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Abstract. Camellia is a block cipher selected as a standard by ISO/IEC, which has been analyzed
by a number of cryptanalysts. In this paper, we propose several 6-round impossible differential paths
of Camellia with the FL/FL−1 layer in the middle of them. With the impossible differential and
a well-organized precomputational table, impossible differential attacks on 10-round Camellia-192
and 11-round Camellia-256 are given, and the time complexity are 2175 and 2206.8 respectively. An
impossible differential attack on 15-round Camellia-256 without FL/FL−1 layers and whitening is
also be given, which needs about 2236.1 encryptions. To the best of our knowledge, these are the
best cryptanalytic results of Camellia-192/-256 with FL/FL−1 layers and Camellia-256 without
FL/FL−1 layers to date.
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1 Introduction

Block cipher Camellia is proposed by NTT and Mitsubishi in 2000 [1]. Its block size is 128 bits
and it supports 128-, 192- and 256-bit key sizes with 18, 24 and 24 rounds respectively. Camellia
was selected as an e-government recommended cipher by CRYPTREC [5] and recommended
in NESSIE [15] block cipher portfolio. Then it was selected as an international standard by
ISO/IEC.

The structure of Camellia is Feistel structure with FL/FL−1 layers inserted every 6 rounds.
The FL and FL−1 functions are keyed linear functions which are designed to provide non-
regularity across rounds [1]. In the past years, Camellia has attracted the attention of the
cryptanalytic community. The square-type attacks are efficient to attack Camellia, which can
be used to analysis 9-round Camellia-128 and 10-round Camellia-256 [11]. Furthermore, Hatano
et al. used the higher order differential attack to analysis the last 11 rounds Camellia-256 with
complexity 2255.6 [7].

There are a number of results on simple versions of Camellia which exclude the FL/FL−1

layers and whitening being given in recent years [6,10,13,14,16,17,18,19]. Among them, the im-
possible differential attacks [3] are most efficient [13,14,17,18]. Since the existence of FL/FL−1

layers will probably destroy the impossibility, non of the impossible differential paths in these
attacks includes the FL/FL−1 layers. In this paper, we present 6-round impossible differen-
tial paths with FL/FL−1 layers in the middle, which turn out to be first impossible differential
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paths with FL/FL−1 layers. Due to one of these impossible differential paths and a precomputa-
tional table that is carefully consturcted, we propose impossible differential attacks on 10-round
Camellia-192 and 11-round (Round 1-11) Camellia-256 with complexity 2175 and 2206.8 respec-
tively.

For the attacks of Camellia-256 without FL/FL−1 layers and whitening, the 14-round attack
in [13] was pointed out to be incorrect by [20]. Later Mala et al. [14] pointed out a flaw in [20]
and showed that the time complexities of the 12-round Camellia-128 and 16-round Camellia-256
attacks were more than exhaustive search. As a result, the best analysis of Camellia-256 without
FL/FL−1 layers and whitening dated back to [12], which was a 13-round attack with complexity
2211.7. By carefully using the subkey relations and one of the 8-round impossible differential paths
without FL/FL−1 layers proposed in [18], we also present an impossible differential attack on
15-round Camellia-256 without FL/FL−1 layers and whitening, and the complexity is about
2236.1 encryptions.

The rest of this paper is organized as follows. We give some notations and a brief description of
Camellia in Section 2. Some properties and 6-round impossible differential paths with FL/FL−1

layers of Camellia are given in Section 3. Section 4 describes the impossible differential attacks on
reduced-round Camellia with FL/FL−1 layers and whitening. The impossible differential attack
on 15-round Camellia-256 without FL/FL−1 layers and whitening is illustrated in Section 5.
Finally, we conclude the paper in Section 6.

2 Preliminaries

Some notions used in this paper and a simple description of the Camellia algorithm are given in
this section.

