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Abstract—The cognitive interference channel is an interference cannot interfere with the users in neighboring lots. The-con
channel in which one transmitter is non-causally provided vith  stant increase of wireless services has led to a situati@ravh
the message of the other transmitter. This channel model has ey, services have a difficult time obtaining spectrum liesps
been extensively studied in the past years and capacity relsi . . L
for certain classes of channels have been proved. In this pep and thus canpot be accommodate_d V_V'thO,Ut discontinuing, or
we present new inner and outer bounds for the capacity region evoking, the licenses of others. This situation has beenete
of the cognitive interference channel as well as new capagit “spectrum gridlock” [4] and is viewed as one of the factors
results. Previously proposed outer bounds are expressed terms  in preventing the emergence of new services and technalogie

of auxiliary random variables for which no cardinality constraint by entities not already owning significant spectrum licsnse
is known. Consequently it is not possible to evaluate such ter )

bounds explicitly for a given channel model. The outer bound [N recentyears, several strategies for overcoming this-spe
we derive is based on an idea originally devised by Sato for trum gridlock have been proposed [4]. In particular, collab
the broadcast channel and does not contain auxiliary random oration among devices and adaptive transmission strategie
variables, allowing it to be more easily evaluated. The inme gre envisioned to overcome this spectrum gridlock. That is,

bound we derive is the largest known to date and is explicitly smart and well interconnected devices may cooperashase
shown to include all previously proposed achievable rate igons. . . .
This comparison highlights which features of the transmis®n frequencyz time and resources to communicate more efﬂ.;uent
scheme—which includes rate-splitting, superposition cddg, a and effectively. The role of information theory in this seeio
broadcast channel-like binning scheme, and Gel'fand Pinglr s to determine ultimate performance limits of a collabiogt
coding-are most effective in approaching capacity. We next network. Given the complexity of this task in its fullest

present new capacity result for a class of discrete memoryds o0 ajity researchers have focussed on simpler modets wi
channels that we term the “better cognitive decoding regimé

which includes all previously regimes in which capacity was idealized assumptions. _ _ .
known. Finally, we determine the capacity region of the semi One of the most well studied and simplest collaborative

deterministic cognitive interference channel, in which te signal models is the genie aided cognitive interference channel.
at the cognitive receiver is a deterministic function of thechannel  This channel is similar to the classical interference clenn
Nputs. two senders wish to send information to two receivers. Each
transmitter has one intended receiver forming two trartemit
receiver pairs termed the primary and secondary (or cogni-
tive) pairs/users. Over the channel each transmitted mgessa

The rapid advancement of wireless technology in the pdsterferes with the other, creating undesired interfeeent
years has started what some commentators call the “wirel#3¢ intended receiver. This channel model differs from the
revolution” [3]. This revolution envisions a world where en classical interference channel in the assumptions madet abo
can access telecommunication services on a global scdie wthe ability of the transmitters to collaborate: collabarat
out the deployment of local infrastructure. By increasihg t @among transmitters is modeled by the idealized assumption
adaptability, communication and cooperation capabdlitid that the secondary (cognitive) transmitter has full a4prio
wireless devices, it may be possible to realize this reimut (0r non-causal) knowledge of the primary message. This
Presently, the frequency spectrum is allocated to differedSSumption is referred to as genie aided cognitidhe model
entities by dividing it into licensed lots. Licensed useavd Was firstly posed from an information theoretic perspective
exclusive access to their licensed frequency lot or band aifid[5], where the channel was formally defined and the first

achievable rate region was obtained, demonstrating that a
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than the classical interference channel. [5] also presants « A new outer bound for the capacity region is presented
outer bound for the Gaussian channel based on the broadcast in Section 1V: this outer bound is looser than previously
channel; another outer bound was derived in [6], together derived outer bounds but it does not include auxiliary
with the first capacity result for a class of channels termed random variables and thus it can be more easily evaluated.
“very weak interference” in which (in Gaussian noise) timgt o In Section V we present a new inner bound.
interference at the primary receiver as noise is optimaké Th « We show that the newly derived region encompasses all
same achievable rate region was simultaneously derived in previously presented regions in Section VI.
[7], where the authors further characterized the maximus ra « We derive the capacity region of the cognitive interfer-
achievable by the cognitive user without degrading the rate ence channel in the “better cognitive decoding” regime
achievable by the primary user. Another capacity result was in Section VII: this regime includes the “very weak
proved in [8] for the so-called “very strong interference&a interference” and the “very strong interference” regimes
where, without loss of optimality, both receivers can decod  and is thus the largest set of channels for which capacity
both messages. The capacity is also known for the case where is known.
the cognitive user decodes both messages [9] with and withoue Section VIII focuses on the semi-deterministic cognitive
confidentiality constraints. interference channel in which the output at the cognitive
However, the capacity region of the cognitive interference receiver is a deterministic function of the channel inputs.
channel, both for discrete memoryless as well as Gaussian We determine capacity for this channel model by showing
noise channels, remains unknown in general. Tools such as the achievability of the outer bound first derived in [6].
rate-splitting, binning, cooperation and superpositiaaling « In Section IX we consider the deterministic cognitive
have been used to derive different achievable rate regidres. interference channel: in this case both channel outputs
authors of [10] proposed an achievable region that encom- are deterministic functions of the inputs. This channel
passes all the previously proposed inner bounds and derived is a subcase of the semi-deterministic case for which
a new outer bound using an argument originally devised for capacity is known. For this channel model we show the
the broadcast channel in [11]. A further improvement of the achievability of the outer bound proposed in section 1V,
inner bound in [10] is provided in [12] where the authors thus showing that this outer bound is tight for this class
include a new feature in the transmission scheme allowing of channels.
the cognitive transmitter to broadcast part of the messége o. The paper concludes with some examples in Section
the primary pair. This broadcast strategy is also encoedter X which provide insight on the role of cognition. We
in the scheme derived in [13] for the more general broadcast consider two deterministic cognitive interference chdnne
channel with cognitive relays, which contains the cogaitiv and show the achievability of the outer bound of Section
interference channel as special case. IV with transmission strategies over one channel use.
A natural extension of the cognitive interference channel The achievable scheme we propose provides interesting
model is the so called “broadcast channel with cognitive insights on the capacity achieving scheme in this channel

relays” or “interference” channel with one cognitive relaiyn model - the extra non-causal message knowledge at one
this channel model, a cognitive relay in inserted in a ctadsi of the transmitters allows a partial joint design of the
interference channel. The cognitive relay has knowledgbef codebooks and transmission strategies - and is easily

two messages and thus cooperates with the two encoders in appreciated in these simple deterministic models.
the transmission of these two messages. The model contains
both the interference channel and the cognitive interfezen
channel when removing one of the transmitters and message
knowledge (for the interference channel) and thus can teveaA two user InterFerence Channel (IFC) is a multi-terminal
the optimal cooperation trade off between entities in adargnetwork with two senders and two receivers. Each transmiitte
network. This model was first introduced in [14], wheravishes to communicate a messagieto receiveri, i € [1, 2].

an achievable rate region was derived. In [15] the authdrsthe classical IFC the two transmitters operate indepeifge
introduced a larger achievable rate region and derived &t ouand have no knowledge of each others’ messages. Here we
bound for the sum capacity. In [13] a yet larger inner bourzbnsider a variation of this set up assuming that transitte

is derived by having the cognitive transmitter send a peivafthe cognitive transmitter), in addition to its own messéigg

Il. CHANNEL MODEL, NOTATION AND DEFINITIONS

message to both receivers as in a broadcast channel. also knows the messagjig, of transmitter 2 (the primary trans-
. o mitter). We refer to transmitter/receiver 1 as the cogaifhair
A. Main contributions and to transmitter/receiver 2 as the primary pair. This mhode

In this paper we establish a series of new results for tisbown in Fig. 1 is termed the Cognitive InterFerence Channel
discrete memoryless cognitive interference channel.i@ect(CIFC) and is an idealized model for unilateral transmitter
Il introduces the basic definitions and notation. Sectidn Icooperation. The Discrete Memoryless CIFC (DM-CIFC) is a
summarizes the known results including general inner bsun€IFC with finite cardinality input and output alphabets and a
outer bounds and capacity in the “very weak interferenceiemoryless channel described by the transition probisilit
[6], [16] and “very strong interference” [17] regimes. Oupy, v,|x,,x,(Z1,72).
contributions start in Section IV and may be summarized asTransmitteri € [1,2] wishes to communicate a message
follows: W;, uniformly distributed on[1 : 2V%i], to receiveri in N



Cognitive user is satisfied, the outer bound of Theorem Ill.1 can be equiva-
Wi XN (W, W) lently expressed as

v W,
[0 1|
1] | R Ry < I(Yi: XU, X2), (32)

Ry < I(U, X2;Y3), (3b)

DYy, Ya| X1, Xz taken over the union of all distributions; x, x,.

We refer to the condition in (2) as the “weak interference

condition”.
T 2 ? \_, CQroIIary IIl.3. Strong interference outer boundf [17, Thm
W, X357 (Wa) v W 5k

When the condition

I(X1;Y1]|X2) < I(X1;Y2|X2)  Vpx,,xs» 4)

Primary user

Fig. 1. The CIFC model.
is satisfied, the outer bound of Theorem Ill.1 can be equiva-
lently expressed as

channel uses at rat®;. The two messages are independent.

A rate pair(R;, Ry) is said to be achievable if there exists a Ry < I(Y1; Xa[X2), (5a)
sequence of encoding functions Ry + Ry < I(Ya; X1, Xo), (5b)
XN = XN (W, Wy, taken over the union of all distributionsy, x.,.
X3 = X5 (W), We refer to the condition in (4) as the “strong interference
and a sequence of decoding functions condition”.
o The outer bound of Theorem Ill.1 may be shown to be
W, = Wi (YY), iel,2], achievable in a subset of the “weak interference” (2) anthef t

“strong interference” (4) conditions. We refer to thesesaib
as the “very strong interference” and “very weak interfeesn

lim max P [Wi #* Wl} — 0. regimes.

N—oo i€[1,2] _ )
The capacity region is defined as the closure of the region-é'ﬁle]ogﬁ:jn [g"flr'hxrﬁ_ﬁ_e??,'emoelﬁi;eggfngagf‘?ggféﬂmi is

all achievable(R,, R») pairs [18]. the capacity region if

such that

I1l. EXISTING RESULTS FOR THEDM-CIFC I(U; Y| Xs) <I(U; Y1]X2),
We now present the existing outer bounds and the capacity I1(X2;Y2) <I(X2; Y1),
results available for the DM-CIFC. The first outer bound for VDX, . X (6)

the DM-CIFC was obtained in [6, Thm 3.2] by the introduction
of an auxiliary Random Variable (RV).

Theorem 1. [6, Thm 3.2]: If (Ry, R2) lies in the capacity
region of the DM-CIFC then

We refer to the condition in (6) as “very weak interference”.
In this regime capacity is achieved by having encoder 2
transmit as in a point-to-point channel and encoder 1 perfor

Ry < I(Xy;;Yi|Xa), (1a) Gelf'and-Pinsker binning against the interference crbdtg
Ry < I(X5,U;Ys), (1b) transmit_ter_ 2. 3 _ . .
Ri+Ry < I(X2,U;Ya)+I(X1;Y1|Xo,U), (lc) In a similar spirit, capacity may be obtained in “very strong

interference”.

taken over the union of distributions that factor as . :
Theorem IIl.5. Very strong interference capacityf [17,

PU,X1,X2PY1,Y2| X1, Xz Thm. 5]. The outer bound of Theorem Ill.1 is the capacity

region if
. . < .
The expression of the outer bound of Theorem Ill.1 can I(X1; ¥1|Xp) <I(Xy; V2] Xo),
be simplified in two instances called “weak” and “strong I(Ya; X1, Xp) <I(Y1; X1, X3),
interference”. VDX, . Xs - (7)

Corollary Ill.2.  Weak interference outer bounaf [6, Thm
3.4]:

When the condition We refer to the condition in (7) as “very strong interfer-

ence”. In this regime, capacity is achieved by having both
I(U; Y| X2) < I(U; Y11 X2)  Vpu,x,,X,s (2) receivers decode both messages.



The outer bound presented in Theorem IIl.1 cannot B¥.1 is verified when condition&:) and(c) hold with equality,
evaluated in general since it includes an auxiliary RV whosbat is when
cardinality has not yet been bounded. In the following we 1(Ya; X1|U, X>) )
propose a new outer bound, looser in general that the outer ;v v v, 17 y (Ve X5 X0, v
bound of Theorem Ill.1 but without auxiliary RVs. (Y13 Xa¥2, U, X) (Y13 Xa¥2, X2), - Voo,

fora given}N/Q. The first conditions implies the Markov Chain

IV. A NEW OUTER BOUND (MC)

Theorem IV.1. If (R, R») lies in the capacity region of the e-UXe =Xy

DM-CIFC then and the second condition the MC
Ry < I(Y1; X1|X2), (8) Vi, X1 = Vo X, - U.
Ry < I(Xy, X2; Ya), (8b) we currently cannot relate these conditions to any specific

Ri+ R < I(Xl,XQ;}/Q)+I(Y1;X1|}/2/7X2), (8C) class of DM-CIFC.

