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Abstract

In this paper, we introduce a relaxed CQ method with alternated inertial step for

solving split feasibility problems. We give convergence of the sequence generated by

our method under some suitable assumptions. Some numerical implementations from

sparse signal and image deblurring are reported to show the efficiency of our method.

Keywords Alternated inertial · CQ methods · Split feasibility problems · Signal

processing

1 Introduction

Censor and Elfving [12] introduced the following Split Convex Feasibility Problem

(SCFP), see also [11],

find x ∈ C such that Ax ∈ Q, (1)

where A : R
k → R

m is a bounded and linear operator, C ⊆ R
k and Q ⊆ R

m are

nonempty, closed and convex sets. Hereafter, we let S represent the set of solutions to

SCFP (1).

Originally the SCFP was introduced in Euclidean spaces, and afterwards extended

to infinite dimensional spaces as well as applied successfully in the field of intensity-

modulated radiation therapy (IMRT) treatment planning, see [11–13,15].
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Since the introduction of the SCFP, many authors have introduced various iterative

methods for solving it, see, for example, [10,14,17–19,23,29,30,38,41–43,49,52]. It

is known that (see, e.g., [9]) x ∈ C solves the SCFP (1) if and only if x solves the

fixed point problem:

x = PC (x − λAt (I − PQ)Ax), λ > 0

and consequently, the following Byrne’s CQ method [9] was introduced:

xn+1 = PC (xn − λAt (I − PQ)Axn), n ≥ 1 (2)

where At denotes the transpose of A.

Weak convergence of the CQ method is guaranteed under the assumption that λ ∈

(0, 2/‖A‖2). So, an implementation of (2) requires a norm estimation of the bounded

linear operator A, or the spectral radius of the matrix At A in finite-dimensional

framework. This fact might effect the applicability of the method in practice, see [26,

Theorem 2.3]. So, in order to circumvent this scenario, López et al. [30] introduced a

modification of the CQ method (2) by replacing the step-size λ in (2) with the following

adaptive step:

τn =
ρn f (xn)

‖∇ f (xn)‖2
, n ≥ 1, (3)

where ρn ∈ (0, 4), f (xn) = 1
2
‖(I − PQ)Axn‖2 and ∇ f (xn) = At (I − PQ)Axn for all

n ≥ 1. There exists many other modifications of the CQ algorithm, see, for example,

[20,23,24,44,49].

Following the heavy ball method of Polyak [39], Nesterov [37] introduced the follow-

ing iterative step:

yn = xn + θn(xn − xn−1),

xn+1 = yn − λn∇ f (yn), n ≥ 1, (4)

where θn ∈ [0, 1) is an inertial factor and λn is a positive sequence. It was shown

via numerical experiments in the field of image reconstruction, that (4) and other

associated methods, such as [1,2,6–8,18,21,31,32,34], have greatly improved the

performance of their non-inertial algorithms, that is, when θn = 0. Hence this idea is

also referred to as inertial algorithms.

In this spirit, several inertial-type methods for solving SCFPs have been proposed

recently, see [16,44–47,51], just to name a few. In particular, Dang et al. [18] (see also

[17]) proposed the following inertial relaxed CQ algorithms for solving SCFPs:

xn+1 = PCn (I − λAt (I − PQn )Ayn), (5)

and

xn+1 = (1 − αn)yn + αn PCn (I − λAt (I − PQn )Ayn), (6)
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where yn = xn + θn(xn − xn−1), αn ∈ (0, 1), λ ∈ (0, 2/‖A‖2) and θn ∈ [0, θn] with

θn := min{θ, (max{n2‖xn − xn−1‖
2, n2‖xn − xn−1‖})

−1}, θ ∈ [0, 1).

An important observation regarding the above inertial methods [16–18,44–47,51],

is that the sequence {xn} generated by these inertial-type methods does not have a

monotonic behaviour with respect to x∗ ∈ S and can move or swing back and forth

around S, see, for example, [5,31]. This could explain why such inertial extrapolation

step does not converge faster than its counterpart non-inertial methods, see, e.g., [33].

In a direction to resolve the above issue, an alternated inertial method was introduced

recently in [36]. This alternated inertia method shown to exhibit attractive perfor-

mances in practice including monotonicity of {‖x2n − x∗‖}, see [27,28] for more

details.

