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1. Introduction

Mitrinović in [1, page 247] gives us a result as follows.

Theorem 1.1. Let x > 0. Then

arcsinx >
6
(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

>
3x

2 +
√
1 − x2

. (1.1)

Fink in [2] obtains the following theorem.

Theorem 1.2. Let 0 ≤ x ≤ 1. Then

3x

2 +
√
1 − x2

≤ arcsinx ≤ πx

2 +
√
1 − x2

. (1.2)

Furthermore, 3 and π are the best constants in (1.2).

The author of this paper improves the upper bound of inverse sine and obtains (see
[3, 4]) the following theorem.
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Theorem 1.3. Let 0 ≤ x ≤ 1. Then

3x

2 +
√
1 − x2

≤ 6
(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

≤ arcsinx

≤ π
(√

2 + (1/2)
)(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

≤ πx

2 +
√
1 − x2

.

(1.3)

Furthermore, 3 and π , 6 and π(
√
2 + (1/2)) are the best constants in (1.3).

Malešević in [5, 6] obtains the following theorem using λ-method and computer,
respectively.

Theorem 1.4. For x ∈ [0, 1], the following inequality is true:

arcsinx ≤
(
π
(
2 − √

2
)
/
(
π − 2

√
2
))(√

1 + x − √
1 − x

)

(√
2(π − 4)/

(
π − 2

√
2
))

+
√
1 + x +

√
1 − x

. (1.4)

In [7], Malešević obtains inequality (1.4) by further method on computer. Zhu in [8]
shows new simple proof of inequality (1.4), and obtains the following further result.

Theorem 1.5. Let 0 ≤ x ≤ 1. Then

(α + 2)
(√

1 + x − √
1 − x

)

α +
√
1 + x +

√
1 − x

≤ arcsinx ≤ (β + 2)
(√

1 + x − √
1 − x

)

β +
√
1 + x +

√
1 − x

(1.5)

holds if and only if α ≥ 4 and β ≤ √
2(4 − π)/(π − 2

√
2).

Malešević in [6] gives a new upper bound for the inverse sine, and obtains the
following result.

Theorem 1.6. If 0 ≤ x ≤ 1, then

arcsinx ≤
(
π/(π − 2)

)
x

(
2/(π − 2)

)
+
√
1 − x2

. (1.6)

In fact, we can easily obtain the following result by the same method in [8].

Theorem 1.7. Let 0 ≤ x ≤ 1. Then

(a + 1)x

a +
√
1 − x2

≤ arcsinx ≤ (b + 1)x

b +
√
1 − x2

(1.7)

holds if and only if a ≥ 2 and b ≤ 2/(π − 2).
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Combining (1.5) and (1.7) gives the following theorem.

Theorem 1.8. If 0 ≤ x ≤ 1, then

3x

2 +
√
1 − x2

≤ 6
(√

1 + x − √
1 − x

)

4 +
√
1 + x +

√
1 − x

≤ arcsinx

≤
(
π(2 − √

2
)
/
(
π − 2

√
2
))(√

1 + x − √
1 − x

)

(√
2(π − 4)/

(
π − 2

√
2
))

+
√
1 + x +

√
1 − x

≤
(
π/(π − 2)

)
x

(
2/(π − 2)

)
+
√
1 − x2

.

(1.8)

Furthermore, 2, 4,
√
2(4 − π)/(π − 2

√
2), and 2/(π − 2) are the best constants in (1.8).

In this paper, we obtain new lower and upper bounds of arc hyperbolic sine sinh−1x,
and we show simple proofs of the following two Shafer-Fink-type inequalities.

Theorem 1.9. Let 0 ≤ x ≤ r and r > 0. Then

(a + 1)x

a +
√
1 + x2

≤ sinh−1x ≤ (b + 1)x

b +
√
1 + x2

(1.9)

holds if and only if a ≤ 2 and b ≥ (
√
1 + r2 sinh−1r − r)/(r − sinh−1r).

Theorem 1.10. Let 0 ≤ x ≤ r and r > 0. Then

(α + 2)
√
2
(√

1 + x2 − 1
)1/2

α +
√
2
(√

1 + x2 + 1
)1/2 ≤ sinh−1x ≤ (β + 2)

√
2
(√

1 + x2 − 1
)1/2

β +
√
2
(√

1 + x2 + 1
)1/2 (1.10)

holds if and only if α ≤ 4 and β ≥ ((1 +
√
1 + r2)

1/2
sinh−1r −2(

√
1 + r2 −1)1/2)/((

√
1 + r2 − 1)

1/2 −
(sinh−1r/

√
2)).

