated into a

sequence of block tensor operations that need to be invoked

to compute the final result. Block tensor operations compute

the structure and symmetry of the result, which is followed by

a parallel computation of canonical data blocks. At a lower

level, serial but thread-safe dense tensor operations perform

work on individual blocks of a block tensor using a high-

performance linear algebra back-end.

Library interface and examples of higher-level codes

The interface of the library is a set of C11 function and oper-

ator templates that allow the user to program tensor expres-

sions and specify calculation intermediates. These functions do

not perform computations themselves, but rather process the

equations, prepare input and invoke lower-level block tensor

operations, in the spirit of domain-specific programming lan-

guages. The interface allows one to write higher-level codes

that are easy to read and maintain.

Before any tensor algebra can be done, initial tensors need to

be prepared and filled with input data. Creating block tensors

takes one parameter: tensor space that specifies the dimensions

and blocking of the block tensor. Code fragment in Figure 7

shows the steps of creation of tensors for the Fock matrix. Ten-

sor objects are initially empty and need to be populated with

symmetry and data, which can be rather involved due to their

complexity. There are programming tools in place for this pro-

cess, but they are outside the scope of this article, and their

description can be found in the programming manual (the code

documentation can be generated by using doxygen software).

Because tensor algorithms propagate symmetry, only input ten-

sors need to be fully initialized. All explicit intermediates and

results have to be created in proper tensor spaces,§ but their

symmetry and sparsity need not be manually resolved.

In an electronic structure calculation, one installs the symme-

try and data into the Fock matrix, two-electron integrals, guess

EOM amplitudes, etc. Occupied and virtual molecular orbital

spaces are rearranged so that orbitals in any block belong to the

same spin and irreducible representation. Intermediate tensors

and placeholders for results are created empty. Their symmetry

and sparsity is automatically determined by the library based on

the input tensors and equations. For example, the symmetry

properties and sparsity of T2 can be determined from the ampli-

tude update equation shown in Figure 8.

By the design of the interface, programmed expressions

resemble the actual mathematical equations to be evaluated.

Each tensor is assigned a number of letter indices that are used

to identify the dimensions of the tensor for the purpose of mul-

tiplication, accumulation, etc. When programming, these indices

are objects of a class called letter. Letters can be concatenated

to form multidimensional tensor labels using the bitwise or

operator (j). The length of a tensor label must be equal to the

order of that tensor. The labels are used by the library to set up

permutations of tensor elements for the underlying algorithms.

Some frequently used general tensor operations are

shown in Table 1. For example, contraction of two tensors

cðijjjkjlÞ5contractðm; aðijjjmÞ; bðmjljkÞÞ; represents the follow-

ing operation: Cijkl5
P

m aijmbmlk . This list is based on applying

the library to program electronic structure methods; however,

the interface can be expanded by introducing new templates

both inside and outside the library.

Figure 6. Overview of the libtensor library structure. A multilayer design

allows for various extensions in terms of new algorithms and data types as

well as new hardware architectures. The layers interact through well-defined

interfaces; any layer can be substituted by an alternative implementation

without the need to modify the code in the layers above or below.

Figure 7. C11 code snippet that demonstrates the initialization of tensor

objects. “&” indicates that the two spaces are of the same kind and may

be related by permutational symmetry, whereas “j” indicates that the

spaces are of different types.

§Although the tensor spaces of the computed tensors are

determined by the equations used to compute them and the

spaces of the input tensors, we choose to initialize their spaces

explicitly to prevent programming errors.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2300 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



The features of the interface are best demonstrated using

examples. A code snippet in Figure 9 shows the calculation of

MP2 electronic correlation energy, which is given by

EMP25
X

ia

ta
i fia1

1

4

X
ijab

tab
ij hijjjabi; where ta

i 5
fia

ei2ea
and

tab
ij 5

hijjjabi
ei1ej2ea2eb

(2)

Figure 8 is an example the code used to update T2 ampli-

tudes in the CCD method, the core of a procedure that itera-

tively solves for the amplitudes. In this example, it is assumed

for simplicity that the denominator Dijab5ei1ej2ea2eb is

formed prior to invoking T2 update, but in a practical imple-

mentation Dijab is formed and applied to T2 on the fly to avoid

the storage of the extra four-index intermediate.

The expression templates are designed so that most com-

mon programming mistakes are detected at the time of com-

pilation rather than runtime thus improving the robustness of

the code.

Functions listed in Table 1 do not perform computations

themselves, but rather help the user to build tensor expres-

sions. The evaluation of the expressions is triggered by an

overloaded C11 assignment operator. At that stage, the

expressions are translated into a series of block tensor opera-

tions. Because the conversion takes place at runtime, it is pos-

sible for the library to automatically tune its performance and

take full advantage of the available computational resources:

memory and disk availability, type and number of processors,

etc.

The level of abstraction offered by the expression templates

allows us to introduce changes in the low-level library code

without modifying the expressions. Once coded using this

interface, all methods immediately take advantage of improve-

ments in the core library. Examples of such improvements are

new tensor representations (e.g. decomposed or sparse ten-

sors), migration to new computational platforms, introduction

of new types of parallelism.

Block tensor classes

The layer of block tensor structures and algorithms (Fig. 10)

provides a capability to operate on large tensors using a

divide-and-conquer approach.