RemarklV.3. The outer bound of Theorem IV.1 reduces to

taken over the union of all distributiongx, x, and : g '
the “strong interference” outer bound in (5), in fact

Py, Y{| X1, Xa» whereY; has the same marginal distribution
asYs, |-e-,pY2’|X17X2 = Py X1, X2 I(H;X1|X2) < I(}/Q;X1|X2) Vle-,Xw

Proof: The proof of this theorem may be found i”implies
Appendix A. The idea behind this outer bound is to exploit
the fact that the capacity region only depends on the margina 1(Y1; X1|Yy, Xa) < I(Y2; X11Y3, X2)  Vpx, x,,v;-
distributions Py, | x, x, and Py,|x, x, because the receiversy . letY] — Y; to obtain thatf (Y;; X1|Va, X2) — 0 yielding
do not cooperate. (8¢) = (8b) so that the two outer bounds coincide.
RemarklV.2. The outer bound of Theorem IV.1 contains the
outer bound of Theorem Ill.1. Indeed, for a fixed distribatio V. A NEW INNER BOUND
Dx,,x,, the bounds ok, are the same({a) = (8a)) and the

bound onRy, I(Xs, U Ya) < I(X1, Xa; Y2) (O (1b) < (8b)) As the DM-CIFC encompasses classical interference,

multiple-access and broadcast channels, we expect to see a

since . . . " . .
combination of their achievability proving techniquesfaae
I(Ya; Xo,U) (i) I(Ya; Xo, U) + I(Ya; X1|U, Xo) in any unified scheme for the CIFC. Our achievability scheme
Y :_I(YQ-’Xl 7X2 U) ’ ’ employs the following classical techniques:
= I(Y2; X1, X2), ¢ Rate-splitting. We employ a rate-splitting technique similar

to that in Han and Kobayashi's scheme of [19] for the

where the last equality follows from the Markov chain— interference-channel, also employed in the DM-CIFC regiion

X1, Xz — Yl’},/?' _ of [10], [5], [20]. While rate-splitting may be useful in geral,
ConsiderY; such thatpyjv,x, x. = Prajv,x:,x:0 WHICh g ot necessary in the “very weak® [6] and “very strong
also impliespy; v, x, = py,|v,x,- then: interference” [8] regimes of (6) and (7).
I(X2,U; Ya) + I(X1; V1| X, U) . Superposition-codin_g.UsefuI in multiple-access and l_)_road-
= H(Y:) + HYa|X1, X2, U) — H(Ya|U, X1, X3) ca_st channels [18], in the DM-CIFC the sup_erposmon of
—H(Y|U, X3) + I(X1;Y1|U, X2) private messages on top pf common ones, as in [10], [20], is
= I(Ya; X1, X, U) + HYJ|U, X1, X2) — H(Y}|U, X3) known to be capacity achieving in "very strong interferénce
+I(X1; Y1|U, X2) 8. . . .
(b) e Binning. Gel'fand-Pinsker coding [21], often simply referred
< I(Yy; Xy, Xo) — I(Yy; Xa|U, Xo) + I(X1;Y1|U, X2)  to as binning, allows a transmitter to “cancel” (portion} thie
+I(Y3; Y1|U, X1, X2) interference known to be experienced at a receiver. Binising
= I(Y2; X1, Xo) — I1(Ys; Xa|U, X2) + (Y3, X1;Y1|U, X2) also used by Marton in deriving the largest known achievable
= I1(Y2; X1, Xo) + I(Y1; X11Y5, U, X») rate region [22] for the discrete memoryless broadcastrglan

= I(Y2; X1, Xo) + H(1|Y3, U, X2) — H(Y1|Y3,U, X1, X2)  We now present a new achievable rate region for the DM-
< I(Ya; X1, Xo) + HA|YY, Xa) — H(YA|YY, X1, X2) CIFC whijch gelnoeralfiszesza(t)ll thzesknolv;n aczlie\llgblei ra';]e region
= 1(Ya; X1, Xo) + I(Yi; X1 |V4, Xa) = (8¢). pres_ente in [ ],_[ 1, [20], [23], [ ] an [13]. In the n_ext
Section, VI we will show that this achievable rate region,
where (a) follows from the non-negativity of mutual informadespite being built upon similar encoding schemes, gezesal
tion, (b) follows from the Markov chai/ — X, X, —Y3,Y> and includes all other known achievable rate regions. The
and (c) from the fact that conditioning reduces entropy. Nointuitive reason behind this inclusion lies in the struetaf our
the RV U does not appear in the outer bound expression (&mcoder consisting of joint binning (rather than sequétia
and thus we can consider simply the RVs Wi5‘2|x1,x2 = in some of the other regions), the full generality of our ihpu
Py,|x1,x, Which corresponds to the definition &F in Theo- distributions (lacking in some of the other known regions),
rem IV.1. Equality of the outer bounds in Theorems IIl.1 andnd the presence of a broadcast channel like scheme at the

—
o
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cognitive transmitter (also noted in the region of [12])danA. Rate splitting

a slightly different rate-split than previous work. We note | ot 17, and W, be two independent RVs uniformly dis-
however that we do not claim strict containment of any Qfiputed on [1:2NF1) and[1 : 2V 7] respectively. Consider

the previously proposed rate regions. splitting the messages as follows:
Theorem V.1. The Rgrp region. A rate pair (Rq, R2) such Wi = (Wie, Wipp),
that W2 = (W207 W2pb7 WQpa)a
R = Ric+ R, where the messagd¥;, i € [lc,2¢, 1pb, 2pb, 2pa], are all
Ry = Roc+ Ropa+ Rop. (9) independent and uniformly distributed ¢h: 2NRi | 5o that
the rates satisfy (9).
is achievable for the DM-CIFC if

(Ric, Ry Ry, Ric, Ripy, Roc, Ropa; Ropy) € R satisfies g codebook generation

the inequalities in (10) for some input distribution . o
q (10) P Consider a distributionpy,, v,.,x,,U1,,,U1,0,X1,X,- The

DPY1,Y2,X1,X2,Uic,Uze,Uzpa Ui ps, Usps codebooks are generated as follows:
= PU1c,Uze,Upa Ut ps,Uzpp, X1, X2 PY1,Ya | X1, X5 - « Select uniformly at random™¥ 72 lengthsV' sequences
UN (w2e), wae € [1 : 2NF2¢] from the typical set
RemarkV.2. Moreover: T (pus.)-

o For everyws, € [1: 2VRz2¢], select uniformly at random
2N R2pa length-N sequenceX(sY (wae, Wapa ), Wape € [1
2N Ezpa]  from the typical se@’™ (px, v,.| Ui (wac)).

o For everyws. € [1 : 2VF2¢], select uniformly at ran-

. dom 2N (Rie+Ri.) lengthN sequenced Y (wae, wie, bo),

+ (10i) can be dropped wheR,. = R/, = Ripp = Ry, = wie € [1: 2NFie] angbo el ?2NR/16]’ lf?émcheltypi()(:)al

0 setTN (pu,,.v,. Use (wac))
since they correspond to the event that a common messagg For everyw,. € [1 : 2VFz], Wapg € [1 ¢ 2NR20a],
from the non-intended user is incorrectly decoded. Thisieve ;¢ [1 . 2NFi] and by e [1 : 2VFi] se-
is not an error event if no other intended message is incibyrec lect uniformly at random2N (Rzpv+ ) length-N se-
decoded.

. (2/3c) can be dropped wheRy. = Rop, = Ropy =
R2pb =0;

« (10e) can be dropped whely,, = Ropy = Ry, = 0;

« (10g) can be dropped whefy,, = R;,, = 0;

quencesUg)b(wgc,wgpa,wlc,bo,wgpb,bg), Waph € [1 :
Proof: The meaning of the RVs in Theorem V.1 is ONFa] and by € [1 : 2NF2m), from the typical set

as follows. Both transmitters perform superposition of two TN (U, Use 010X | U (W2e )y X (w2, wapa ),

codewords: a common one (to be decoded at both decoders) 7N (v, w;., bg)).

and a private one (to be decoded at the intended decoder only), For everyw,, € [1 : 2V, wy, € [1: 28] andby €

In particular: [1: 2NVRL.], select uniformly at randoma™ (1ot Rip)
» RateR; is split into R;. and R;,, and conveyed through lengthsV sequenceﬁ]f}’)b(w%,wlc,bo,wlpb,bl), Wipy €
the RVsUi. and U, respectively. [1:2NFue] andby € [1: 2VFm], from the typical set
o RateR; is split into Ra., Rap, and Rapp apd conveyed TN (s, Use 02 | U (w3e), U (w3, wie, bo)).
through the RVdJ,., X and Uy, respectively. . For every wy, € [1 : 2NB2] wy,, € [1 :
o Usc is the common message of transmitter 2 with rate  oNRepa] . € [I : 2NBic] by € [I : 2NEi,
Ry.. The subscript “c” stands for “common”. wiy, € (1 2NRw] p e 1 2N Rip],

e Xois the private message of transmitte_r2 to be sent by wapy € [1 @ 2NEam] by € [1 2NR’2pb]' let the
transmitter 2 superimposed @, and with rate Ropq.
The subscript “p” stands for “private” and the subscript
“a” stands for “alone”.

e Uy, is the common message of transmitter 1. It is
superimposed t&/5. and - conditioned oW/, - is binned
againstXs.

o Uipy and Uy, are private messages of transmitter 1 an
transmitter 2, respectively, and are sent by transmitter
only. They are binned against one another conditionedGiven the message; = (wac, waps, w2pa ), €NCOder 2 sends
on Us., as in Marton’s achievable rate region for théhe codewordXy (wac, wapa ).
broadcast channel [22]. The subscript “b” stands for Given the message; = (wsc, waps, wapa) and the message

channel inputX?{¥ (wapq, wac, Wic, bo, Wipb, b1, Wapp, b2)
be any lengthV sequence from the typical set
T (DX UzesUrer X2 Usp Uy | Ui (W2e ), X3 (W3, Wapa),
ULy (wae, wie, bo), Ugyy (wae, Wopa, wie, bo, waps, b2),
Uﬁ,b(w2cawlcab0awlpbabl))-

. Encoding

“broadcast”. w1 = (wie, wip), €ncoder 1 looks for a tripletbo, b1, ba)
« X, is finally superimposed to all the previous RVs anguch that:
transmitted over the channel. (Uﬁ(wgc),Xév(wgc,wgpa), UN (wae, wre, bo),

A graphical representation of the encoding scheme of The-UN b b)) UN b b
orem V.1 can be found in Fig. 2. The formal description of 1”’75\1[”20’“}10’ 0: Wipb; b1), Uogy (W3e, Wie, bo, waph, ba))
the proposed encoding scheme is as follows: € T (DU, Xo,Ure,Usp Ungs)-



e = (U X2|Us) (10a)
Ry + Ry > I(Upp; Xo|Use, Uze) + 1(Use; Xa|Use) (10b)
le+ Ripp + Ropy, > I(Uipy; X2, Uzpp|Use, Uze) + I(Ure; Xa|Use) (10c)
Roc + Ropa + (Ric + RY.) + (Ropy + ngpb) < I(Ye; Uspp, Ui, X2, Use) + I(Uie; X2|Use) (10d)
Ropa + (Ric + Ry.) + (Ropy + Rypp) < I(Y2; Usph, Ure, Xo|Use) + I(Use; Xo|Use) (10e)
Ropa + (Ropp + R5y) < 1 (Ya; Ugph, Xo|Ute, Uae) + I(Use; Xo|Use) (10f)
(Ric + R,.) + (Ropy + Ropy) < I(Ya; Uzpp, Ure| Xa, Uze) + I(Ure; Xa|Use) (10g)
(Rapb + Royp,) < 1(Yo; Uzpp|Use, X2, Uae) (10h)
Rac + (Ric + Ry.) + (Ripy + Riy) < I(Y1; Unps, Ute, Uae), (10i)
(Ric + Ry,.) + (Ripp + Ripy) < T(Yi; Uiph, Ure|Uae), (10j)
(Ripb + Ripp) < I(Y1;Urpp|Use, Uae), (10k)
Wy = Wi (Wie, Wips) Wie k‘ I7U1L.|UQC)I Use (
Ri = Ric+ Ripp I— | DX\ [Use. X Ure Ui, = X 1

Wlpb_|_:_ PUspp U1, Usze, X2

[ -
'

sz_,_:_\ PU, U, Use

b
Wy = Wo(Wae, Wapp, Wapqa ch" DU, : —, —
Ry = Roc + Ropa + Raopp Wapa l PX5|Use : ‘ X2
Fig. 2. The achievability encoding scheme of Thm. V.1. Theéedng from left to right and the distributions demonstrtite codebook generation process.
The dotted lines indicate binning. We see rate splits arel aseboth users, private messadé§ ,;,, Wapa, Wop, are superimposed on common messages

Wi, Wae and Uy, is binned againstX> conditioned onUsz., while Uy, and Usy,y, are binned against each adde other in a Marton-like fashion
(conditioned on other subsets of RVs).

Ulpba U2pb

- g -

If no such triplet exists, it setéhy, b1,b2) = (1,1,1). If more Uy, are binned against each other conditioned &, Ui )
than one such triplet exists, it picks one uniformly at reamdoand (U, X2, U1.) respectively. With respect to the encoding
from the found ones. For the selectéig), b1,b2), encoder 1 operation of the previous section, this affects Section ¥sC

SendSva(wgpa, Woc, Wc, bo, W1ph, bl, Waph, bg) follows:
Given the message; = (wac, waps, Wapq) and the message
D. Decoding w1 = (wie, wip), €ncoder 1 looks foby such that

Decoder 2 looks for a unique tuplevac, wapa, wap,) and
some(wie, bo, b2) such that

(Uélc(U)QC)a X;L (wQCa w2p¢l)a Ulnc(U)QCa Wie, bo),

(UQJ\c[ (wQC)a Xév (wQCa w2p¢1)a UlAc] (wQCa Wie, bo))

€ TEN(pU2mX2;U10)'

U;pb(w%’wmbmw??b’b2)7y2n) € T (PUse. X2 Ure Unyy 2 )- If no suchy, exists, it setdy = 1. If more than one such
The probability of error at decoder 2 goes to zero if condiio bo €xists, it picks one uniformly at random. For the selected
(10e)-(10h) hold. by, encoder 1 looks fo(by, b2) such that:

Decoder 1 looks for a unique pafiwi., wipy) and some
(wgc, bo, bl) such that (UZJZ (w20)7 Xév(w%v w2pa)7 Ulj\c[ (w207 Wie, bO)a

(U;c(w%)a Ulnc(w207 Wic, bo)’ Ulnpb (wQCv Wic, bOv Wipb; bl)v Yln) Ul]\;b (U)QC’ Wie: bo’ Wipb bl)’ Uzjgb(wzc’ Wies bo’ W2pbs bz))

€ T (PUse Ure\Urpy Y1 )- € TN (DU Xo\Ure Us o Usps)-

The probability of error at decoder 1 goes to zero #f NO such(bi,bs) exists, it setgby, by) = (1,1). If more than
conditions (10i)-(10k) hold. one such(by, by) exists, it picks one uniformly at random from

The detailed error analysis is found in Appendix B. m the found ones.

