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1. Introduction

In 1960, Opial established the following interesting integral inequality [10]:

Theorem 1 Let x(t) ∈ C(1) [0, h] be such that x(0) = x(h) = 0, and x(t) > 0 in (0, h) . Then the following

inequality holds:

h∫
0

|x(t)x′(t)| dt ≤ h

4

h∫
0

(x′(t))
2
dt (1.1)

The constant h/4 is the best possible.

Opial’s inequality and its generalizations, extensions, and discretizations play a fundamental role in

establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial

differential equations as well as difference equations. Over the last 20 years a large number of papers have

appeared in the literature that deals with the simple proofs, various generalizations, and discrete analogues of

Opial’s inequality and its generalizations; see [2,4,5,11–14,16,17].

The purpose of this paper is to establish some Opial-type inequalities for conformable integrals. The

structure of this paper is as follows. In Section 2, we give the definitions of conformable derivatives and

conformable integrals and introduce several useful notations for conformable integrals used in our main results.

In Section 3, the main result is presented. Using the remainder function of Taylor’s theorem for conformable

integrals, we establish several Opial-type inequalities.

2. Definitions and properties of conformable fractional derivatives and integrals

The following definitions and theorems with respect to conformable fractional derivatives and integrals were

referred to (see [1], [3], [6]–[9]).
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Definition 1 (Conformable fractional derivative) Given a function f : [0,∞) → R . Then the “con-

formable fractional derivative” of f of order α is defined by

Dα (f) (t) = lim
ϵ→0

f
(
t+ ϵt1−α

)
− f (t)

ϵ
(2.1)

for all t > 0, α ∈ (0, 1) . If f is α−differentiable in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist, then define

f (α) (0) = lim
t→0+

f (α) (t) . (2.2)

We can write f (α) (t) for Dα (f) (t) to denote the conformable fractional derivatives of f of order α . In addi-

tion, if the conformable fractional derivative of f of order α exists, then we simply say f is α−differentiable.

Theorem 2 Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0 . Then

i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,

iv. Dα

(
f

g

)
=

fDα (g)− gDα (f)

g2
.

If f is differentiable, then

Dα (f) (t) = t1−α df

dt
(t) . (2.3)

Definition 2 (Conformable fractional integral) Let α ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b] → R
is α-fractional integrable on [a, b] if the integral

∫ b

a

f (x) dαx :=

∫ b

a

f (x)xα−1dx (2.4)

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
α ([a, b]) .

Remark 1

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1] .

Theorem 3 Let f : (a, b) → R be differentiable and 0 < α ≤ 1 . Then, for all t > a we have

IaαD
a
αf (t) = f (t)− f (a) . (2.5)
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Theorem 4 (Integration by parts) Let f, g : [a, b] → R be two functions such that fg is differentiable.

Then ∫ b

a

f (x)Da
α (g) (x) dαx = fg|ba −

∫ b

a

g (x)Da
α (f) (x) dαx. (2.6)

Theorem 5 Assume that f : [a,∞) → R such that f (n)(t) is continuous and α ∈ (n, n + 1]. Then, for all

t > a we have

Da
αI

a
αf (t) = f (t) .

We can give Hölder’s inequality in conformable integral as follows:

Lemma 1 Let f, g ∈ C [a, b] , p, q > 1 with 1
p + 1

q = 1, then

b∫
a

|f(x)g(x)| dαx ≤

 b∫
a

|f(x)|p dαx


1
p
 b∫

a

|g(x)|q dαx


1
q

.

Remark 2 If we take p = q = 2 in Lemma 1, then we have the Cauchy–Schwarz inequality for conformable

integrals.

Theorem 6 (Taylor’s Formula) [3] Let α ∈ (0, 1] and n ∈ N. Suppose f is n + 1 times α− fractional

differentiable on [0,∞) , and s, t ∈ [0,∞) . Then we have

f(t) =

n∑
k=0

1

k!

(
tα − sα

α

)k

Dk
αf(s) +

1

n!

t∫
s

(
tα − τα

α

)n

Dn+1
α f(τ)dατ.

Using Taylor’s theorem, we define the remainder function by

R−1,f (., s) := f(s),

and for n > −1,

Rn,f (t, s) : = f(s)−
n∑

k=0

1

k!

(
tα − sα

α

)k

Dk
αf(s)

(2.7)

=
1

n!

t∫
s

(
tα − τα

α

)n

Dn+1
α f(τ)dατ.

