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Abstract—Two new improved recursive least-squares adap-

tive-filtering algorithms, one with a variable forgetting factor

and the other with a variable convergence factor are proposed.
Optimal forgetting and convergence factors are obtained by mini-

mizing the mean square of the noise-free a posteriori error signal.

The determination of the optimal forgetting and convergence fac-

tors requires information about the noise-free a priori error which

is obtained by solving a known minimization problem.

Simulation results in system-identification and channel-equaliza-

tion applications are presented which demonstrate that improved

steady-state misalignment, tracking capability, and readaptation

can be achieved relative to those in some state-of-the-art com-

peting algorithms.

Index Terms—Adaptive filters, adaptive-filtering algorithms,

recursive least-squares algorithms, forgetting factor, convergence

factor.

I. INTRODUCTION

A S IN classical optimization algorithms, the convergence

characteristics of adaptive-filtering algorithms depend on

the search directions used. Two well known search directions,

namely, steepest-descent and Newton search directions, have

their merits and demerits. Steepest-descent search directions

are computationally simple, numerically robust, but offer a

convergence speed that is highly dependent on the eigenvalue

spread ratio of the Hessian matrix [1]. Newton search direc-

tions, on the other hand, offer fast convergence although a large

amount of computation is required to achieve convergence.

Least-mean-squares and normalized-least-mean-squares (LMS

and NLMS, respectively), and affine-projection (AP) algo-

rithms employ steepest-descent search directions and hence

their convergence speed is often unsatisfactory particularly

when the input signal is highly correlated [2], [3]. On the other

hand, recursive-least-squares (RLS) algorithms employ Newton

search directions and hence they offer faster convergence and

reduced steady-state misalignment relative to algorithms that

employ steepest-descent directions.

With a large forgetting factor, RLS algorithms yield a reduced

steady-state misalignment at the expense of a poor readapta-

tion capability and with a small forgetting factor they offer an

improved readaptation capability at the cost of an increased
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steady-state misalignment [2]. In order to achieve a reduced

steady-state misalignment and good readaptation capability si-

multaneously, RLS algorithms with a variable forgetting factor

(VFF) have been proposed in [4]–[7]. Like other RLS algo-

rithms, the algorithms in [6], [7] involve an increased computa-

tional complexity of order where is the length

of the adaptive filter. The computational complexity of the VFF

fast RLS (FRLS) algorithms in [4], [5], on the other hand, is

of . Some other FRLS algorithms can be found in [2],

[3], [8]. In [4], the variable forgetting factor varies in propor-

tion to the inverse of the squared error and it can become neg-

ative [4] but the problem can be prevented by using a prespeci-

fied threshold (see [4] for details). In [5], the variable forgetting

factor is obtained by minimizing the excess mean-squared error

(EMSE) which varies in proportion to the inverse of the auto-

correlation of the error signal (see (62) in [5]). The variable for-

getting factor in [5] decreases gradually as time advances and,

consequently, it does not yield a significant improvement in the

steady-state misalignment in nonstationary environments over

those achieved with other FRLS algorithms.

The known VFF RLS algorithm reported in [6], referred to

hereafter as the KVFF-RLS algorithm, uses a forgetting factor

which is controlled by the step size and its evolution is con-

strained to be bounded by two levels. In the case of system-

identification applications, this algorithm works with the lower

bound of the forgetting factor whenever a change in the un-

known system occurs. Otherwise, it works with the larger bound

of the forgetting factor. The VFF RLS algorithm reported in [7],

referred to hereafter as the switching RLS (SRLS) algorithm,

operates with a prespecified forgetting factor and whenever a

change in the unknown system occurs it uses a much smaller

forgetting factor that is obtained by using the power of the a

priori error signal. Since prespecified forgetting factors are re-

quired in the VFF-RLS algorithms in [6], [7] they do not track

Markov-type nonstationarities well.