Motivated by the above works, we propose a new relaxed CQ method with alternated

inertial procedure for solving SCFPs. We establish global convergence of our scheme

under some easy to verify assumptions. Moreover, the parameters controlling the

inertial factor, that is, θn can be chosen as close as possible to 1 (when μ tends to zero

in (10)). This is opposite to many other related methods that restrict it to less than 1,

see, e.g., [16–18,44–47,51].

The outline of the paper is a follows. Definitions, basic concepts and useful results

are presented in Sect. 2. The method and its analysis is given in Sect. 3 and then

some numerical experiments in the field of signal processing which illustrate the

effectiveness and applicability of our proposed scheme is presented in Sect. 4. Final

remarks are presented in Sect. 5.

2 Preliminaries

We start by recalling some definitions and basic results.

A mapping T : R
k → R

k is called

(a) nonexpansive if ‖T x − T y‖ ≤ ‖x − y‖, for all x, y ∈ R
k ;

(b) firmly nonexpansive if ‖T x − T y‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2 for

all x, y ∈ R
k . Equivalently, ‖T x − T y‖2 ≤ 〈x − y, T x − T y〉for all x, y ∈ R

k .

It is shown in [25] that T is firmly nonexpansive if and only if I − T is firmly

nonexpansive.

Let C be a nonempty, closed and convex subset of R
k . For any point u ∈ R

k , there

exists a unique point PC u ∈ C such that

‖u − PC u‖ ≤ ‖u − y‖ ∀y ∈ C,

PC is called the metric projection of R
k onto C . Some important properties of the

metric projection are listed next, for this and more see [4]. We know that PC is a firmly

nonexpansive mapping of R
k onto C . It is also known that PC satisfies

〈x − y, PC x − PC y〉 ≥ ‖PC x − PC y‖2 ∀x, y ∈ R
k . (7)
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Furthermore, PC x is characterized by the property

PC x ∈ C and 〈x − PC x, PC x − y〉 ≥ 0 ∀y ∈ C . (8)

This characterization implies that

‖x − y‖2 ≥ ‖x − PC x‖2 + ‖y − PC x‖2 ∀x ∈ R
k,∀y ∈ C . (9)

Let the function f : R
k → R, an element g ∈ R

k is said to be a subgradient of f at

x if

f (y) ≥ f (x) + 〈y − x, g〉, ∀y ∈ R
k .

The subdifferential of f at x , ∂ f (x), is defined by

∂ f (x) := {g ∈ R
k : f (y) ≥ f (x) + 〈y − x, g〉, ∀y ∈ R

k}.

Lemma 2.1 ([10]) Let C be nonempty, closed and convex subset of R
k and x ∈ R

k .

Consider the function f (x) := 1
2
‖(I − PQ)Ax‖2,then

(i) the function f is convex and differentiable.

(ii) The gradient of f at x is defined as ∇ f (x) = At (I − PQ)Ax.

(iii) ∇ f is ‖A‖2-Lipschitz continuous.

The next basic lemma is useful for our analysis.

Lemma 2.2 Let x, y ∈ R
k . Then

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;

(iii) ‖αx + β y‖2 = α(α + β)‖x‖2 + β(α + β)‖y‖2 − αβ‖x − y‖2, ∀α, β ∈ R.

3 The algorithm

In the light of [22], we consider a relaxed CQ method with alternated inertial extrap-

olation step in which C and Q in (1) are level sets of convex functions given by

C := {x ∈ R
k : c(x) ≤ 0}

and

Q := {x ∈ R
m : q(x) ≤ 0}

where c : R
k → R and q : R

m → R are convex functions. By [3, Fact 7.2 (iii)],

c and q are subdifferentiable on C and Q, respectively, and c and q are bounded on

bounded sets.
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For n ≥ 1, define

Cn := {x ∈ R
k : c(wn) ≤ 〈ξn, wn − x〉}

and

Qn := {y ∈ R
m : q(Awn) ≤ 〈ζn, Awn − y〉}

with ξn ∈ ∂c(wn) and ζn ∈ ∂q(Awn), respectively. It can be easily seen that Cn ⊃ C

and Qn ⊃ Q for all n. Consequently, since Cn and Qn are two half-spaces, the

projections onto these sets have a closed formulas and hence easy to compute. From

now on we define for all x ∈ R
k : fn(x) := 1

2
‖(I − PQn )Ax‖2 and ∇ fn(x) =

At (I − PQn )Ax .