2.1 Notations

Lr−1, L′r−1 : the left half of the 128-bit r-th round input
Rr−1, R′r−1 : the right half of the 128-bit r-th round input
∆Lr−1 : the difference of Lr−1, L′r−1

∆Rr−1 : the difference of Rr−1, R′r−1

Sr, S′r: the output value of the S-box of the r-th round
∆Sr: the output difference of the S-box of the r-th round
kr: the 64-bit r-th round subkey,
Ai: the i-th byte of a 64-bit value A (i = 1, ..., 8)
B ≪ j: left rotation of B by j bits
XL(64): the left half of a 128-bit word X
XR(64): the right half of a 128-bit word X
YL(32): the left half of a 64-bit word Y
YR(32): the right half of a 64-bit word Y
||: the cascade of two words

2.2 The Camellia Algorithm

Camellia [1] is a 128-bit block cipher with Feistel structure. It has 18 rounds for 128-bit key,
and 24 rounds for 192-/256-bit key. We give the encryption procedure of Camellia-192/-256 as
follows, see Fig. 1.
Encryption Procedure. The input of the encryption procedure is a 128-bit plaintext M , and
64-bit subkeys kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj (j = 1, ..., 6). First M is XORed with



New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256 3

6 rounds

FL FL
-1

6 rounds

FL FL
-1

6 rounds

FL FL
-1

6 rounds

KS P

KS P

KS P

KS P

KS P

KS P

∩ <<<1

klL

∩ klR

∩

∩

<<<1

klR

klL

FL-function

FL
-1
-function

k
w1 k

w2

k
w3

k
w4

Fig. 1. Camellia-192/-256

kw1 and kw2 to get two 64-bit intermediate value L0 and R0: L0||R0 = M ⊕ (kw1||kw2). Then
the following operations are carried out for i = 1 to 24, expect for r = 6, 12 and 18:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6, 12 and 18, do the following:

L′r = Rr−1 ⊕ F (Lr−1, kr), R′r = Lr−1.

Lr = FL(L′r, kl2r/6−1), Rr = FL−1(R′r, kl2r/6).

Finally the 128-bit ciphertext C is computed as: C = (R24||L24)⊕ (kw3||kw4).
The FL function is defined as: (XL(32)||XR(32), klL(32)||klR(32)) 7→ (YL(32)||YR(32)), where:

YR(32) = ((XL(32) ∩ klL(32)) ≪ 1)⊕XR(32),

YL(32) = (YR(32) ∪ klR(32))⊕XL(32).

The FL−1 function is the inverse of FL function, and FL and FL−1 are linear as long as the
key is fixed [2].

The round function F is composed of the key-addition layer, S-box layer and linear transfor-
mation P . In the key-addition layer, the input of the round function is XORed with the subkey.
There are 4 8 × 8 S-boxes S1, S2, S3, S4 used in the S-box layer, and each S-box is used twice.
Finally, the linear transformation P : ({0, 1}8)8 → ({0, 1}8)8 maps (z1, ..., z8) → (y1, ..., y8). P
function and its inverse function P−1 are:

y1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 z1 = y2 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8
y2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8 z2 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8
y3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 z3 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8
y4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z4 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y7
y5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8 z5 = y1 ⊕ y2 ⊕ y5 ⊕ y7 ⊕ y8
y6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8 z6 = y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8
y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7
y8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z8 = y1 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8
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Fig. 2. The Calculation of KA and KB

Key Schedule. For Camellia-256, the 256-bit main key K = KL||KR, where KL and KR are
128 bits. And for Camellia-192, the 192-bit main key K = KL||KRL(64) and KRR(64) = KRL(64).
Using KL and KR, the key schedule algorithm first calculate KA and KB, which is described in
Fig. 2. Where F is the round function of Camellia and Ci (1 ≤ i ≤ 6) are constants used as the
keys. Then the subkeys kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj (j = 1, ..., 6) are derived from
rotating KL, KR, KA or KB. For details of Camellia, we refer to [1].

It can be known from Fig. 2 that, if KB and KR are known, KA is known. Therefore, one
can get KL using the relation between KL and KA described in [14], Section 3.2. So once KB

and KR are known, K can be computed.

3 Properties and 6-Round Impossible Differential Paths of Camellia with

FL/FL−1 Functions

In this section, we first give some useful properties of Camellia and then propose several impos-
sible differential paths.

Property 1 For a 3-round Camellia structure, if the input difference is of the form ∆Li =
(0, a, 0, 0, 0, 0, 0, 0), ∆Ri = (0, 0, 0, 0, 0, 0, 0, 0), then:
∆Li+1 = (0, b, b, b, b, b, 0, 0), ∆Si+2 = (0, b2, b3, b4, b5, b6, 0, 0),
∆Li+2 = ∆Ri+3 = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0),
and ∆Si+3

l = (P−1(∆Li+3))l, for l = 1, 3, 4, ..., 8, where a, b, b2, b3, b4, b5, b6 are non-zero bytes.