At the level of block tensor operations, the primary task is

to produce the structure of the result given the block struc-

ture of the operation arguments. This involves the calculation

of the block dimensions, symmetry, and sparsity. Once the

structure of the output is known, the computation of nonzero

canonical blocks is delegated to the level of simple dense

tensors.

The block tensor class template implements a container that

allows one to access and modify the symmetry and data. The

order of the tensor and type of tensor elements (single or

double precision, complex, etc.) are template parameters. The

space of a block tensor, which specifies the dimensions and

blocking pattern, is set upon the creation of the tensor and

cannot be changed later on.

Table 1. Examples of frequently used tensor operations available in the

library. Both individual tensors and subexpressions can be used as argu-

ments to these functions.

Operation Example

Multiplication by a scalar c(ijjjk) 5 2.0 * a(ijjjk);
Addition of two tensors c(ijjjk) 5 a(ijjjk) 1 b(kjjji);
Dot (inner) product

of two tensors

c 5 dot_product(a(ijjjk), b(kjjji));

Direct (outer) product

of two tensors

c(ijjjkjl) 5 a(ijk) * b(jjl);

Contraction of

two tensors

c(ijjjkjl) 5 contract(m, a(ijjjm),
b(mjljk));

Elementwise product

of two tensors

c(ijjjkjl) 5 ewmult(kjl, a(ijkjl),
b(jjkjl));

Elementwise division

of two tensors

c(ijjjkjl) 5 div(a(ijjjkjl),
b(ijjjkjl));

Direct summation of

two tensors

c(ijjjkjl) 5 dirsum(a(ijk), b(jjl));

General diagonal

of a tensor

c(ijj) 5 diag(jjk, j, a(ijjjk));

Symmetrization c(ijj) 5 symm(i, j, a(ijj));
Antisymmetrization c(ijj) 5 asymm(i, j, a(ijj));

Figure 9. C11 code snippet that demonstrates the use of the library’s

interface to program the MP2 energy equation.

Figure 8. C11 code snippet that demonstrates the use of the library’s

interface to program equations that iteratively solve for CCD amplitudes.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2301

http://onlinelibrary.wiley.com/


Block tensor operations are separate template classes, which

implement algebra algorithms. This approach, as opposed to

having tensor operations as the methods of the block tensor

class, allows one to expand the functionality without modify-

ing the block tensor class. It makes it possible to add general

operations to the library, and keep more specific operations

outside.

Dense tensor classes

The dense tensor represents a simple structure containing

the dimensions of the tensor and a pointer to the data array.

It is implemented in the library as a template with two

parameters: order of the tensor and element type. Upon crea-

tion, dense tensors are initialized with the dimensions. At the

same time, an array is allocated in memory to store the data.

Dense tensors provide two interfaces: read-only (in which

case multiple simultaneous readers are allowed in a parallel

calculation) and read–write interface (only one writer is

allowed at a time).

Dense tensor algorithms are implemented as separate

classes that interact with the tensor objects through one of

the two interfaces. As with block tensor operations, most com-

monly used dense tensor algebra operations are provided by

the library, and there is a capability to add new dense tensor

operations outside of the library.

Virtual memory mechanism

To allow applications of the tensor library in high-level elec-

tronic structure methods, it is necessary for it to be able to

handle tensors that do not fit entirely in the core computer

memory (RAM). In this case, external storage is utilized along

with a mechanism to swap data in and out of core memory.

Usually, computer operating systems allow a program to use

more memory than physically available RAM by extending to

virtual memory, a combination of hardware and low-level soft-

ware components used to swap memory pages on the fly.

However, because blocks of data required to compute tensor

algebra and their order are predetermined, it is absolutely pos-

sible (and likely more efficient) to build a pipeline in which the

next batch of blocks is loaded from disk in the background

while the current batch is used for a computation.

The tensor library relies on an external virtual memory tool

that provides virtual memory functionality via a predefined

interface. There are no limitations on how the virtual memory

library operates internally as long as it implements the interface.

Figure 11 shows the state diagram of a virtual memory block

and functions that the tensor library uses to operate on memory

blocks. Similar to the standard dynamic memory allocation/deal-

location pairs of routines (malloc/free in C, new/delete in C11),

the virtual memory defines allocate and deallocate functions,

which use and return virtual pointers. Unlike the usual pointers,

these cannot be directly dereferenced, but rather serve as han-

dles for data blocks. When the user needs to use the data, the

virtual memory block is first mapped onto the physical memory

space (“locked”). Once the job is done, the user indicates that by

“unlocking” the memory. While a block is unlocked, the memory

manager is allowed to move it to a different location, including

an external disk, to reuse physical memory. As a consequence,

each time virtual blocks are locked, they may appear with

Figure 10. Diagram of classes in libtensor. For each type of tensors there are specialized tensor operations. General block tensors and operations on them

are generic implementations. Concrete block tensors use the generic structures and algorithms within, but provide a simplified interface. The template

argument in gen_block_tensor allows using different types of tensors, for example, real or complex dense tensors, sparse tensors, or tensors with special

properties.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2302 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



different physical memory addresses. There are two modes of

locking virtual memory blocks: read-only mode in which the

user is only allowed to read the data, but not modify it, and

read–write mode, which allows both. The lock routine is block-

ing, that is, it may not return immediately, but it guarantees to

return a proper physical pointer or an error. Finally, the user can

indicate that a memory block will soon be required by calling a

nonblocking prefetch routine.

