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Abstract—The cognitive interference channel is an interference
channel in which one transmitter is non-causally provided with
the message of the other transmitter. This channel model has
been extensively studied in the past years and capacity results
for certain classes of channels have been proved. In this paper
we present new inner and outer bounds for the capacity region
of the cognitive interference channel as well as new capacity
results. Previously proposed outer bounds are expressed interms
of auxiliary random variables for which no cardinality constraint
is known. Consequently it is not possible to evaluate such outer
bounds explicitly for a given channel model. The outer bound
we derive is based on an idea originally devised by Sato for
the broadcast channel and does not contain auxiliary random
variables, allowing it to be more easily evaluated. The inner
bound we derive is the largest known to date and is explicitly
shown to include all previously proposed achievable rate regions.
This comparison highlights which features of the transmission
scheme–which includes rate-splitting, superposition coding, a
broadcast channel-like binning scheme, and Gel’fand Pinsker
coding–are most effective in approaching capacity. We next
present new capacity result for a class of discrete memoryless
channels that we term the “better cognitive decoding regime”
which includes all previously regimes in which capacity was
known. Finally, we determine the capacity region of the semi-
deterministic cognitive interference channel, in which the signal
at the cognitive receiver is a deterministic function of thechannel
inputs.

I. I NTRODUCTION

The rapid advancement of wireless technology in the past
years has started what some commentators call the “wireless
revolution” [3]. This revolution envisions a world where one
can access telecommunication services on a global scale with-
out the deployment of local infrastructure. By increasing the
adaptability, communication and cooperation capabilities of
wireless devices, it may be possible to realize this revolution.
Presently, the frequency spectrum is allocated to different
entities by dividing it into licensed lots. Licensed users have
exclusive access to their licensed frequency lot or band and
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cannot interfere with the users in neighboring lots. The con-
stant increase of wireless services has led to a situation where
new services have a difficult time obtaining spectrum licenses,
and thus cannot be accommodated without discontinuing, or
revoking, the licenses of others. This situation has been termed
“spectrum gridlock” [4] and is viewed as one of the factors
in preventing the emergence of new services and technologies
by entities not already owning significant spectrum licenses.

In recent years, several strategies for overcoming this spec-
trum gridlock have been proposed [4]. In particular, collab-
oration among devices and adaptive transmission strategies
are envisioned to overcome this spectrum gridlock. That is,
smart and well interconnected devices may cooperate toshare
frequency, time and resources to communicate more efficiently
and effectively. The role of information theory in this scenario
is to determine ultimate performance limits of a collaborating
network. Given the complexity of this task in its fullest
generality, researchers have focussed on simpler models with
idealized assumptions.

One of the most well studied and simplest collaborative
models is the genie aided cognitive interference channel.
This channel is similar to the classical interference channel:
two senders wish to send information to two receivers. Each
transmitter has one intended receiver forming two transmitter-
receiver pairs termed the primary and secondary (or cogni-
tive) pairs/users. Over the channel each transmitted message
interferes with the other, creating undesired interference at
the intended receiver. This channel model differs from the
classical interference channel in the assumptions made about
the ability of the transmitters to collaborate: collaboration
among transmitters is modeled by the idealized assumption
that the secondary (cognitive) transmitter has full a-priori
(or non-causal) knowledge of the primary message. This
assumption is referred to as genie aided cognition1. The model
was firstly posed from an information theoretic perspective
in [5], where the channel was formally defined and the first
achievable rate region was obtained, demonstrating that a
cognitive interference channel, employing a form of asymmet-
ric transmitter cooperation, could achieve larger rate regions

1This has also been termed “unidirectional cooperation” or transmission
with a “degraded message sets”.
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than the classical interference channel. [5] also presentsan
outer bound for the Gaussian channel based on the broadcast
channel; another outer bound was derived in [6], together
with the first capacity result for a class of channels termed
“very weak interference” in which (in Gaussian noise) treating
interference at the primary receiver as noise is optimal. The
same achievable rate region was simultaneously derived in
[7], where the authors further characterized the maximum rate
achievable by the cognitive user without degrading the rate
achievable by the primary user. Another capacity result was
proved in [8] for the so-called “very strong interference case”,
where, without loss of optimality, both receivers can decode
both messages. The capacity is also known for the case where
the cognitive user decodes both messages [9] with and without
confidentiality constraints.

