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Abstract. We consider the recently proposed parallel variable distribution (PVD) algorithm of Ferris and
Mangasarian [4] for solving optimization problems in which the variables are distributed amongp processors.
Each processor has the primary responsibility for updating its block of variables while allowing the remaining
“secondary” variables to change in a restricted fashion along some easily computable directions. We propose
useful generalizations that consist, for the general unconstrained case, of replacing exact global solution of the
subproblems by a certain natural sufficient descent condition, and, for the convex case, of inexact subproblem
solution in the PVD algorithm. These modifications are the key features of the algorithm that has not been analyzed
before. The proposed modified algorithms are more practical and make it easier to achieve good load balanc-
ing among the parallel processors. We present a general framework for the analysis of this class of algorithms
and derive some new and improved linear convergence results for problems with weak sharp minima of order 2
and strongly convex problems. We also show that nonmonotone synchronization schemes are admissible, which
further improves flexibility of PVD approach.

Keywords: parallel optimization, asynchronous algorithms, load balancing, unconstrained minimization, linear
convergence

1. Introduction

We consider the general unconstrained optimization problem

min
x∈<n

f (x), (1)

where f :<n→<. We first state the original PVD algorithm [4]. Letx ∈ <n be partitioned
into p blocksx1, . . . , xp, such thatxl ∈ <nl ,

∑p
l=1 nl = n. These blocks of variables are

then distributed amongp parallel processors. Each processor has the primary responsibility
for updating its block of variables by solving the parallelization problem (see Algorithm 1
below). The remaining “secondary” variables are allowed to change in a restricted fashion
along some easily computable directions. The distinctive novel feature of this algorithm
is the presence of the “forget-me-not” termxi

l̄
+ Di

l̄
µl̄ in the parallel subproblems (2).
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National Science Foundation Grant CCR-9322479.



                 
P1: ICA

Computational Optimization and Applications KL384-01-Solodov January 7, 1997 17:33

166 SOLODOV

The presence of this term allows for a change in “secondary” variables. This makes PVD
fundamentally different from the block Jacobi [1], coordinate descent [20] and parallel
gradient distribution algorithms [10]. The directionsDi

l̄
are typically easily computable

steepest descent or quasi-Newton directions in the space of the corresponding variables.
The “forget-me-not” approach improves robustness and accelerates convergence of the
algorithm and is the key to its success. The parallelization phase is followed by a simple
synchronization step which picks up a point with the objective function value at least as
good as the smallest among all the new points computed by the parallel processors.

Algorithm 1 (PVD). Start with any x0 ∈ <n. Having xi , stop if∇ f (xi ) = 0. Otherwise,
compute xi+1 as follows:
(•) Parallelization: For each processor l∈ {1, . . . , p} compute(

yi
l , µ

i
l̄

) ∈ arg min
xl ,µl̄

ψ i
l (xl , µl̄ ) := f

(
xl , xi

l̄
+ Di

l̄
µl̄

)
. (2)

(•) Synchronization:Compute xi+1 such that

f (xi+1) ≤ min
l∈{1,...,p}

ψ i
l

(
yi

l , µ
i
l̄

)
. (3)

We will sometimes refer toxi as the base point at the(i + 1)-st iteration. In the above
algorithml̄ denotes the complement ofl in the set{1, . . . , p} andµl̄ ∈ <p−1. The matrix
Di

l̄
is annl̄ × (p−1) block diagonal matrix formed by placing the blocksdi

1, . . . ,d
i
p−1 (di

t ∈
<nt , t = 1, . . . , p−1) of an arbitrary directiondi ∈ <n along its block diagonal as follows:

Di
l̄

:=



di
1

di
2

. . .
di

l−1
di

l+1
. . .

di
p


In the original PVD algorithm the proposed synchronization step consists of minimizing the
objective function in the affine hull of all the points computed in parallel by thep processors.

In [4] it was shown that every accumulation point of the PVD iterates is a stationary point
of f (·) if an exact global solutionto subproblems (2) is computed at every iteration. It
was also established that, in the strongly convex case, the iterates converge to the problem
solution at a linear rate.

We point out that theglobal solutionrequirement in the general (nonconvex) case is im-
practical. In Section 3 we show that it is possible to get rid of this requirement by imposing
a certain sufficient descent condition instead. Section 3 also contains some new conver-
gence results for problems with weak sharp minima of order 2. We note that the original
requirement ofexact subproblem solutionis also undesirable. In Section 2 we describe an
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algorithm with inexact subproblem solution in the convex case and derive a sharper linear
convergence result than the one given in [4]. We emphasize that the sufficient descent
and inexact subproblem solution approaches provide a flexible framework that allows for
effective load balancing among the parallel processors. In Section 3 we also exhibit that
synchronization step can be combined with nonmonotone stabilization schemes, if needed.