Property 2 The necessary conditions of ∆Li+3 = (0, a, 0, 0, 0, 0, 0, 0) and ∆Ri+3 = (0, 0, 0, 0, 0,
0, 0, 0) are:
∆Li+1 = (0, b, b, b, b, b, 0, 0), ∆Si+2 = (0, b2, b3, b4, b5, b6, 0, 0),
∆Li = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0),
and ∆Si+1

l = (P−1(∆Ri))l, for l = 1, 3, 4, ..., 8, where a, b, b2, b3, b4, b5, b6 are non-zero bytes.

To better describe the properties, we also illustrate them in Fig. 3. Actually, the proofs of
the properties are similar and the proof Property 1 is given as an example.
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Fig. 3. Properties of 3-round Camellia

Proof. Apparently, ∆Si+1 is of the form (0, b, 0, 0, 0, 0, 0, 0), where b an is unknown non-zero
byte. And ∆Li+1 = (0, b, b, b, b, b, 0, 0) as P function is linear. After the key-addition layer and
S-box layer, it can be obtained that ∆Si+2 = (0, b2, b3, b4, b5, b6, 0, 0), where b2, b3, b4, b5 and b6
are unknown non-zero bytes.

Since ∆Li+2 = ∆Si+2 ⊕∆Li and P−1(∆Li) = (a, 0, a, a, a, a, 0, 0),

∆Li+2 = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0).

Finally, because ∆Si+3 = P−1(∆Li+1 ⊕ ∆Li+3), P−1(∆Li+1) = (0, b, 0, 0, 0, 0, 0, 0) and P−1

function is linear,

∆Si+3
l = (P−1(∆Li+3))l, for l = 1, 3, 4, ..., 8. �

Property 3 (from [9]) Let x, x∗ be 32-bit values, and x′ = x⊕x∗, then the differential properties
of AND and OR operations are:

(x ∩ k)⊕ (x∗ ∩ k) = (x⊕ x∗) ∩ k = x′ ∩ k

(x ∪ k)⊕ (x∗ ∪ k) = (x⊕ k ⊕ (x ∩ k))⊕ (x∗ ⊕ k ⊕ (x∗ ∩ k)) = x′ ⊕ (x′ ∩ k)

Property 4 Let M = (m1,m2,m3,m4,m5,m6,m7,m8) be the input difference of FL function,
and N = (n1, n2, n3, n4, n5, n6, n7, n8) be the the output difference of FL, where nl,ml (l =
1, ..., 8) are arbitrary 8-bit values. Then if ni = 0 (i ∈ {5, 6, 7, 8}), ni−4 = mi−4.

Proof. Let us denote the subkey used for AND operation as kL and the subkey used for OR
operation as kR. By Property 3, the following equations must hold:

((ML ∩ kL) ≪ 1)⊕MR = NR

ML ⊕NR ⊕ (NR ∩ kR) = NL (1)

Then if ni = 0 (i ∈ {5, 6, 7, 8}), it can be deduced from Equation (1) that ni−4 = mi−4. �

Impossible Differential. Now we demonstrate that the 6-round differential in Fig. 4 is impos-
sible. The input difference is

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0)),
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Fig. 4. 6-round impossible differential path with the FL/FL−1 layer in the middle

where a is arbitrary non-zero byte. The output difference of the first round is

((0, a, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)).

Then by Property 1, the output differences of the second and third round are

((0, b, b, b, b, b, 0, 0); (0, a, 0, 0, 0, 0, 0, 0)) and ((c1, c2 ⊕ a, c3, c4, c5, c6, c7, c8); (0, b, b, b, b, b, 0, 0))

with probability 1, as long as

(c1, c2, c3, c4, c5, c6, c7, c8) = P (0, b2, b3, b4, b5, b6, 0, 0),

where b, b2, b3, b4, b5, b6 are unknown non-zero bytes, (0, b2, b3, b4, b5, b6, 0, 0) is evolved from
(0, b, b, b, b, b, 0, 0) after the S-box layer and cl (l = 1, .., 8) are unknown bytes.