This virtual memory protocol is used throughout the tensor

library; however, the virtual memory code is not freely avail-

able at the moment. Instead, the distribution includes a simple

implementation based on C11 new/delete operators. Follow-

ing the formal description of the virtual memory interface and

this example, one can develop their own virtual memory man-

ager and use it together with the tensor library.

Parallel capabilities

The model of parallelism employed in the tensor library

assumes multiple processors working in a shared-memory

environment. It is implemented through a thread pool in

which a limited number of threads are active and the others

are either suspended or waiting for input or output. This

allows performing computations and I/O simultaneously.

Block tensor operations produce a stream of tasks that is

consumed by the thread pool with dynamic scheduling.

Because the time required to complete each task is relatively

long, this approach does not cause high contention on the

task queue and scales well.

At the moment, work is ongoing to develop the capability

to delegate computations to external accelerators such as

general purpose GPUs. The strategy to enable the support for

accelerators is to maintain a separate memory manager and

a task queue for each external device. Block tensor algorithms

need to be optimized for communication in order to mini-

mize data transfer between main memory and device

memory.

Quality control

The primary quality control instrument used in the tensor library

is an extensive collection of unit tests. Each unit test is a small

subroutine that checks that the correct result is produced in a

particular case scenario. Overall, there are a few hundred unit

tests ranging from small low-level class tests to larger cases such

as the computation of a complex tensor expression.

Simple tensor operations are tested against reference data

generated using clear and straightforward (albeit inefficient)

procedures. Block tensor algorithms are checked against the

tested simple dense tensor results.

Higher-level modules that use the tensor library for compu-

tations also employ unit tests. At that level, the primary con-

cern is the validity of the equations. Each expression, including

all intermediates, is computed using multiple data sets

extracted from real calculations. The results are compared with

independently precomputed reference data.

Unit tests provide a facility to verify correctness during initial

code development through use cases, as well as create an

environment to replicate and trace defects and prevent their

reappearance by converting problematic scenarios into new

test cases.

Structure of High-Level Codes

Figure 12 shows the components that are used in CC, EOM,

and ADC codes in Q-Chem. Each component performs its spe-

cific task:

� Top-level drivers are located in adcman (ADC methods)

and ccman2 (CC, CI, and EOM). These functions are

responsible for setting up and coordinating solvers.

� Ccman2 uses a libcc library that contains all program-

mable expressions used in CC and EOM calculations.

� Libsolve contains generic solvers (DIIS and Davidson

procedures).

� Libctx provides utilities to access the context of a calcula-

tion, which is a simple key-value map for data objects.

Integrals, amplitudes, and other similar tensors, as well as

energies, are saved in the context.

� Libmo contains routines that help set up tensor spaces

and symmetry in libtensor format using information

imported from Q-Chem.

� Liblegacy is a bridge connecting Q-Chem with the CC/

EOM and ADC codes. It contains routines to import data

from Q-Chem, for example, the integrals. It also provides

a way to export data back to Q-Chem, for example, the

density matrices used in property and analytic gradient

calculations. To interface ccman2 with another quantum

chemistry code, this part should be replaced by a

package-specific counterpart.

� Libvmm is a library that provides a set of routines to

work with virtual memory.

Use Case: Coupled-Cluster Doubles (CCD)
Method

In this section, we consider the implementation of the CCD

method in Q-Chem to illustrate the use of the tensor library

and its collaboration with other components. This example

assumes interfacing with some Q-Chem modules that are not

part of the tensor library and may not be freely available.

Figure 11. State diagram of a virtual memory block. The tensor library is

able to use any compatible virtual memory implementation.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2303

http://onlinelibrary.wiley.com/


However, this sample CC component is designed to minimize

interaction with the core of Q-Chem and, therefore, should be

a useful guide to creating a CC code outside of Q-Chem. If the

library is to be used to implement a CC solver interfaced with

another software package, it will be necessary to create or

reuse the providers of initial data, such as Hartree–Fock solu-

tion and electron repulsion integrals, as well as a solver for CC

equations (e.g., DIIS algorithm).

CCD theory uses an exponential ansatz for the ground state

wave function jWi that involves a reference determinant jU0i
and cluster amplitudes T2:

jWi5eT2 jU0i

The cluster amplitudes T2 can be written in the second

quantization form using the traditional notation in which i, j

designate occupied orbitals in the reference determinant and

a, b designate virtual orbitals. a
†

p and ap are the creation and

annihilation operators on orbital p, respectively:

T25
1

4

X
ijab

tab
ij a

†

aa
†

bajai

The CCD energy E is given by:

E5hU0jHjWi5hU0jHeT2 jU0i

The cluster amplitudes required to compute the ground

state wave function and energy are found by solving a set of

linear equations:

hUab
ij je2T2 HeT2 jU0i50

In practice, these equations are not solved directly by writ-

ing them in a matrix form and finding the inverse of the

matrix. Instead, the diagonal of the matrix is separated from

the nondiagonal part and an iterative linear solver is used—an

approach that works well with diagonally dominant matrices.

The convergence can be improved by using the DIIS

extrapolation.

The CCD equations are solved by extracting the diagonal of

the Hamiltonian Dab
ij 5 1

ei1ej2ea2eb
and using the following

update step in the iterative procedure:

T ab
ij Dab

ij 5hijjjabi1P2 abð Þ
X

c

fbctac
ij 2

1

2

X
klcd

hkljjcditbd
kl tac

ij

 !