Opial’s inequality can be represented for conformable fractional integral forms as follows [15]:

Theorem 7 Let α ∈ (0, 1] and u be an α-fractional differentiable function on (0, h) with u(0) = u(h) = 0.

Then the following inequality for conformable fractional integrals holds:∫ h

0

|u(t)Dα (u) (t)| dαt ≤
hα

4α

∫ h

0

|Dα (u) (t)|2 dαt. (2.8)

Now we present the main results,
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3. Opial-type inequalities for conformable fractional integrals

Let α ∈ (0, 1]. In the following we adapt to the α -fractional setting some results from [2] by applying the

fractional Opial inequality.

Theorem 8 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p, q > 1,

1
p + 1

q = 1, and t ≥ x0, t, x0 ∈ [a, b] . Then we have the following inequality:

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ (3.1)

≤ (tα − xα
0 )

n+2/p

αn+2/p2
1
q n! [(np+ 1) (np+ 2)]

1/p

 t∫
x0

∣∣Dn+1
α f(τ)

∣∣q dατ


2
q

.

Proof From (2.7), we have

Rn,f (x0, t) =
1

n!

t∫
x0

(
tα − τα

α

)n

Dn+1
α f(τ)dατ, x0, t ∈ [a, b] .

By using Hölder’s inequality for conformable integrals, it follows that

|Rn,f (x0, t)| ≤ 1

αnn!

t∫
x0

(tα − τα)
n ∣∣Dn+1

α f(τ)
∣∣ dατ (3.2)

≤ 1

αnn!

 t∫
x0

(tα − τα)
np

dατ


1
p
 t∫

x0

∣∣Dn+1
α f(τ)

∣∣q dατ


1
q

=
1

αn+1/pn!

(tα − xα
0 )

n+1/p

(np+ 1)1/p
(z(t))

1
q

where

z(t) =

t∫
x0

∣∣Dn+1
α f(τ)

∣∣q dατ, x0 ≤ t ≤ b, z(x0) = 0.

Thus,

Dαz(t) =
∣∣Dn+1

α f(t)
∣∣q

and ∣∣Dn+1
α f(t)

∣∣ = (Dαz(t))
1/q

. (3.3)

By (3.2) and (3.3), we get

|Rn,f (x0, t)|
∣∣Dn+1

α f(t)
∣∣ ≤ 1

αn+1/pn!

(tα − xα
0 )

n+1/p

(np+ 1)1/p
(z(t)Dαz(t))

1
q . (3.4)
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Integrating the inequality (3.4) and using Hölder’s inequality for conformable integrals, we have

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

≤ 1

αn+1/pn!(np+ 1)1/p

t∫
x0

(τα − xα
0 )

n+1/p
(z(τ)Dαz(τ))

1
q dατ

≤ 1

αn+1/pn!(np+ 1)1/p

 t∫
x0

(τα − xα
0 )

np+1
dατ


1
p
 t∫

x0

z(τ)Dαz(τ)dατ


1
q

=
(tα − xα

0 )
n+2/p

αn+2/pn! [(np+ 1) (np+ 2)]
1/p

(z(t))
2
q

2
1
q

which completes the proof. 2

Corollary 1 Under the assumption of Theorem 8 with p = q = 2, we get

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤ (tα − xα

0 )
n+1

2αn+2n!
√

(2n+ 1) (n+ 1)

t∫
x0

∣∣Dn+1
α f(τ)

∣∣2 dατ.
Theorem 9 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p, q > 1,

1
p + 1

q = 1, and t ≤ x0, t, x0 ∈ [a, b] . Then we have the following inequality:

x0∫
t

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ (3.5)

≤ (xα
0 − tα)

n+2/p

αn+1+2/p2
1
q n! [(np+ 1) (np+ 2)]

1/p

 x0∫
t

∣∣Dn+1
α f(τ)

∣∣q dατ
 2

q

.

Proof From (2.7), we have

|Rn,f (x0, t)| =
1

αnn!

∣∣∣∣∣∣
t∫

x0

(tα − τα)
n
Dn+1

α f(τ)dατ

∣∣∣∣∣∣ (3.6)

≤ 1

αnn!

x0∫
t

(τα − tα)
n ∣∣Dn+1

α f(τ)
∣∣ dατ

≤ 1

αnn!

 x0∫
t

(τα − tα)
np

dατ

 1
p
 x0∫

t

∣∣Dn+1
α f(τ)

∣∣q dατ
 1

q

=
1

αn+1/pn!