Similarly, in the backward direction, we know that for arbitrary non-zero byte e, if the output
difference of the sixth round is

((0, e, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

then the input difference of the forth round is

((0, d, d, d, d, d, 0, 0); (f1, f2 ⊕ e, f3, f4, f5, f6, f7, f8)),

where d is an unknown non-zero byte and fl (l = 1, .., 8) are unknown bytes.
Now the input and output differences of the FL function are determined. It can be deduced

from Property 4 that c3 = d and c4 = d, which means c3 = c4. But this implies b4 = 0 as

c3 = b2 ⊕ b3 ⊕ b5 ⊕ b6,

c4 = b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6,

which contradict b4 6= 0. (By the input and output difference of FL−1 function, we can also
deduce another contradiction that d4 = 0 < d4 6= 0 ). As a result, the differential
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with whitening and FL/FL−1

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0))
6−round
−→ ((0, e, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

is impossible.
Actually, there are three more 6-round impossible differential paths with the FL/FL−1 layer

in the middle, which are:

((0, 0, 0, 0, 0, 0, 0, 0); (a, 0, 0, 0, 0, 0, 0, 0))
6−round

9 ((e, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, a, 0, 0, 0, 0, 0))
6−round

9 ((0, 0, e, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, a, 0, 0, 0, 0))
6−round

9 ((0, 0, 0, e, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

4 Impossible Differential Attack on Camellia with FL/FL−1 functions and

whitening

In this section, we present impossible differential attacks on 11-round Camellia-256 and 10-round
Camellia-192 using the impossible differential in Section 3.

4.1 Impossible Differential Attack on 11-Round Camellia-256

We add 3 rounds on the top and 2 rounds on the bottom of the 6-round impossible differential
path to analysis 11-round Camellia-256, see Fig. 5 in the right. Denote ka = kw1 ⊕ k1, kb =
kw2 ⊕ k2, kc = kw1 ⊕ k3, kd = kw4 ⊕ k10 and ke = kw3 ⊕ k11. The attack is started by carrying
out a precomputation.

Precomputation. A precomputational table H for Rounds 2-3 is set up here, which con-
tains the all possible pairs that can follow the differential in Rounds 2-3 and their corresponding
subkeys kb, kc2. This table can also be used for Rounds 10-11, as in the backward direction, the
differences are the same as that of Rounds 2-3. The table is constructed as follows:
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For every (L1, g, kb, L2
2, a, k

c
2), compute L′1 = L1 ⊕ (0, g, g, g, g, g, 0, 0), T = F (L1, kb), T ′ =

F (L′1, kb), ∆T = T ⊕ T ′ and sieve the ones satisfying S(L2
2 ⊕ kc2) ⊕ S(L2

2 ⊕ a ⊕ kc2) = g, where
g and a are non-zero bytes. There are 2160 (L1, g, kb, L2

2, a, k
c
2), and 2152 of which remain after

the sieve. Then insert (kb, kc2) into the row indexed by (L1, g,∆T ⊕ a, L2
2 ⊕ T2). Because there

are only 240 ∆T which lead to 248 ∆T ⊕ a, there are 2128 rows in H and each row contains 224

72-bit subkeys (kb, kc2). Consequently, the memory complexity of the table is about 2155.2 bytes
and the time complexity of the precomputation is less than 2161 one round encryptions.

Data Collection. Choose 2n structures of plaintexts, and each structure contains plaintexts
with the following form:

(P (y1, y2, y3, y4, y5, y6, α, β); (x1, x2, x3, x4, x5, x6, x7, x8))

where yi (i = 1, ..., 6) and xj (j = 1, ..., 8) take all possible values and α, β are fixed in each
structure. As a result, there are 2112 plaintexts in each structure and we can get 2n×2112×2−1 =
2n+223 plaintext pairs totally. For each of the pairs, ∆(P−1(L0))7 = 0, ∆(P−1(L0))8 = 0.

Ask for the encryptions of the plaintexts in each structure to get the corresponding cipher-
texts, and keep the pairs whose ciphertext differences satisfy the following form by birthday
attack:

((0, h, h, h, h, h, 0, 0);P (e, h2, e⊕ h3, e⊕ h4, e⊕ h5, e⊕ h6, 0, 0)),

where e, h, h2, h3, h4, h5 and h6 are non-zero bytes. So there are 2n+223−72 = 2n+151 pairs re-
maining.

Key Recovery. In the key recovery procedure, we use Property 2 and the precomputational
table to discard the wrong keys.

1. Individually guess kal (l = 1, 3, ..., 8) and check whether the equation △S1
l = (P−1(△R0))l

holds. About 2n+151 × 2−56 = 2n+95 pairs will be kept. Next guess ka2 , so (L1, L′1) can be
computed. For each of the remaining pairs, do Step 2.