However, the capacity region of the cognitive interference
channel, both for discrete memoryless as well as Gaussian
noise channels, remains unknown in general. Tools such as
rate-splitting, binning, cooperation and superposition coding
have been used to derive different achievable rate regions.The
authors of [10] proposed an achievable region that encom-
passes all the previously proposed inner bounds and derived
a new outer bound using an argument originally devised for
the broadcast channel in [11]. A further improvement of the
inner bound in [10] is provided in [12] where the authors
include a new feature in the transmission scheme allowing
the cognitive transmitter to broadcast part of the message of
the primary pair. This broadcast strategy is also encountered
in the scheme derived in [13] for the more general broadcast
channel with cognitive relays, which contains the cognitive
interference channel as special case.

A natural extension of the cognitive interference channel
model is the so called “broadcast channel with cognitive
relays” or “interference” channel with one cognitive relay”. In
this channel model, a cognitive relay in inserted in a classical
interference channel. The cognitive relay has knowledge ofthe
two messages and thus cooperates with the two encoders in
the transmission of these two messages. The model contains
both the interference channel and the cognitive interference
channel when removing one of the transmitters and message
knowledge (for the interference channel) and thus can reveal
the optimal cooperation trade off between entities in a larger
network. This model was first introduced in [14], where
an achievable rate region was derived. In [15] the authors
introduced a larger achievable rate region and derived an outer
bound for the sum capacity. In [13] a yet larger inner bound
is derived by having the cognitive transmitter send a private
message to both receivers as in a broadcast channel.

A. Main contributions

In this paper we establish a series of new results for the
discrete memoryless cognitive interference channel. Section
II introduces the basic definitions and notation. Section III
summarizes the known results including general inner bounds,
outer bounds and capacity in the “very weak interference”
[6], [16] and “very strong interference” [17] regimes. Our
contributions start in Section IV and may be summarized as
follows:

• A new outer bound for the capacity region is presented
in Section IV: this outer bound is looser than previously
derived outer bounds but it does not include auxiliary
random variables and thus it can be more easily evaluated.

• In Section V we present a new inner bound.
• We show that the newly derived region encompasses all

previously presented regions in Section VI.
• We derive the capacity region of the cognitive interfer-

ence channel in the “better cognitive decoding” regime
in Section VII: this regime includes the “very weak
interference” and the “very strong interference” regimes
and is thus the largest set of channels for which capacity
is known.

• Section VIII focuses on the semi-deterministic cognitive
interference channel in which the output at the cognitive
receiver is a deterministic function of the channel inputs.
We determine capacity for this channel model by showing
the achievability of the outer bound first derived in [6].

• In Section IX we consider the deterministic cognitive
interference channel: in this case both channel outputs
are deterministic functions of the inputs. This channel
is a subcase of the semi-deterministic case for which
capacity is known. For this channel model we show the
achievability of the outer bound proposed in section IV,
thus showing that this outer bound is tight for this class
of channels.

• The paper concludes with some examples in Section
X which provide insight on the role of cognition. We
consider two deterministic cognitive interference channel
and show the achievability of the outer bound of Section
IV with transmission strategies over one channel use.
The achievable scheme we propose provides interesting
insights on the capacity achieving scheme in this channel
model - the extra non-causal message knowledge at one
of the transmitters allows a partial joint design of the
codebooks and transmission strategies - and is easily
appreciated in these simple deterministic models.

II. CHANNEL MODEL , NOTATION AND DEFINITIONS

A two user InterFerence Channel (IFC) is a multi-terminal
network with two senders and two receivers. Each transmitter i
wishes to communicate a messageWi to receiver i, i ∈ [1, 2].
In the classical IFC the two transmitters operate independently
and have no knowledge of each others’ messages. Here we
consider a variation of this set up assuming that transmitter 1
(the cognitive transmitter), in addition to its own messageW1,
also knows the messageW2 of transmitter 2 (the primary trans-
mitter). We refer to transmitter/receiver 1 as the cognitive pair
and to transmitter/receiver 2 as the primary pair. This model,
shown in Fig. 1 is termed the Cognitive InterFerence Channel
(CIFC) and is an idealized model for unilateral transmitter
cooperation. The Discrete Memoryless CIFC (DM-CIFC) is a
CIFC with finite cardinality input and output alphabets and a
memoryless channel described by the transition probabilities
pY1,Y2|X1,X2

(x1, x2).
Transmitteri ∈ [1, 2] wishes to communicate a message

Wi, uniformly distributed on[1 : 2NRi ], to receiveri in N
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Fig. 1. The CIFC model.

channel uses at rateRi. The two messages are independent.
A rate pair(R1, R2) is said to be achievable if there exists a
sequence of encoding functions

XN
1 = XN

1 (W1, W2),

XN
2 = XN

2 (W2),

and a sequence of decoding functions

Ŵi = Ŵi(Y
N
i ), i ∈ [1, 2],

such that

lim
N→∞

max
i∈[1,2]

P

[
Ŵi 6= Wi

]
→ 0.