One of the keys to our analysis is imposing certain reasonable conditions on the choice
of directions for the change in secondary variables. The choice of those directions is very
important for the success of the PVD approach. This fact was empirically observed in [4]. It
can also be vividly illustarted by theoretical considerations for the constrained optimization
problems [19].

We briefly describe our notation now. The usual inner product of two vectorsx ∈<n,
y∈<n is denoted by〈x, y〉. The Euclidean 2-norm ofx ∈<n is given by‖x‖2 = 〈x, x〉.
The closed unit ball in<n is denoted byB := {x ∈<n | ‖x‖≤1}. For a nonempty (closed)
setX⊂<n, d(·, X) denotes the Euclidean distance to the setX. For a real-valued matrixA
of any dimension,A> denotes its transpose. For a differentiable functionf : <n→ <,∇ f
will denote then-dimensional vector of partial derivatives with respect tox, and∇l f will de-
note thenl -dimensional vector of partial derivatives with respect toxl ∈<nl , l = 1, . . . , p.
If a function f (·) has Lipschitz continuous partial derivatives on<n with some constant
L > 0, that is

‖∇ f (y)−∇ f (x)‖ ≤ L‖y− x‖ ∀x, y∈<n,

we write f (·) ∈ C1
L(<n). By R-linear convergence andQ-linear convergence, we mean

linear convergence in the root sense and in the quotient sense, respectively, as defined in [13].
We now state a classical lemma ([16], p. 6), as well as another lemma (a slight modifi-

cation of [16], p. 44) that will be used later.

Lemma 1. Letϕ(·) ∈ C1
L(<n), then

|ϕ(y)− ϕ(x)− 〈∇ϕ(x), y− x〉| ≤ L

2
‖y− x‖2 ∀x, y ∈ <n.

Lemma 2. Let {ai } and {ε i } be two sequences of real numbers such thatε i ≥ 0,∑∞
i=0 ε

i <∞, and ai+1≤ai + ε i for i = 0, 1, . . . . It follows that either the sequence
{ai } is unbounded below, or it converges.

2. PVD with inexact subproblem solution

In this section we propose a computationally important modification of the PVD algorithm
in which the subproblems (2) in the Algorithm 1 are solved approximately. It is clear
that in practice insisting on exact solution of those subproblems is undesirable, and often
unrealistic. Even when it is possible to compute these solutions accurately, it can be wasteful
doing so, especially in the initial stages of the minimization process.

Our results show that there is no need to wait until exact solutions to all the subproblems
are found (which can result in considerable idle times for processors that have already
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completed their work). Instead, we can accept the current approximations to solutions of
the subproblems and proceed to the synchronization step, provided those approximations
are reasonably good. This approach is more robust and allows for flexible synchronization
schemes thus making it easier to achieve good load balancing among the parallel processors.
In particular, we show that we can solve the subproblems to withinε-stationarity(see (5)),
and yet guarantee the linear convergence rate iff (·) is strongly convex. The tolerance for
an l -th parallel subproblem depends linearly on the the norm of the corresponding portion
of the gradient at the current base point (see (5) and (10)).

By making an explicit use of the “forget-me-not” terms in the subproblems, we also
improve on the linear convergence result given in [4]. In [4] it is established that, for the
strongly convex case, the following estimate is valid

‖xi − x̄‖ ≤ c1

(
1− c2

p

)i
2

,

where x̄ is the (unique) solution of the problem,p is the number of parallel processors,
andc1, c2 are positive constants. This result is not quite satisfactory because the presense
of p in the denominator suggests that the convergence speed goes down as the number of
processors used increases. We point out that the proof given in [4] fails to make use of the
“forget-me-not” terms which are the key to the algorithm. By refining the proof, we obtain
a better convergence speed estimate

‖xi − x̄‖ ≤ c1 (1− c3)
i
2 ,

wherec3 > 0 does not depend onp. Therefore convergence speed of the algorithm does not
deteriorate as the number of processors used increases, provided certain natural conditions
are imposed on the “forget-me-not” terms.

We consider the following algorithm.

Algorithm 2. Start with any x0∈<n. Having xi , stop if∇ f (xi )= 0. Otherwise, compute
xi+1 as follows:
(•) Parallelization: For each processor l∈ {1, . . . , p} compute(yi

l , µ
i
l̄
) as anεi,l -approxi-

mate solution(see(5)) of

min
xl ,µl̄

ψ i
l (xl , µl̄ ) := f

(
xl , xi

l̄
+ Di

l̄
µl̄

)
.