For the selected (bg,b1,b2), encoder 1 sends
XN (Wapa, Wac, Wic, by, Wipk, b1, Wapp, b2).

The next lemma states the condition under which this two

It is also possible to perform binning in a sequentialiey encoding procedure is successful with high probgbilit
manner. FirstU;. is binned againsX,, and thenU;,, and

E. Two step binning



Lemma V.3. The two-step binning encoding procedure of. Jiang et al’s region [13, Thm. 4.1]

Section V-E is successful if The scheme originally designed for the more general broad-
I(Use; Xo|Use), (11a) cgst channgl_ with cognitive relays (or interference—c_hane
with a cognitive relay) may be tailored/reduced to derive a
I(Uspp; X2|Use, Usc), (11b) region for the cognitive interference channel. This schatse
I(Uiph; X2, Uzpp|Usze, Urc).  (11€) incorporates a broadcasting strategy. However, the common
messages are created independently instead of havingrtie co
mon message from transmitter 1 superposed to the common
The proof of the lemma is found in Appendix (F). message from transmitter 2. The former choice introduces
RemarkV.4. Since the binning rate (10a) of Theorem V.1 cafore rate constraints than the latter and allows us to show
be taken with equality without loss of generality, the twepst inclusion inRrrp after equating random variables. The proof
binning has the same performance as joint binning. In faéf the containment of the achievable region of [13, Thm. 4.1]
by setting(11a) to hold with equality, we obtain the equalityin Rrrp is found in Appendix I. We note that the region of

between the binning rate expression of the joint binning ad5], used to prove capacity in the cognitive Z-IFC when the
the two step binning. interference-free component is noiseless, is a special chs

the region in [24] and is thus also contained in this region.
VI]. COMPARISON WITH EXISTING ACHIEVABLE RATE Also the outer bound of Liu et al. uses a technique tailored to
the special Z channel and is not clear how it can be compared

REGIONS
. . to the existing outer bounds.
We now show that the region of Theorem V.1 contains g

all other known achievable rate regions for the DM-CIFC. V/||. N EW CAPACITY RESULTS FOR THEDM-CIFC
Showing inclusion of the rate regions [24, Thm.2], [23, Thm. We now look at the expression of the outer bound [6,

1] and [13, Thm. 4.1] is sufficient to demonstrate the Iargeﬂ]m_ 3.1] to gain insight into potentially capacity achieyi

known DM-CIFC region, since the region of [24, Thm.2] (first, ojeyaple schemes. In particular we look at the expression
presented in [12]) is shown (in [24]) to contain those of [1Qyt yhe corner points of the outer bound region for a fixed

Thm. 1] and [20]. pU.x,,x, and try to interpret the RVs as private and common
messages to be decoded at the transmitter side. We then

A. Devroye et al’s region [23, Thm. 1] consider an achievable scheme inspired by these obsarsatio
In Appendix G we show that the region of [23, Thm. 1pnd show that schemes achieve capacity for a particulas clas

Rpar, is contained in our new regidRprp along the lines: Of channels. This class of channels contains the “very gtron

e We make a correspondence between the random varialf88 the “very weak interference” regimes and thus corredgpon

and corresponding rates &, and Rprp. to the largest class of channels for which capacity is ctiyen

e We define new region®pyr C REY,, and Rz, € known.

/
lc

Y

/!

1pb
/ /
1pb + R2pb

vV v

Rrrp Which are easier to compare: they have identical input e outer bound region of [6, Thm. 3.1] has at most two

distribution decompositions and similar rate equations. ~ COrner points where botk; and R, are non zero:
e For any fixed input distribution, an equation—by—equation
comparison leads t®par € R9%E - C Ry € Rerp. (RS™ () RO <a>)
= (I(Y1; X1|U, X2), (Y25 U, X2)) (12)

B. Cao and Chen’s region [24, Thm. 2] and

The region in [24, Thm. 2] uses a similar encoding structure (RO ®) pout ()

as that ofRgrp with two exceptions: 1

1) The binning is done sequentially rather than jointly as in = (I(Y1; X1|U, X2) + [(Yo; U, X2) — A, A) (13)
Rrrp leading to binning constraints (43)—(45) in [24, Thmf r
2] as opposed to (10a)—(10c) in Thm.V.1. Notable is that bot% A = [I(Ya: U, X2) — I(Y1; U|X2)]*,

schemes have adopted a Marton-like binning scheme at the

cognitive transmitter, as first introduced in the contextred SInce

CIFC in [12]. RO = min{I(Ya; U, X), I(Ya; U, X3) + I(Y1; X1|U, X2)}
2) While the cognitive messages are rate-split in identical I1(Yy; U, Xs),

fashions, the primary message is split into _2 p.arts in [24n.Th R;}ut (a) min{7(Y1; X1|U, Xa), 1(Y1; X1|X2)}

2] (R1 = Ry1 + Ry, note the reversal of indices) while we = I(Y1; X1|U, X>)

explicitly split the primary message into three pafts = ’ T

Rae + Rapa + Raps. In Appendix H we show that the region and

of [24, Thm.2], denoted a®¢cc C Rrrp in two steps: R ® min{/(Ys; U, X»),

e We first show that we may WLOG séf;; = 0 in [24, I(Yy; U, Xo) + I(Y1; X1|U, Xo) — I(Y1; X1]X2)}
Thm.2], creating a new regioRy . = [I1(Yy; U, Xo)+

¢ We next make a correspondence between our RVs and those min{0, I(Yy; X1|U, X3) — I(Y1; X1, U| X2) ™

of [24, Thm.2] and obtain identical regions. = [I(Yo; U, X3) — I[(Y1; U|X2)]" £ A,



with Proof: Consider the achievable rate region of Theorem

R<1)ut (b) < min{I(Yi; X1|Xs), V.1 when setting
I(}/Q,U,XQ) +I(Y1,X1|U,X2)} Xl = Ulpb
=I(Y1; X1|U, X2) + I(Y2; U, X>) Xo = Uz =Uspp
—max{/(Y2; U, X3) — I(Y1; U|X2), 0} so that
ZI(YLX1|U,X2)+I(Y'2,U,X2)—A Rs = Ry,
R/Qpa = R2pb =0

Proving the achievability of both these corner points foy an R o
pU,x,,x, Shows capacity by a simple time sharing argument. le 7™ “Mpb 7 “h2pb T M

We can now look at the corner point expression and tryn the resulting scheme, the message from transmitter 2 to
to draw some intuition on the achievable schemes that cegteiver 2 is all common while the message from transmitter 1
possibly achieve these rates. For the corner p(dﬁﬁi‘),Ré")) to receiver 1 is split into common and private parts. The
we can interpre{U, X,) as a common message from transachievable region of this sub-scheme is:
mitter 2 to receiver 2 that is also decoded at receiveXilis

superposed t¢U, X») since the decoding ok follows the Ro + Rie < I(Ya; Ure, Xa), (18a)
one of (U, X5) at decoder 2. R R R < (YU X 180
The corner poin( RS ' R2"* ()} has two possible ex- 2 fie+ Bagy < I(Y15 Ure, Xo), (18b)
pressions: Ric 4 Ripp < I(Y1;Use, X1/ X2), (18c)
1) If I(Y1;U|X,) < I(Ya; U, X5) we have that Ripy < I(Y1; X1|Xo,Upe).  (18d)

) ) By applying Fourier-Motzkin elimination [27] we obtain the
Ry Ry ) = (14) achievable rate region

(I(Y1; X1,U|X2),1(Y2; U, X2) — I(Y1;U|X3)) , (15)

which suggests thaf{, is again the common primary Ry < I(Y1; Ute, X1|X2), (19a)
message and the cognitive message is divided into a public Ry < I(Y2;Use, Xa), (19b)
and private part{/ and X, respectively. Ri+ Ry < I(Y2;Use, X2) + I(Y1; X1| X2, Ure),  (19c)
2) If I(Yl, U|X2) > I(}/Q, U, XQ) we have that Ri+ Ry < I(Yi;Xg, UlcaXl)- (19d)

(RS 7 RS ") = (I(Ya; U, Xa) + I(Ya; X1,U| X2),0). (16)By letting U;. = U we see that (1a) matches (19a), (1b)

In this case the outer bound has only one corner point whéR@tches (19b), (1c) matches (19c¢), and (19d) is redundant
both rates are non zero. Note that we can always achieve YH&E"

pOint I(}/inQaXlaU)ZI(Y727U1X2)+I(Y17X1|X27U)1
(R O Ry = (1(Y1; X1, U|X2),0) or equivalently when
by having transmitter 2 send a known signal. In this case we I(Y1;U, X2) > I(Y2; U, X2). (20)
have R3"" " = RI" 7 and R 7 < R )7 since -
I(Y1; X1, UXp) = I(Yy;U, Xp) + 1(Y1; X3, Ul X3) We term the condition in equation (20) “better cognitive
I(Y1: U|X,) g I(Y2; U, Xs). decoding” since decoder 1 has a higher mutual information

. . . . . . .between its received channel output and the RVand X,
So in this case showing the achievability of the point i, the primary receiver

equation (13) is sufficient to show capacity.

Guided by these observations, we consider a scheme ﬁg{narkvn.z. The “better cognitive decoding” in (20) is

has only the componentS., Uy, and Uy, That is, the oser than both the “very weak interference” condition of
(3] c pb- ’

primary messagevs is common and the cognitive messagé6) ant_j the “very strong_interferencef’ _condition of (7). bt
wy is split into a private and a public message. With thigmming the two equations of condition (6) we have
scheme we are able to extend the capacity results in the “very(U; Y1 |Xo) + I[(X2; Y1) > I(U;Y2|X2) + I(X2;Y2)
weak interference” of Theorem l11l.4 and the “very strong

interference” of Theorem I11.5. This scheme coincides with I(Y1;U,X2) > I(Ya;U, Xo),

the scheme of [26] which achieves capacity if the cognitiighich corresponds to condition (20). Similarly by summing
receiver is required to decode both messages (with andutithghe two equation of condition (7) we obtain

the secrecy constraint).
Y ) I(Y1; X1, Xo) + I(Xq1; Y2 | X2) > I(Ys; X1,X2)

Theorem VII.1. Capacity in the “better cognitive decoding” +I(X1; V1| X)) =
regime. I(Y1; X1, Xo) — I(X1; Y1 Xo) > I(Y2; X1, X2)
When the following condition holds —1(X1; Y] Xs) <
. . I(Y1; X1, X0,U) — I(X1:Y1[X2) > I(Y2; X4, X0,0)
I1(Y1; X5,U) > 1(Yy; X5, U N 17
( 152, )_ ( 2y A2, ) PX1,X2,U, ( ) _I(Xl;}/Q|X2)<:>
the capacity region of the DM-CIFC is given by Theorem IIl.1. 1(Y7; X5, U) > I(Ye; X5,U)



which again corresponds to condition (20). for any Py, v, x, x,. After Fourier-Motzkin elimination, the
Since both (6) and (7) imply the (20), we conclude that (20%gion in (23) may be rewritten as
is more general than the previous two.

The scheme that achieves capacity in “very weak interfer- Ry < I(Y1; Ur) = 1(Ur; Xa), (242)
ence” is obtained by setting,. = X, so that all the cognitive Ry < 1(Ya; Uz, X2)
message is private and the primary message is common. The =I1(Y2; X1, Xo

) = I(Y2; X1|Uz, Xo), (24Db)
scheme that achieves capacity in “very strong interferéisce  p, | r, < 1(Yy; Us, Xo) + I(Y1; Uy) — I(Uy; Us, Xo)
obtained by settind/;. = X; so that both transmitters send — (240) + (24b) — I(U1; Us|Xs) (240)
only public messages. The scheme that we use to show the “ 1>zl
achievability in the “strong cognitive decoding” regimex®s  Finally, by choosingl/; = Y; (possible becaus&; is a
these two schemes by splitting the cognitive message iffie pdeterministic function of the inputs and both inputs arevkno

lic and private messages. This relaxes the “strong intenfeg”  at transmitter 1) and/>» = U, the achievable region in (24)
achievability conditions as now the cognitive encoder sded reduces to the outer bound. m

decode only part of the cognitivg_messag(_a. Th_e scheme aT—lzsé)markVIII.Z. The achievable scheme in (23) cannot be
relaxes the "very weak" achievability condition since ioats obtained as a special case of any previously known achievabl

the cognitive_ encoder to decode part of_the cognitive ME&SSaYL o me but [13]. The RW,s, which broadcasts the private
and remove its unwanted effects. For this reason, the mgu'tprimary message from transmitter 1, appears in [24] as well.

achievability conditions are looser than both cases. In this case it is possible to reobtain the scheme in (23)

with a specific choice of the RVs. Here the same message
is embedded inJ;,, and the private primary message, this
performs strictly worse than using only.