A variable convergence factor (VCF) has been used before

in an LMS-Newton algorithm described in [9]. This algorithm

performs better than the conventional RLS (CRLS) algorithm

described in [3, p. 199] in terms of steady-state misalignment in

Markov-type nonstationary environments but its speed of con-

vergence is not as good as that of the CRLS algorithm.

In this paper, we propose a new RLS algorithm that uses a

VFF, referred to hereafter as the VFF-RLS algorithm that does

not require a prespecified forgetting factor. The forgetting factor

is obtained by minimizing the mean square of the noise-free a

posteriori error. In doing so, an optimal convergence factor is

obtained. Based on this approach, an RLS algorithm can also be

developed that uses a fixed forgetting factor along with a vari-

able convergence factor (VCF); this will be referred to here-
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after as the VCF-RLS algorithm. Simulation results show that

the new VFF-RLS algorithm offers improved steady-state mis-

alignment, readaptation, and tracking capability compared to

those achieved with the CRLS algorithm [3], KVFF-RLS algo-

rithm [6], and SRLS algorithm [7] for the same initial speed of

convergence. On the other hand, the proposed VCF-RLS algo-

rithm offers improved steady-state misalignment compared to

that achieved with the CRLS and LMS-Newton algorithms for

the same fixed forgetting factor.

II. RECURSIVE LEAST-SQUARES ALGORITHMS

The weight-vector update formula in RLS adaptive-filtering

algorithms, referred to hereafter as RLS adaptation algorithms,

is obtained by solving the minimization problem [2], [3]

(1)

where is the forgetting factor, and

are the desired signal and input signal vector at iteration , re-

spectively, and is the required weight vector at

iteration . The solution of the minimization problem in (1) can

be obtained as

(2)

where and are

approximations of the autocorrelation matrix and crosscorre-

lation vector of the Wiener filter [10], respectively. The auto-

correlation matrix and crosscorrelation vector can be expressed

as

(3)

and

(4)

respectively.

With , the errors and become small

and, therefore, the difference between the Wiener solution (see

[10]) and (2) is also small. The initial autocorrelation matrix and

crosscorrelation vector and should be chosen as and ,

respectively, where is the identity matrix and is a small pos-

itive constant of the order of . With this choice, the effects

of and on the update formulas in (3) and (4), respectively,

would quickly diminish and, therefore, the initial values of

and would not contribute significantly to the steady-state

values of and . On the other hand, if the entries of

and are large with a the misalignment between the

Wiener solution and (2) would be large and the convergence

of in (2) to the Wiener solution would be slow. Situations

where the entries of and become quite large can arise in

system-identification applications when sudden system changes

occur during the learning stage. For example, if a change occurs

in the system to be identified at iteration , an RLS algo-

rithm has to reconverge to the new state of the system. In such a

situation, the entries of are much larger than the

entries of and . As a result, with , the

effect of and on (3) and (4) would persist and, therefore, a

large error would be introduced in the steady-state values of

and . Hence, the difference between the Wiener solution (i.e.,

the Wiener solution that were to be obtained if the new state of

the systemwere to exist from to ) and (2) would be

large and the reconvergence of to the optimal weight vector

for the new state of the system would be very slow. For the same

reason, an RLS algorithm with a could fail to reconverge

in the presence of an outlier in or ; furthermore, the RLS

algorithm could lose its tracking capability in nonstationary en-

vironments. Some Newton-type algorithms that are robust with

respect to outliers can be found in [11]–[14].

Improved readaptation capability has been achieved in the

KVFF-RLS and SRLS algorithms reported in [6], [7] by re-

ducing the value of , to ensure that the values of the elements of

and are reduced, and then rapidly

returning to its previous value which is close to unity. An alter-

native approach for achieving improved readaptation capability

reported in [15] involves using a convex combination of the out-

puts of two RLS adaptive filters, one with a small value of and

the other with a value of close to unity. A sigmoid function is

used to assign more weight on the output of the adaptive filter

with a small during transience and more weight on the output

of the adaptive filter with a close to unity during steady state.