2. Initialize a table Γ of 2144 all possible values (kb, kc2, k
e, kd2), for each of the remaining pairs,

access the row (L1, ∆L1
2, ∆R1, R1

2) and the row (L11, ∆L11
2 , ∆L12, L12

2 ) in table H. Then
combining the values in the two rows to get (kb, kc2, k

e, kd2), and remove the corresponding
value from Γ .

3. If Γ is not empty, output the 208-bit value (ka, kb, kc2, k
d
2 , k

e), otherwise go to Step 1 and try
another guess. The main key can be recovered when (ka, kb, kc2, k

d
2 , k

e) is obtained, which will
be described as follows.
The following equations are deduced from Table 3 in [1]:

ka = (KL ≪ 0)L ⊕ (KB ≪ 0)L, (2)

kb = (KL ≪ 0)R ⊕ (KB ≪ 0)R, (3)

kc = (KL ≪ 0)L ⊕ (KR ≪ 15)L, (4)

ke = (KB ≪ 111)L ⊕ (KA ≪ 45)L, (5)

kd = (KB ≪ 111)R ⊕ (KL ≪ 45)R. (6)

We guess every possible value of KL, for each guess, KB can be calculated by Equations
(2) and (3), then sieve this (KL,KB) pair by Equation (6). For the (KL,KB) that satisfy
Equation (6), further compute 64 bits of KA by Equation (5). Then guess the other 64-bits
of KA, by the key schedule of Camellia-256, KR can be fully determined by KB and KA.
Equation (4) will further reduce the keys by a factor of 28. So we get about 2192×2−8×2−8 =
2176 (KL,KR) and the correct K = KL||KR can be obtained by trial encryption.
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Complexity. We choose n = 9, then the data complexity is 2121 chosen plaintexts. Step 2
removes 248 wrong (kb, kc2, k

e, kd2), for each pair remained after Step 1, 248

2144
= 2−96 of wrong

(kb, kc2, k
d
2 , k

e) are removed. Consequently, the number of remaining wrong 208-bit value (ka, kb, kc2,
kd2 , k

e) after analyzing all the pairs is 264 × 2144 × (1− 2−96)2
104

≈ 0.

The complexity of Step 1 is about 2 × (

7∑

i=1

2128−8(i−1) × 28i) × 1
8 + 2 × 264 × 2104 ≈ 2169

one round encryptions, equivalent to 2165.7 encryptions. There are 224 values in H, so in Step
2, 2 × 224 memory access to H and 248 memory access to Γ are needed for each pair, which
result in 264 × 2104 × 248 = 2216 memory access, equivalent to 2216 × 1

52 × 1
11 ≈ 2206.8 11-round

encryptions. The complexity of Step 3 is about 2184 6-round encryptions, so the time complexity
is dominated by Step 2, which about 2206.8 encryptions. And the memory complexity is about
2155.2 bytes.

4.2 Impossible Differential Attack on 10-Round Camellia-192

We remove a round from the bottom of the 11-round attack, and give an attack on 10-round
Camellia-192, see Fig. 5 in the left. The choice of plaintexts is the same as the 11-round attack,
and the ciphertext pairs are sieved by the difference:

(0, e, 0, 0, 0, 0, 0, 0; 0, h, h, h, h, h, 0, 0),

where e and h are non-zero values. After the sieve, about 2120 pairs remain.
Denote the equivalent subkeys ka = kw1⊕k1, kb = kw2⊕k2, kc = kw1⊕k3 and kd = kw3⊕k10

The key recovery phase is as follows:

1. Guess kd2 and check whether ∆S10
2 = ∆L11

2 , the number of remaining pairs after this step is
about 2112.

2. Individually guess kal (l = 1, 3, ..., 8) and check whether the equation △S1
l = (P−1(△R0))l

holds. About 2112×2−56 = 256 pairs will be kept. Next guess ka2 , so (L
1, L′1) can be computed.

For each of the remaining pairs, do Step 3.
3. Initialize a table Γ ′ of 272 all possible values (kb, kc2), for each of the remaining pairs, access

the row (L1, ∆L1
2, ∆R1, R1

2) in table H. For each value in the row, remove the corresponding
value from Γ ′.