Consider the specific class of DM-CIFC for which the signakemark VIIl.3. The achievability scheme for the semi-
received at the cognitive receiver is a deterministic filomct geterministic C-IFC has been used (see [2], [28]) to prodide

VIIl. CAPACITY FOR THE SEMFDETERMINISTIC CIFC

of the channel inputs, that is unified scheme which achieves a constant additive gap for the
Gaussian C-IFC in the whole parameter space. This supports
= [i(X1, Xo), (21)  the notion that results for (semi)-deterministic channebteis

may carry over to noisy networks.
for some functionf;. This class of channels is termed semi- y y y

deterministic CIFC and it was first introduced in [24]. |

[24] the capacity region is derived for the caB@}; X) > IX. CAPACITY FOR THE DETERMINISTICCIFC

I(Y2; X2); we extend this result by determining the capacity In the deterministic CIFC both outputs are deterministic
region in general (no extra conditions). Note that the atsthcfunctions of the channel inputs, that is

of [24] consider the case wherg is invertible; we do not

require this condition. Y1 = fi(X1, X2),

Theorem VIIL.1. The capacity region of the semi- = L%, X2), (252)

deterministic cognitive interference channel in (21) detss for some functionf; and f,. This class of channels is a

of all (Ry, R2) € R% such that subclass of the semi-deterministic CIFC of Section Vllidan
we already have obtained the capacity region for this case.
Ry < H(Y1[X2), (22a) However, we re-derive the capacity region in a new fashion
Ry < I(Yy; U, X5), (22b) for this channel, which illustrates two new ideas:
Ri+ Ry < I(Ya; U, Xo) + HW1|U, Xa), (22¢) We show thg achievability of the outer bound of Theorem
IV.1 when lettingY; = Y3, instead of the outer bound of
taken over the union of all distributionsy x, x.,. Theorem II1.1.
Proof: Theorem IX.1. The capacity region of the deterministic

Converse:We consider the outer bound of Theorem I11.£0gNitive interference channel consists of @y, 2) € R
with the additional deterministic assumption in (21) ieSuch that
H X, o) =0 Ry < H(Y1|X), (26a)
Achievability: The region of Theorem V.1 computed for Ry < H(Y)) (26b)
Ue = U = 0, Uy = Uy and Uy = Uy, and S
Rye = Ry = Ry, = 0 becomes: Ry + Ry < H(Y2) + H(V1[Y2, Xa), (26c¢)

taken over the union of all distributionsy,  x,.

R} > I(Uy; X2), (23a)
R + R, > I(Uy; Us, Xs), (23b) " Proofivoluter_ bouhnd:;'he outer _boundd?s_ obtqin(eztéfr)om
I . eorem using the deterministic conditions in (25a
Ry + RIQ < 10U, X3), (230) Achievability: Consider the scheme in (24) and ét,, =
< I(Yy;Uh) (23d)
R+ Iy 1;U1), Y1, Usps = Y, to achieve the region in (26). n
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X, € {0,1,2,3) Yi € {0,1,2,3) \(/)vfh(lgr;)c.ioes not satisfy the “very strong interference” ctindi

Tx 1 L + Rx 1 For this channel we have:

H(Y1|X2) < H(Y1) < log([91]) =2,
H(Ys) <log(|92]) = 3,
H(Y1]X2,Y2) < H(X1[1(2,3(X1)) < 1,

Lo sy

where the last bound follows from the multiplicity of the
solutions of an addition in a Galois field. This shows that
the outer bound in Theorem IX.1 is included in

Tx 2 8@ Rx 2 B <2, (308)

X,e{0..7} Y, € {0 .. 7} Ry, <3, (30b)
Ri+Ry <4 (30c)

Fig. 3. The*“ tric clipper” of Section X-A. L .
9 © asymmetric clipper of Section We now show that the region in (30) indeed corresponds

to Theorem IX.1 when considering the union over all input
distributions. The corner pointR;, Rz) = (1,3) in (30) is
X. EXAMPLES obtained in Theorem IX.1 with the input distribution:
The scheme that achieves capacity in the deterministic and

semi-deterministic CIFC uses the R¥%,; to perform Gel'fand Ay~ ([0, 1]),
Pinsker binning to achieve the most general distributionm@gn KXo ~ U(X2).
(X2, U1pp, Uapp), but interestingly, withR,,;, equal to zero. The corner point(R;, R2) = (2,2) in (30) is obtained in
This feature of the capacity achieving scheme does not geoviTheorem IX.1 by considering the input distribution:
a clear intuition on the role of the RW,,,. For this reason

L X1~ U(Xy),
we present two examples of deterministic channels where the X o U
encoders can choose their respective codebooks in a way that 2 ~ U(Xz).
allows binning of the interference without rate splittintp  Time sharing shows that the region of (30) and the region
make these examples more interesting we choose them so tiatheorem 1X.1 indeed coincide.
they donot fall into the category of the “very strong inter- e next show the achievability of the corner point
ference regime” of Theorem II.5 which, in the determirésti ) R,) = (1,3). Consider the following strategy:
case, reduces to

« transmitter 2 sends symbols froffi; = [0 : 7] with
H(1|X2) < H(Y2|X2) uniform probability,
H(Y;) < H(Y) VD, X 27) o transmitter 1 transmit§z; — x2], (wWhere the inverse of

) ] ) the difference operation is taken over the rg;
Unfortunately, checking for the “very weak interferencedi « receiver 1 decodes; = | ];

tion” of Theorem I11.4 is not possible as no cardinality bdsn | receiver 2 decodes, — y22. '
on U are available.

It can be verified by inspection of Table | that the rate pair

A. Example I: the “Asymmetric Clipper” (Fy, Rz) = (1,3) is indeed achievable.

Consider the channel in Fig. 3. The input and output TABLE | (Ry. B2) = (1.3)
- B _ - CHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (1,3) IN
alphabets areX; = Y = [0,1,2,3] and Xy = Yo = EXAMPLE | IN SECTION X-A: FOR EACH POSSIBLE MESSAGE PAIR

[0,1,2,3,4,5,6,7] and the input/output relationships are  (w;,ws,), WE INDICATE THE CORRESPONDING CHANNEL INPUTSz1, z2),
CHANNEL OUTPUTS(y1,y2) AND DECODING MESSAGE(W1, W2).

Y1 = X1 @4 Xo, (28) N

w1 w2 1 Z2 Y1 Y2 w1 w2

Yy = 1p231(X1) @5 + X2, (29) 00 ©0 0 0 0 0 0 0

. _ i1{0 1 1 0 2 2 1 o0

wherelg4,(z) = 1if x € A and zero otherwise, ang y > lo 2 0o 2 2 2 2 o
denotes the addition operation over the rifig: N]. Also 3|0 3 1 3 2 0 3 0
let U(8) be the uniform distribution over the st First we ‘5‘ 8 g 2 g 8 (2) g 8
show that the channel in (29) does not fall in the “very strong 6 |o 6 O 6 0 2 &6 0
interference” class. Consider the input distribution: 7]o 7 1 7 0 0 7 0O
8 L 0 1 0 0 1 0 1

X2 ~U(1) = P[X1=0]=1, 9|1 1 0o o0 2 1 1 1

Xo ~ U(X2). 10 | 1 2 1 2 2 3 2 1

o o 11{1 3 o0 3 2 3 3 1

For this input distribution, we havé; ~ U(Y;) andY2 ~ 21 4 1 4 0 1 4 1
13{1 5 0 5 0 1 5 1

U(d2), so that 141 6 1 6 0 3 6 1
H(Y) = log([¥el) = 3> 2 = log([¥:)) = H(¥1), sl1 7 0 7 0 3 7 1
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Now we show the achievability of the corner point
(R1, R2) = (2,2). Consider the following strategy:
« transmitter 2 sends symbols from € [0,2,4, 6] with
uniform probability;
o transmitter 1 transmit§r; — x2], (where the inverse of
the difference operation is taken over the riag;
« receiver 1 decode&, = y1;
« receiver 2 decode&, = [ £ |.
It can be verified by the inspection of Table Il that the rate
pair (R, Re) = (2,2) is indeed achievable.

TABLE Il Tx 2 @ Rx 2

ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (2,2) IN

EXAMPLE | IN SECTION X-A: FOR EACH POSSIBLE MESSAGE PAIR XQ € {0, 1, 2} Y € {03 1, 2, 3}
(w1, w2), WE INDICATE THE CORRESPONDING CHANNEL INPUT$Z1,Z2),

CHANNEL OUTPUTS(y1,y2) AND DECODING MESSAGE(W1, W2).

X, € {0,1,2,3} Y, € {0.1}

Fig. 4. “Symmetric Clipper” of Section X-B

wi w2 Tl T2 Y1 Y2 W1 W2
0 [0 0 0 0 0 0 o0 0
110 1 2 2 0 3 0 1
2 |0 2 0 4 0 4 o0 2 TABLE Il
3 0 3 2 6 0 7 0 3 THE INPUT DISTRIBUTION THAT ACHIEVES THE OUTER BOUND OF
4 1 0 1 0 1 0 1 0 THEOREMIX.1 FOR THE CHANNEL IN EXAMPLE Il
5 |1 1 3 2 1 3 1 1
6 |1 2 1 4 1 4 1 2 Xo, Xi [T 2 3 4 1] pxy
7 |1 3 3 6 1 7 1 3 0 8| 18 18| 1/8 | 112

1 81810 |0 | 14

8 |2 0 2 0 2 0 2 0
9 2 1 0 2 2 2 2 1 2 1781 18] 0 0 1/4
10 | 2 2 2 4 2 5 2 2 DX, 38 3/8 18 1/8
11| 2 3 0O 6 2 6 2 3
12 | 3 0 3 0 3 1 3 0
13| 3 1 i1 2 3 2 3 1 . . .
14| 3 2 3 4 3 5 3 5 produces a different output at receiver 1], thus allowing th
15| 3 3 1 6 3 6 3 3 transmission of 2 bits.

In this example we see how the two senders jointly desi
the codebook to achieve the outer bound and in particula
how the cognitive transmitter 1 adapts its strategy to the Consider the now channel in Fig. 4. The channel input and
transmissions from the primary pair so as to avoid intemferi Output alphabets a®; = [0, 1,2, 3] = Y2, X2 = [0, 1,2], and
with it. Y, = [0, 1]. The input/output relationships are:

In achieving the point Ry, R2) = (1,3), transmitter 2's _
strategy is that of a point to point channel. Transmitter 1 }}jl - 1{1’2}(§1§ iQ)g{l*Q}(XQ)’
chooses its codewords so as not to interfere with the primary 2= Loy (X z
transmission. Only two codewords do not interfere: it @aiger Consider the input distribution: Consider the input disfri
tively picks one of these two codewords to produce the desirgon:
channel output. For example, when the primary message is PlXy=3]=1,
sendingw; = 0 (line 0 and 8 in Table I) transmitter 1 can X ~U([L,2]),

send eitherl or 2 without creating interference at receiver 2, 4 caseH (Y1) = 0 and H(Y>) = 1. This shows that there

On the _other hand, _these two vaIu_es _produce a different OUtRWicts at least one input distribution for whigh(Ys) > H (Y;)

at receiver 1 allowing t_he transmission of 1 bit. _ and thus this channel is not in the “very strong interferénce
In achieving the point(fy, >) = (2,2), the primary r(?gime. The outer bound of Theorem I1X.1 is achieved here by

receiver picks its cpdewords S0 as to t.ole.rate 1 unit 9 single input distributiopx, x,: consider the distribution in

!nterference. Transmitter 1 again ch_ooseg its input ComoTabIe Il This distribution pfoduceE(Yl) — 1 = logy (%)

|n_order to create at most 1 unit of_|nt.erference at thgndH(Yg) = 2 =log(|Y2]) and clearly no larger outer bound

primary decoder. By adapting its transmission to the PYMatan exist given the output cardinality. We therefore codelu

symbol, the cognitive transmitter is able to always find fo%at the region of Theorem IX.1 can be rewritten as:
such codewords. It is interesting to notice the tension at ' '

transmitter 1 between the interference it creates at thegoyi R <1,
decoder and its own rate. There is an optimal trade off batwee

" . . . Ry < 2. (31)
these two quantities that is achieved by carefully picking t
codewords at the primary transmitter. For example, when the
primary receiver is sending = 0 (lines 0,4,8 and 12), This region can be shown to be achievable using the
transmitter 1 can send; € [0,1,2,3] and create at most transmission scheme described in Table IV. The decoding
1 bit of interference at receiver 2. Each of these four valués simply @w; = Y;, ¢ € [1,2]. This transmission scheme

i Example II: the “Symmetric Clipper”



TABLE IV
ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (1,2) IN
EXAMPLE |I: FOR EACH POSSIBLE MESSAGE PAIRw1, w2), WE INDICATE
THE CORRESPONDING CHANNEL INPUT$z1, z2) AND CHANNEL
OUTPUTS(y1,y2).
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“very weak interference condition” of [6] and the “very stigp
interference condition” of [17] and is the largest regionendn
capacity is known. We also determined the capacity region fo
the class of semi-deterministic cognitive interferencarstels.
Furthermore, for channels where both outputs are detestiani
functions of the inputs, we showed the achievability of our
new outer bound. The scheme that achieves capacity in the
deterministic cognitive interference channel uses Getfa
Pinsker binning against the interference created at thegoyi
receiver. This binning is performed by the cognitive encode
for the primary decoder. This feature of the transmission
scheme was never known before to be capacity achieving.
Extensions of the results presented here to Gaussian dsanne

achieves the proposed outer bound, thus showing capahity. ill be presented in [28].

transmission scheme can be described as follows:

« encoder 2 transmitgs — 1]T;

o encoder 1 transmits the valu¥; that simultaneously
makesY; = w; andY; = w,. For eachw; andws such
a value always exists becausg takes on only three
possible values;

o receivers 1 and 2 decode; = Y; andwy = Y5.
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APPENDIX
A. Proof of outer bound of Theorem IV.1

By Fano's inequality we have thdf (W;|Y;"Y) < Ney, for
someey such thatey — 0 as N — 0 for ¢ € [1,2]. The rate
of user 1 can be bounded as

N(Rl —en) < I(Wy; YY)

I(W1; YV W)
(WlaXiN(WlaWQ);Y1N|W2’X5V(W2))
H(Y1N|W25W15X1N7Xév)

<
®

(:)H(YlNle,XéV)—
Qo HYPMXY) — HY W, Wi, X1, X0Y)
9 HYN XY - HYN XN, XD)

H(Y1l X3, (V)Y — HYul X3, X3, (1))

— H(Y{| X1i, Xo:)

NI(Yir; Xar|Xor, T)

HY1r|Xor, T) — H(Y1r|Xa7, Xor, T))
HYrr|Xor, T) — H(Y17| X117, Xor))
& N(HYiglXer) — H(Yirl Xur, Xor))
NI(Yir; Xir|Xor),

—~
=

(32a)
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(c) by definition, (d) as conditioning reduces entropy, (g8) a
(W1, Wa) — (X, XV) — (Y{) forms a Markov chain, (f)
the chain rule, (g) memorylessness and conditioning resluce
entropy, (h) and (i) by definition and introduction of the ¢&im
sharing RV T, (j) as the channel output depends only on
channel inputs, (k) conditioning reduces entropy, (I) deén.