2P2 ijð Þ
X

k

fjk tab
ik 1

1

2

X
klcd

hkljjcditcd
jl tab

ik

 !
1

1

2

X
kl

hijjjklitab
kl

1
1

4

X
klcd

hkljjcditcd
ij tab

kl 1
1

2

X
cd

habjjcditcd
ij

2P2 ijð ÞP2 abð Þ
X

kc

hkbjjjcitac
ik 2

1

2

X
klcd

hkljjcditdb
lj tac

ik

 !

(3)

where P2ðijÞAij5Aij2Aji , capital T denotes the updated ampli-

tudes, and t denotes the amplitudes from the previous

iteration.

As shown in Figure 8, it is straightforward to implement this

update step efficiently using the tensor library. Four intermedi-

ates are introduced to minimize the number of required

contractions.

The implementation of CCD in Q-Chem involves multiple

components (Figure 12), each having a specific role. Libsolve, a

library of generic solvers, provides a templated linear solver

with DIIS acceleration. Libcc contains the programmable equa-

tions for CCD amplitudes and energy written using the libten-

sor programming interface, the equations are similar to the

ones shown in Figure 8. By putting together the generic DIIS

solver, the CCD update step, and a few other solver policies,

Figure 12. Overview of ADC and CC/EOM codes in Q-Chem. In this hierarchy, only the upper two layers are specific to electronic structure. Lower-level

libraries are designed to be reusable in other areas of scientific computations. The codes are interfaced with Q-Chem via liblegacy, which is responsible for

reading and setting up initial data from the integrals engine and other modules of Q-Chem.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2304 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



such as a convergence test function, one obtains a procedure

capable of solving CCD equations. This CCD solver is a part of

the ccman2 component in Q-Chem.

Overall, ccman2 performs the following steps when finding

the CCD energy of a molecule (Figure 13):

1. Import information about the molecule and computation

settings from Q-Chem: basis set, molecular orbitals, point

group symmetry.

2. Set up block tensor spaces required for the calculation.

3. Use Q-Chem’s integral code to compute antisymmetrized

electron repulsion integrals in the basis of molecular

orbitals (Q-Chem returns transformed integrals, but it is

also possible to start with the integrals in the atomic

orbital basis and transform them using a sequence of

four contractions).

4. Initialize the CCD solver with calculation settings (such as

maximum number of iterations, convergence criteria) and

initial data (Fock matrix, two-electron integrals).

5. During each CCD iteration, compute current energy and

print it for the user along with the norm of the error

vector.

6. Once CCD equations have converged, compute and print

the final CCD energy. Save the CCD amplitudes for fur-

ther use or analysis in the context of the calculation.

Steps 1–3 of this procedure are preparatory and are done

outside of the coupled cluster code. In this example, ccman2

imports initial data from Q-Chem, but a similar interface can

be established with any other program that is capable of deliv-

ering the same initial data.

Steps 4–6 are the essence of the implementation of CCD

and deserve some attention.

The CCD solver is derived from a generic DIIS solver from

libsolve by customizing its behavior through a programming

technique called policies. The templated solver makes no

assumptions with regard to the type of vectors or operators, it

is implemented in a generalized way. The generic solver must

be provided instructions on how to work with a particular vec-

tor type in order to be useful for a specific problem. For exam-

ple, the CCD solver’s vector type is the tensor of T2

amplitudes. The solver needs a policy that tells it how to com-

pute basic vector algebra: vector norm, overlap, linear combi-

nation, and other operations. The second important policy the

solver requires is the update, that is, the result of acting of the

linear operator on a vector. Usually, that translates into a

matrix–vector multiplication, but in the case of CCD the

update is a computation shown in eq. (3). Finally, the generic

solver requires a termination policy, which stops it upon either

convergence or exceeding a limit on the number of iterations.

Once the final T2 is found, the CCD procedure saves the

results in the context of the calculation. Context is an associa-

tive array, in which paths to objects are the keys, and objects

themselves are the corresponding values. The paths are

derived from a tree structure in which the objects are organ-

ized, similar to paths to locations in a file system. Routines

have access to all the nodes within their context, but upper

levels remain inaccessible. By passing the context from one to

the next, the routines are able to build upon previous results

preserving data encapsulation.

Benchmarks

We illustrate the performance of the library by using the fol-

lowing examples:

1. CCSD calculation of a methylated uracil–water dimer

(mU–H2O), 6-3111G(d,p) basis (302 basis functions), Cs

symmetry.

2. CCSD calculation of mU–H2O1 (doublet radical), 6-

3111G(d,p) basis (302 basis functions), Cs symmetry;

unrestricted CCSD calculation using a ROHF reference.

3. CCSD calculation of a methylated uracil–water cluster,

(mU)2–H2O, 6-311G(d,p) basis (489 basis functions), C1

symmetry.