(•) Synchronization:Compute xi+1 such that

f (xi+1) ≤ min
l∈{1,...,p}

ψ i
l

(
yi

l , µ
i
l̄

)
. (4)

To make the parallelization step precise, we say that the current approximation to the
solution of a subproblem is admissible if it belongs to anε-stationary set [18] of this
subproblem. The parallelization subproblems are therefore equivalent to computing a point(

yi
l , µ

i
l̄

) ∈ Xl ,i
s (εi,l ) := {(xl , µl̄ ) ∈ <nl+p−1

∣∣ ∥∥∇ψ i
l (xl , µl̄ )

∥∥ ≤ εi,l
}
. (5)
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We first establish some preliminary results. LetAi
l be ann× (nl + p−1)matrix defined by

Ai
l =

(
Il 0

0 Di
l̄

)
,

whereIl is annl × nl identity matrix. We assume that every blockdi
t of Di

l̄
is normalized,

that is‖di
t ‖ = 1, t = 1, . . . , p. Then for anyy ∈ <nl+p−1 we have

∥∥Ai
l y
∥∥2 =

nl∑
j=1

y2
j +

nl+p−1∑
j=nl+1

y2
j

∥∥di
j

∥∥2

=
nl+p−1∑

j=1

y2
j

= ‖y‖2, (6)

where the first equality follows from the block diagonal structure ofDi
l̄
. Hence‖Ai

l ‖ =
‖(Ai

l )
>‖ = 1.

Lemma 3. If f (·)∈C1
L(<n) thenψ i

l (·, ·)∈C1
L(<nl+p−1) for any i= 0, 1, . . . and l =

1, . . . , p.

Proof: Note that

∇ψ i
l (xl , µl̄ ) =

( ∇l f
(
xl , xi

l̄
+ µl̄ D

i
l̄

)(
Di

l̄

)>∇l̄ f
(
xl , xi

l̄
+ µl̄ D

i
l̄

))
= (Ai

l

)>∇ f
(
xl , xi

l̄
+ Di

l̄
µl̄

)
(7)

For any(xl , µl̄ ), (zl , νl̄ ) ∈ <nl+p−1 we have∥∥∇ψ i
l (xl , µl̄ )−∇ψ i

l (zl , νl̄ )
∥∥ = ∥∥(Ai

l

)>(∇ f
(
xl , xi

l̄
+ Di

l̄
µl̄

)−∇ f
(
zl , xi

l̄
+ Di

l̄
νl̄

))∥∥
≤ ∥∥(Ai

l

)>∥∥∥∥∇ f
(
xl , xi

l̄
+ Di

l̄
µl̄

)−∇ f
(
zl , xi

l̄
+ Di

l̄
νl̄

)∥∥
≤ L

∥∥∥∥Ai
l

(
xl − zl

µl̄ − νl̄

)∥∥∥∥
= L‖(xl , µl̄ )− (zl , νl̄ )‖,

where the second inequality follows from the fact that‖(Ai
l )
>‖=1, and f (·) ∈ C1

L(<n);
the last equality follows from (6). We thus established thatψ i

l (·, ·) ∈ C1
L(<nl+p−1), for all

l = 1, . . . , p, i = 0, 1, . . . . 2

Lemma 4. If f (·) is strongly convex with modulusθ > 0 thenψ i
l (·, ·) is strongly convex

with modulusθ > 0 for any i = 0, 1, . . . and l = 1, . . . , p.
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Proof: Making use of (7), we have〈∇ψ i
l (xl , µl̄ )−∇ψ i

l (zl , νl̄ ), (xl , µl̄ )− (zl , νl̄ )
〉

= ((
Ai

l

)>(∇ f
(
xl , xi

l̄
+ Di

l̄
µl̄

)−∇ f
(
zl , xi

l̄
+ Di

l̄
νl̄

)))>(xl − zl

µl̄ − νl̄

)
= (∇ f

(
xl , xi

l̄
+ Di

l̄
µl̄

)−∇ f
(
zl , xi

l̄
+ Di

l̄
νl̄

))>
Ai

l

(
xl − zl

µl̄ − νl̄

)
= (∇ f

(
xl , xi

l̄
+ Di

l̄
µl̄

)−∇ f
(
zl , xi

l̄
+ Di

l̄
νl̄

))>( xl − zl

Di
l̄
(µl̄ − νl̄ )

)
≥ θ

∥∥∥∥( xl − zl

Di
l̄
(µl̄ − νl̄ )

)∥∥∥∥2

= θ

∥∥∥∥Ai
l

(
xl − zl

µl̄ − νl̄

)∥∥∥∥2

= θ‖(xl , µl̄ )− (zl , νl̄ )‖2,

where the inequality follows from strong convexity off (·), and the last equality follows
from (6). Henceψ i

l (·, ·) is strongly convex with modulusθ . 2

For simplicity of presentation, from now on we assume that

di
t =

∇t f (xi )

‖∇t f (xi )‖ , t = 1, . . . , p.