The rate of user 2 can be bounded as

N(Ry — en) < 1YY Wy)

—
S
Z o~

1YY s Wa, W)
H(YY) — H(Ys [Wh, Wa, X3' (Wa), X1 (W, Wa))
(YY) —

®)

IICHVA

© 5

N .
ZH(YMI(YM*) -

1

H(Y; |1X5, XTY)
(

sy
N

-
Il

INT
.MZ

N
Il
-

H(Y2;) — H(Y2| X134, X2:)

AS
N
2

I(Yor; Xar, Xor|T)

% (H HYor| X7, Xor,T))

(h)
< N(H(YQT)

i)

—~
~

(Yor|T) —

— H(Yor| X1, Xor))
NI(Yer; Xi7, Xor).

—~

(32b)

Here the (in)equalities follow from (a) non-negativity of
mutual information, (b) definition and channel model, (c)
as (W, Ws) — (X, X)) — (V) forms a Markov
chain, (d) the chain rule, (e) conditioning reduces entr¢dy
introduction of the time-sharing R uniformly distributed
over the sefl : NJ, (g) definition, (h) conditioning reduces
entropy and channel outputs depend only on channel inputs,
(i) definition.

whereT' is the time sharing RV, informally distributed over the

set[l :
of messagesiVy, Ws, (b) the channel model wher&?
depends onl¥; and W, while X} depends only oriVs,

N]. The (in)equalities follow from: (a) independence

Next let Y; be any RV such thaPyyx, x, = Pyy|x,,x»
but with any joint distributionPy, y;x, x,. The sum-rate can
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then be bounded as The probability of error at decoder, u € [1, 2], is bounded

N(By + Ry —2Nex) < I(Wi; Yi) + I(Ws: Y3) >y
Plerror u] < Plerror ulencoding successful]

(a)
N N
< I(Wa Y0 [Wa) + I(Wa; Y5 ) +Plencoding NOT successful].
®)
< I(Wis YN, YN [Wa) + T(Wa; YY) An encoding error occurs if encoder 1 is not able to find a

© CUN N NN tuple (bo, b1, bo) that guarantees typicality. A decoding error is
= I(Wo; Y57) + I(Wy Yo [Wa) + T(Ws Y7 [Y5 T, Wa) committed at decoder 1 whe., w1,) # (1,1). A decod-
@ HYN) + (_ HYN|Wa) + H(YQ’NIWQ)) i(r;glerlr)or is committed at decoder 2 whéby., Wapg , Waps) 7#

— H(YsN Wy, Wa) + H(Y [V, Wa) T

— HY{N YN, Wy, Wa)

O HYN) + BN W, XY, V)

- H(YQIN|W17W2’X{V7X§)
— HYN YN, Wy, Wa, X1V, X))

C. Encoding Error
Since the codebooks are generated iid according to

p(codcbook)

N N N = PUze PX5|Use PU1c|Use PUspp|Use,Urc, X2 PU1ps|Use,Use
H(YSY) + HY Wy, X357, 5 N) (33)

_H(}/2N|X1 7X2 )_ (}/IND/Q/NvaVaXéV)

()

but the encoding forces the actual transmitted codewords to

(9) i ii i
2 HEN) + HEYY XY, V) look as if they were generated iid according to

- HY XY, X)) - HEN v XY X)) pleneotne)
(i) I(%N;XfV,XéV) = PUsc PX5|Usc PU1c|Uze, X2 PUspy |Usc,Ure, X2
N PUL b |Uze,Ure, X2, Uzpb > (34)
v N /N i—1 . )
+ ZH(Y“"X? Yo, (M)) We expect the probability of encoding error to depend on
i=1
N . plencoding) 1 PU1c|Uze, Xg PU1yp|Uzc, Ut X2, Uspp
- Z H(Y1i|X1Na Xévv }/Q/Nv (}/1)11_1) 10g pleodebook) :| =k 1Og PU1¢c|Uze PULpp 1 U2¢:Ute
i=1 = I(Uie; X2|Use) + I(Uipp; X2, Uaps|Uac, Uic).
(®)
< N, N N - . ]
- I(}J/\f REERED The probability that the encoding fails can be bounded as:
H(Y1;| X2, Yy) — H(Y13| X 14, X045, Y . ¢ » »
+; (Y1i]X2;, Ys;) (Y1i] X1, X2i, Y5;) Plencoding NOT successful] = P {ﬂiN_Rll ﬂbl 11 ’ ﬂbz 12 ’
@ N (I(Yor; X1r, Xor) + H(Y17|Xor, Yo7, T) (Uﬁ( ), X3 (1,1), UfL(1,1,bo), U), (1,1, bo, 1, b1),
_H(Y1T|X1T7X2T7}/2/T)) U2pb 1,1,b0,1,b2 ) pU2(:7X27U1c-,Ulpb-,U2pb):|
(k) , [ O] Var K]
< N (I(Yer; Xar, Xor) + I(Yir; X7 | Xor, Yar)) . (32€) = E?[K]
Here the (in)equalities follow from (a) non-negativity oum Wwhere / /
tual information and independence f,, W,, (b) addition 2V Fie 2V M1pp 9N Fapp
of side-informationY,?, (d) definition, (e) asY, and Yy K = Z Z Z Kig b, b2
have the same marginals and the channel model whgYe bo=1 bi=1 bo=1

depends ol’; andWs, while X2 depends only oV, (f) as
(W1, Wa) — (XN, X)) — (YY) forms a Markov chain, (g)
conditioning reduces entropy, (h) chain rule, (i) conditt K, ;, s,

reduces entropy and memorylessness, (j) and (k) by definitio_ |

and definition of the time-sharing RV uniformly distributed { (U]éi(l)7X2N(171)7U11X(1;V17b0)7U1];b(17 1, bo, 1, b1), }’
over the sel[l . N] . U2pb(17 1, o, 17b2)) eT: (pUZCaX2aUlcaU1pb’U2pb)

and

_ . _ wherely,cay = 1if x € A and zero otherwise.
B. Error analySIS Of the aCh|eVab|e reg|dbRTD Of Theorem The mean Va'ue oK (neglecting a” terms that depend on
Vi1 ¢ and that eventually go to zero) is:

Without loss of generality assume that the message
(W1e, Wae, Wapa, Wiph, Wopy) = (1,1,1,1,1) was sent and let
(bo, b1, b2) bg the Z['Eupleéobo,bl,bg) chosen at encoder 1. Let E[K] = Z Z Z P[Kbg by 5, = 1]
(Wie, Wac, Wapa, Waph, 502 b) be the estimate at the decoder 2 bo=1 b1=1 b2=1

~ AT A 22 . _ oN(R} . +R} ,+Ry,—A)
and (w1, Wac, Wiph, bo, b1) be the estimate at the decoder 1. = 2N (et Rapy - Rap

N R/,

’ ’
QNRlc QNRlpb 2 2pb



15

with and
27N = P[Ky, ;0. = UKo by b = 1]
= PI(U2 (1), X (1,1), U (1, 1,b0), U, (1,1, b, 1,B0),
Ugpp(1,1, b0, 1, b2)) € TN (PUse, X, Ure Ut Usgs )|
(U200, X3 (1,1, U (1,1,50), U, (1,1, b0, 1, ),

27NA = P[Kb07b1,b2 = 1] = E[Kbmbl,bz]
= PI(U3(1), X5 (1,1), UR(1, 1,b0), UFy(1, 1, b0, 1,br),

U2]\;,;b(1’ 1,bo,1, b2)) € TﬁN(pU2c-,X27UlcyU1pb7U2pb)]

:Z N . N N N N N
(uge, uqpy sz, ) ETY (pUzc«Xz«Ulchlpva%b‘uzc@z )

N N
PUL|Use PUspy|Use,Urc, X2 PU1py|Use,Ure U2pb(17 1, bo, 1, bZ)) € Te (pU2C7X27U1c-,U1pb-,U2pb)]
> —N[I(Ulc;Xz‘U20)+I(U1pb§X2)U2pb‘U10)U20)]' =
— 2 Zui\lpbeTﬁN(pU201X21U107U1pb7U2pb‘uévc’wév7ujjlvc7uévpb) pUlpb‘UQC)UIC
— 2_NI(Ulpb;X2)U2pbIUlc7U2C),
The variance ofK (neglecting all terms that depend en and
and that eventually go to zero) is:
27ND = P[Kbo by ,bh = 1|Kb0 b1,b2 — 1]

= PI(UZ (1), X3 (1,1), U (1, 1,b0), Ufy (1,1, b0, 1,B0),

/
2NR10

b 9N Fopp
Var[ ] Zbg 1 Zbl 1p Zbg:lp b=1 U2J\;£b( 1,bo, 1, b2)) (pU2c X2,U1c,Uipb, U2pb)|
Z ,_lpb Z /_21.717 [Kb07b1,b2 — 1,Kb’,b’,b’ = 1] UQc(l) ( )7U1c(1 1 bo) Uﬁ)b(l, 1, b, 1,b1)

bi=1 bh=1 0:91:92

_P[Kbo.,b1.,b2 = 1]P[Kb6-,b/1-,b/2 = 1]) UQpb(l 1,bp,1 bz)) (pUZC)XZ)UIC7U1pb7U2pb)]
= Zbg:bo,(bl,bz,bg,bg) (P[Kbo,bl,bz = 17Kbo,b’1,b’2 = 1] _ Z NN N

—P[Kbo b1,ba — 1]P[Kbo o op = 1]) (ulpwuz’)b)ET (PUze. X3, U1, Ulpb: U2pb|u2c’w2 i)

o U _ DUsps|Use,Ure, Xa PU1 b |Use,Ute

< Zbo,(bl,bz,b;,bg) P[Kpy by 0, = 1, Ky, 0, = 1] 9 Nf{”"lpszfU%ﬁ\Uljﬁ};ICf_ 12 Ne.

because whet, # b)), that is,U{Y.(:, by) andU{Y(:, bf,) are Hence, we can boun#t[K" = 0] as:

independent, the RVKY, 4, b, and Ky 1 1, are independent 14 oN(Ri,,—C) 4 oN(Ry,,—B) 4 oN(Ryy,+Ry,,—C)
and they do not contribute to the summation. We thus cal’[K =0] <
focus only on the cask, = b,. We can write:

2N(R/1C+R/1pb+R/2pb71(U16;X2 ‘Uzc)fc)

and P[K =0] — 0 if

ValKl< 30 PlKugse = 1] Lot Ry + Rhyy — I(Ures Xo|Use) — C > 0
bo, b1 =b} , ba=b},
pe Lo+ Ry + Ry = I{Use3 X5|Use) = C
= !
— —B)>0
+ Z P[Kvg by 00 = UP[Kpg by 05, = 1Ky ,b1,6, = 1] , (, w , )
bo, by =b}, ba b, le + Ripp + Ropy — I(Ure; X2|Use) = C
!
—r[K) 2~ Fapp =) = 1pb ¢)>0
/ / / .
+ Z P[Kg b1 .6, = 1]P[Kbo,b’1,b2 = 1[Kbg b1 b, = 1] Lo+ Rlpb + R2pb B I(Ulc7 X2|U20) -¢
b, b1#£b) , ba=b) — (Rypp + Ry — C) >0
—pr) 2™ Fipp =) that is, if

+ Z P[KbOablvbQ = 1]P[Kbo,b’1,b’2 = 1|Kb0,b1,b2 =1]
bo, by #b) , ba#bl

e + Ry + Ry, > 1(Ute; X2|Use) + 1(Unpp; X2, Ugpp|Ute, Uze)
= I(Uic, Uipp; X2|Use) + I(Uipp; Uaps|Uic, Uae, X2)
=E[K] 2N(R/1pb+NR/2pb7D) /16 —+ Rllpb > I(Ulc; X2|U2c) =+ I(Ulpb; X2|U1C, UQC)
= I(Uic, Urpp; X2|Uze)
and /lc + R/Qpb > I(Ulc; X2|U26)5
1e > 1(Uie; X2|Usc)

2-NEB :P[Kbo,bl,bg = 1Ko by b = 1] as in (10a)-(10c), because the second to last equation is
:P[(sz\g(l),Xév(l,1),Uf\£(1,1,b0),U{¥,b(1,1,b0,1,b1), redundant.