Since is the optimal forgetting factor for the CRLS al-

groithm [2] in the sense that it yields the minimum mean-square

error, the performance of the CRLS algorithm would be iden-

tical with that of the algorithms in [6], [7], [15] in stationary

environments.

III. IMPROVED RECURSIVE LEAST-SQUARES ALGORITHMS

In this section, we develop VFF-RLS and VCF-RLS algo-

rithms that offer improved performance in tracking Markov-

type nonstationarities and sudden system changes and also offer

reduced steady-state misalignment relative to those achieved

with the CRLS, KVFF-RLS, and SRLS algorithms.

A. VFF-RLS Algorithm

The inverse of the autocorrelation matrix in (3) can be ob-

tained by using the matrix inversion formula [2], [3] as

(5)

where is a positive-definite matrix for all and

. Using (5) in (2), the weight-vector

update formula for the CRLS algorithm can be expressed as

(6)

where is the a priori error signal and is the convergence

factor whose value assumes the value of unity in the CRLS al-

gorithm. The a priori error signal can be expressed as

(7)

where is a white Gaussian noise signal with variance

(8)
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is the noise-free a priori error signal and in the case of a system-

identification application is the impulse response of the

unknown system. The a posteriori error signal can be ex-

pressed as

(9)

where

(10)

is the noise-free a posteriori error signal. In the case of a system-

identification application, the desired signal becomes

. The noise-free a posteriori error signal at iteration

can also be obtained by using (6) and (8) in (10) as

(11)

where

(12)

lies in the range (0,1). If the unknown system now evolves as per

a first-order Markov model, i.e., where is a

white Gaussian noise signal with variance , then in (10)

and (11) requires an additional term due to the lag in adaptation.

This can be obtained from (11) as

(13)

By squaring both sides of (13), we obtain

(14)

Assuming that and are independent and white Gaussian

noise signals and taking the expectation on both sides in (14),

we obtain

(15)

An optimal value of the convergence factor can now be

obtained by solving the one-dimensional minimization problem

(16)

The solution of this problem can be obtained by setting the

derivative of the objective function in (16) with respect to ,

i.e.,

to zero. In this way, we can obtain

(17)

Note that since is a measure of the excess MSE (EMSE)

[2], using (17) in (6) the minimum EMSE can also be obtained.

Based on the above analysis, we can now obtain an optimal

value of the forgetting factor. We start by obtaining a simplified

expression for in (17). The recursion formula in (3) can be

expressed as

(18)

Taking the expectation of both sides in (18), we obtain

(19)

which at steady state, i.e., as , becomes

(20)

As in [2], at steady state

(21)

On the other hand,

(22)

and from (21) and (22), we obtain

(23)

If we neglect the dependence of on in (17) and as-

sume that is large, then as shown in the

Appendix. Using this approximation along with (23) in (17), we

get the optimality condition

(24)

For any fixed , (24) yields a that would be an approximate

solution of the problem in (16). Similarly, for any fixed , (24)

yields a that is also an approximate solution of the problem in

(16). Using , an optimal forgetting factor can be obtained

as

(25)
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In order to compute , we need which is unknown

a priori. With the noise-free a priori error signal known,

we can approximate by using the time average of ,

which is given by

(26)

where is the pole of a first-order moving average filter in (26)

whose value should be in the range . Using (26) in

(25), we obtain the optimal forgetting factor at iteration as

(27)