The capacity region is defined as the closure of the region of
all achievable(R1, R2) pairs [18].

III. E XISTING RESULTS FOR THEDM-CIFC

We now present the existing outer bounds and the capacity
results available for the DM-CIFC. The first outer bound for
the DM-CIFC was obtained in [6, Thm 3.2] by the introduction
of an auxiliary Random Variable (RV).

Theorem III.1. [6, Thm 3.2]: If (R1, R2) lies in the capacity
region of the DM-CIFC then

R1 ≤ I(X1; Y1|X2), (1a)

R2 ≤ I(X2, U ; Y2), (1b)

R1 + R2 ≤ I(X2, U ; Y2) + I(X1; Y1|X2, U), (1c)

taken over the union of distributions that factor as

pU,X1,X2pY1,Y2|X1,X2
.

The expression of the outer bound of Theorem III.1 can
be simplified in two instances called “weak” and “strong
interference”.

Corollary III.2. Weak interference outer boundof [6, Thm
3.4]:

When the condition

I(U ; Y2|X2) ≤ I(U ; Y1|X2) ∀pU,X1,X2 , (2)

is satisfied, the outer bound of Theorem III.1 can be equiva-
lently expressed as

R1 ≤ I(Y1; X1|U, X2), (3a)

R2 ≤ I(U, X2; Y2), (3b)

taken over the union of all distributionspU,X1,X2 .

We refer to the condition in (2) as the “weak interference
condition”.

Corollary III.3. Strong interference outer boundof [17, Thm
5]:

When the condition

I(X1; Y1|X2) ≤ I(X1; Y2|X2) ∀pX1,X2 , (4)

is satisfied, the outer bound of Theorem III.1 can be equiva-
lently expressed as

R1 ≤ I(Y1; X1|X2), (5a)

R1 + R2 ≤ I(Y2; X1, X2), (5b)

taken over the union of all distributionspX1,X2 .

We refer to the condition in (4) as the “strong interference
condition”.

The outer bound of Theorem III.1 may be shown to be
achievable in a subset of the “weak interference” (2) and of the
“strong interference” (4) conditions. We refer to these subsets
as the “very strong interference” and “very weak interference”
regimes.

Theorem III.4. Very weak interference capacityof [6, Thm.
3.4] and [7, Thm. 4.1]. The outer bound of Theorem III.1 is
the capacity region if

I(U ; Y2|X2) ≤I(U ; Y1|X2),

I(X2; Y2) ≤I(X2; Y1),

∀pX1,X2 . (6)

We refer to the condition in (6) as “very weak interference”.
In this regime capacity is achieved by having encoder 2
transmit as in a point-to-point channel and encoder 1 perform
Gelf‘and-Pinsker binning against the interference created by
transmitter 2.

In a similar spirit, capacity may be obtained in “very strong
interference”.

Theorem III.5. Very strong interference capacityof [17,
Thm. 5]. The outer bound of Theorem III.1 is the capacity
region if

I(X1; Y1|X2) ≤I(X1; Y2|X2),

I(Y2; X1, X2) ≤I(Y1; X1, X2),

∀pX1,X2 . (7)

We refer to the condition in (7) as “very strong interfer-
ence”. In this regime, capacity is achieved by having both
receivers decode both messages.
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The outer bound presented in Theorem III.1 cannot be
evaluated in general since it includes an auxiliary RV whose
cardinality has not yet been bounded. In the following we
propose a new outer bound, looser in general that the outer
bound of Theorem III.1 but without auxiliary RVs.

IV. A NEW OUTER BOUND

Theorem IV.1. If (R1, R2) lies in the capacity region of the
DM-CIFC then

R1 ≤ I(Y1; X1|X2), (8a)

R2 ≤ I(X1, X2; Y2), (8b)

R1 + R2 ≤ I(X1, X2; Y2) + I(Y1; X1|Y
′
2 , X2), (8c)

taken over the union of all distributionspX1,X2 and
pY1,Y ′

2 |X1,X2
, where Y ′

2 has the same marginal distribution
as Y2, i.e., pY ′

2 |X1,X2
= pY2|X1,X2

.

Proof: The proof of this theorem may be found in
Appendix A. The idea behind this outer bound is to exploit
the fact that the capacity region only depends on the marginal
distributionsPY1|X1,X2

and PY2|X1,X2
because the receivers

do not cooperate.