(xα
0 − tα)

n+1/p

(np+ 1)1/p
(z(t))

1
q
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where

z(t) =

x0∫
t

∣∣Dn+1
α f(τ)

∣∣q dατ, a ≤ t ≤ x0, z(x0) = 0.

Therefore,

Dαz(t) = −
∣∣Dn+1

α f(t)
∣∣q

and ∣∣Dn+1
α f(t)

∣∣ = (−Dαz(t))
1/q

. (3.7)

From (3.6) and (3.7), it follows that

|Rn,f (x0, t)|
∣∣Dn+1

α f(t)
∣∣ ≤ 1

αn+1/pn!

(xα
0 − tα)

n+1/p

(np+ 1)1/p
(−z(t)Dαz(t))

1
q . (3.8)

Integrating the inequality (3.8) and using Hölder’s inequality for conformable integrals, we have

x0∫
t

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

≤ 1

αn+1/pn!(np+ 1)1/p

x0∫
t

(xα
0 − τα)

n+1/p
(z(τ)Dαz(τ))

1
q dατ

≤ 1

αn+1/pn!(np+ 1)1/p

 x0∫
t

(xα
0 − τα)

np+1
dατ

 1
p
 x0∫

t

(−z(τ)Dαz(τ)) dατ

 1
q

=
(xα

0 − tα)
n+2/p

αn+2/pn! [(np+ 1) (np+ 2)]
1/p

(z(t))
2
q

2
1
q

.

This completes the proof. 2

Corollary 2 Under the assumption of Theorem 9 with p = q = 2, we get

x0∫
t

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤ (xα

0 − tα)
n+1

2αn+2n!
√

(2n+ 1) (n+ 1)

x0∫
t

∣∣Dn+1
α f(τ)

∣∣2 dατ.
Theorem 10 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p, q > 1,

1
p + 1

q = 1, and t, x0 ∈ [a, b] . Then we have the following inequality:∣∣∣∣∣∣
t∫

x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

∣∣∣∣∣∣ (3.9)

≤ |tα − xα
0 |

n+2/p

αn+2/p2
1
q n! [(np+ 1) (np+ 2)]

1/p

∣∣∣∣∣∣
t∫

x0

∣∣Dn+1
α f(τ)

∣∣q dατ
∣∣∣∣∣∣
2
q

.
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Proof Combining Theorem 8 and Theorem 9, we can easily get the required result. 2

Corollary 3 Under the assumption of Theorem 10 with p = q = 2, we get

∣∣∣∣∣∣
t∫

x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

∣∣∣∣∣∣ ≤ |tα − xα
0 |

n+1

2αn+1n!
√
(n+ 1) (2n+ 1)

∣∣∣∣∣∣
t∫

x0

∣∣Dn+1
α f(τ)

∣∣2 dατ
∣∣∣∣∣∣ .

Using Theorem 10 and Corollary 3, we obtain the following important inequality.

Corollary 4 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p, q > 1,

1
p + 1

q = 1, and t, x0 ∈ [a, b] . If Dk
αf(x0) = 0, k = 0, 1, ..., n, then we have the following Opial-type inequality:

∣∣∣∣∣∣
t∫

x0

|f(τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

∣∣∣∣∣∣
≤ min

 |tα − xα
0 |

n+2/p

αn+2/p2
1
q n! [(np+ 1) (np+ 2)]

1/p

∣∣∣∣∣∣
t∫

x0

∣∣Dn+1
α f(τ)

∣∣q dατ
∣∣∣∣∣∣
2
q

,

|tα − xα
0 |

n+1

2αn+1n!
√
(n+ 1) (2n+ 1)

∣∣∣∣∣∣
t∫

x0

∣∣Dn+1
α f(τ)

∣∣2 dατ
∣∣∣∣∣∣
 .

Corollary 5 If we choose n = 0 Corollary 4, then we have the following inequality:

∣∣∣∣∣∣
t∫

x0

|f(τ)| |Dαf(τ)| dατ

∣∣∣∣∣∣
≤ 1

2
min

 |tα − xα
0 |

2/p

2α2/p

∣∣∣∣∣∣
t∫

x0

|Dαf(τ)|q dατ

∣∣∣∣∣∣
2
q

,
|tα − xα

0 |
2α

∣∣∣∣∣∣
t∫

x0

|Dαf(τ)|2 dατ

∣∣∣∣∣∣
 .