B. VCF-RLS Algorithm

The proposed VCF-RLS algorithm is based on the following

principles. Equation (24) suggests that for every fixed there

is a value of that solves the problem in (16). However, since

the assumption has been made and the de-

pendence of on has been neglected in the derivation

of (24), can become greater than unity which, as can be seen

from (6), would affect the stability of the adaptive filter. To cir-

cumvent this problem, we use instead of in

(6). The variable convergence factor at iteration can be ob-

tained as

(28)

by replacing in (24) by given by (26). In (28), in-

teger is a tuning integer whose value should lie in the range

2 to 8 based on extensive simulations (see Section IV-B). Con-

stant in (28) would further reduce the value of and hence a

reduced steady-state misalignment can be achieved. Since

in (26) is a measure of the EMSE of the adaptive filter, its

steady-state value would be significantly smaller than . How-

ever, due to the use of a time average in (26) the transient value

of would be significantly larger than . Therefore, we

would obtain and in

(28) during the transience and steady state of the adaptive filter,

respectively. In such a situation from (28), we would get

during transience and

during steady state. If we now choose a in the range

, e.g., , we would get during transience.

On the other hand, during steady state we would get as

in (26) during steady state. Under these circumstances,

we would obtain and during transience and

steady state, respectively. Therefore, the convergence speed of

the proposed VCF-RLS algorithm would remain the same as

that of the CRLS algorithm while its steady-state misalignment

would be reduced. When is chosen to be close to unity, e.g.,

, we would obtain , i.e., for all

and hence the performance of the proposed VCF-RLS algorithm

would be similar to that of the CRLS algorithm.

The proposed VCF-RLS algorithm can be used in applica-

tions where the use of RLS algorithms with a fixed forgetting

factor is preferred.

IV. IMPLEMENTATION ISSUES OF THE PROPOSED

RLS ALGORITHMS

In this section, we discuss some implementation issues asso-

ciated with the proposed RLS algorithms.

A. Noniterative Shrinkage Method

The value of in (26) can be obtained from the a priori

error signal by using a so-called noniterative shrinkage method

which has been used to solve image denoising problems in [16],

[17]. In this method, a noise-free signal can be recovered

from a noisy signal , where is a white Gaussian

noise signal, by solving the minimization problem

(29)

where is the threshold parameter and is an orthogonal

matrix.

In the proposed VFF-RLS algorithm, , and in (29)

become , and 1, respectively, and the optimal solution,

i.e., of the problem in (29) can be obtained as

(30)

Since the computation of is not iterative, the above ap-

proach is suitable for real-time applications such as adaptive fil-

tering. The formula in (30) reduces by an amount . Using an

appropriate we can obtain .

Different minimization problems are formulated to

obtain new RLS adaptation algorithms in [18]–[20]. In the RLS

algorithms in [18], [19] an minimization problem was

formulated whose solution was used to bring sparsity in the

weight vector. In the RLS algorithm in [20] an mini-

mization problem was formulated and its solution was then used

to detect and remove the impulsive noise component in the error

signal.We formulated a different minimization problem

and we then used the solution to obtain a new variable forget-

ting factor and convergence factor in the CRLS algorithm.

B. Threshold Parameter

Taking the expectation of the squares of both sides in (7), we

obtain

(31)

as is independent of for a white Gaussian signal with

variance which may suggest that the threshold parameter

should be chosen as . However, since the derivation of

(27) involves: a) neglecting the dependence of on , b)

assuming that , and c) using a time average

instead of a statistical average, needs to be tuned with respect

to to achieve improved results. Through extensive simula-

tions, it was found that with in the range 2 to 8

yields good results.
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C. Forgetting Factor