RemarkIV.2. The outer bound of Theorem IV.1 contains the
outer bound of Theorem III.1. Indeed, for a fixed distribution
pX1,X2 , the bounds onR1 are the same ((1a) = (8a)) and the
bound onR2, I(X2, U ; Y2) ≤ I(X1, X2; Y2) (or (1b) ≤ (8b))
since

I(Y2; X2, U)
(a)

≤ I(Y2; X2, U) + I(Y2; X1|U, X2)
= I(Y2; X1, X2, U)
= I(Y2; X1, X2),

where the last equality follows from the Markov chainU −
X1, X2 − Y1, Y2.

ConsiderY ′
2 such thatpY ′

2 |U,X1,X2
= pY2|U,X1,X2

, which
also impliespY ′

2 |U,X2
= pY2|U,X2

. then:

I(X2, U ; Y2) + I(X1; Y1|X2, U)
= H(Y2) + H(Y2|X1, X2, U) − H(Y2|U, X1, X2)

−H(Y2|U, X2) + I(X1; Y1|U, X2)
= I(Y2; X1, X2, U) + H(Y ′

2 |U, X1, X2) − H(Y ′
2 |U, X2)

+I(X1; Y1|U, X2)
(b)

≤ I(Y2; X1, X2) − I(Y ′
2 ; X1|U, X2) + I(X1; Y1|U, X2)

+I(Y ′
2 ; Y1|U, X1, X2)

= I(Y2; X1, X2) − I(Y ′
2 ; X1|U, X2) + I(Y ′

2 , X1; Y1|U, X2)
= I(Y2; X1, X2) + I(Y1; X1|Y ′

2 , U, X2)
= I(Y2; X1, X2) + H(Y1|Y ′

2 , U, X2) − H(Y1|Y ′
2 , U, X1, X2)

(c)

≤ I(Y2; X1, X2) + H(Y1|Y ′
2 , X2) − H(Y1|Y ′

2 , X1, X2)
= I(Y2; X1, X2) + I(Y1; X1|Y ′

2 , X2) = (8c).

where (a) follows from the non-negativity of mutual informa-
tion, (b) follows from the Markov chainU −X1, X2 −Y1, Y2

and (c) from the fact that conditioning reduces entropy. Now
the RV U does not appear in the outer bound expression (8c)
and thus we can consider simply the RVs withpeY2|X1,X2

=

pY2|X1,X2
which corresponds to the definition ofY ′

2 in Theo-
rem IV.1. Equality of the outer bounds in Theorems III.1 and

IV.1 is verified when conditions(a) and(c) hold with equality,
that is when

I(Y2; X1|U, X2) = 0,

I(Y1; X1|Ỹ2, U, X2) = I(Y1; X1|Ỹ2, X2), ∀pU ,

for a givenỸ2. The first conditions implies the Markov Chain
(MC)

Y2 − U, X2 − X1,

and the second condition the MC

Y1, X1 − Ỹ2X2 − U.

We currently cannot relate these conditions to any specific
class of DM-CIFC.

RemarkIV.3. The outer bound of Theorem IV.1 reduces to
the “strong interference” outer bound in (5), in fact

I(Y1; X1|X2) ≤ I(Y2; X1|X2) ∀pX1,X2 ,

implies

I(Y1; X1|Y
′
2 , X2) ≤ I(Y2; X1|Y

′
2 , X2) ∀pX1,X2,Y ′

2
.

Now letY ′
2 = Y2 to obtain thatI(Y1; X1|Y2, X2) = 0 yielding

(8c) = (8b) so that the two outer bounds coincide.

V. A NEW INNER BOUND

As the DM-CIFC encompasses classical interference,
multiple-access and broadcast channels, we expect to see a
combination of their achievability proving techniques surface
in any unified scheme for the CIFC. Our achievability scheme
employs the following classical techniques:

• Rate-splitting. We employ a rate-splitting technique similar
to that in Han and Kobayashi’s scheme of [19] for the
interference-channel, also employed in the DM-CIFC regions
of [10], [5], [20]. While rate-splitting may be useful in general,
is not necessary in the “very weak” [6] and “very strong
interference” [8] regimes of (6) and (7).
• Superposition-coding.Useful in multiple-access and broad-
cast channels [18], in the DM-CIFC the superposition of
private messages on top of common ones, as in [10], [20], is
known to be capacity achieving in ”very strong interference”
[8].
• Binning. Gel’fand-Pinsker coding [21], often simply referred
to as binning, allows a transmitter to “cancel” (portions of) the
interference known to be experienced at a receiver. Binningis
also used by Marton in deriving the largest known achievable
rate region [22] for the discrete memoryless broadcast channel.