Algorithm 1 Relaxed CQ Method with inertial extrapolation step

1: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1), choose the parameter θn such that

0 ≤ θn ≤ θ <
1 − μ

1 + μ
. (10)

Choose starting points x0, x1 ∈ R
k and set n := 1.

2: Given the iterations xn , xn−1, compute

wn =

{

xn , n = even

xn + θn(xn − xn−1), n = odd.
(11)

3: Compute

x̄n = PCn (wn − τn∇ fn(wn)), (12)

where τn = γ lmn and mn is the smallest non-negative integer m such that

τn‖∇ fn(wn) − ∇ fn(x̄n)‖ ≤ μ‖wn − x̄n‖.

4: Calculate the next iterate via

xn+1 = PCn (wn − τn∇ fn(x̄n)). (13)

5: Set n ← n + 1, and go to 2.

Remark 3.1 (a) As mentioned in the introduction, by adding the inertial extrapolation

step in (5) and (6) to the classical CQ algorithm (2), the new generated sequence

{xn} can move or swing back and forth around S and hence we do not have

monotonicity of {‖xn − x∗‖}, x∗ ∈ S. This matter can affect the convergence

speed of the CQ methods with inertial extrapolation step, and sometimes would

not even converge faster than the original CQ methods. In order to circumvent

this scenario and regain monotonicity to some extent (see Lemma 3.2 below), we

introduce the inertial extrapolation step (11).
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(b) Observe that if θn = 0, then Algorithm 1 reduces to the methods proposed in

[23,40,50].

(c) Our scheme allows to choose the parameters controlling the inertial factor θn as

close as possible to 1, when μ tends to zero in (10). This is more flexible than

the methods in [16–18,44–47,51]. In general a wise choice of θn in Step 2 of

Algorithm 1 enables acceleration of our method.

(d) Observe that we make use of an Armijo line search rule Algorithm 1, which is

similar to [23] and hence following [23, Lemma 3.1], the search rule in Algorithm

1 ends after a finite number of iterations. Furthermore,

μl

‖A‖2
< τn ≤ γ,∀n ≥ 1.

3.1 Convergence Analysis

We give the convergence analysis of Algorithm 1 under the assumption that the solution

set of the SCFP (1) is nonempty.

Lemma 3.2 Suppose that the solution set of the SCFP (1) is nonempty, that is, S �= ∅

and {xn} is any sequence generated by Algorithm 1. Then {x2n} is Fejér monotone

with respect to S (i.e., ‖x2n+2 − z‖ ≤ ‖x2n − z‖,∀z ∈ S).

Proof Pick a point z in S. Then

‖x2n+2 − z‖2 = ‖PC2n+1(w2n+1 − τ2n+1∇ f2n+1(x̄2n+1)) − z‖2

≤ ‖(w2n+1 − z) − τ2n+1∇ f2n+1(x̄2n+1)‖
2 − ‖x2n+2 − w2n+1

+τ2n+1∇ f2n+1(x̄2n+1)‖
2

= ‖w2n+1 − z‖2 − 2τ2n+1〈∇ f2n+1(x̄2n+1), w2n+1 − z〉 − ‖x2n+2 − w2n+1‖
2

−2τ2n+1〈∇ f2n+1(x̄2n+1), x2n+2 − w2n+1〉

= ‖w2n+1 − z‖2 − 2τ2n+1〈∇ f2n+1(x̄2n+1), w2n+1 − x̄2n+1〉

−2τ2n+1〈∇ f2n+1(x̄2n+1), x̄2n+1 − z〉 − ‖x2n+2 − w2n+1‖
2

−2τ2n+1〈∇ f2n+1(x̄2n+1), x2n+2 − w2n+1〉

= ‖w2n+1 − z‖2 − 2τ2n+1〈∇ f2n+1(x̄2n+1), x̄2n+1 − z〉

−2τ2n+1〈∇ f2n+1(x̄2n+1), x2n+2 − x̄2n+1〉

−‖x2n+2 − x̄2n+1 + x̄2n+1 − w2n+1‖
2

= ‖w2n+1 − z‖2 − 2τ2n+1〈∇ f2n+1(x̄2n+1), x̄2n+1 − z〉 − ‖x2n+2 − x̄2n+1‖
2

−‖x̄2n+1 − w2n+1‖
2 − 2〈x̄2n+1 − w2n+1

+τ2n+1∇ f2n+1(x̄2n+1), x2n+2 − x̄2n+1〉. (14)