The value of the forgetting factor given by (25) is in the range

and it is optimal in the sense that it yields a min-

imum EMSE. Since the value of in (26) becomes very large

during transience and very small during steady state, (27) yields

during transience and during steady

state. As a result, as per the discussion in Section II, the proposed

VFF-RLS algorithm yields fast convergence, good readaptation

capability, and reduced steady-state misalignment. As reported

in [2] and [8], the range of the forgetting factor for the stable

operation of the FRLS algorithm is which

encompasses the range of the forgetting factor in (27). Further

improvement regarding convergence speed and readaptation ca-

pability can be achieved in the proposed algorithm if in (27)

assumes values close to during transiencewhile

during steady state. Therefore, we propose to use

(32)

where is a tuning integer in the range 2 to 8 instead of the

given by (27). Tuning integer is used to increase the value of

to a similar level to that achieved using (27) during steady

state and a value in the range 2 to 8 was found to give good

results as per discussion in Section III-B. As can be seen in (26),

since during transience we obtain

and since during steady state we obtain during

steady state. In other words, the steady-state values of in (32)

and (27) would be very similar and hence both of them would

approximate in (25) with similar accuracy and hence would

minimize in (16). The transient values of in (32), on

the other hand, would be lower than those in (27) and hence

improved readaptation capability would be achieved.

Based on the above principles, the implementations of the

proposed RLS algorithms given in Table I can be obtained.

V. STEADY-STATE ANALYSIS

In this section, we derive expressions for theMSE for the pro-

posed RLS algorithms by using the energy conservation relation

reported in [2, p. 287].

The impulse response of the unknown system is modeled as

a first-order Markov model of the form [3]

(33)

where the elements of are the samples of a white Gaussian

noise signal with variance . The weight-vector update for-

mula in (6) for the system model in (33) can be expressed in

terms of the weight-error vector

(34)

where

(35)

(36)

TABLE I
PROPOSED RLS ALGORITHMS

This model is used in [9] and [21] to obtain the steady-state

MSE of the LMS-Newton and RLS algorithms, respectively, in

Markov-type nonstationary environments.

A. MSE in Nonstationary Environments

Let us consider the case of the proposed VFF-RLS algorithm.

Premultiplying both sides of (34) by , we obtain

(37)

where is a positive-definite matrix. Scaled noise-free a poste-

riori and a priori errors can be defined as

(38)

(39)

respectively. Also let us define

(40)

(41)

Using (38)–(41) in (37), we obtain

(42)

Now substituting in (34) by using the obtained from (42),

we have

(43)
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If we take the square of the weighted norm, i.e., , of

both sides in (43), we get

(44)

The energy conservation relation for the system in (33) can now

be obtained by taking the expectation of both sides in (44) as

(45)

where we assume that vector in (44) is an independent and

identically distributed white Gaussian noise signal with vari-

ance . Note that no assumption has been made in obtaining

the energy conservation relation in (45).

During steady state, we obtain

and, therefore, the steady-state energy conservation relation as-

sumes the form

(46)

Using given by (42) in (46) and applying some straightfor-

ward simplifications based on the assumption concerning the

statistical independence of , we obtain

(47)

If we use (7) in (47) and simplify the result by using the assump-

tion that the measurement noise in (7) is an independent white

Gaussian noise signal, we have

(48)

Now if we neglect the dependence of on in (48), we

obtain

(49)

In order to obtain the EMSE for the case of nonstationary envi-

ronments, we let in (49) and (39)–(41) to get

(50)

As can be seen, the first term at the right-hand side of the above

equation represents the EMSE for stationary environments.

Using (25) and (23) in (50) after some simple manipulations,

we obtain

(51)

If we now solve (51) for , we obtain the EMSE as

Since is a positive quantity, we obtain the EMSE for

nonstationary environments as

(52)

Now can be obtained as

(53)

since . From (53) and (52), we obtain the EMSE

as

(54)

Therefore, the MSE in nonstationary environments can be ob-

tained as

(55)

B. MSE in Stationary Environments

In stationary environments, we have and hence the

solution of (51) becomes or . Since

the EMSE is a nonnegative quantity, we obtain .