4. If Γ ′ is not empty, output the 144-bit value (ka, kb, kc2, k
d
2), otherwise try another guess. The

main key can be recovered when (ka, kb, kc2, k
d
2) is obtained by the similar method of the

11-round attack, except that there are only for equations that can be used:

ka = (KL ≪ 0)L ⊕ (KB ≪ 0)L, (7)

kb = (KL ≪ 0)R ⊕ (KB ≪ 0)R, (8)

kc = (KL ≪ 0)L ⊕ (KR ≪ 15)L, (9)

kd = (KB ≪ 111)L ⊕ (KL ≪ 45)R. (10)

Again, we guess every possible value ofKL, for each guessKB can be calculated by Equations
(7) and (8), then sieve this (KL,KB) pair by Equation (10). For the (KL,KB) that satisfy
Equation (10), compute 8 bits of KR by Equation (9), and further guess the rest unknown
56 bits of KR. Furthermore, we test whether the (KL,KR) can pass the key schedule of
Camellia-192. About 2184×2−8×2−128 = 248 keys will remain, and the correct K = KL||KR

can be obtained by trial encryption.

In this attack, the time complexity is dominated by Step 4, which is about 2176 6-round
encryptions, equivalent to about 2175 10-round encryptions. The memory complexity is the
same as the 11-round attack. If we did not take the pre-/post- whitening key into account, the
complexity would be about 2144 encryptions.
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Fig. 6. Impossible Differential Attack on 15-round Camellia-256 without FL/FL−1 layers and
whitening

5 Impossible Differential Cryptanalysis of 15-round Camellia-256 without

FL/FL−1 layers and whitening

In this section, we give an improved impossible differential attack on Camellia-256 by using
a 8-round impossible differential path without FL/FL−1 layer in Fig. 7, which was proposed
in [18]. By adding 4 rounds on the top and 3 rounds on the bottom, we can attack 15-round
Camellia-256 without FL/FL−1 layers and whitening, see Fig. 6.

Precomputation. First, we set up a table Γ1 for the first two round of the 15-round model.
Property 2 implies that ∆L1 = P (a, z2, z3⊕a, z4⊕a, z5⊕a, z6⊕a, 0, 0), so we choose all the 248

∆L1 with the required form. Furthermore, all possible ∆L0, L0 ⊕ k1 and (R0 ⊕ k2)2 are chosen.
For each of the values, we compute T = P (S(L0 ⊕ k1)), T ′ = P (S(L0 ⊕ k1 ⊕ ∆L0)), and get
the value (R0 ⊕ k2)l (l = 1, 3, ..., 8) by ∆L1

l , (P
−1(∆L0))l, T , and the corresponding differential

table of S-box. Insert L0 ⊕ k1 and R0 ⊕ k2 into the row indexed by ∆R0 = T ⊕ T ′ ⊕∆L1, ∆L0,
bits 61 ∼ 64 of L0⊕k1, and bits 1 ∼ 4, 13 ∼ 60 of R0⊕k2. As 2184 (∆L0,∆L1,L0⊕k1,(R0⊕k2)2)
are totally chosen and there are 2184 rows in the table, we get about one (L0 ⊕ k1, R0 ⊕ k2) in
each row on average.

The complexity of the precomputation is about 2× 2184 2-round encryptions, equivalent to
2182.1 15-round encryptions. The table requires about 2184 × 16 = 2188 bytes of memory.

Data Collection. For 2122.5 known plaintexts, ask for the encryptions and insert the ciphertexts
into a hash table indexed by the 7-th and 8-th bytes of P−1(∆R15). Since by Property 1, the
right half of ciphertexts must have the form

∆R15 = ∆L14 = P (i, j2, j3 ⊕ i, j4 ⊕ i, j5 ⊕ i, j6 ⊕ i, 0, 0).

By birthday attack, we can get 2244×2−16 = 2228 pairs that the 7-th and 8-th bytes of P−1(∆R15)
are 0.
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Key Recovery. We give in Table 2 the corresponding positions of k1, k2 and k15 in KB,
and the corresponding positions of k3, k14, k42 and k132 in KR. It is obvious that there are close
relations among the subkeys, i.e., there are common bits in some of the subkeys, which can be
used to reduced the complexity of the attack. The key recovery phase is demonstrated as follows.

1. Individually guess k15l (l = 1, 3, ..., 8) (KB : 61 ∼ 68, 73 ∼ 124) and remove the pairs do
not satisfy ∆S15

l = (P−1(∆L15))l. About 2228−7×8 = 2172 pairs are kept. From Table 2, bits
61 ∼ 64 of k1 and bits 1 ∼ 4, 13 ∼ 60 of k2 are known.