By the fact that I − PQ2n+1 is firmly-nonexpansive and ∇ f2n+1(z) = 0, we get

2τ2n+1〈∇ f2n+1(x̄2n+1), x̄2n+1 − z〉 = 2τ2n+1〈∇ f2n+1(x̄2n+1)

−∇ f2n+1(z), x̄2n+1 − z〉
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= 2τ2n+1〈At (I − PQ2n+1)Ax̄2n+1 − At (I − PQ2n+1)Az, x̄2n+1 − z〉

= 2τ2n+1〈(I − PQ2n+1)Ax̄2n+1 − (I − PQ2n+1)Az, Ax̄2n+1 − Az〉

≥
2μl

‖A‖2
‖(I − PQ2n+1)Ax̄2n+1‖

2. (15)

By (8) and the fact that x̄2n+1 ∈ C2n+1, we get

〈x̄2n+1 − w2n+1 + τ2n+1∇ f2n+1(w2n+1), x2n+2 − x̄2n+1〉 ≥ 0. (16)

Consequently,

−2〈x̄2n+1 − w2n+1 + τ2n+1∇ f2n+1(x̄2n+1), x2n+2 − x̄2n+1〉

≤ 2〈w2n+1 − x̄2n+1 − τ2n+1∇ f2n+1(x̄2n+1), x2n+2 − x̄2n+1〉

+2〈x̄2n+1 − w2n+1 + τ2n+1∇ f2n+1(w2n+1), x2n+2 − x̄2n+1〉

= 2τ2n+1〈∇ f2n+1(w2n+1) − ∇ f2n+1(x̄2n+1), x2n+2 − x̄2n+1〉

≤ 2τ2n+1‖∇ f2n+1(w2n+1) − ∇ f2n+1(x̄2n+1)‖‖x2n+2 − x̄2n+1‖

≤ τ 2
2n+1‖∇ f2n+1(w2n+1) − ∇ f2n+1(x̄2n+1)‖

2 + ‖x2n+2 − x̄2n+1‖
2

≤ μ2‖w2n+1 − x̄2n+1‖
2 + ‖x2n+2 − x̄2n+1‖

2 (17)

Using (15), (16) and (17) in (14):

‖x2n+2 − z‖2 ≤ ‖w2n+1 − z‖2 −
2μl

‖A‖2
‖(I − PQ2n+1)Ax̄2n+1‖

2

−(1 − μ2)‖w2n+1 − x̄2n+1‖
2. (18)

Now,

‖w2n+1 − z‖2 = ‖x2n+1 + θ2n+1(x2n+1 − x2n) − z‖2

= ‖(1 + θ2n+1)(x2n+1 − z) − θ2n+1(x2n − z)‖2

= (1 + θ2n+1)‖x2n+1 − z‖2 − θ2n+1‖x2n − z‖2

+θ2n+1(1 + θ2n+1)‖x2n+1 − x2n‖2. (19)

Using similar arguments in showing (18), one can get

‖x2n+1 − z‖2 ≤ ‖w2n − z‖2 −
2μl

‖A‖2
‖(I − PQ2n )Ax̄2n‖2

−(1 − μ2)‖w2n − x̄2n‖2

= ‖x2n − z‖2 −
2μl

‖A‖2
‖(I − PQ2n )Ax̄2n‖2

−(1 − μ2)‖w2n − x̄2n‖2. (20)
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Putting (20) and (19) into (18):

‖x2n+2 − z‖2 ≤ ‖x2n − z‖2 −
2μl

‖A‖2
(1 + θ2n+1)‖(I − PQ2n )Ax̄2n‖2

−(1 − μ2)(1 + θ2n+1)‖w2n − x̄2n‖2

+θ2n+1(1 + θ2n+1)‖x2n+1 − x2n‖2

−
2μl

‖A‖2
‖(I − PQ2n+1)Ax̄2n+1‖

2

−(1 − μ2)‖w2n+1 − x̄2n+1‖
2. (21)

Observe that

‖x2n+1 − x2n‖ ≤ ‖x2n+1 − x̄2n‖ + ‖x2n − x̄2n‖

≤ ‖w2n − τ2n∇ f2n(x̄2n) − w2n + τ2n∇ f2n(w2n)‖ + ‖x2n − x̄2n‖

≤ τ2n‖∇ f2n(x̄2n) − ∇ f2n(w2n)‖ + ‖x2n − x̄2n‖

≤ (1 + μ)‖x2n − x̄2n‖. (22)