Core electrons are frozen in all calculations. The thresholds

and number of iterations for CCSD and EOM calculations are

given in Table 2. The Cartesian geometries and relevant

Figure 13. C11 code snippet that sketches the implementation of the

CCD method. While greatly simplified, it shows the essential ingredients

that go into the solver. The update procedure is shown earlier in Figure 9.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2305

http://onlinelibrary.wiley.com/


energies are given in Supporting Information. The benchmarks

were performed on two designated Xeon machines referred to

as Xeon-USC and Xeon-Stanford. The Xeon-USC configuration

is Intel Xeon X5675 (2 3 6 cores, 3.0 GHz, 12 Mb cache), 128

Gb RAM, SCSI RAID 0 4 3 600 Gb 5 2.2 Tb. The Xeon-

Stanford setup is Intel Xeon X5690 (2 3 6 cores, 3.47 GHz, 12

Mb cache), 128 Gb RAM, SCSI RAID 0 700 Gb.

We begin by comparing the serial performance of our old

and new codes (Table 3). As spin adaptation is not available in

ccman, spin-unrestricted results provide the most direct com-

parison. On a single core, CCSD is about 20% faster with

ccman2 than ccman. Using RHF symmetry in ccman2 cuts the

total time further almost in half, which is expected as the T2

tensor shrinks by 50% in the restricted case. Our implementa-

tion of spin symmetry eliminates the need to compute the

block of T2 thus reducing the calculation to the aaaa and

abab blocks only. Improving the algorithm such that only the

abab block is stored and computed would yield another 33%

speedup. Full spin adaptation,[31] however, can yield a 2.5-fold

improvement by reducing the operation count for the most

time-consuming contraction,
P

cd tcd
ij habjjcdi, to 1

4 N2
occN4

virt rela-

tive to 10
8 N2

occN4
virt in a spin-unrestricted calculation. In our cur-

rent implementation, this contraction involves 5
8 N2

occN4
virt

floating point operations.

The effect of different memory management algorithms is

evident from the results in Table 3. Ccman exploits the operat-

ing system’s caching mechanism to make the best use of

memory. The memory limit specified is only used for memory

allocation routines (i.e., new and alloc) and can be considered

as advisory by operating system; through the file cache, the

program can take as much as all available memory. Ccman2,

on the other hand, strictly enforces the memory limit and dis-

ables the OS cache on the files used for tensor storage. This

has a mild negative impact if the user sets a lower memory

limit on a computation that could in principle fit in memory

completely. At the same time, this strategy has shown to have

a positive effect for larger calculations where significant

amounts of I/O are inevitable.

Table 4 shows how CCSD timings depend on the memory

limit. In a constrained regime with memory limits of 10 and 20

Gb, the smaller test 1 (total data size is 25 Gb) incurs over

50% of wasted idling time.¶ However, as the memory limit in

test 1 is above the data set size, idling drops to 10%. It is,

therefore, reasonable to believe that this 10% accounts for

load imbalance and contention as no I/O is expected in this

regime. While the performance degradation in the case of test

1 is the subject of further investigation, the larger test 3 (data

size is 235 Gb) shows more promising results: the fraction of

Table 2. Converged CCSD energies and convergence[a] in the three test cases.

Code Test case SCF energy CCSD energy Ediff[b] Tdiff[b] Iterations

ccman 1 2566.7112775 2568.5609278 2.6 3 1029 1.5 3 1025 12

ccman2 1 2566.7112775 2568.5609272 1.1 3 1028 5.9 3 1025 10

Molpro 1 2566.7112774 2568.5609268 2.4 3 1027 6.5 3 1029[c] 9

ccman2 2 2566.395034 2568.231747 7.3 3 1027 6.8 3 1025 18

Molpro 2 2566.395806 2568.252101 5.3 3 1027 1.2 3 10210[c] 22

ccman2 3 21057.143160 21060.477186 1.6 3 1027 3.3 3 1025 12

Molpro 3 21057.143160 21060.477186 2.4 3 1026 1.1 3 1029[c] 11

[a] Molpro thresholds: THRVAR 5 1.00D-08; THRDEN 5 1.68D-06. Q-Chem thresholds: CC_T_CONV54 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijab ðtn
ijab2tn21

ijab Þ
2

q
); CC_E_CONV56 (jEn2En21j).

[b] Differences at the last iteration. [c] VAR(S).

Table 3. Test case 1 (mU–H2O), 302 basis functions, Cs symmetry. Wall

times in seconds per CCSD iteration for Xeon-USC.

ccman ccman2

Cores Time Speedup Time Speedup

UHF reference (data size 50 Gb, limit 80 Gb)

1 1595 1232

4 565 2.8 3 325 3.8 3

8 390 4.1 3 192 6.4 3

12 342 4.7 3 153 8.0 3

UHF reference (data size 50 Gb, limit 16 Gb)

1 1600 1652

4 799 2.0 3 784 2.1 3

8 711 2.3 3 674 2.5 3

12 688 2.3 3 640 2.6 3

RHF reference (data size 25 Gb, limit 80 Gb)

1 665

4 180 3.7 3

8 110 6.1 3

12 92 7.2 3

Table 4. Total wall and CPU clock timings for CCSD using ccman2 for test

1 and test 3 using various memory limits. Calculations are performed

using Xeon-USC with 12 processors. Idling ratio is computed as

I5 12 TCPU

12Twall

� �
3100%.