UQJ\;gb(lv 1, b07 1, b/2)) € TEN(pU207X2)Ulc;Ulpb;U2pb)|

(U2, X5 (0, UN(1,1,b0), U, (1,1,bo, 1,y), B Decoding Errors at decoder 2
UN (1.1.b0. 1. b TN Depending on which messages are wrongly decoded at
2pp(L; 1,00, 1, 2>) € T (PUae Xa.Use Uy U )] decoder 2, the transmitted sequences and the reckiyeare

= ZugpbeTN(pUzc X\ Ute:UspyUnpy [ 03028 ufl ull ) generated iid according to

PU,p|Use, Ui, X2 Sy 3
=92~ NI(U2pb7U1Pb|U2C Uie, X2) P2jx = PUzc PX5|Use PUL|Uze PUspp|Use,Ute, X2 PYa|xs ( 5)
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TABLE V

ERROR EVENTS AT DECODEFR. ones. We can bound the error probability 8§ ; as:
Event | wac | (wic,b1) | wapa | wapp PYs |« P[Ezvl] =P [Uﬁzﬁélﬂﬁzpa,@1C7@2pb,b07b2
gz:;a ;.< X . X : — 53;;[]20 (}/2Nv U2]\£ (’LT)QC)v Ulz\zi ({chv {DQCa bo), Xév ({DQC’ {DQPG)a
gg,zb i )1( >l< : PYolUserUre Uy (Wae, Wapas Wie, bo, Waph, b2)) € TN (pYz,Uzc,UM,Xg,ngb)}

D L )TN (P 1 ) P20
< 2N(R2C+R2PQ+R]C+R/1C+R2pb+R/2pb_I2‘* [+=0)

where %" indicates the messages decoded correctly. However, for p,, given in (36) andl,, given in (37). Hence

the actual transmitted sequences and the recéijedonsid- P[E2;1] — 0 asN — oo if (23c) is satisfied.
ered at decoder 2 look as if they were generated iid according When the event, » occurs, i.e., eithels o, Or Fs o,
to we havew,. = 1 but @y, # 1. Whetherw;. is
correct or not, it does not matter since decoder 2 is not
py 2 interested in@lc. However we need to consider whether
the pair (w1, bo) is equal to the transmitted one or not
PUse PX3|Uze PUirc|Uze, X2 PUspy |Uze,Ure, X2 PY2|Uze,Urc, X2,Uzpp - because this affects the way the joint probability among
(36) all involved RVs factorizes. We have:
— CaseFs . eitherw;, # 1 or 50 # bo. In this case,
Hence we expect the probability of error at decoder 2 to conditioned on the (correct) decoded sequelide
depend on terms of the type the outputY;V is independent of the (wrong) de-
coded sequencds(y, X," and also of/;), (because
Ly — B [log Pa sz;ﬁb is superimposed to the wrong.paleﬁ, XM).
| Dol It is easy to see that the most stringent error event
is when bothw;. # 1 andby # bg. Thus we have
—F |:10g PU, Uz, X2 PY2|Usze,Urc, X2,Uspsp
PUL|Use PYa|« P[Es2.] =P [U@Wémwﬂ,boﬂo,mb,bz
= I(Uie; X2|Use) + 1(Ya; Use, Ute, Xo, Uapp|x).  (37) (YN, UN (1), UN (1, W1e, bo), X2V (1, Wapa),
Ug,bjgl,@2pa,ﬁ1c,bo,ﬁ2pb,b2))
If d(_acoder 2_decode@ﬂgc,@2pa_,_@2pb) # (1,1,1), then an _ _ QNfRZ;Ea+%Kﬁ%tﬂ%ﬁi%§i?]
error is committed. The probability of error at decoder 2 is =
bounded as: Z(yévvug@uﬁ-,zév-,uz’ymeTév (PY2.Use V10 X2.Usp)

p2\*|*:U20
. < 2N(R2pa+Rlc+R/1C+R2pb+R/2pb—12\*|*:Uzc)
Plerror 2|encoding successful] < E P[E, ], -

i€[1,2a,2b,3a,30] for py|, given in (36) andl,|, given in (37). Hence
P[E3 2, — 0asN — oo if (19e) is satisfied.

whereFEs ;, i € [1,2a,2b, 3a, 3], are the error events defined — CaseEs g bothw,. =1 andbo = bo. 5\? th'}g case,
in Table V. In Table V, an “X” means that the corresponding Cond|t|on]$d_ on the (correct) decod€d,., Uy,.), the
message is in error (when the header of the column contains output Y, |s]\;nde]\|]3endent of the (wrong) decoded
two indices, an “X” indicates that at least one of the two sequencesXy’, Uy, ). Thus we have
indexes is wrong), a “1” means that the corresponding messag
is correct, while the dots-“-” indicates that it does not P[EZ%] =P Ufmpa#lﬂ?zpb,bz

matter whether the corresponding message is correct or not; N 1IN N = N/ o~
in this case the most restrictive case is when the message is (¥, ’Uq\%C(PLU“(ll’ %’ bON)’XQb(l’w%“)’
actually wrong’ The last column of Table V specifies the, |, apb (1 Wapa, 1, bo, Wapp, b2))

N
to be used in (35). € TN (pya. U, U1 X,Un)]
< 2N(R2pa+R2pb+R2pb)
We have thatP[error 2|encoding successful] — 0 when =

N = oo if Do il ol udly) €T (9, s X2 Uz )
=N . p2\*|*:(U20,U10)
« When the event, ; occurs we havev,. # 1. In this < 9N (BapatRapy+ Ry —Iojulim(Use,01,))

case the receivedy" is independent of the transmitted -
sequences. This follows from the fact that the codewords for py|, given in (36) andly, given in (37). Hence
UY are generated in an iid fashion and all the other P[E 2] — 0 asN — oo if (10f) is satisfied.
codewords are generated independently conditioned on When the even¥, ;3 occurs, i.e., eitheEs 3, or Es 3,
UL. Hence, when decoder 2 finds a wrobig’, all the we havews, = 1,Wapq = 1 butwayy, # 1. Again, whether

decoded codewords are independent of the transmitted ;. is correct or not, it does not matter since decoder 2



is not interested inﬁlAc. However we need to consider
whether the paifw;.., by) is equal to the transmitted one

TABLE VI
ERROR EVENTS AT DECODERL.

or not because this affects the way the joint probability Event | wae | (wic,b1) | wipy | Pyq|s
among all involved RVs factorizes. The analysis proceeds %; )1< e - ZYI\

5 o Y1 |Usc
as for the eventZs; 5. Trs |1 T < AT

We have:
— Case Es 3,: either @y, # 1 or by # bo. In this

case, conditioned on the (correct) decoded sequenégsnce we expect the probability of error at decoder 1 to
(U, X&), the outputYy" is independent of the depend on terms of the type

(wrong) decoded sequencé®’iy., Us.Ujl,). It is

easy to see that the most stringent error event is when L,=E [log ]
both @, # 1 andby # by. Thus we have Prjx

- E |:10g Py |Use,Ure,Uspy ]

Py |«

P[E33,] = P [Ummil,boﬂo,mzpb,bg — [(Y: Use, Ure, Upoy ) (40)
= 5 cs ¢y Ulp .

(}/2Nv U2]\c](1)v UlAc](lv {Dlm bO)a XQN(L 1)7
Uﬁ,b(l 1, W1e, bo, Wapp, b2)) The probability of error at decoder 1 is bounded as:
€ T (pyz Uzc,Ure, X2, U2pb)]

3
N(Rie 4R o+ Ropy + B .
< Nt Ryt Rop iz Plerror 1|encoding successful] < E P[Ey 4]

Z(yz 5 yugy,uf,,xd 7u2pb)€TfN (pY2!U2ch1C’X2’U2pb)
p2\*|*:(U2mX2/) ) where P[E; ;] is the error event defined in Table VI. The
< 2N (BapatRictRyct Rapot Ry~ Lopuli=(vse. x2)) meaning of the symbols in Table VI is as for Table V. We

for pay. given in (36) andly;, given in (37). Hence have thatP[error 1|encodingsuccessful] — 0 when N — oo

P[Es3,) — 0 asN — oo if (10g) is satisfied. i:
Case E, 3. both @, = 1 and bo = bo. In this « When the eventt; ; occurs we havevs. # 1. In this
case, conditioned on the (Correct) decoded sequences case the reCGlVEHN is Independent of the transmitted
(UN, XN UN), the outputYy" is independent of sequences. We can bound the error probabilityFef;
the (wrong) decoded sequenﬁé\z’)b. However, since as:
(UL, X, UN) is the triplet that passed the encod- P[EL]
ing binning step, they are jointly typical. Hence, in '
this case we cannot use the factorizatiopdp given

=P |:U'[172c5£17&1c-,731pb7b0-,b1
(YN, UN (W), U (W1, Wae, bo)

in (36), but we need to replagey, |u,. in (36) with Ul (W2e, Wapa, Wic, bo, Wap, b1)) € TN (pyy v Use, Ulpb)}
DU, |Us., X2+ THUS WE have < oN(RzctRict R+ Ripy+-Rip)
P[EQ 3b] =P LJ~ b Z(y{\l’uév("u{\i”uﬁ)b)ETEN(pylwU2c7U]cyU1pb) pl\*|*:®
: B < 9N (Ract+Ropa+Ric+R o+ Rapy+Ropy — i« ] s=0)
Y3, Use (1), Ui (1,1, bo), X5 (1, 1), =
Ugyp(1,1,1, o, Wapb, b2)) for py), given in (36) andl;, given in (40). Hence
€ TN (pva,Use,Ure.Xa,Unps) | P[E; 1] — 0 asN — oo if (10i) is satisfied.
< 9N (Rapp+Raps) « When the evenf o occurs, eithetl;. # 1, by # by or

both. In this case, conditioned on the (correct) decoded
sequenceUyY, the outputY}" is independent of the

§ N ,N N N , N N
(Y3 s use,uty, 3 u2pb)€T (py2 Uge Uges X2, U2pb)

]i U;ﬁﬁzgffé pU:C_E]é;;sz ZZ (e lTae lieXa PralticUee X2 (wrong) decoded sequencég) and U, . It is easy
to see that the most stringent error event is when both
HenceP[E; 3] — 0 asN — o if (10h) is satisfied. w1 # 1 and bo #+ by. Thus we have
E. Decoding Errors at Decoder 1 PlEip] =P [lecil,boﬁo,@pb,bl
. . N N N o N ~ or
Depending on which messages are wrongly decoded at (Y1 sUze (1), Uie(1,wie; bo), Upyy (1, Wic, bo, Wipp, b1))
decoder 1, the transmitted sequences and the rec¥iteare €Ty (le,Uzc,Uu,Ulpb)]

generated iid according to

where %

< 2N(R1C+R10+Rlpb+R1pb)

(38) Z(yl ’uévc’u{\it’ulpb)eTéN (pyl vU2ch1ch1pb) pl‘*|*:U2c

A
= Pu.
P1jx = PUzc PU1c|Uze PU1o |Uze,Ure PY1[% < 2N(R1C+R,1C,+Rlpb+Rl1pb_Il‘*I*:Ugc)

indicates the messages decoded correctly. However,

the actual transmitted sequences and the recdijedonsid- for pyj, given in (39) andly, given in (40). Hence
ered at decoder 1 look as if they were generated iid according F[E12] — 0 asN — oo if (10j) is satisfied.

to

« When the event; 5 occurs, eithetv,, # 1, 31 £ by or
both. In this case, conditioned on the (correct) decoded

N N
P1 = PUse PUL|Use PUL b |Use Use PY|Uze Ure Uspe (39) sequence/f and U{Y), the outputY;" is independent



of the (wrong) decoded sequendégb. It is easy to see
thatAthe most stringent error event is when bath, # 1
andb; # b;. Thus we have

P[E1,3] =P [Uﬁlpb7’51£17551 _
(Y1N7UQZ\£(1)7U{\£(171ab0)7UiZgb(1711b07i51pb1b1))

N
eTe (pY17U2C7U1C-,U1pb)}
< 2N(R1Pb+R,1pb)

Z(y{\l7uévc7uﬁ,,u{\lpb)eTeN (,pyl ,Uzc,Uvalpb) pl\*|*:U2c-,U1c
< 2N(R1C+R10+R1pb+31pb*hM*:UQC,UIC)

for py. given in (39) andly|, given in (40). Hence
P[E1 3] — 0 asN — oo if (10K) is satisfied.

F. Proof of Lemma V.3

An encoding error is committed if we cannot findain the
first step or if, upon finding the corregg in the first encoding

step, we cannot find the corrg@ét, b2) in the second step. Let

E. o the probability of the first event an#, 1 of the latter,
than:

Plencoding NOT successful] < P[E. o] + P[Ec 12| ES o]
where

NRY,
PlMs )" (UN(1), XN (1,1), UN(1,1,bo))

¢ TeN(pUzc,Xz,Ulc)]
(1 - P[(UQJ\CI(l)vXéV(la 1)7 Ulj\c[(la 17 bO))

¢ TN (e o))
Using standard typicality arguments we have

P[(UQJ\cl(l)v Xév(lv 1)7 Ulj\c[(la 1, bo)) ¢ TeN(pUzmxz,Uu)]

w1 €TN (pus,, Xo,Ur o [Uz2e,X2)
Z (1 _ 6)2N(I(U1c§XZ‘U2C)+5).

P[Ee.,()]

Now we can write

’
QNRlc

PlE.o] < (1 —(1—€)2NU(U1eiX2|U2)+9))

< exp (1 —(1- 6)2N<R;C—1<U10;X2\U20)+6>))

so thatP[E. ] — 1 when N — 0 if (11a) is satisfied.
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where

PI(U3(1), X8 (1,1), UN(1,1,b0), Uy (1,1, bo, 1,b1)
¢ TEN(pU2C7X2-,Ulc-,U1pb)] > (1- E)Q*N(I(X%Ulpb\U2C7U1c)+5).

As for E. g, this implies thatP[E, 21 o] — 1 when N — 0
if (11b) is satisfied.

For E. 21 », Wwe have that the probability of this event goes
to one for largeN given that(Us., X2, U;.) appear to be
generated according to the distributipp,, x,,v,, and Uz
is generated according @, ,, v, x,,U,. -

For E. 21 . we have:

P[Ee,21 C] = (1 - P[(U%(l)’Xév(lv 1)’U1]\£(1a 1,b0),
Ulj\;;b(la 17 bOa 17 b1)7 U{gb(la 11 b07 11 b2))

N(R! ,+R. )
¢ TEN(pU2C’X2vU1c7U1pb,U2pb)])2 1pb T Ropb 7

where
PL(UR(1), X3 (1, 1), U (1,1, bo), U (1, Lo, 1.ba),
UQJ\ZQb(l’ L, bo, 1, bg)) ¢ TEN(pU2C7X27U1c;U1Pb;U2pb)] < 210+3,

This implies thatP[E. 21 -] — 1 when N — 0 if (11c) is
satisfied.