2. For each of the remaining pairs, compute bits 61 ∼ 64 of L0 ⊕ k1 and bits 1 ∼ 4, 13 ∼ 60
of R0 ⊕ k2, then access the value in the corresponding row in Γ1. Insert (∆L0, ∆R0, L0, R0)
to a table Γ2 indexed by bits 1 ∼ 60 of k1 (KB : 1 ∼ 60) and bits 5 ∼ 12, 61 ∼ 64 of k2

(KB : 69 ∼ 76, 124 ∼ 128). As a result, Γ2 has 272 rows with about 2100 (∆L0, ∆R0, L0, R0)
in each.

3. Guess bits 1 ∼ 60 of k1 and bits 5 ∼ 12, 61 ∼ 64 of k2, access the corresponding row in
Γ2, and compute 2100 (L2, L′2) and (R2, R′2) by two-round encryptions as the whole KB is
known.

4. From Property 1, it is clear that if a pair follows the path in Fig. 6, it has to satisfy ∆S14
l =

(P−1(∆L14))1 ⊕ (P−1(∆L14))l (l = 3, ..., 6) and ∆S14
2 = (P−1(∆L14))2.

(a) Further guess k142 (KR : 5 ∼ 12), partially decrypt round 15 and round 14 to discard the
pairs which do not satisfy ∆S14

2 = (P−1(∆L14))2. After this procedure, the number of
remaining pairs is 2100−8 = 292.

(b) Individually guess k14l (l = 3, ..., 6) (kR : 13 ∼ 44) and keep the pairs which satisfy
∆S14

l = (P−1(∆L14))1 ⊕ (P−1(∆L14))l. There are 292−8×4 = 260 pairs being kept.

5. (a) Guess bits 45 ∼ 47 of kR, now k32, k
3
3, and k34 (KR : 24 ∼ 47) are known. Detect if

∆S3
2 = (P−1(∆R2))2, ∆S3

3 = (P−1(∆R2))1 ⊕ (P−1(∆R2))3, and ∆S3
4 = (P−1(∆R2))1 ⊕

(P−1(∆R2))4. The number of remaining pairs is 260−8×3 = 236.

(b) Individually guess k3l (l = 5, 6) (kR : 48 ∼ 63) and keep the pairs that satisfy ∆S3
l =

(P−1(∆R2))1 ⊕ (P−1(∆R2))l. There are 236−8×2 = 220 pairs being kept.

6. Guess k141 (KR : 125 ∼ 128, 1 ∼ 4) (now the whole k14 is known) and k132 (KR : 69 ∼ 76), keep
the pairs that meet ∆S13

2 = ∆L13
2 . The number of remaining of pairs will be 220−8 = 212.

7. Guess the rest 8 bits of k3 (KR : 64 ∼ 68, 77 ∼ 79), now the whole k3 (KR : 16 ∼ 79) is
known. We further guess k42 (KR : 88 ∼ 95) and check if there is a pair satisfy ∆S4

2 = ∆L2
2.

If there is a pair satisfy this, then discard the key guess. Otherwise for every 219-bit key
guess, exhaustively search the rest 37 bits of KR to calculate KA, use the relation of KA and
KL to recover KL, and test the resulting (KL,KR) by trial encryption.

Complexity. The data complexity is 2122.5 known plaintexts. In the data collecting phase, the
computation of the 7-th and 8-th bytes of P−1(∆R16) is less then 2/8 one round encryption, so
the complexity of computing the 7-th and 8-th bytes of P−1(∆R16) is at most 2122.5 × 1

4 ×
1
15 ≈

2116.6 15-round encryptions.

Below we elaborate the complexity of each step in the key-recovery phase.

1. The complexity is about 7×2×28×2228 = 2240 one round encryptions, which is about 2236.1

encryptions.

2. This step needs about 2× 256 × 2172 = 2229 memory access and 272 × 2100 × 16 = 2176 bytes
of memory.

3. The complexity of this step is about 2× 2128 × 2100 = 2229 two round encryptions.

4. (a) The complexity of this step is about 2× 2136 × 2100 = 2237 one round encryptions, which
is about 2233.1 encryptions.
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(b) The complexity of the each operation in this step is about one round encryption, so the
complexity of is about: 2×

∑3
i=0(2

144+8×i × 292−8×i × 1
15) ≈ 2235.1.