Using (22) in (21):

‖x2n+2 − z‖2 ≤ ‖x2n − z‖2 −
2μl

‖A‖2
(1 + θ2n+1)‖(I − PQ2n )Ax̄2n‖2

−
[

(1 − μ2)(1 + θ2n+1) − θ2n+1(1 + θ2n+1)(1 + μ)2
]

‖w2n − x̄2n‖2

−
2μl

‖A‖2
‖(I − PQ2n+1)Ax̄2n+1‖

2 − (1 − μ2)‖w2n+1 − x̄2n+1‖
2

≤ ‖x2n − z‖2. (23)

Therefore,

‖x2n+2 − z‖ ≤ ‖x2n − z‖.

⊓⊔

Theorem 3.3 Suppose that S �= ∅ and {xn} is any sequence generated by Algorithm

1. Then {xn} converges to a point in S.

Proof By Lemma 3.2, we have that lim
n→∞

‖x2n − z‖ exists and this implies that {x2n}

is bounded. Furthermore, we get from (23) that

lim
n→∞

‖(I − PQ2n )Ax̄2n‖ = 0. (24)

From (23)

lim
n→∞

‖x2n − x̄2n‖ = 0. (25)

123



New inertial relaxed method for solving split feasibilities 2117

Now, since (I − PQ2n ) is nonexpansive,

‖(I − PQ2n )Ax̄2n‖ ≤ ‖(I − PQ2n )Ax2n − (I − PQ2n )Ax̄2n‖

+‖(I − PQ2n )Ax̄2n‖

≤ ‖Ax2n − Ax̄2n‖ + ‖(I − PQ2n )Ax̄2n‖

≤ ‖A‖‖x2n − x̄2n‖ + ‖(I − PQ2n )Ax̄2n‖. (26)

By (24) and (25), we get from (26) that

lim
n→∞

‖(I − PQ2n )Ax2n‖ = 0. (27)

Similarly, just like (27), one can show that

lim
n→∞

‖(I − PQ2n+1)Ax2n+1‖ = 0. (28)

Since ∂q is bounded on bounded sets, we get δ > 0 such that ‖ζ2n‖ ≤ δ. Since

PQ2n Ax2n ∈ Q2n , we obtain from Algorithm 1 that

q(Ax2n) ≤ 〈ζ2n, Ax2n − PQ2n Ax2n〉

≤ δ‖(I − PQ2n )Ax2n‖ → 0, n → ∞. (29)

Since {x2n} is bounded, there exists {x2n j
} ⊂ {x2n} such that x2n j

→ x∗ ∈ R
k . Then

continuity of q and (29) imply

q(x∗) ≤ lim inf
n→∞

q(Ax2n j
) ≤ 0.

Thus, Ax∗ ∈ Q.

By (22) and (23), we get

lim
n→∞

‖x2n+1 − x2n‖ = 0. (30)

Since x2n j +1 ∈ C2n j
, then by definition of C2n j

,

c(w2n j
) + 〈ξ2n j

, x2n j +1 − w2n j
〉 ≤ 0,

where ξ2n j
∈ ∂c(x2n j

). By the boundedness of {ξ2n j
} and (30), we get

c(x2n j
) = c(w2n j

) ≤ 〈ξ2n j
, w2n j

− x2n j +1〉

≤ ‖ξ2n j
‖‖w2n j

− x2n j +1‖

= ‖ξ2n j
‖‖x2n j

− x2n j +1‖ → 0, j → ∞. (31)

By continuity of c and x2n j
→ x∗, we get from (31) that

c(x∗) ≤ lim inf
j→∞

c(x2n j
) ≤ 0.
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Thus, x∗ ∈ C . Therefore, x∗ ∈ S.

We next show that the sequence of odd terms {x2n+1} converges to x∗. Note that since

lim
n→∞

‖x2n − x∗‖ exists and lim
j→∞

‖x2n j
− x∗‖ = 0, we get lim

n→∞
‖x2n − x∗‖ = 0.

Therefore, x∗ is unique.