Therefore, for stationary environments, we have

(56)

C. VCF-RLS Algorithm

Repeating the above analysis, it can be shown that the ex-

pressions for the MSE given by (55) and (56) also apply to the

VCF-RLS algorithm. However, the analysis is based on the as-

sumption that the exact value of is known. Since the

solution of the problem in (29) would not recover exactly,

in (30) would not be exactly equal to . Furthermore,

(26) would not yield the exact value of as required for
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TABLE II
MSE FOR THE VFF-RLS ALGORITHM IN DB

the derivation of the formula in (25). Consequently, the expres-

sions for the MSE given by (55) and (56) would be rough ap-

proximations at best in the case of the VCF-RLS algorithm.

D. Verification of MSE

In this section, we provide experimental verification for the

MSE formula given by (55) in a system-identification applica-

tion for the case of the proposed VFF-RLS algorithm. The im-

pulse response of the initial unknown system in (33), i.e., ,

was the impulse response of an FIR filter obtained by using

MATLAB commands

where is the normalized cutoff frequency of the FIR

filter. Eight experiments were carried out where the input signal

was obtained by filtering a white Gaussian signal with unity

variance through an IIR filter with a single pole at 0.95. The

values of in the first four and the last four experi-

ments were set to and , respectively.

We used (27) with , and in all

experiments. The desired signal was contaminated in the first

four experiments by using a white Gaussian signal with vari-

ance values 0.3162, 0.1, 0.0316, 0.01, and 0.0032, respectively,

which correspond to signal-to-noise ratios (SNRs) of 5, 10, 15,

20, and 25 dB, respectively. The same values of were also

used in the last four experiments. The theoretical MSE was cal-

culated using the formula

(57)

where we assumed that . The learning curve

in each experiment was obtained using 500 independent trials

and the experimental MSE was obtained by averaging the last

50 samples of 4000 samples in the learning curve.

The experimental and theoretical MSE values are given in

Table II. As can be seen, the experimental results agree quite

well with the theoretical results and, in effect, the steady-state

performance of the VFF-RLS algorithm can be accurately pre-

dicted if can be accurately recovered from . As the noise

power decreases for a constant input signal power , i.e.,

for a large SNR, the error between the experimental and theoret-

ical results increases because of the effect of the approximation

made in the second term on the right-hand side

of (57); in effect, the second term in (57) becomes more promi-

nent compared to the first term for a large SNR.

Note that the experimental values in Table II can also be ob-

tained by using (32) with to 8.

VI. DISCUSSION

The a posteriori error signal for stationary environments i.e.,

can be obtained from (6) as

(58)

where is defined in (12). Taking the expectation of the

square of in (58) and neglecting the dependence of on

, we obtain

(59)

For the VFF-RLS algorithm, the convergence factor in (58)

is equal to unity. By using (25) and (23) in (59) along with the

assumption that after some manipulation,

we get

(60)

It is easy to show that (60) also holds true for the proposed

VCF-RLS algorithm. Since is a measure of the excess

MSE [2] and it is a positive quantity, we obtain for

the proposed RLS algorithms. For the SRLS algorithm of [7]

we obtain .

An advantage of the proposed RLS algorithms over the

KVFF-RLS algorithm in [6] is that the forgetting or conver-

gence factor in the proposed RLS algorithms involves less

computation than the forgetting factor in the KVFF-RLS

algorithm.

A disadvantage of the proposed RLS algorithms is that the

information about the measurement noise variance is required

to be known a priori. In distributed sensor networks [22]–[25],

an adaptive filter at a given sensor can interact with other adap-

tive filters in the neighboring sensors to update its weight vector.

Such interactive adaptations among adaptive filters on the entire

network bring significant improvement in the steady-state mis-

alignment in each of the adaptive filters connected to the net-

work. During the communication interval between sensors, the

variance of the measurement noise can be obtained by using a

time average. On the other hand, for speech signals the variance

of the measurement noise can be obtained during silent periods.