Combining (1.9) and (1.10) gives the following.

Theorem 1.11. Let 0 ≤ x ≤ r and r > 0. Then

3x

2 +
√
1 + x2

≤ 6
√
2
(√

1 + x2 − 1
)1/2

4 +
√
2
(√

1 + x2 + 1
)1/2 ≤ sinh−1x

≤ (β + 2)
√
2
(√

1 + x2 − 1
)1/2

β +
√
2
(√

1 + x2 + 1
)1/2 ≤ (b + 1)x

b +
√
1 + x2

(1.11)

holds, where 2, 4, β = ((1 +
√
1 + r2)

1/2
sinh−1r − 2(

√
1 + r2 − 1)1/2)/((

√
1 + r2 − 1)

1/2 −
(sinh−1r/

√
2)), and b = (

√
1 + r2 sinh−1r − r)/(r − sinh−1r) are the best constants in (1.11).
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2. Two lemmas

Lemma 2.1 (see [9–11]). Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series
A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞

n=0 bnt
n be convergent for |t| < R. If bn > 0 for n = 0, 1, 2, . . ., and if

an/bn is strictly increasing (or decreasing) for n = 0, 1, 2, . . ., then the function A(t)/B(t) is strictly
increasing (or decreasing) on (0, R).

Lemma 2.2. The function F(t) = (t cosh t − sinh t)/(sinh t − t) is increasing on (0,+∞).

Proof. Let F(t) = (t cosh t − sinh )/(sinh t − t) := A(t)/B(t), where A(t) = t cosh t − sinh t,
B(t) = sinh t − t. Since

A(t) =
∞∑

n=1

ant
2n+1, B(t) =

∞∑

n=1

bnt
2n+1, (2.1)

where an = (1/(2n)!)−(1/(2n+1)!) and bn = 1/(2n+1)! > 0. We have an/bn = 2n is increasing
for n = 1, 2, . . ., and F(t) is increasing on (0,+∞) by Lemma 2.1.

3. Simple proofs of Theorems 1.9 and 1.10

Since (1.9) and (1.10) hold for x = 0, the existence of Theorems 1.9 and 1.10is ensured when
proving the results as follows.

Proposition 3.1. Let 0 < x ≤ r. Then

(a + 1)x

a +
√
1 + x2

≤ sinh−1x ≤ (b + 1)x

b +
√
1 + x2

(3.1)

holds if and only if a ≤ 2 and b ≥ (
√
1 + r2 sinh−1r − r)/(r − sinh−1r).

Proposition 3.2. Let 0 < x ≤ r. Then

(α + 2)
√
2
(√

1 + x2 − 1
)1/2

α +
√
2
(√

1 + x2 + 1
)1/2 ≤ sinh−1x ≤ (β + 2)

√
2
(√

1 + x2 − 1
)1/2

β +
√
2
(√

1 + x2 + 1
)1/2 (3.2)

holds if and only if α ≤ 4 and β ≥ ((1 +
√
1 + r2)

1/2
sinh−1r−2(

√
1 + r2−1)1/2)/((

√
1 + r2 − 1)

1/2−
(sinh−1r/

√
2)).

Proof of Propositions 3.1 and 3.2. (1) By Lemma 2.2, we have that the double inequality

2 = F
(
0+
) ≤ F

(
sinh−1x

) ≤ F
(
sinh−1r

)
=

√
1 + r2sinh−1r − r

r − sinh−1r
(3.3)

holds for x ∈ (0, r]. Then Proposition 3.1 is true.
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(2) By the same way, we obtain that

λ = 4 = 2F
(
0+
) ≤ 2F

(
1
2
sinh−1x

)
≤ 2F

(
1
2
sinh−1r

)
= μ (3.4)

holds for x ∈ (0, r], where μ = ((1 +
√
1 + r2)

1/2
sinh−1r − 2(

√
1 + r2 − 1)1/2)/((

√
1 + r2 − 1)

1/2 −
(sinh−1r/

√
2)). So the proof of Proposition 3.2 is complete.

Remark 3.3. From the left of the double inequality (3.1), one can obtain the inequality
3 sinh t/(2 + cosh t) ≤ t for t ≥ 0, which can be found in [12].
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