For this choice of directions, we have

(
Ai

l

)>∇ f (xi ) =



∇l f (xi )〈
di

1,∇1 f (xi )
〉

...〈
di

l−1,∇l−1 f (xi )
〉〈

di
l+1,∇l+1 f (xi )

〉
...〈

di
p,∇p f (xi )

〉


=



∇l f (xi )

‖∇1 f (xi )‖
...

‖∇l−1 f (xi )‖
‖∇l+1 f (xi )‖

...

‖∇p f (xi )‖


.

Hence, by (7),∥∥∇ψ i
l

(
xi

l , 0
)∥∥ = ∥∥(Ai

l

)>∇ f (xi )
∥∥

= ‖∇ f (xi )‖. (8)

The latter property enables us to explicitly relate solutions of the parallel subproblems (2)
to the progress being made towards solving the original problem (1). This is the key to our
generalizations as well as improved convergence results.
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We note that instead of the scaled gradient directions we could take any other directions
satisfying the natural conditions∣∣〈di

t ,∇t f (xi )
〉∣∣ ≥ σt (‖∇t f (xi )‖), t = 1, . . . , p,

whereσt (·) are forcing functions (see [13], p. 479). Depending on the particular forcing
functions, some arguments in the subsequent analysis may need to be changed.

We finally state a useful lemma which is the basis for devising algorithms with inexact
subproblem solution in the convex case. This result is a simplification of [18] Lemma 2.4
for smooth unconstrained case. We include the simplified proof for completeness.

Lemma 5. Letϕ(·) be convex and differentiable. Let x∗ ∈ Xs := arg minx∈<n ϕ(x) and
x ∈ Xs(ε) := {x ∈ <n | ‖∇ϕ(x)‖ ≤ ε}, ε ≥ 0. Then

ϕ(x)− ϕ(x∗) ≤ εd(x, Xs).

If ϕ(·) is strongly convex with modulusθ > 0, then

ϕ(x)− ϕ(x∗) ≤ ε2

2θ
.

Proof: Let x ∈ Xs(ε) andx∗ be the orthogonal projection ofx onto Xs. By convexity of
ϕ(·), we have

ϕ(x)− ϕ(x∗) ≤ 〈−∇ϕ(x), x∗ − x〉
≤ ‖∇ϕ(x)‖‖x − x∗‖
≤ εd(x, Xs).

For the second assertion, just note that ([16], p. 24) for anyx ∈ <n

2θ(ϕ(x)− ϕ(x∗)) ≤ ‖∇ϕ(x)‖2.

The proof is complete. 2

We are now ready to prove our main results.

Theorem 1. Suppose f(·) is strongly convex with modulusθ > 0 and f(·) ∈ C1
L(<n). If

∞∑
i=0

max
l∈{1,...,p}

ε2
i,l <∞, (9)

then every sequence{xi } generated by Algorithm2 converges to the solution̄x of (1).
Moreover, if

εi,l ≤ β‖∇l f (xi )‖, 0≤ β <
√
θ

L
(10)
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then{xi } converges tōx R-linearly:

‖xi − x̄‖ ≤
(

2

θ
( f (x0)− f (x̄))

)1
2
(

1− θ(θ − Lβ2)

L2

)i
2

.

Proof: For any iterationi = 0, 1, . . .and any processorl = 1, . . . , p, by (5) and Lemma 5,
we have that

ψ i
l

(
yi

l , µ
i
l̄

) ≤ ψ̄ i
l +

ε2
i,l

2θ
, (11)

whereψ̄ i
l is the exact optimal value of the corresponding subproblem. Define an auxiliary

point

<nl+p−1 3 (zi
l , ν

i
l̄

)
:= (xi

l , 0
)− 1

L
∇ψ i

l

(
xi

l , 0
)
.

We further obtain

f (xi )− f
(
yi

l , xi
l̄
+ Di

l̄
µi

l̄

) = ψ i
l

(
xi

l , 0
)− ψ i

l

(
yi

l , µ
i
l̄

)
≥ ψ i

l

(
xi

l , 0
)− ψ̄ i

l −
ε2

i,l

2θ

≥ ψ i
l

(
xi

l , 0
)− ψ i

l

(
zi

l , ν
i
l̄

)− ε2
i,l

2θ

≥ 1

2L

∥∥∇ψ i
l

(
xi

l , 0
)∥∥2− ε

2
i,l

2θ

= 1

2L
‖∇ f (xi )‖2− ε

2
i,l

2θ
, (12)

where the first inequality follows from (11), the third inequality from Lemma 1, and the
last equality from (8). By (4), we have

f (xi )− f (xi+1) ≥ f (xi )− f
(
yi

l , xi
l̄
+ Di

l̄
µi

l̄

)
≥ 1

2L
‖∇ f (xi )‖2− 1

2θ
max

l∈{1,...,p}
ε2

i,l . (13)

From (13) we have

f (xi+1) ≤ f (xi )+ 1

2θ
max

l∈{1,...,p}
ε2

i,l .