VII. SIMULATION RESULTS

In this section, we present simulation results in system-iden-

tification and channel-equalization applications. The per-

formance of the CRLS, SRLS [7], KVFF-RLS [6], and the

proposed VFF-RLS algorithms are illustrated by using the

mean-square deviation (MSD) curves for different SNRs in

stationary and nonstationary environments. The MSD was

evaluated as and it was obtained

by using ensemble averages over 1000 independent trials in

all experiments. Unless otherwise stated the initial parameter

was chosen as a zero vector and was set to

in all algorithms. Parameters , and for the pro-

posed VFF-RLS algorithm given in Table I were set to 0, 0.9,

, and 8, respectively. The prespecified forgetting factor

was set to in the CRLS, SRLS, and KVFF-RLS

algorithms. The parameters for the SRLS algorithm were set
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Fig. 1. Learning curves for a system identification application in a stationary
environment with a dB (Experiment 1).

to and those for

the KVFF-RLS algorithm were set to

in all experiments.

A. System-Identification Application

The first experiment was concerned with a stationary envi-

ronment. The unknown system to be identified was an FIR filter

whose impulse response was obtained by using MATLAB com-

mands with

where is the normalized cutoff frequency

of the FIR filter. The coefficients of the unknown system were

multiplied by at iteration 20 000 to examine the readapta-

tion capability of the RLS algorithms. The input signal was ob-

tained by filtering a white Gaussian noise signal with variance

through an IIR filter that had the transfer function [26]

The measurement noise added to the desired signal was a

white Gaussian noise signal with variance which

corresponds to a SNR of 20 dB. The MSD curves obtained by

using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-

rithms are illustrated in Fig. 1.

In the second experiment, we repeated the first experiment

with the same setup, input signal, and measurement noise as in

the first experiment except that a nonstationarity was introduced

as per the model given in (33) where the impulse response of the

unknown system, , was the same as in the first experiment and

the elements of were obtained from a white Gaussian noise

signal with a variance . The SNR was the same as

in the first experiment, i.e., 20 dB. The MSD curves obtained

by using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS al-

gorithms are illustrated in Fig. 2.

In the third experiment, we repeated the second experiment

except that we used . The MSD curves obtained by

using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-

rithms are illustrated in Fig. 3.

In the fourth experiment, we repeated the first experiment for

the case of a stationary environment except that the variance

of the measurement noise signal was set to (

Fig. 2. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 2).

Fig. 3. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 3).

Fig. 4. Learning curves for a system identification application in a stationary
environment with a dB (Experiment 4).

dB). The MSD curves obtained by using the VFF-RLS, CRLS,

SRLS, and the KVFF-RLS algorithms are illustrated in Fig. 4.

In the fifth experiment, we repeated the fourth experiment ex-

cept that a nonstationarity was introduced as per themodel given

in (33) where was the same as in the first experiment and

the elements of were obtained from a white Gaussian noise

signal with . The MSD curves obtained by using the
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Fig. 5. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 5).

Fig. 6. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 6).

VFF-RLS, CRLS, SRLS, and the KVFF-RLS algorithms are il-

lustrated in Fig. 5.

In the sixth experiment, we repeated the fifth experiment ex-

cept that we used . The MSD curves obtained by

using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-

rithms are illustrated in Fig. 6.

As can be seen in Figs. 1–6, the proposed VFF-RLS algo-

rithm outperforms the competing algorithms in all the exper-

iments. Since there is no prespecified forgetting factor in the

proposed algorithm, it performs better than the other algorithms

in Markov-type nonstationary environments.

In the seventh experiment, we examined the effect of tuning

integer on the VFF-RLS algorithm. We repeated the sixth

experiment for values of of 2, 4, and 6. The MSD curves

obtained are illustrated in Fig. 7. As can be seen from the MSD

curve of the VFF-RLS algorithm in Fig. 6 and the MSD curves

in Fig. 7, changes in tuning integer in the range 2 to 8 do not

significantly alter the performance of the VFF-RLS algorithm.

In effect, the VFF-RLS algorithm is quite robust with respect to

changes in .