We now present a new achievable rate region for the DM-
CIFC which generalizes all the known achievable rate regions
presented in [10], [6], [20], [23], [12] and [13]. In the next
Section, VI we will show that this achievable rate region,
despite being built upon similar encoding schemes, generalizes
and includes all other known achievable rate regions. The
intuitive reason behind this inclusion lies in the structure of our
encoder consisting of joint binning (rather than sequential as
in some of the other regions), the full generality of our input
distributions (lacking in some of the other known regions),
and the presence of a broadcast channel like scheme at the
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cognitive transmitter (also noted in the region of [12]), and
a slightly different rate-split than previous work. We note
however that we do not claim strict containment of any of
the previously proposed rate regions.

Theorem V.1. The RRTD region. A rate pair (R1, R2) such
that

R1 = R1c + R1pb,

R2 = R2c + R2pa + R2pb. (9)

is achievable for the DM-CIFC if
(R′

1c, R
′
1pb, R

′
2pb, R1c, R1pb, R2c, R2pa, R2pb) ∈ R

8
+ satisfies

the inequalities in (10) for some input distribution

pY1,Y2,X1,X2,U1c,U2c,U2pa,U1pb,U2pb

= pU1c,U2c,U2pa,U1pb,U2pb,X1,X2pY1,Y2|X1,X2
.

RemarkV.2. Moreover:

• (23c) can be dropped whenR2c = R2pa = R2pb =
R′

2pb = 0;
• (10e) can be dropped whenR2pa = R2pb = R′

2pb = 0;
• (10g) can be dropped whenR2pb = R′

2pb = 0;
• (10i) can be dropped whenR1c = R′

1c = R1pb = R′
1pb =

0,

since they correspond to the event that a common message
from the non-intended user is incorrectly decoded. This event
is not an error event if no other intended message is incorrectly
decoded.

Proof: The meaning of the RVs in Theorem V.1 is
as follows. Both transmitters perform superposition of two
codewords: a common one (to be decoded at both decoders)
and a private one (to be decoded at the intended decoder only).
In particular:

• RateR1 is split intoR1c andR1pb and conveyed through
the RVsU1c andU1pb, respectively.

• RateR2 is split into R2c, R2pa andR2pb and conveyed
through the RVsU2c, X2 andU2pb, respectively.

• U2c is the common message of transmitter 2 with rate
R2c. The subscript “c” stands for “common”.

• X2 is the private message of transmitter 2 to be sent by
transmitter 2 superimposed toU2c and with rateR2pa.
The subscript “p” stands for “private” and the subscript
“a” stands for “alone”.

• U1c is the common message of transmitter 1. It is
superimposed toU2c and - conditioned onU2c - is binned
againstX2.

• U1pb andU2pb are private messages of transmitter 1 and
transmitter 2, respectively, and are sent by transmitter 1
only. They are binned against one another conditioned
on U2c, as in Marton’s achievable rate region for the
broadcast channel [22]. The subscript “b” stands for
“broadcast”.

• X1 is finally superimposed to all the previous RVs and
transmitted over the channel.

A graphical representation of the encoding scheme of The-
orem V.1 can be found in Fig. 2. The formal description of
the proposed encoding scheme is as follows:

A. Rate splitting

Let W1 and W2 be two independent RVs uniformly dis-
tributed on[1 : 2NR1 ] and [1 : 2NR2 ] respectively. Consider
splitting the messages as follows:

W1 = (W1c, W1pb),
W2 = (W2c, W2pb, W2pa),

where the messagesWi, i ∈ [1c, 2c, 1pb, 2pb, 2pa], are all
independent and uniformly distributed on[1 : 2NRi ], so that
the rates satisfy (9).

B. Codebook generation

Consider a distributionpU1c,U2c,X2,U1pb,U1pb,X1,X2 . The
codebooks are generated as follows:

• Select uniformly at random2NR2c length-N sequences
UN

2c(w2c), w2c ∈ [1 : 2NR2c ], from the typical set
T N

ǫ (pU2c
).