Note that, by strong convexity off (·), the sequence{ f (xi )} is bounded below. Hence,
by Lemma 2 and (9), it follows that the sequence{ f (xi )} converges. Therefore{ f (xi ) −
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f (xi+1)} → 0. Since, by (9),

lim
i→∞

max
l∈{1,...,p}

ε2
i,l = 0,

we conclude from (13) that{‖∇ f (xi )‖} → 0. Sincex̄, the solution of (1), is the unique
stationary point, it follows that{xi } converges tōx.

If (10) holds, then from (12) we obtain

f (xi )− f (xi+1) ≥ 1

2L
‖∇ f (xi )‖2− β

2

2θ
‖∇l f (xi )‖2

≥ 1

2L
‖∇ f (xi )‖2− β

2

2θ
‖∇ f (xi )‖2

= θ − Lβ2

2Lθ
‖∇ f (xi )‖2, (14)

where the second inequality follows from monotonicity of the 2-norm. Note that by (10),
θ−Lβ2

2Lθ > 0. The rest of the proof is standard. By Lemma 1, it follows that

L

2
‖xi − x̄‖2 ≥ f (xi )− f (x̄)− 〈∇ f (x̄), xi − x̄〉

= f (xi )− f (x̄) (15)

By the Cauchy-Schwartz inequality and strong convexity off (·), it follows that

‖∇ f (xi )‖‖xi − x̄‖ = ‖∇ f (xi )−∇ f (x̄)‖‖xi − x̄‖
≥ 〈∇ f (xi )−∇ f (x̄), xi − x̄〉
≥ θ‖xi − x̄‖2.

Hence

‖∇ f (xi )‖ ≥ θ‖xi − x̄‖.

Combining the last inequality with (14), we obtain

f (xi )− f (xi+1) ≥ θ(θ − Lβ2)

2L
‖xi − x̄‖2.

This together with (15) yields

f (xi )− f (xi+1) ≥ θ(θ − Lβ2)

L2
( f (xi )− f (x̄)).

Rearranging terms gives

f (xi+1)− f (x̄) ≤
(

1− θ(θ − Lβ2)

L2

)
( f (xi )− f (x̄)).
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Hence the sequence{ f (xi )} convergesQ-linearly. Successive application of the last
inequality yields

f (xi )− f (x̄) ≤
(

1− θ(θ − Lβ2)

L2

)i

( f (x0)− f (x̄)).

By strong convexity off (·), we have

θ

2
‖xi − x̄‖2 ≤ f (xi )− f (x̄)− 〈∇ f (x̄), xi − x̄〉

= f (xi )− f (x̄).

Hence the sequence{xi } convergesR-linearly. In particular, we have

‖xi − x̄‖ ≤
(

2

θ
( f (xi )− f (x̄))

)1
2

,

and

‖xi − x̄‖ ≤
(

2

θ
( f (x0)− f (x̄))

)1
2
(

1− θ(θ − Lβ2)

L2

) i
2

.

This completes the proof. 2

For the convex case, we have the following result.

Theorem 2. Suppose f(·) is convex and f(·) ∈ C1
L(<n). LetL( f, x0) := {x | f (x) ≤

f (x0)}. SupposeL( f, x0) ⊂ x0+ r B, r > 0. If

εi,l ≤ β‖∇l f (xi )‖2, 0≤ β < 1

2Lr
,

or

∞∑
i=0

max
l∈{1,...,p}

εi,l <∞,

then every accumulation point of any sequence{xi } generated by Algorithm2 is a solution
of (1).

Proof: First note that under our assumptionsL( f, x0) is bounded and henceXs is nonempty.
Furthermore, for alli

d(xi , Xs) ≤ r.
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Applying Lemma 5, similarly to the proof of Theorem 1, we obtain

f (xi )− f (xi+1) ≥ 1

2L
‖∇ f (xi )‖2− r εi,l .

The rest of the proof can be patterned after that of Theorem 1. 2

3. PVD with a sufficient descent condition

In this section, we present a practical version of the PVD algorithm for the general (non-
convex) case. In particular, we show that there is no need to find an exact global solution
for the subproblems. Any point that satisfies a natural sufficient descent condition can be
accepted for the next iteration. We note, in the passing, that the proof given in [4] makes
use of exact global solutions in an essential way and breaks down if, for example, only
stationary points in the subproblems are available. We further point out that a certain de-
gree of asynchronization among thep parallel processors is possible by allowing each of
the p processors to take as many steps as desired by individually updating its base point.
Synchronization can be performed at any time provided every processor has achieved the
sufficient descent condition. Furthermore, we show that synchronization step need not be
monotone and can be combined with nonmonotone stabilization schemes similar to [6].