Following the same arguments as in (14)-(18), one can show that

‖x2n+1 − x∗‖2 = ‖PC2n (w2n − τ2n∇ f2n(x̄2n)) − x∗‖2

≤ ‖w2n − x∗‖2 − 2τ2n〈∇ f2n(x̄2n), x̄2n − x∗〉 − ‖x2n+1 − x̄2n‖2

−‖x̄2n − w2n‖
2 − 2〈x̄2n − w2n

+τ2n∇ f2n(x̄2n), x2n+1 − x̄2n〉

≤ ‖w2n − x∗‖2 −
2μl

‖A‖2
‖(I − PQ2n )Ax̄2n‖2

−(1 − μ2)‖w2n − x̄2n‖2

≤ ‖w2n − x∗‖2.

Therefore,

‖x2n+1 − x∗‖ ≤ ‖w2n − x∗‖ = ‖x2n − x∗‖. (32)

Thus,

lim
n→∞

‖x2n+1 − x∗‖ = 0.

Therefore, lim
n→∞

xn = x∗ and the desired result is obtained. ⊓⊔

We give the following remark on our results.

Remark 3.4 (a) When vanilla inertial extrapolation step (the case when wn in (11) is

computed as wn = xn + θn(xn − xn−1),∀n ≥ 1) is added to methods for solving

SCFP (1), the Fejér monotonicity of the generated sequence {xn} with respect to

S is lost. Here in our results in Lemma 3.2, we recover the Fejér monotonicity of

{x2n} with respect to S. This is one of the interesting properties of methods with

alternated extrapolation step for solving SCFP (1).

(b) Our methods of proof in Lemma 3.2 and Theorem 3.3 are simpler and different

from the methods of proof given in other papers (see, e.g., [16–18,44–47,51])

which solve SCFP (1) using methods with vanilla inertial extrapolation step.

♦

4 Numerical experiments

In this section, we use the SCFP (1) to model two real problems, the first is the recovery

of a sparse signal and the second is image deblurring.
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We make use of the well-known LASSO problem [48] which is the following.

min

{

1

2
‖Ax − b‖2

2 : x ∈ R
k, ‖x‖1 ≤ t

}

, (33)

where A ∈ R
m×k, m < k, b ∈ R

m and t > 0. This problem, (33) exhibits the potential

of finding a sparse solution of the SCFP (1) due to the ℓ1 constraint.

Example 4.1 The first problem is focused in finding a sparse solution of the SCFP (1).

We illustrate the advantages of our proposed scheme by comparing it with some related

results in the literature, such as the methods in [23,40,50]. For the experiments the

matrix A is generated from a normal distribution with mean zero and one variance. The

true sparse signal x∗ is generated from uniformly distribution in the interval [−2, 2]

with random K position nonzero while the rest is kept zero. The sample data b = Ax∗

(no noise is assumed).

In the algorithm’s implementations we choose the following parameters γ = 1,

l = μ = 0.5 and the constant stepsize 0.9 ∗ (2/L) for the relaxed CQ algorithm [50].

This parameters choices are arbitrary and valid theoretically, and here the goal is just

to illustrate the performance of the methods. Clearly in a real-world scenario, one

should have a deep investigation which involves intensive numerical simulations that

can guaranteed optimal and performances. We limit the iterations number to 1000 and

report the “Err” which is defined as ‖xn+1 − xn‖. We also report the the objective

function value (“Obj”).

Under certain condition on matrix A, the solution of the minimization problem (33)

is equivalent to the ℓ0-norm solution of the underdetermined linear system. For the

considered SCFP (1), we define C = {x ∈ R
k : ‖x‖1 ≤ t} and Q = {b}. Instead of

projecting onto the closed and convex set C (there exists no closed formula), we use

subgradient projection. So, define the convex function c(x) := ‖x‖1 − t and let Cn be

Table 1 Numerical results obtained by all 4 CQ variants with m = 120, n = 512

K -sparse signal Methods CPU time Obj. Err.

K = 10 Alg. [23] 0.422092 0.0011 0.0677

[40, Alg. 4.1.] 0.411590 0.0011 0.0677

Alg. [50] 0.149126 0.0014 0.1066

Alg. 1 0.021317 0.000765 0.00595

K = 20 Alg. [23] 0.455197 0.0045 0.1205

[40, Alg. 4.1.] 0.432794 0.0045 0.1205

Alg. [50] 0.130378 0.0083 0.2396

Alg. 1 0.0319960 0.00047 0.01128

K = 30 Alg. [23] 0.402821 0.0091 0.1261

[40, Alg. 4.1.] 0.406450 0.0091 0.1261

Alg. [50] 0.141216 0.0176 0.3529

Alg. 1 0.0235084 0.0108 0.01141
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defined by

Cn = {x ∈ R
k : c(wn) + 〈ξn, x − wn〉 ≤ 0},

where ξn ∈ ∂c(wn). It can be easily seen that the subdifferential ∂c at x ∈ R
k is

(defined element wise)

[∂c(x)]i =

⎧

⎨

⎩

1, xi > 0,

−1 or 1, xi = 0

−1, xi < 0.