• For everyw2c ∈ [1 : 2NR2c ], select uniformly at random
2NR2pa length-N sequencesXN

2 (w2c, w2pa), w2pa ∈ [1 :
2NR2pa], from the typical setT N

ǫ (pX2,U2c
|UN

2c(w2c)).
• For everyw2c ∈ [1 : 2NR2c ], select uniformly at ran-

dom2N(R1c+R′
1c) length-N sequencesUN

1c(w2c, w1c, b0),
w1c ∈ [1 : 2NR1c ] andb0 ∈ [1 : 2NR′

1c ], from the typical
setT N

ǫ (pU1cU2c
|UN

2c(w2c))
• For everyw2c ∈ [1 : 2NR2c ], w2pa ∈ [1 : 2NR2pa ],

w1c ∈ [1 : 2NR1c ] and b0 ∈ [1 : 2NR′
1c ], se-

lect uniformly at random2N(R2pb+R′
2pb) length-N se-

quencesUN
2pb(w2c, w2pa, w1c, b0, w2pb, b2), w2pb ∈ [1 :

2NR2pb ] and b2 ∈ [1 : 2NR′
2pb ], from the typical set

T N
ǫ (pU2pb,U2c,U1c,X2 |U

N
2c(w2c), X

N
2 (w2c, w2pa),

UN
1c(w2c, w1c, b0)).

• For everyw2c ∈ [1 : 2NR2c ], w1c ∈ [1 : 2NR1c ] andb0 ∈
[1 : 2NR′

1c ], select uniformly at random2N(R1pb+R′
1pb)

length-N sequencesUN
1pb(w2c, w1c, b0, w1pb, b1), w1pb ∈

[1 : 2NR1pb ] and b1 ∈ [1 : 2NR′
1pb ], from the typical set

T N
ǫ (pU1pb,U2c,U1c

|UN
2c(w2c), U

N
1c(w2c, w1c, b0)).

• For every w2c ∈ [1 : 2NR2c ], w2pa ∈ [1 :
2NR2pa], w1c ∈ [1 : 2NR1c ], b0 ∈ [1 : 2NR′

1c ],
w1pb ∈ [1 : 2NR1pb ], b1 ∈ [1 : 2NR′

1pb ],
w2pb ∈ [1 : 2NR2pb ], b2 ∈ [1 : 2NR′

2pb], let the
channel inputXN

1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2)
be any length-N sequence from the typical set
T N

ǫ (pX1,U2c,U1c,X2,U2pb,U1pb
|UN

2c(w2c), X
N
2 (w2c, w2pa),

UN
1c(w2c, w1c, b0), U

N
2pb(w2c, w2pa, w1c, b0, w2pb, b2),

UN
1pb(w2c, w1c, b0, w1pb, b1)).

C. Encoding

Given the messagew2 = (w2c, w2pb, w2pa), encoder 2 sends
the codewordXN

2 (w2c, w2pa).
Given the messagew2 = (w2c, w2pb, w2pa) and the message

w1 = (w1c, w1pb), encoder 1 looks for a triplet(b0, b1, b2)
such that:

(UN
2c(w2c), X

N
2 (w2c, w2pa), UN

1c(w2c, w1c, b0),

UN
1pb(w2c, w1c, b0, w1pb, b1), U

N
2pb(w2c, w1c, b0, w2pb, b2))

∈ T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

).
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R′
1c = I(U1c; X2|U2c) (10a)

R′
1c + R′

1pb ≥ I(U1pb; X2|U1c, U2c) + I(U1c; X2|U2c) (10b)

R′
1c + R′

1pb + R′
2pb ≥ I(U1pb; X2, U2pb|U1c, U2c) + I(U1c; X2|U2c) (10c)

R2c + R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2, U2c) + I(U1c; X2|U2c) (10d)

R2pa + (R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c, X2|U2c) + I(U1c; X2|U2c) (10e)

R2pa + (R2pb + R′
2pb) ≤ I(Y2; U2pb, X2|U1c, U2c) + I(U1c; X2|U2c) (10f)

(R1c + R′
1c) + (R2pb + R′

2pb) ≤ I(Y2; U2pb, U1c|X2, U2c) + I(U1c; X2|U2c) (10g)

(R2pb + R′
2pb) ≤ I(Y2; U2pb|U1c, X2, U2c) (10h)

R2c + (R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c, U2c), (10i)

(R1c + R′
1c) + (R1pb + R′

1pb) ≤ I(Y1; U1pb, U1c|U2c), (10j)

(R1pb + R′
1pb) ≤ I(Y1; U1pb|U1c, U2c), (10k)

pX2|U2c X2

X1
pX1|U2c,X2,U1c,U1pbpU2pb|U1c,U2c,X2

Fig. 2. The achievability encoding scheme of Thm. V.1. The ordering from left to right and the distributions demonstratethe codebook generation process.
The dotted lines indicate binning. We see rate splits are used at both users, private messagesW1pb, W2pa, W2pb are superimposed on common messages
W1c, W2c and U1c, is binned againstX2 conditioned onU2c, while U1pb and U2pb are binned against each andX2 other in a Marton-like fashion
(conditioned on other subsets of RVs).