We also derive some new convergence results for weakly sharp problems of order 2 (see
Definition below). This class of problems can be viewed as a generalization of strongly
convex problems and a certain unconstrained smooth analogue of weak sharp minima [2].

We begin by imposing a natural sufficient descent condition on an algorithm (Algorithm
A below) used to solve the subproblems (2) generated by the PVD Algorithm 1.

Algorithm A. Given any functionϕ(·) ∈ C1
L(<m)and any starting point t0 ∈ <m generate

a point t∗ ∈ <m such that

ϕ(t0) ≥ ϕ(t∗)+ γ ‖∇ϕ(t0)‖2, (16)

whereγ > 0 depends on L and does not depend on t0.

Note that the above condition is satisfied by a single iteration of any reasonable descent
algorithm [16], [10] applied to the problem of minimizingϕ(·) with t0 as a starting point.
Hence it is also satisfied for a minimum or a stationary point computed by some descent
algorithm provided it usest0 as a starting point.

We now state our new PVD algorithm.

Algorithm 3. Start with any x0∈<n. Having xi , stop if∇ f (xi )= 0. Otherwise, compute
xi+1 as follows:
(•) Parallelization: for each processor l∈ {1, . . . , p} generate(yi

l , µ
i
l̄
) by applying

Algorithm A one or more times to the problem

min
xl ,µl̄

ψ i
l (xl , µl̄ ) := f

(
xl , xi

l̄
+ Di

l̄
µl̄

)
(17)

using(xi
l , 0) as the first starting point.
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(•) Synchronization:Compute xi+1 such that

f (xi+1) ≤ max
l∈{1,...,p}

ψ i
l

(
yi

l , µ
i
l̄

)+ λγ ‖∇ f (xi )‖2, (18)

whereλ ∈ (0, 1).

Note that once the sufficient descent condition (16) with respect tof (xi ) = ψ i
l (x

i
l , 0) is

satisfied, each processor can independently update its base point, generate new directions
Di

l̄
and proceed to find a point with better objective function value. After these parallel

steps are performed by each processor then an eventual synchronization step is taken. Note
that our synchronization step may increase rather than decrease the objective function when
compared to the values obtained by the parallel processors. This provides the algorithm with
more flexibility and is known to be sometimes useful in nonlinear nonconvex optimization
[5, 6]. Of course, only computational experiments can give an insight into the usefulness
of nonmonotone synchronization schemes for PVD algorithms.

We next introduce a notion of weak sharp minima of order 2 which allows us to strengthen
some of the traditional convergence results.

Definition. We say that a set of (local) minimaXs is weakly sharp of order 2 if there exist
positive constantsρ andε such that

f (x)− f ([x]+) ≥ ρd(x, Xs)
2 ∀x ∈ Xs + εB, (19)

where [·]+ denotes the orthogonal projection map ontoXs.

The class of problems with weak sharp minima of order 2 can be thought of as a certain
unconstrained smooth analogue of weak sharp minima (of order 1) [16, 2]. Note that it
subsumes strongly convex programs. Letf (·) be strongly convex with modulus 2ρ. Then
its unique optimal point̄x is globally (withε = ∞) weakly sharp of order 2. This can be
easily verified as follows. By strong convexity, for anyx ∈ <n

f (x)− f (x̄) ≥ 〈∇ f (x̄), x − x̄〉 + 2ρ

2
‖x − x̄‖2

= ρ‖x − x̄‖2
= ρd(x, Xs)

2.

Hence the growth property off (·) (near the solution set) in the above Definition is a
generalization of strong convexity. It is clear that there exist functions with weak sharp
minima of order 2 which are not strongly convex (or even convex) in any neighborhood of
their solution sets. One example is

f (x) := (x2
1 + x2

2 − 1
)2
, x ∈ <2.
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The stationary set of this function is

Xs =
{
x
∣∣ x2

1 + x2
2 = 1

} ∪ {(0, 0)} := X1
s ∪ X2

s

with X1
s being the set of minima. It is easy to see thatX1

s is a set of weak sharp minima of
order 2 (withρ = 1 andε = 1/2). Indeed, for anyx ∈ X1

s + 1
2 B

d
(
x, X1

s

)2 = ∣∣1− (x2
1 + x2

2

)∣∣2
= (x2

1 + x2
2 − 1

)2
= f (x)− f (x̄) ∀x̄ ∈ X1

s.

Obviously, even locally (in any neighborhood ofX1
s) f (·) in this example is neither strongly

convex nor convex. However, we are able to strengthen standard convergence results for
problems of this class (see Theorem 3 below). As an aside, we note thatX2

s = {(0, 0)}
is a set of weak sharp maxima in the sense of the same definition (with the sign of the
left-hand-side of (19) reversed).