G. Containment of [23, Thm. 1] iRgrrp of Section VI-A

We refer to the region in [23, Thm. 1] &p ;1 for brevity.
We show this inclusion aR p ;7 in Rrrp with the following
steps:

e We enlarge the regioRpyr by removing some rate
constraints.

e We further enlarge the region by enlarging the set of possibl
input distributions. This allows us to remove thg; and @
from the inner bound. We refer to this region®$,,- since

is enlarges the original achievable region.

e We make a correspondence between the RVs and corre-
sponding rates oR%, - andRgrp.

e We choose a particular subset ®f;rp, R%yp, for which
we can more easily shoRpyr C REE, C R, C
Rrrp, since Ry, and R, have identical input distri-

Now the error evenf, 1, can be divided in three distinct bution decompositions and similar rate bound equations.

error events:

e E.21 4 it is not possible to findb; such that
(U2]\£v Xévv Ulj\clv Ulj\;[;b) € TEN(pU2C7X2-,Ulc-,U1pb)’
o E.015: it is not possible to find b,
(U2]\£v Xévv Ulj\cfv UQJ\;gb) € TEN(pU2C7X2-,U1c-,U2pb)'
e E. 21 . Given that we can find, andb, satisfy the first
two equations, we cannot find a couple, b2) such that
(U2]\£v Xévv Ulj\clv Ulj\;[;bv UQJ\;[;b) € TEN(pU2c-,X2-,U1c-,U1pb7U2pb)'
We now establish the rate bounds that guarantee that
probability of error of each of these events goes to zero.
For E. 21 , we have:

such that

PlEc21 o) = (1 = P[(UN(1), X3 (1,1), U (1,1, bo),
N N 2N Ripp
Ulpb(]" 1, bo, 1, bl)) ¢ T (pU2c-,X27U1C7U]pb)]) )

Enlarge the region Rp 1
We first enlarge the rate region of [23, Thm. Rpyr by
removing a number of constraints (specifically, we remove
equations (2.6, 2.8, 2.10, 2.13, 2.14, 2.16 2.17) of [23, Thm
1]). Also, following the line of thoughts in [30, Appendix D]
it is possible to show that without loss of generality we can
set X, to be a deterministic function df;; and V., allowing
us insertX; next toViq, Vi». With these consideration we can
ﬁ‘r}]?learge the original region and defi®y},. as in (41). taken

r the union of distributions

PWPVIL PVia DX | Vi1, V12 PVay Vi1 Vi2 PVag |Vi1, V12 P X | Vi1, Via, Va1, Vas - (42)

Using the factorization of the auxiliary RVs in [23, Thm.
1], we may insertX; next toVj; in equation (41f).
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Ry = I(Vay; X1, Vi, Via[W) (41a)
Ryy = I(Vao; X1, Vi, Via|[W) (41b)
Riy < I(Y1, Vi, Vo Vi [W) (41c)
Roy + Ry, < I(Y1, X1, Vi, Vig; Var|[W) (41d)
Rii+ Ro1 + Ry, < I(Y1, Vig; Vin, Var [W) + I(Vig; Var [W) (41e)
Rii 4 Ro1 + Ry + Rz < I(Y1; X1, Vi, Vig, Var [W) 4+ 1(X1, Vi, Vig; Var [W) (41f)
Ras + Ryy < I(Ya, Vi, Var; Vao[W) (419)
Ros + Ry + Ro1 + Ry < I(Ya,Vig; Voo, Var[W) + I(Vag; Vor [W) (41h)
Roo + Ry + Roy 4+ Ry + Ria < I(Ya; Vag, Var, Via|[W) + I1(Vag, Var; Via|W) (41i)
For equation (41c): to our notation (i.el — 2 and vice-versa). Consider the

correspondences between the variables of [23, Thm. 1] and
those of Theorem V.1 in Table VII to obtain the regi@if,
Yi, Var; Via [Via, W) defined as the set of rate pairs satisfying the inequalities i

E

45),
(Y1, Var; X1, Vig| Vg, W) (45) _ o
(Yi: X1, Vi1 [Vaa, Va1, W) + I(Vay; X1, Vaq |[Via, W). taken over the union of all distributions

Ry < I(Y1,Vig, Var; Vi |[W)
= I(Y1, Var; Vit [Vig, W) + I(Vig; Vi |W)

1
~ o~

For equation (41e) we have: DUz DX |Une PUsc| XaPUss| XaP X1 | X Ure Uss- (46)

Ri1 + Ro1 + Ry < I(Y1, Vig; Vir, Va1 |[W)
+I(Vi1; Vi |[W) Next, we using the correspondences of the table and restrict

= I(Y1; Vi1, Vo1 |Via, W) 4+ I(Via; Vi1, Vo [W) the fully general input distribution of Theorem V.1 to match
+I(Vig; Vi |[W) the more constrained factorization of (46), obtaining @aeg

= I(Y1; Vi1, Vor |[Vie, W) + I(Vi2; Va1 [ Vi1, W) R, € Rrrp defined as the set of rate tuples satisfying the
+I(Vi1; Var |[W) inequalities in (47) union of all distributions that factas

= I1(Y1: Vi1, Va1 |[Vig, W) + I(Vi1, Vig; Var [ W)

= I(Y1; X1, Vi, Va1 [Via, W) + I(Xy, Vin, Vig; Vaa [ W) PUse, X PUs | Xo DUy | X2 DX | X Ure Un -

The original region is thus equivalent to the region in (43):’quation-by-equation comparison. We now show that
union over all distributions that factor as in (42). Rout  C Rin by fixing an input distribution (which are the
Enlarge the class of input distribution and eliminate V3, saDrr];{ech;r tr?eTs% two regions) and comparing the rate regions
and W equation by equation. We refer to the equation numbers

Now increase the set of possible input distributions of égna directly, and look at the difference between the corresjrand
(42) by lettingVy; have any joint distribution with/j5. This equations in the two new regions.

is done by substitutingy,, with py,,|v,, in the expression of ) . .
the input distribution. With this substitution we have: « (47c)-(47a) vs (45c)-(45a): Noting the cancelation / in-
terplay between the binning rates, we see that
PWDPV1 |Via PVi2 P X1 Vi1, Via PVar | X1, Vi1 Ve PVos | X1,Vi1, Va2

PX3|X1,Va1,Vi2, Vo1, Va2 ((47c)— (47a) — ((45d)— (45a) = 0.
= PWPVi2PVi1,X1|V12PVa1| X1,V11 V12 PVas | X1, V11,V
PX2|X1,V11, V12, Va1, Vi o (47d)-(47a) vs. (45d)-(45a):
= DPWPVi2PX||Vi2PVor | X} V12 PVos | X| Vo
PX5 X, Vig,Vo1,Vao ((47d)— (473.)) — ((45d)— (458.))
with X/ = (X1, Vi1). SinceVi, is decoded at both decoders, = —1(X2;Urc) + I(Ure; X2, Use)
the time sharing randomV’ may be incorporated with;» = I(Uze; Ure| X2)
without loss of generality and thus can be dropped. The negio =0

described in (43) is convex and thus time sharing is not retede
With these simplifications, the regidR%}4,, is now defined
as the region in (44), taken over the union of all distribngio

e (47e)-(47a) vs. (45e)-(45a): again noting the cancelation

((47e)— (47a) — ((45e)— (45a) =0
PviaPX{ V12 PVoy | X[ V1o PVag | X V12 P X5 | X V12, Va1, Voo

Correspondence between the random variables and * (47f) vs. (45f):

rates. When referring to [23] please note that the index

of the primary and cognitive user are reversed with respect (47f) — (45f) =0
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Ry = I(Vay; X1, Vi, Vig|[W) (43a)
Ry = I(Vao; X1, Vin, Via|W) (43b)
Riy < I(Y1; Xy, Vin|Vig, Voo [W) + I(Var; X1|Vig, W) (43c)
Ro1 + Ry, < I(Y1, X1, Vin, Vig; Var [ W) (43d)
Rii+ Roy + Ry, < I(Y1; X1, Vin, Var |[Vig, W) + I(X1; Var [W) (43e)
Ri1+ Ro1 + Ry + Rz < I(Y1; X1, Vin, Var, Vie| W) + I1(X1, Vit, Vag; Var [W) (43f)
Rao + Ry < 1(Ya, Vig, Var; Vao|W) (439)
Ras + Ry + Roy + Ry < 1(Ya, Vig; Vag, Vor [W) 4 I(Vag; Var [W) (43h)
Ros + Ry + Ro1 + Ry + Rio < I(Ya; Vag, Vo1, Via|[W) + I(Vag, Var; Vig|[W) (43i)
Ry = I(Var; X1, Vi2) (44a)
Ry, = I(Vag; X1, Vi) (44b)
Ry < I(Y1; X{|Vig, Var) 4 I (Var; X1|Viz) (44c)
Ro1 + R/zl < I(Yy, Xl, Vig; Var) (44d)
Rii+ Ro1 + Ry, < I(Y1; X1, Va1 |Via) + I(Xy; Var) (44e)
Ri1+ Ro1 + Ry + Rio < I(Y1; X1, Var, Vig) + 1(X1, Vig; Vo) (44f)
Ras + Ryy < I(Y2,Vig, Var; Vag) (449)
Roo + R + Ro1 + Ry, < 1(Ya, Vig; Vao, Var) + I(Vag; Var) (44h)
Roo + Ry + Roy + Ry, + Rz < I(Ya; Vag, Var, Vi) + 1 (Vag, Var; Vi2) (44i)
TABLE VII
ASSIGNMENT OFRVS OFAPPENDIXG
RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
Uac, Rac Viz, R12 TX2 - RX 1 RX2
Uic, Ric Va1, Ro1 TX1—-RX1 RX2
Uipb, Ripb Vaz, Ra2 TX1—-RX1
X2, Rapa X!, Ry TX 2 — RX 2
Uspy = 0, Ry, = 0 - TX 1 — RX 2
R}, = I(Uic; X2|Uac) Lo1 — R21 = I(Va1; Vi1, Vi2)  Binning rate
R}, = I(Uiph; X2|Ute,Use) Loz — Rz = I(Va2; Vi1, Viz)  Binning rate
X1 X2
e = I(Uie; X2,Us) (45a)
i = I(Uipp; X2,Usc) (45b)
Ropa + Ric+ Ry, + Rae < 1(Ya;Use, Uae, X2) + I(Xo, Use; Ure) (45c)
Ropa + Ric+ R, < I(Y2; X2, Uic|Use) + I(X2;Use) (45d)
Ric+R), < 1(Y2,X3,Us;Use) (45e)
Ropa < I(Yo; X9|Use,Uic) + I(Uie; X2|Uae) (45f)
Ripp + Ry + Ric + Ry 4+ Rae < I(Y1;Urpy, Ute, Uae) + I(Unpp, Use; Uae) (459)
Ric+ Ripp + Rllc + Rllpb < I(Y1,Use; Uipp, Ure) + I(Uipp; Ure) (45h)
Ripp + Ry, < I(Y1,Use,Ure; Urpp) (45i)
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lc

Rllc + Rllpb

Roe + Ry + Rzpa + Rllc

Rgpa + Ric + Rllc

RlC + Rllc

R2pa

Ripy + Ry, + Ric + Ry + Rae
Ric+ Ripp + Ry, + Ry,

Rlpb + Rllpb

« (479)-(47b) vs. (45g)-(45b)-(45a)

((479)— (47b)) — ((459)— (45b)— (45a)

= —I(Xo; Ure, Urpp|Uae)
—I(Urpy, Uire; Uze) + 1(Ure; Uze, X2)
+I(U1pb; U207X2)

= —I(Uipp, Ure; X2, Uze) + I(Uie; Uze, Xa2)
+I(U1pb; U207X2)

= —I(Urpp; X2, Use) — I(Ure; Xo, Uac|Urpp)
+1(Ure; Uze, X2) + I(Uipp; Uze, X2)

= —I(Ure; Xo, Use|Urpy) + I(Ure; Uae, X2)

= —HU1c|Uipp) + H(U1¢| X2, Usze, Urpp)
+H(Ue) — H(U1c| X2, Use)

= I(Ulc; Ulpb) >0

where we have used the fact thét. and U, are

conditionally independent givefUs., Xs).
e (47h)— (47b) vs. (45h)- (45b)— (45a):

((47h)— (47b)) — ((45h)— (45b)— (45a)

= —I(X2; Uie, Uipp|Uae) — I(Uze; Ure, Urpy)
+I(Uipp; Uze, X2) = I(Ups; Use)
+1(Uye; X2, Use)

= —I(X2,Usc; Uic, Uipp) + I(Uipp; Uae, X2)
—I(Uipp; Uie) + I(Uic; X2, Uae)

= —1(X2,Use; Urpp) — I(Uie; X2, Uze|Uips)
+I(Uipp; Uze, X2) = I(Upp; Use)
+I1(Uye; X2, Use)

= —I(Uic; X2, Usc, Uipp) + I(Uic; X2, Uae)

= —1(Uye; X2, Use) — I(Uie; Urpp| X2, Uae)
+1(Uye; X2, Usc)

=0

where we have used the fact thét. and U,, are

conditionally independent givefUs., X2).
o (47i)— (47b)+ (47a) vs. (45i) (45b):

((470) — (47b)+ (47a) — ((45i) — (45b))
= —I(Urpp; X2|Uze, Ure) — I(U1pp; Uze, Ure)
+1(Upp; X2, Use)
= —I(U1pb; X2, Usc, Ure) + I(Upp; Use, X2)
= —I(Uipp; U1c|Use, X2)
=0

(VAN VAN VAN VANRR VARSI VAR VA
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I(Ur¢; X2|Use) (47a)
I(X2; Ure, Urp|Usc) (47b)
I(Y2;Uze, U, Xa) + I(Uie; Xo|Use) (47c)
I(Y2; Ure, X2|Uze) 4+ I(Use; X2|Usze) (47d)
I(Y2; Ure|Uze, X2) + I(Use; X2|Uze) (47e)
I(Yo; Xo|Use, Ure) + 1(Use; X2|Usc) (471)
I(Y1;Use, Uie, Urpy) (479)
I(Y1;Use, Urpp|Usc) (47h)
I(Y1; Urpp|Use, Uie) (47i)

H. Containment of [24, Thm. 2] iRgrp of Section H

The independently derived region in [12, Thm. 2] uses a
similar encoding structure as that &z,p with two excep-
tions: a) the binning is done sequentially rather than jpias
in Rgrrp leading to binning constraints (43)—(45) in [12, Thm.
2] as opposed to (10a)—(10c) in Thm.V.1. Notable is that both
schemes have adopted a Marton-like binning scheme at the
cognitive transmitter, as first introduced in the contextrodf
CIFC in [12]. b) While the cognitive messages are rate-aplit
identical fashions, the primary message is split into 2t
[12, Thm. 2] Ry = R11 + R19, note the reversal of indices)
while we explicitly split the primary message into threetpar
Ry = Roc + Ropa + Ropy. We show that the region of [12,
Thm.2], denoted a®¢cc C Rrrp in two steps:

e We first show that we may WLOG séf;; = () in [12,
Thm.2], creating a new regioRy, .