If no such triplet exists, it sets(b0, b1, b2) = (1, 1, 1). If more
than one such triplet exists, it picks one uniformly at random
from the found ones. For the selected(b0, b1, b2), encoder 1
sendsXN

1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2).

D. Decoding

Decoder 2 looks for a unique tuple(w2c, w2pa, w2pb) and
some(w1c, b0, b2) such that

(Un
2c(w2c), X

n
2 (w2c, w2pa), Un

1c(w2c, w1c, b0),
Un

2pb(w2c, w1c, b0, w2pb, b2), Y
n
2 ) ∈ T n

ǫ (pU2c,X2,U1c,U2pb,Y2).

The probability of error at decoder 2 goes to zero if conditions
(10e)-(10h) hold.

Decoder 1 looks for a unique pair(w1c, w1pb) and some
(w2c, b0, b1) such that

(Un
2c(w2c), U

n
1c(w2c, w1c, b0), U

n
1pb(w2c, w1c, b0, w1pb, b1), Y

n
1 )

∈ T n
ǫ (pU2c,U1c,U1pb,Y1).

The probability of error at decoder 1 goes to zero if
conditions (10i)-(10k) hold.

The detailed error analysis is found in Appendix B.

E. Two step binning

It is also possible to perform binning in a sequential
manner. First,U1c is binned againstX2, and thenU1pb and

U2pb are binned against each other conditioned on(U2c, U1c)
and(U2c, X2, U1c) respectively. With respect to the encoding
operation of the previous section, this affects Section V-Cas
follows:

Given the messagew2 = (w2c, w2pb, w2pa) and the message
w1 = (w1c, w1pb), encoder 1 looks forb0 such that

(UN
2c(w2c), X

N
2 (w2c, w2pa), UN

1c(w2c, w1c, b0))

∈ T N
ǫ (pU2c,X2,U1c

).

If no suchb0 exists, it setsb0 = 1. If more than one such
b0 exists, it picks one uniformly at random. For the selected
b0, encoder 1 looks for(b1, b2) such that:

(UN
2c(w2c), X

N
2 (w2c, w2pa), UN

1c(w2c, w1c, b0),

UN
1pb(w2c, w1c, b0, w1pb, b1), U

N
2pb(w2c, w1c, b0, w2pb, b2))

∈ T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

).

If no such(b1, b2) exists, it sets(b1, b2) = (1, 1). If more than
one such(b1, b2) exists, it picks one uniformly at random from
the found ones.

For the selected (b0, b1, b2), encoder 1 sends
XN

1 (w2pa, w2c, w1c, b0, w1pb, b1, w2pb, b2).
The next lemma states the condition under which this two

step encoding procedure is successful with high probability.
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Lemma V.3. The two-step binning encoding procedure of
Section V-E is successful if

R′
1c ≥ I(U1c; X2|U2c), (11a)

R′
1pb ≥ I(U1pb; X2|U2c, U1c), (11b)

R′
1pb + R′

2pb ≥ I(U1pb; X2, U2pb|U2c, U1c). (11c)

The proof of the lemma is found in Appendix (F).

RemarkV.4. Since the binning rate (10a) of Theorem V.1 can
be taken with equality without loss of generality, the two step
binning has the same performance as joint binning. In fact,
by setting(11a) to hold with equality, we obtain the equality
between the binning rate expression of the joint binning and
the two step binning.

VI. COMPARISON WITH EXISTING ACHIEVABLE RATE

REGIONS

We now show that the region of Theorem V.1 contains
all other known achievable rate regions for the DM-CIFC.
Showing inclusion of the rate regions [24, Thm.2], [23, Thm.
1] and [13, Thm. 4.1] is sufficient to demonstrate the largest
known DM-CIFC region, since the region of [24, Thm.2] (first
presented in [12]) is shown (in [24]) to contain those of [10,
Thm. 1] and [20].

A. Devroye et al.’s region [23, Thm. 1]

In Appendix G we show that the region of [23, Thm. 1]
RDMT , is contained in our new regionRRTD along the lines:
• We make a correspondence between the random variables
and corresponding rates ofRDMT andRRTD.
• We define new regionsRDMT ⊆ Rout

DMT and Rin
RTD ⊆

RRTD which are easier to compare: they have identical input
distribution decompositions and similar rate equations.
• For any fixed input distribution, an equation-by-equation
comparison leads toRDMT ⊆ Rout

DMT ⊆ Rin
RTD ⊆ RRTD.