A remark in the end of this section contains further examples of problems with weak
sharp minima of order 2.

Theorem 3. Let f(·) ∈ C1
L(<n). Suppose{xi } is any sequence generated by Algorithm3.

Then either f(·) is unbounded from below on<n or the sequence{ f (xi )} converges, the
sequence{∇ f (xi )} converges to zero and for every accumulation pointx̄ of the sequence
{xi } it follows that∇ f (x̄) = 0.

Suppose the sequence{xi } is bounded(this holds, for example, if the level setL( f, x0) :=
{x | f (x) ≤ f (x0)} is bounded). Let the subset Xs of stationary points of f(·) that contains
accumulation points of{xi } be a set of weak sharp minima of order2, and let(19) hold with
ρ > L/2. Then the sequence{ f (xi )} converges Q-linearly, and the sequences{∇ f (xi )}
and{d(xi , Xs)} converge to zero R-linearly.

Proof: By Lemma 3, for any iterationi = 0, 1, . . . and any processorl = 1, . . . , p,
ψ i

l (·, ·) ∈ C1
L(<nl+p−1) (with the sameL). By (16) and (8), it follows that

ψ i
l

(
xi

l , 0
)− ψ i

l

(
yi

l , µ
i
l̄

) ≥ γ ∥∥∇ψ i
l

(
xi

l , 0
)∥∥2

= γ ‖∇ f (xi )‖2.

Since the last inequality holds for alll = 1, . . . , p, we have

f (xi )− max
l∈{1,...,p}

ψ i
l

(
yi

l , µ
i
l̄

) ≥ γ ‖∇ f (xi )‖2.

Hence, by the synchronization step (18),

f (xi )− ( f (xi+1)− λγ ‖∇ f (xi )‖2) ≥ γ ‖∇ f (xi )‖2
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and

f (xi )− f (xi+1) ≥ (1− λ)γ ‖∇ f (xi )‖2. (20)

We immediately conclude that{ f (xi )} is a monotonically nonincreasing sequence. If this
sequence is bounded from below then it converges. In the latter case,{ f (xi )− f (xi+1)} →
0 and consequently{∇ f (xi )} → 0. Hence, by continuity of∇ f (·), if there exist accumu-
lation points of{xi }, all of them are stationary points off (·).

Suppose now the sequence{xi } is bounded. The preceding discussion immediately
implies that the set of stationary points off (·) is nonempty. Denote byXs its subset that
contains accumulation points of{xi }. Clearly,{d(xi , Xs)} → 0. Hencexi ∈ Xs+ εB for i
sufficiently large, sayi ≥ i0. SupposeXs is weakly sharp of order 2. Then (19) is satisfied
for all i ≥ i0.

By Lemma 1,

f (xi )− f ([xi ]+) ≤ 〈∇ f (xi ), xi − [xi ]+〉 + L

2
‖xi − [xi ]+‖2

= 〈∇ f (xi ), xi − [xi ]+〉 + L

2
d(xi , Xs)

2,

where [·]+ denotes the orthogonal projection ontoXs. Hence for alli ≥ i0, by (19), we
obtain

〈∇ f (xi ), xi − [xi ]+〉 ≥ f (xi )− f ([xi ]+)− L

2
d(xi , Xs)

2

≥ f (xi )− f ([xi ]+)− L

2ρ
( f (xi )− f ([xi ]+))

=
(

1− L

2ρ

)
( f (xi )− f ([xi ]+)), (21)

By the Cauchy-Schwartz inequality and (19), we further obtain

‖∇ f (xi )‖d(xi , Xs) ≥ 〈∇ f (xi ), xi − [xi ]+〉
≥
(

1− L

2ρ

)
( f (xi )− f ([xi ]+))

≥ ρ
(

1− L

2ρ

)
d(xi , Xs)

2.

Hence

‖∇ f (xi )‖ ≥ ρ
(

1− L

2ρ

)
d(xi , Xs). (22)
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By (22), the Cauchy-Schwartz inequality and (21) we have

‖∇ f (xi )‖2 ≥ ‖∇ f (xi )‖ρ
(

1− L

2ρ

)
d(xi , Xs)

≥ ρ
(

1− L

2ρ

)
〈∇ f (xi ), xi − [xi ]+〉

≥ ρ
(

1− L

2ρ

)2

( f (xi )− f ([xi ]+)) (23)

Combining (20) and (23) gives

f (xi )− f (xi+1) ≥ γ (1− λ)‖∇ f (xi )‖2

≥ γρ(1− λ)
(

1− L

2ρ

)2

( f (xi )− f ([xi ]+)).

Rearranging terms, we obtain

f (xi+1)− f ([xi ]+) ≤
(

1− γρ(1− λ)
(

1− L

2ρ

)2)
( f (xi )− f ([xi ]+)).