Test 1 Test 3

Memory

(Gb) Wall (s) CPU (s) Idle (%) Wall (h) CPU (h) Idle (%)

10 3652 10,934 75

20 2044 10,219 58

40 934 10,145 9 26.2 178.3 43

60 893 9676 10 24.1 173.5 40

80 834 8991 10 23.1 167.9 39

100 22.6 165.3 39

¶Idling is computed as the fraction of CPU cycles not spent

doing useful work. Idling arises from load imbalance, resource

contention, and waiting for I/O.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2306 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM



wasted CPU cycles is stable at about 40%. To address some of

the inefficiencies, we plan future algorithmic improvements

such as optimization for data locality and automatic tuning of

contraction batching. Currently, the best strategy for the user

is to allow ccman2 to use as much memory as possible by

specifying a memory limit of 75–90% of total available RAM.

Let us now compare the parallel performance of ccman and

ccman2. Table 3 shows that ccman does not attain higher

than four- to five-fold speedup even with 12 cores, which is

due to the poor scalability of many used algorithms. With

ccman2, it is possible to achieve a more than seven-fold

speedup by using 12 cores.

To gain more insight into the scalability, we consider the

breakdown of the total CPU time into matrix multiplications

(GEMM BLAS calls), permutation of tensor blocks for optimal

index alignment, and symmetry handling overhead. Table 5

shows these results for test 1 and test 3. In both of these low-

symmetry cases (Cs and C1, respectively), the symmetry han-

dling overhead remains stable and low, not exceeding 4%. In

test 1, permutations take 7% of the CPU time on a singe core.

However, the memory bandwidth gets quickly saturated in the

parallel mode, and on 12 cores the fraction of the time used

for permutation grows to 24%. At the same time, matrix multi-

plications take 86% on a single core and 68% on 12 cores. As

expected, in a larger case (test 3), the calculation spends less

times in tensor permutations (permutation of an N 3 N matrix

scales as N2, whereas matrix multiplication of two such matri-

ces scales as N3). With 12 cores, this job spends 88% on matrix

multiplication and only 5% on permutations.

As the next step, we compare the performance of our

coupled-cluster codes with Molpro[32] (Molpro 2012.1 release

binary was used). The timings are collected in Table 6.

We are interested in both total times for CCSD calculation

and performance of our tensor library. For the test case 1 on a

single core, ccman2 is only 6% slower than Molpro. This is

very encouraging, as due to complete spin-adaptation in Mol-

pro, coupled-cluster calculations involve considerably fewer

floating point operations than in ccman2. We note that the

parallel scaling of Molpro is slightly less efficient, for example,

on eight cores, the speedup of Molpro is 6.0, whereas for

ccman2 it is 6.6. Consequently, the difference in timings

between the two codes shrinks and on four and eight process-

ors ccman2’s time per CCSD iteration is 2–4% faster than in

Molpro.

To make a more adequate comparison between the two

codes, we turn to a spin-unrestricted CCSD calculation of the

same size (test 2). On a single core, we observe that Q-Chem

is approximately twice faster than Molpro. As far as scaling is

concerned, we observe a slight decline, possibly because paral-

lel scaling is affected by I/O. Unfortunately, we were not able

to obtain multicore spin-unrestricted timings for Molpro.

In sum, the coupled-cluster codes implemented in the

ccman2 module of Q-Chem are about two times faster than

Molpro for the spin-unrestricted case; however, for the spin-

restricted case the gap shrinks and ccman2 is slightly slower

due to incomplete spin adaptation. Thus, improving spin sym-

metry handling algorithms within the library is expected to

lead to significant performance gains. As far as general CCSD

algorithms are concerned, the two codes perform similarly

when consistent convergence thresholds are used.

Due to technical issues (hardware failure), we were not able

to obtain a full set of benchmarks for test 3. However, for this

larger test case, we observe the same trend as for smaller

examples: Q-Chem and Molpro show similar scaling and per-

iteration times.

The range of available CC and EOM methods is much wider

in ccman2 than in Molpro, in particular for open-shell systems.

In addition, our code also features the capability to compute

CC and EOM analytic gradients and state and transition

properties.

Finally, to illustrate the capabilities of libtensor, we report

timings for two large examples. The first one is the oligopor-

phyrin dimer (D2h symmetry, 942 basis functions) used in

NWChem benchmarks.[33] The size of the data in this calcula-

tion is 660 Gb. On 12 cores, one CCSD iteration takes 13.2 h

Table 5. Ccman2 profiling results on Xeon-USC. CCSD wall time (s) per

iteration and the fraction of CPU time taken by dominating computa-

tional kernels are shown.

Cores 1 4 8 12

Test 1 (data size 25 Gb, limit 80 Gb)

CCSD iteration 665 180 110 92

Scaling 3.7 3 6.1 3 7.2 3

Matmul 86% 82% 74% 68%

Permute 7% 11% 18% 24%

Symmetry 4% 4% 4% 3%

Test 3 (data size 235 Gb, Limit 100 Gb)

CCSD iteration 47,680 14,472 9468 8136

Scaling 3.3 3 5.0 3 5.9 3

Matmul 94% 92% 90% 88%

Permute 2% 3% 4% 5%

Symmetry 2% 2% 2% 2%

Table 6. Q-Chem versus Molpro timings (full CCSD and average per-

iteration wall times) for Xeon-Stanford.