5. (a) The complexity of this step is about 2× 1
15 × 2171 × (260 + 252 + 244) ≈ 2228.1.

(b) The complexity of this step is about 2× 1
15 × (2179 × 236 + 2187 × 228) ≈ 2213.1.

6. This step requires 2× 2203 × 220 × 1
15 ≈ 2220.1 encryptions.

7. In step 8, we expect 2219 × (1 − 2−8)2
12

≈ 2196.6 of the key guess remained. So about
2196.6+37 = 2233.6 trail encryptions are request to recover the whole key. The complexity of
this step is thus 2×2219× [1+(1−2−8)+ . . .+(1−2−8)2

12

]× 1
15 +2233.6 ≈ 2233.6. As a result,

the time complexity is dominated by Step 1, which is about 2236.1 15-round encryptions.

6 Conclusion

In this paper, we present several 6-round impossible differential paths with FL/FL−1 layers
in the middle, which lead to impossible differential attacks on 10-round Camellia-192 and 11-
round Camellia-256. Then an impossible differential cryptanalysis of 15-round Camellia-256
without FL/FL−1 layers and whitening is given by carefully using the subkey relation and a
precomputational table. A summary of the previous attacks and our analysis of Camellia is given
in Table 1.

Table 1. Summary of the attacks on Camellia

Block Size #Rounds FL/FL−1 Attack Type Data Time Source

Camellia-128 8 × Truncated DC 283.6CP 255.6 [10]
9

√
Square Attack 248CP 2122 [11]

9 × Collision Attack 2113.6CP 2121 [19]
9 × Square Attack 266CP 284.8 [6]
11 × Impossible DC 2118CP 2126MA [12]
12 × Impossible DC 2116.3CP 2116.6 [14]

Camellia-192 10
√

Square Attack 248CP 2210 [11]
/-256 10

√
Impossible DC 2121CP 2175 this paper

last 11 rounds
√

Higher Order DC 293CC 2255.6 [7]
11

√
Impossible DC 2121CP 2206.8 this paper

12 × Impossible DC 2120 CP 2181 [18]
12 × Linear Attack 2119KP 2247 [16]
12 × Square Attack 266CP 2249.6 [6]
13 × Impossible DC 2120CP 2211.7 [12]
15 × Impossible DC 2122.5KP 2236.1 this paper

KP: known plaintext; CP: chosen plaintext; CC: chosen ciphertext; DC: differential attack
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A 8-Round Impossible Differential Path without FL/FL−1 Layer
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Fig. 7. 8-round Impossible Differential Path without FL/FL−1 layer

B The process of key recovery attack on 15-round Camellia-256 without

FL/FL−1 layers and whitening

Table 2. Corresponding bit positions of the subkeys in KB and KR

Subkey Bit positions Subkey Bit positions Subkey Bit positions Subkey Bit positions
bytes in KB bytes in KB bytes in KR bytes in KR

k1

1 1 ∼ 8 k2

5 97 ∼ 104 k3

1 16 ∼ 23 k14

1 125 ∼ 128, 1 ∼ 4
k1

2 9 ∼ 16 k2

6 105 ∼ 112 k3

2 24 ∼ 31 k14

2 5 ∼ 12
k1

3 17 ∼ 24 k2

7 113 ∼ 120 k3

3 32 ∼ 39 k14

3 13 ∼ 20
k1

4 25 ∼ 32 k2

8 121 ∼ 128 k3

4 40 ∼ 47 k14

4 21 ∼ 28
k1

5 33 ∼ 40 k15

1 61 ∼ 68 k3

5 48 ∼ 55 k14

5 29 ∼ 36
k1

6 41 ∼ 48 k15

2 69 ∼ 76 k3

6 56 ∼ 63 k14

6 37 ∼ 44
k1

7 49 ∼ 56 k15

3 77 ∼ 84 k3

7 64 ∼ 71 k14

7 45 ∼ 52
k1

8 57 ∼ 64 k15

4 85 ∼ 92 k3

8 72 ∼ 79 k14

8 53 ∼ 60
k2

1 65 ∼ 72 k15

5 93 ∼ 100 k4

2 88 ∼ 95 k13

2 69 ∼ 76
k2

2 73 ∼ 80 k15

6 101 ∼ 108
k2

3 81 ∼ 88 k15

7 109 ∼ 116
k2

4 89 ∼ 96 k15

8 117 ∼ 124
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