In the eighth experiment, we examined the effect of tuning in-

teger in a system-identification application in the case of the

VCF-RLS algorithm and compared the performance achieved

with that of the CRLS algorithm and LMS-Newton-II algorithm

Fig. 7. Effect of changes in tuning integer on the VFF-RLS algorithm in a
system identification application (Experiment 7).

Fig. 8. Effect of changes in tuning integer on the VCF-RLS algorithm in
a system identification application and comparison with competing algorithms
(Experiment 8).

described in [9]. The unknown system was obtained as per the

model given in (33) where and the input signal were the

same as in the first experiment and the elements of were ob-

tained from a white Gaussian noise signal with .

The measurement noise added to the desired signal was a white

Gaussian noise signal with . The forgetting factor

in the CRLS andVCF-RLS algorithmswas set to 0.99 in order to

achieve the same readaptation capability. Parameters , and

for the VCF-RLS algorithm given in Table I were set to 0, 0.99,

and , respectively. In the LMS-Newton-II algorithm, we

used and . The MSD curves obtained for

the CRLS, VCF-RLS, and LMS-Newton-II algorithms are illus-

trated in Fig. 8. As can be seen, for the same readaptation capa-

bility the VCF-RLS algorithm yields a reduced steady-state mis-

alignment as compared to the CRLS algorithm. The VCF-RLS

algorithm, on the other hand, yields a faster convergence and

a reduced steady-state misalignment as compared to the LMS-

Newton-II algorithm.

B. Channel-Equalization Application

In this section, the proposedVCF-RLS algorithm is compared

with the CRLS and NLMS algorithms in a channel-equalization
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Fig. 9. Comparison of the VCF-RLS algorithm with the CRLS and NLMS
algorithms for in channel equalization application using

in the VCF-RLS algorithm (Experiment 9).

application. The taps of the impulse response of the channel to

be equalized were obtained as

for [3]. The binary-phase-shift key (BPSK)

input signal for each channel was obtained by using Bernoulli

trials (see [3] and [27] for details about Bernoulli trials). The

channel output was contaminated by using a white Gaussian

noise signal with . The length of the adaptive-filter

weight vector was set to . The total delay introduced

by the adaptive filter and the channel for the BPSK signal was

[3]. The forgetting factor was set to 0.99 for both the

VCF-RLS and CRLS algorithms. The MSE curves obtained in

5000 independent trials by using the VCF-RLS, NLMS, and the

CRLS algorithms are illustrated in Fig. 9. As can be seen, the

VCF-RLS algorithm yields a reduced steady-state misalignment

as compared to the CRLS algorithm for the same convergence

speed.

VIII. CONCLUSION

Two new improved RLS algorithms, the VFF-RLS and

VCF-RLS algorithms, have been developed. Both the vari-

able forgetting factor and variable convergence factor are

obtained by solving a mean-square noise-free a posteriori error

minimization problem. Simulation results for a system-iden-

tification application were presented which show that the

proposed VFF-RLS algorithm outperforms the CRLS, SRLS,

and KVFF-RLS algorithms in terms of steady-state misalign-

ment, tracking, and readaptation capability in both stationary

and nonstationary environments. Simulation results for a

channel-equalization application were presented which demon-

strate that the proposed VCF-RLS algorithm offers improved

performance compared to the CRLS and NLMS algorithms in

terms of steady-state misalignment. A steady-state analysis of

the proposed algorithms was also presented which led to ex-

pressions for the expected MSE in nonstationary and stationary

environments and the validity of these expressions has been

demonstrated by simulation results in a system-identification

application.

APPENDIX

From (12), we can write

and since, in practice, for a large all higher order

terms can be neglected, i.e., . With such a lin-

earized , we obtain by neglecting

the second-order term. As in [9], [28], and [29] it can be shown

that which becomes small for a large ; hence

we can obtain

where we have again neglected the second-order term. There-

fore, for a large we get .
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