¢ We next make a correspondence between our RVs and those
of [12, Thm.2] and obtain identical regions.

We note that the primary and cognitive indices are permuted
in [12].

We first show thatU;; in [12, Thm. 2] may be
dropped WLOG. Consider the regiofiRge of [12,
Thm. 2], defined as the union over all distributions
PU10,Ur1, Vi1, Vao, Va2, X1, X2 P4, Y| X1, X, Of all rate tuples satis-

fying:

Ry < I(Y1;Var, Ui, Vao, Uio) (48)
Ry < I(Ya; Vag, Va2|Uro) — I(Vaz, Vao; Ui1|U10)  (49)
R1 + Ry < I(Y1; Vir, Ui1|Vao, Uio) + I(Y2; Va2, Vao, Ulo)

— I(Vaz; Ur1, Vi1|Vao, Uio) (50)
Ri1+ Ry < I(Y1;Vir, Ui, Vao, Uro) + 1(Ya; Vaz|Vao, Ulo)
— I(Vaz; Ur1, Vi1|Vao, Uio) (51)
< I(Y1; Vir, Ui, VaolUro) + I(Y2; Vaz|Vao, Uio)
+ I1(Yz2; Vao, Vaz, Uio) — I(Vaz, Vao; Ur1|Uio)
— I(Vaz; Ur1, Vi1|Vao, Uio) (52)

2Rs + Ry

Now let R, be the region obtained by settirig, = 0
and V{; = (Vi11,U11) while keeping all remaining RVs
identical. Then®R( is the union over all distributions
PU10,V{,,Va0,V22,X1,X2PY1,Y2 | X1, X2 with ‘/1/1 = (Vil?Ull) in



Ree, of all rate tuples satisfying:

R1 < I(Y1; Var, Urt, Vao, Uio) (53)
Ry < I(Ya; Vao, Va2|Uio) (54)
Ri + Ry < I(Y1; Var, Ur1|Vao, Uro) + I(Ye; Vaz, Vao, Uio)
Va2; U1, Vi1|Vao, Uio) (55)
Y1; Vir, Ura, Vao, Uro) + I(Y2; Vaz|Vao, Uio)
Va2; U1, Vi1|Vao, Uio) (56)
Y1; Vir, Unn, Vao|Uio) + I(Ya; Vaz|Vao, Uto)
+ I(Y2; Vao, Va2, Uio) — I(Vaz; Ur1, Vi1|Vao, Uto)
(57)
Comparing the two regions equation by equation, we see t
o (48)=(53)

- I(
R1+R2<I(
- I(
2R2+R1<I(

positive mutual information to 0
(50)=(55)
(51)=(56)

positive mutual information to 0

From the previous, we may séf;; = ) in the region

Ree of [12, Thm. 2] without loss of generality, obtaining

the regionRy defined in (53) — (57). We show th&..
may be obtained from the regidRrrp with the assigment

of RVs, rates and binning rates in Table VIII.
Evaluating R¢-

we obtain the region:

Ri. >0 (58a)
Rips + Ropp > I(Uipy; Uzps|Uze, Uic)
(58b)
Ropy + Ropp < I(Y2; Uzpy|Uze, Ure)  (58c)
Ropy + Ropy + Ric 4+ Rie < I(Ya; Uie, Uaps|Uze)  (58d)
Ropy + Ropy + Ric + Rie + Rae < 1(Ya; Ure, Uae, Uapy)  (58€)
Ripy + Ripy < I(Y1; Urpp|Use, Urc)  (58f)
Ripy + Rips + Ric + Rie < I(Y1;Uipy, Urc|Us2e)  (580)
Ripy + Ripy + Ric + Ric + Rac < I(Y1; Uips, Ure, Uae)  (58h)

Note that we may take binning rate equatid®’s. > 0 and
R’lpb + Rzpb > I(Uipp; Uaps|Use, Uic) 0 be equal|ty without
loss of generality - the largest region will talk ., :

lpb’ 2pb

as small as possible. The regi®xrp with Rgpa =0
Ri. >0 (59a)
Ri.+ Ry, >0 (59b)

R’lc + Rllpb + R’2pb Ulpb; U2pb|U207 Ulc) (59C)

I(
Ropp + Ropy < 1(Y2; Uzpp|Uze, Ure) — (59d)
Ropy + Ropy + Ric + Rie < 1(Ya; Ure, Uopy|[Uae)  (59€)
Ropb + Ropp + Ric + Rie + Rae < I(Y2; Ute, Uze, Uapy)  (59)
Ripy + Ripy < I(Y1; Upp|Use, Ure)  (590)
Ripb + Ripp + Ric + Ric < I(Y1;Urpp, Ure|Uze) — (59h)
Ripb + Rips + Ric + Ric + Rae < I(Y1;Uipy, Ure, Uae)  (590)

For R},
Rrrp is surely no smaller thaRcc. For R}, > 0, Rrrp ,

(52) < (57) as this choice of RVs sets the generally

defined by (53) — (57) with the above
assignment, translating all RVs into the notation used ,her
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Rrrp may produce rates larger thaRcco. However, in
general, no strict inclusion Ro¢ in Rrrp has been shown.

I. Containment of [13, Thm. 4.1] iRgrp of Section VI-C

In this scheme the common messages are created indepen-
dently instead of having the common message from transmit-
ter 1 being superposed to the common message from trans-
mitter 2. The former choice introduces more rate constsaint

than the latter and allows us to show inclusionR@rp.
Again, following the argument of [30, Appendix D], we can

i$how that without loss of generality we can take and X,

to be deterministic functions. With this consideration ve&sn c
express the region of [13, Thm. 4.1] as:

(49) < (54) as this choice of RVs sets the generally

Riyy > I(Wa; Vi, X1|U1, Us) (60a)

Ry + Ry > I(Wa; Wi, Vi, X1|U1,Uz2)  (60D)

Ru+ Ry < I(Vi, X1, Wi;Y1|UL,U2)  (60c)

Ri2 + Ru1 + Ry < I(U1, Vi, X1, Wi; Ya|U2)  (60d)

Ro1 + Rui + Riy < I(Us, Vi, X1, Wi; YA|Ur)  (60e)

Riz + Ro1 + Ri1 + Ry, < I(Uy, Vi, XaWi, Us; Y1) (60f)
Rz + Ryy < I(Wa; Ya|Ur, Us) (60g)

Ra21 + Raz + Ryy < I(Ua, Wa; Ya|Ur) (60h)

Ri2 + Raz + Roy < I(Ur, Wa; Y2|Us) (60i)

Ris 4+ Ro1 + Raa + Ry < I(U, Uz, Wa; Ya). (60j)

?aken over the union of all distributions

PUPW UL PX 1 |V, UL PU PWy Wa | Vi, UL U2 P X0 | W, Wo, Vi, UL, Us
Py1, Y| X1, X0

for (R}y, Ry, Ri1, Ri2, Ro1, Ra2) € RS
We can now eliminate one RV by noticing that

PU, Py UL P X1 |V, UL PU2 DWW, Wo |V, Uy U2 PXo|We W2, Vi, UL, Uz
Py1,vs|X1,Xo

= PU PV, X1 |UL PU PWy W2 |V, UL, X1, U2 PXo W1, Wa, V1, UL, X1,Us
Py1,Ys|X1,X0>s

and settingl’/ = [V1, X;], to obtain the region

Ry > I(Wa; V{|Uy, Us) (61a)

Ri1 + Ray > I(Wa; Wi, V{|Us, Us) (61b)

Riy + Ry < I(V{,Wi; YU, Us) (61c)

Ri2 + Rui + Ry < I(Uy, Vi, Wh; Y1|Uz) (61d)

Ro1 + Ru + Ry < 1(Uz, V{, Wi Y1|Uh) (61e)

Ri2 + Ro1 + R + Ry < I(Uy, ViWy,Uz; Y1) (61f)
Raz + Rjy < 1(Wa; Y2|Ur, Usz) (619)

Ra1 + Rz + Roy < 1(Uz, Wa; Ya|Ur) (61h)

Ri2 + Ras + Ry < I(Ur, Wa; Y2 |Us) (61i)

Ri2 + Ro1 + Raa + Ry < I(Ur, Uz, Wa; Ya) (61))

taken over the union of all distributions of the form

= 0 these two regions are identical, showing that

Pu, PV UL PUPW, Wa | V!, Ur U2 PXo|Wh ,Wa, V/ U1, U2 PY1, Y2 | V], X0 -

the binning rates of the regidRgrp are looser than the ones
in Rce. This is probably due to the fact that the first one We equate the RVs in the region of [13] with the RVs in

uses joint binning and latter one sequential binning. Tloeee

Theorem V.1 as in Table IX.



TABLE VI
ASSIGNMENT OFRVS OFSECTIONH

RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
Uac, Rac Uio, R1o TX2 - RX 1, RX2
X2:U2C‘1R2pa:0 U11:@,R11:0 TX2 - RX 2
Uic, Ric Va0, Ra2o TX1—RX1 RX2
Uipy, Ripy Voo, Roo TX1—-RX1
Uspy, Ropp (%% TX1—-RX2

:16 Lao — R2o

1pb L2 — Ra2
Ry Li1 — R
X1 X2
X2 X1

TABLE IX
ASSIGNMENT OFRVS OFSECTION |

RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
Uac, Rac Uy, Ri2 TX2 - RX 1, RX 2
X2, Rapa Vi, R}, TX2 — RX 2
Uic, Ric Uz, Ro1 TX1—RX1 RX2
Uipy, Ripy Wa, Ra2 TX1—-RX1
Usppy, Ropp =0 Wi TX1—-RX2

he Lo — Rao
Rilpb Li1 — Rn
Ry Loz — Ra2
X1 Xo
X2 X1

With the substitutions of Table IX in the achievable rate

region of (??), we obtain the region

Ry = I(Uie; X2|Usc) (63a)
Ripy = I(Usps; X2|Use, Use) (63b)
Ripy > I(Upe; X2|Use, Utc) (62a) Ripy + Ropy > I(Upy; Xo, Uspy|Uze, Ure)  (63c)
Ripy + Ropy > I(Urpy; Uzpp, X2|Uze, Ure)  (62b) Rapa + Ropy, < 1(Ya; X2, Usps|Uze, Uie)
Ropa + Ripy < (X2, Uzpp; Y2|Uze, Ure)  (62c) + I(Uie; X2|Use) (63d)
Rac 4 Ropa + Rapy, < 1(Use, X2, Uapp; Yo|Ure)  (62d) Ric + Ropa + Ropy < I(Y2;Ure, Xo, Uspp|Uae)  (63€)
Ric + Ropa + Rhpy < I(Ue, X2, Usp; Ya|Use)  (62€)  Roc + Ric + Ropa + Ripy < 1(Y2; Uzpp, Ure, Uze, X2)  (63f)
Rac + Ric + Rapa + Ropy < I(Uze, X2, Urc, Uipp; Y2)  (62f) Ripy + Ripy < I(Y1; Urps|Uze, Uie) (639)
Ripy + Ripy < I(Urps; Y1|Uze, Ute) (629) Ric + Ripy + Ripp < I(Y1; Use, Urps|Uze) (63h)
Ric + Ripb + Ripy < I(Uie, Uipp; Y1|Use) (62h)  Roc+ Ric+ Rupy + Ripy < I(Y1;Use, Use, Uips) (63)
Rac + Rapp + Ripy < I(Uze, Usp; Y1 |Ue) (62i) Note that with this particular factorization we have that
Roc + Ric + Rupy + Ripy, < I(Use, Ure, Urpp; Y1). (62)  I(Uy.; X2|Uae) = 0, since X, is conditionally independent

taken over the union of all distributions of the form

of Uy, givenUs,.

We now compare the region of (62) and (63) for a fixed
input distribution, equation by equation:

PULPU2P X2 U2 PU b, Uzpb |Ure,Uze, X2 PX1|Usc ,Ure, Uiy, Uapp *

Set Ry, = 0 and R}, = I(Uic; X2|Us.) in the achievable
scheme of Theorem V.1 and consider the factorization of the
remaining RVs as in the scheme of (62), that is, according to

PULPU2PX2|U2ePU1 b, Uspp|Ure,Uze, X2 PX1|Uze, X2,U1c,Uips,Uzpb *

We see that (62d) and (62i) are extra bounds that further
restrict the region in [13] to be contained in the region of
Theorem V.1.

With this factorization of the distributions, we obtain the

achievable region

(63¢) = (62b)
(63d) = (62c)
(63e) = (62¢)
(63f) = (62f)
(63g) = (62g)
(63h) = (62h)
(63i) = (625)
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