We already established that the sequence{ f (xi )} converges. Let̄f := lim i→∞ f (xi ). Since
all accumulation points of the sequence{xi } belong to the setXs and{xi } is bounded, it
follows that accumulation points of the sequences{xi } and{[xi ]+} are the same. Therefore,
by continuity of f (·), we obtain

lim
i→∞

f ([xi ]+) = lim
i→∞

f (xi ) = f̄ .

BecauseXs is a set of (local) minima and [xi ]+ ∈ Xs, it must be the case thatf ([xi ]+) = f̄
for all i sufficiently large, sayi ≥ i1. Therefore, fori ≥ max{i0, i1}, we obtain

f (xi+1)− f̄ ≤
(

1− γρ(1− λ)
(

1− L

2ρ

)2)
( f (xi )− f̄ ).

Hence the sequence{ f (xi )} convergesQ-linearly. By (20), the sequence{∇ f (xi )} con-
vergesR-linearly to zero. Also, by (19), the sequence{d(xi , Xs)} convergesR-linearly to
zero. 2

Remark. At this time, it is an open question whether the sequence{xi } itself converges
linearly under the assumptions of Theorem 3. Note that if we had a serial gradient descent
method where

xi+1− xi = −ηi∇ f (xi )
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with the sequence of stepsizes{ηi } uniformly bounded away from zero, then the linear
convergence rate of{xi+1 − xi } (and hence also of{xi }) would immediately follow from
the linear convergence of{∇ f (xi )}. The difficulty with the parallel algorithm is that we
cannot explicitly relate{∇ f (xi )} to {xi+1− xi }.

Careful re-examination of the proof of Theorem 3 shows that at the(i + 1)-st itera-
tion every parallel processor decreases the objective functionf (·) of the original problem
by a factor of‖∇ f (xi )‖2 (this at least is true under our assumptions on the directions
di

t , t = 1, . . . , p). Hence if the processors were to proceed with updating their base points
completely independently without using any information from the other processors, we
could still guarantee the same convergence results for each of thep sequences of iterates
generated. Of course, this approach essentially yieldsp serial processes and therefore is a
theoretical extreme. This observation is however of significance because it implies that we
are allowed a lot of flexibility in devising PVD algorithms and, in particular, in defining the
points of synchronization.

Remark. A practically important example of weak sharp minima of order 2 is provided
by the implicit Lagrangian reformulation [12] of the nonlinear complementarity problem.

Consider the following nonlinear complementarity problem [3, 15] (NCP) of finding an
x ∈ <n such that

F(x) ≥ 0, x ≥ 0, 〈x, F(x)〉 = 0,

whereF : <n → <n is a continuously differentiable mapping. In [12] it was established
that the NCP can be solved via (smooth) unconstrained minimization of the following
implicit Lagrangian function:

M(x, α) := 2α〈x, F(x)〉 + ‖[x − αF(x)]+‖2− ‖x‖2
+‖[F(x)− αx]+‖2− ‖F(x)‖2,

whereα > 1 and [·]+ denotes the orthogonal projection onto the nonnegative orthant<n
+.

In particular, the implicit Lagrangian is nonnegative everywhere in<n and assumes the
value of zero precisely at the solutions of the NCP.

In [8] it was established that

2(α − 1)‖r (x)‖2 ≤ M(x, α) ≤ 2α(α − 1)‖r (x)‖2, ∀x ∈ <n,

wherer (x) := x − [x − F(x)]+. Therefore the set of solutionsXs of the NCP is a set
of weak sharp minima of order 2 for the implicit Lagrangian whenever the projection-type
error bound holds:

d(x, Xs) ≤ ρ‖r (x)‖ ∀x with ‖r (x)‖ ≤ ε,
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whereρ andε are positive constants (independent ofx). This error bound is known to
hold whenF(·) is affine (see [9, 17]) orF(·) has certain strong monotonicity structure (see
[21], Theorem 2). Moreover, under additional assumptions onF(·), this condition holds
globally with ε = ∞ (see [7, 8, 11, 14]).

Therefore our analysis shows that certain unconstrained minimization techniques applied
to minimizing the implicit Lagrangian attain linear rate of convergence (under certain
conditions). This is an interesting result given that the implicit Lagrangian is not known to
be strongly convex in any neighborhood of its zero minima.

4. Concluding remarks

New parallel variable distribution algorithms with inexact subproblem solution and with
a certain natural sufficient descent condition imposed on the parallel subproblems were
proposed and analyzed. The modified algorithms present a flexible framework and make
it easier to achieve good load balancing among the parallel processors. New and improved
linear convergence results were derived for strongly convex problems and problems with
weak sharp minima of order 2. A study of partially asynchronous distributed algorithms
[1] that make use of PVD approach can be an interesting subject of future research.
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