Theorem 11 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p = 1,

q = ∞ and t ∈ [x0, b] . Then we have the inequality

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤ (tα − xα

0 )
n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞,[x0,b]

(3.10)

where ∥∥Dn+1
α f

∥∥
∞ := sup

x∈[a,b]

∣∣Dn+1
α f(x)

∣∣ .
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Proof From (2.7), we have

|Rn,f (x0, t)| ≤ 1

αnn!

t∫
x0

(tα − τα)
n ∣∣Dn+1

α f(τ)
∣∣ dατ (3.11)

≤ 1

αnn!

∥∥Dn+1
α f

∥∥
∞,[x0,b]

t∫
x0

(tα − τα)
n
dατ

=

∥∥Dn+1
α f

∥∥
∞,[x0,b]

αn+1(n+ 1)!
(tα − xα

0 )
n+1

.

Moreover, we get

∣∣Dn+1
α f(t)

∣∣ ≤ ∥∥Dn+1
α f

∥∥
∞,[x0,b]

for all t ∈ [x0, b] .

Therefore it follows that

|Rn,f (x0, t)|
∣∣Dn+1

α f(t)
∣∣ ≤ ∥∥Dn+1

α f
∥∥2
∞,[x0,b]

αn+1(n+ 1)!
(tα − xα

0 )
n+1

. (3.12)

Integrating the inequality (3.12), we have

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤

∥∥Dn+1
α f

∥∥2
∞,[x0,b]

αn+1(n+ 1)!

t∫
x0

(τα − xα
0 )

n+1
dατ

=
(tα − xα

0 )
n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞,[x0,b]

This completes the proof of the inequality (3.10). 2

Theorem 12 Let p = 1, q = ∞ and t ∈ [a, x0] . Then we have the inequality

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤ (xα

0 − tα)
n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞,[a,x0]

. (3.13)
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Proof From (2.7), we get

|Rn,f (x0, t)| =

∣∣∣∣∣∣ 1

αnn!

t∫
x0

(tα − τα)
n
Dn+1

α f(τ)dατ

∣∣∣∣∣∣ (3.14)

≤ 1

αnn!

x0∫
t

(τα − tα)
n ∣∣Dn+1

α f(τ)
∣∣ dατ

≤ 1

αnn!

∥∥Dn+1
α f

∥∥
∞,[x0,b]

x0∫
t

(τα − tα)
n
dατ

=

∥∥Dn+1
α f

∥∥
∞,[x0,b]

αn+1(n+ 1)!
(xα

0 − tα)
n+1

.

Furthermore, we have ∣∣Dn+1
α f(t)

∣∣ ≤ ∥∥Dn+1
α f

∥∥
∞,[a,x0]

(3.15)

for all t ∈ [a, x0] .

Thus, we obtain

t∫
x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ ≤

∥∥Dn+1
α f

∥∥2
∞,[a,x0]

αn+1(n+ 1)!

t∫
x0

(xα
0 − τα)

n+1
dατ

=
(xα

0 − tα)
n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞,[a,x0]

which completes the proof of the inequality (3.13). 2

Combining Theorem 11 and Theorem 12, we have the following result.

Corollary 6 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p = 1,

q = ∞ and t ∈ [a, b] . Then the following inequality holds:

∣∣∣∣∣∣
t∫

x0

|Rn,f (x0, τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

∣∣∣∣∣∣ ≤ |tα − xα
0 |

n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞ .

Using the Corollary 6, we obtain the following important inequality.

Corollary 7 Let α ∈ (0, 1], f : [a, b] → R be an n + 1 times α− fractional differentiable function , p = 1,

q = ∞ and t ∈ [a, b] . If Dk
αf(x0) = 0, k = 0, 1, ..., n, then we have the following Opial-type inequality:

∣∣∣∣∣∣
t∫

x0

|f(τ)|
∣∣Dn+1

α f(τ)
∣∣ dατ

∣∣∣∣∣∣ ≤ |tα − xα
0 |

n+2

αn+2(n+ 2)!

∥∥Dn+1
α f

∥∥2
∞ .
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Corollary 8 If we choose n = 0 Corollary 7, then we have the following inequality:∣∣∣∣∣∣
t∫

x0

|f(τ)| |Dαf(τ)| dατ

∣∣∣∣∣∣ ≤ |tα − xα
0 |

2

2α2
∥Dαf∥2∞ .

4. Conclusions

In this study, we presented some Opial-type inequalities for conformable fractional integrals via using the

remainder function of Taylor’s theorem for conformable integrals. A further study could assess weighted versions

of these inequalities.
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