Now, the orthogonal projection of a point x ∈ R
k onto Cn can be calculated by the

following,

PCn (x) =

{

x, c(wn) + 〈ξn, x − wn〉 ≤ 0,

x −
c(wn)+〈ξn ,x−wn〉

‖ξn‖2 ξn, otherwise.
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Fig. 1 The recovered sparse signal versus the original for the 4 CQ variants with m = 120, n = 512 and

K = 10
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Fig. 2 The recovered sparse signal versus the original for the 4 CQ variants with m = 120, n = 512 and

K = 20
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Fig. 3 The recovered sparse signal versus the original for the 4 CQ variants with m = 120, n = 512 and

K = 30
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Fig. 4 The objective function value for different values of {θn}∞n=1

In Table 1 we summarize the results and in Figs. 1, 2 and 3 we plot the exact K -

sparse signal against the recovered signals and the objective function values obtained

by the different methods. One can clearly see that the inertial term plays as a significant

role in achieving a better solution with respect to a lower objective value and CPU

time for the same number of iterations.

Next for K = 20 we illustrate the influence of the inertial parameter θ as it

approaches 1 as a function of μ → 0 (taken as 1
n

). In Fig. 4 we plot the value of

the objective function 1
2
‖Ax − b‖2

2 after 1000 iterations for any value of {θn}∞n=1 and

other parameters are chosen as above.

Example 4.2 In this example we wish to apply our algorithm to image deblurring prob-

lem. Given a convolution matrix A ∈ R
m×k and an unknown original image x ∈ R

k ,

we get b ∈ R
m , which is the known degraded observation. We also include unknown
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(a) Original (b) Blurred and
noisy image
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Fig. 5 Recovered images via the different algorithms
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Table 2 Execution time of the

different algorithms
Algorithms CPU time

[35, Alg. 1] 28.435

[40, Alg. 4.1.] 36.445

Alg. 1 24.2813

additive random noise v ∈ R
m and get the following image recovery problem.

Ax = b + v. (34)

This problem can clearly fits into the setting of SCFP with C = R
k , if no noise

is included in the observed image b then Q = {b} is a singleton and otherwise Q =

{y ∈ R
m | ‖y − (b + v)‖ ≤ ε} for small enough ε > 0.

We illustrate the effectiveness and performance of our proposed Algorithm 1 compared

with [40, Alg. 4.1.] and the very recent result of Padcharoen et al. [35, Alg. 1] which

is the inertial Tseng method. The test image is the Lenna image (https://en.wikipedia.

org/wiki/Lenna) which went through a 9×9 Gaussian random blur and random noise.

Clearly this problem’s structure differs from Example 4.1 but for simplicity we choose

for Algorithm 1 compared with [40, Alg. 4.1.] the same parameters settings and for

[35, Alg. 1] we choose the same choices as the authors did, that is, the inertial term

αn = 0.9 and the step size λn = 0.5− 150n
1000n+100

. In Figs. 5 (a)-(k) we report all results

that include the recovered images via the different algorithms, the difference between

successive iterations and the signal to noise ratio (SNR= 10 log
‖x‖2

2

‖x−xn‖2
2

) with respect

to the number of iterations.

The CPU time in seconds of the tested algorithms is reported in Table 2.

From Figs. 5 and Table 2 it can be seen that the inertial methods: Algorithm 1 and [35,

Alg. 1] generate reasonable and compatible results after only 30 iterations compared

with the non-inertial method [40, Alg. 4.1.]. The two major advantages of our proposed

Algorithm 1 compared with the other two algorithms is the higher SNR value and lower

CPU time for generating the recovered image.

5 Final remarks

In this paper, we give global convergence result for Split Convex Feasibility problem

using relaxed CQ method with alternated inertial extrapolation step. Our result extend

and generalize some existing results in the literature and the primary numerical results

indicate that our proposed method outperforms most existing relaxed CQ method for

solving SCFP.
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