Q-Chem Molpro

Cores CCSD time

Per

iteration Speedup CCSD time

Per

iteration Speedup
Test 1 (closed shell)

1 6392 s 639 s 5446 s 605 s

2 3179 s 318 s 2.4 3 2866 s 318 s 1.9 3

4 1675 s 167 s 3.8 3 1532 s 170 s 3.6 3

8 973 s 97 s 6.6 3 909 s 101 s 6.0 3

12 778 s 78 s 8.2 3

Test 2 (open shell)

1 21,033 s 1168 s 48495 s 2204 s

2 10,706 s 595 s 2.0 3

4 5751 s 320 s 3.7 3

8 3593 s 200 s 5.9 3

Test 3 (closed shell)

1 12.80 h 12.78 h

2 78.9 h 6.58 h 73.5 h 6.68 h

4 42.5 h 3.55 h 38.7 h 3.52 h

8 25.5 h 2.12 h 23.8 h 2.17 h

12 20.6 h 1.72 h

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2307

http://onlinelibrary.wiley.com/


(which is equivalent to 160 CPU-hours). One CCSD iteration in

a massively parallel calculation using NWChem on 1024 cores

takes 810 s, which is equivalent to 230 CPU-hours. Although

the absolute time required for the ccman2 calculation is lon-

ger, the job can be completed using �100 times less compu-

tational resources and 40% less CPU-hours. The second

example is a nucleobase tetramer, AATT[34] (C1 symmetry, 966

basis functions). We use frozen core and frozen natural orbital

approximations, which reduce the correlated space to 98 occu-

pied and 551 virtual orbitals. The dataset size for this compu-

tation exceeds 1 Tb, and each CCSD iteration takes 60 h on 12

cores. Finally, using resoluion-of-identity and Cholesky decom-

position approaches reduces these timings by 10–60% (E. Epi-

fanovsky, et al., submitted to J. Chem. Phys.).

Conclusions and Outlook

We present a new general purpose tensor library that enables

efficient production-level implementation of many-body elec-

tronic structure theories. The library features a straightforward

expression programming interface and can be trivially com-

bined with symbolic algebra equation generators. The library

features all general tensor operations, takes advantage of ten-

sor symmetry (permutational, point group, and spin symmetry)

and sparsity in block tensors. It can be combined with differ-

ent virtual memory management tools to adjust to a particular

architecture. The library is multicore parallel showing reasona-

ble scaling up to 12 cores.

The library represents an excellent development environ-

ment and enables fast implementation of efficient production-

level codes for advanced correlated methods. The Q-Chem 4

release features a broad family of CC and EOM-CC methods

(CCSD, EOM-EE/SF/IP/EA/DIP-CCSD), including analytic gra-

dients and property calculations implemented using libtensor.

The library (and the respective codes) can easily be ported to

another quantum chemistry package.

By comparing the library performance against state-of-the-

art codes, we note that for the spin-unrestricted case, ccman2

is about two times faster (on a single core) than Molpro. For

spin-restricted calculations, the gap shrinks due to more com-

plete spin-adaptation in Molpro. For a smaller example (302

basis functions), the two codes show almost identical perform-

ance. Molpro is 5% faster on a single core, whereas Q-Chem is

4% faster on eight cores.

Current developments include the implementation of CC,

EOM/CI, and ADC methods that take advantage of resolution-

of-the-identity (RI) and reduced-rank Cholesky representation

of the two-electron integrals; improvements in the virtual

memory mechanism and generic block tensor algorithms to

enable offloading of computations to accelerators; an exten-

sion to distributed tensor storage and operations. In addition,

improvements in spin adaptation and extensions to complex-

valued tensors are planned.

Because the library is not specific to electronic structure

theory, we hope that it will find applicability in other areas of

computational physics and chemistry that use tensor algebra.

Acknowledgments

We are grateful to Dr. Jiahao Chen and Prof. Todd Martinez for

their help with benchmark calculations. A. I. K. is grateful to

Prof. Juergen Gauss for stimulating discussions. The library

development was supported by the National Science Founda-

tion (CHE-0951634 and OCI-1216644, A. I. K). Implementation

of higher-level methods was supported by the Department of

Energy through the DE-FG02-05ER15685 grant. Benchmarking

and extension of the library to handle RI and Cholesky-type

contractions was supported by Scientific Discovery through

Advanced Computing (SciDAC) program funded by U.S.

Department of Energy, Office of Science, Advanced Scientific

Computing Research and Basic Energy Sciences. We also

acknowledge support from the Humboldt foundation (A.I.K.

and M.W.).

Keywords: tensor algebra � electronic structure � coupled-clus-

ter theory � quantum chemistry software

How to cite this article: E. Epifanovsky, M. Wormit, T. Ku�s,

A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman, A.

Dreuw, A. I. Krylov. J. Comput. Chem. 2013, 34, 2293–2309.

DOI: 10.1002/jcc.23377

Additional Supporting Information may be found in the

online version of this article.

[1] T. Helgaker, P. J�rgensen, J. Olsen, Molecular Electronic Structure

Theory. Wiley & Sons, Chichester, West Sussex, England, 2000.

[2] T. L. Windus, J. A. Pople, Int. J. Quant. Chem. 1995, 56, 485.

[3] C. D. Sherrill, A. I. Krylov, E.F.C. Byrd, M. Head-Gordon, J. Chem. Phys.

1998, 109, 4171.

[4] A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, M. Head-Gordon, J. Chem. Phys.

1998, 109, 10669.

[5] A. I. Krylov, C. D. Sherrill, M. Head-Gordon, J. Chem. Phys. 2000, 113,

6509.

[6] S. R. Gwaltney, C. D. Sherrill, M. Head-Gordon, A. I. Krylov, J. Chem.

Phys. 2000, 113, 3548.

[7] A. I. Krylov, Chem. Phys. Lett. 2001, 338, 375.

[8] A. I. Krylov, C. D. Sherrill, J. Chem. Phys. 2002, 116, 3194.

[9] A. I. Krylov, Chem. Phys. Lett. 2001, 350, 522.

[10] S. V. Levchenko, A. I. Krylov, J. Chem. Phys. 2004, 120, 175.

[11] S. V. Levchenko, T. Wang, A. I. Krylov, J. Chem. Phys. 2005, 122,

224106.

[12] L. V. Slipchenko, A. I. Krylov, J. Chem. Phys. 2005, 123, 084107.

[13] P. U. Manohar, A. I. Krylov, J. Chem. Phys. 2008, 129, 194105.

[14] P. U. Manohar, J. F. Stanton, A. I. Krylov, J. Chem. Phys. 2009, 131,

114112.

[15] D. Casanova, L. V. Slipchenko, A. I. Krylov, M. Head-Gordon, J. Chem.

Phys. 2009, 130, 044103.

[16] A. A. Golubeva, P. A. Pieniazek, A. I. Krylov, J. Chem. Phys. 2009, 130,

124113.

[17] P. A. Pieniazek, S. E. Bradforth, A. I. Krylov, J. Chem. Phys. 2008, 129,

074104.

[18] C. M. Oana, A. I. Krylov, J. Chem. Phys. 2007, 127, 234106.

[19] A. Landau, K. Khistyaev, S. Dolgikh, A. I. Krylov, J. Chem. Phys. 2010,

132, 014109.

[20] A. I. Krylov, Acc. Chem. Res. 2006, 39, 83.

[21] A. I. Krylov, Annu. Rev. Phys. Chem. 2008, 59, 433.

[22] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussman, C. Ochsenfeld, S. Brown,

A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Dis-

tasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

2308 Journal of Computational Chemistry 2013, 34, 2293–2309 WWW.CHEMISTRYVIEWS.COM

info:doi/10.1002/jcc.23377


Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A.

Rassolov, P. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker,

E. F. C. Bird, H. Daschel, R. J. Doerksen, A. Drew, B. D. Dunietz, A. D.

Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. S.

Kedziora, R. Z. Khalliulin, P. Klunziger, A. M. Lee, W. Z. Liang, I. Lotan,

N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E.

Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III,

W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A.

Warshel, W. J. Herhe, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W.

Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 2006, 8, 3172.

[23] S. Hirata, J. Phys. Chem. A 2003, 107, 9887.

[24] P.-W. Lai, H. Zhang, S. Rajbhandari, E. Valeev, K. Kowalski, P.

Sadayappan, Proc. Comp. Sci. 2012, 9, 412.

[25] B. Sanders, R. Bartlett, E. Deumens, V. Lotrich, M. Ponton, A block-

oriented language and runtime system for tensor algebra with very

large arrays, In Proceedings of the 2010 ACM/IEEE International Con-

ference for High Performance Computing, Networking, Storage and

Analysis. Washington, DC: IEEE Computer Society, 2010, November 13-

19; Washington DC.

[26] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A.

Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L.

Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D.

Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, T. D.

Crawford, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 556.

[27] A. I. Krylov, P. M. W. Gill, WIREs Comput. Mol. Sci. 2013, 3, 317.

[28] E. Epifanovsky, M. Wormit, T. Ku�s, A. Landau, D. Zuev, K. Khistyaev, I.

Kaliman, P. Manohar, A. Dreuw, A. I. Krylov, New implementation of

high-level correlated methods using a general block-tensor library for

high-performance electronic structure calculations, Available at: http://

iopenshell.usc.edu/downloads/tensor/, 2011. Accessed July 1, 2013.

[29] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G.

Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K.

Remington, R. C. Whaley, ACM Trans. Math. Soft. 2002, 28, 135.

[30] E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops tensor

framework: Reducing communication and eliminating load imbalance

in massively parallel contractions, In IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). Boston, MA, 2013.

[31] J. F. Stanton, J. Gauss, J. D. Watts, R. J. Bartlett, J. Chem. Phys. 1990,

94, 4334.

[32] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Sch€utz, P. Celani,

T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T.

B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O.

Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G.

Hetzer, T. Hrenar, G. Jansen, C. K€oppl, Y. Liu, A. W. Lloyd, R. A. Mata, A.

J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O’Neill,

P. Palmieri, D. Peng, K. Pfl€uger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll,

A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang. Molpro version

2012.1; www.molpro.net; Accessed July 01, 2013.

[33] NWChem: High-performance computational chemistry software, Avail-

able at: http://www.nwchem-sw.org/index.php/Benchmarks [accessed

on 13 March 2013].

[34] K. B. Bravaya, E. Epifanovsky, A. I. Krylov, J. Phys. Chem. Lett. 2012, 3,

2726.

Received: 19 March 2013
Revised: 13 June 2013
Accepted: 18 June 2013
Published online on 10 July 2013

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 2293–2309 2309

http://iopenshell.usc.edu/downloads/tensor/
http://iopenshell.usc.edu/downloads/tensor/
http://www.nwchem-sw.org/index.php/Benchmarks
http://onlinelibrary.wiley.com/

	l