B. Cao and Chen’s region [24, Thm. 2]

The region in [24, Thm. 2] uses a similar encoding structure
as that ofRRTD with two exceptions:

1) The binning is done sequentially rather than jointly as in
RRTD leading to binning constraints (43)–(45) in [24, Thm.
2] as opposed to (10a)–(10c) in Thm.V.1. Notable is that both
schemes have adopted a Marton-like binning scheme at the
cognitive transmitter, as first introduced in the context ofthe
CIFC in [12].

2) While the cognitive messages are rate-split in identical
fashions, the primary message is split into 2 parts in [24, Thm.
2] (R1 = R11 + R10, note the reversal of indices) while we
explicitly split the primary message into three partsR2 =
R2c + R2pa + R2pb. In Appendix H we show that the region
of [24, Thm.2], denoted asRCC ⊆ RRTD in two steps:
• We first show that we may WLOG setU11 = ∅ in [24,
Thm.2], creating a new regionR′

CC .
• We next make a correspondence between our RVs and those
of [24, Thm.2] and obtain identical regions.

C. Jiang et al.’s region [13, Thm. 4.1]

The scheme originally designed for the more general broad-
cast channel with cognitive relays (or interference-chanel
with a cognitive relay) may be tailored/reduced to derive a
region for the cognitive interference channel. This schemealso
incorporates a broadcasting strategy. However, the common
messages are created independently instead of having the com-
mon message from transmitter 1 superposed to the common
message from transmitter 2. The former choice introduces
more rate constraints than the latter and allows us to show
inclusion inRRTD after equating random variables. The proof
of the containment of the achievable region of [13, Thm. 4.1]
in RRTD is found in Appendix I. We note that the region of
[25], used to prove capacity in the cognitive Z-IFC when the
interference-free component is noiseless, is a special case of
the region in [24] and is thus also contained in this region.
Also the outer bound of Liu et al. uses a technique tailored to
the special Z channel and is not clear how it can be compared
to the existing outer bounds.

VII. N EW CAPACITY RESULTS FOR THEDM-CIFC

We now look at the expression of the outer bound [6,
Thm. 3.1] to gain insight into potentially capacity achieving
achievable schemes. In particular we look at the expression
of the corner points of the outer bound region for a fixed
pU,X1,X2 and try to interpret the RVs as private and common
messages to be decoded at the transmitter side. We then
consider an achievable scheme inspired by these observations
and show that schemes achieve capacity for a particular class
of channels. This class of channels contains the “very strong”
and the “very weak interference” regimes and thus corresponds
to the largest class of channels for which capacity is currently
known.

The outer bound region of [6, Thm. 3.1] has at most two
corner points where bothR1 andR2 are non zero:

(R
out (a)
1 , R

out (a)
2 )

= (I(Y1; X1|U, X2), I(Y2; U, X2)) (12)

and

(R
out (b)
1 , R

out (b)
2 )

= (I(Y1; X1|U, X2) + I(Y2; U, X2) − ∆, ∆) (13)

for
∆ = [I(Y2; U, X2) − I(Y1; U |X2)]

+,

since

R
out (a)
2 = min{I(Y2; U, X2), I(Y2; U, X2) + I(Y1; X1|U, X2)}

= I(Y2; U, X2),

R
out (a)
1 = min{I(Y1; X1|U, X2), I(Y1; X1|X2)}

= I(Y1; X1|U, X2),

and

R
out (b)
2 = min{I(Y2; U, X2),

I(Y2; U, X2) + I(Y1; X1|U, X2) − I(Y1; X1|X2)}
= [I(Y2; U, X2)+

min{0, I(Y1; X1|U, X2) − I(Y1; X1, U |X2)}]+

= [I(Y2; U, X2) − I(Y1; U |X2)]
+ , ∆,
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with

R
out (b)
1 ≤ min{I(Y1; X1|X2),

I(Y2; U, X2) + I(Y1; X1|U, X2)}
= I(Y1; X1|U, X2) + I(Y2; U, X2)

−max{I(Y2; U, X2) − I(Y1; U |X2), 0}
= I(Y1; X1|U, X2) + I(Y2; U, X2) − ∆.

Proving the achievability of both these corner points for any
pU,X1,X2 shows capacity by a simple time sharing argument.

We can now look at the corner point expression and try
to draw some intuition on the achievable schemes that can
possibly achieve these rates. For the corner point(R

(a)
1 , R

(a)
2 )

we can interpret(U, X2) as a common message from trans-
mitter 2 to receiver 2 that is also decoded at receiver 1.X1 is
superposed to(U, X2) since the decoding ofX1 follows the
one of(U, X2) at decoder 2.

The corner point(Rout (b)
1 , R

out (b)
2 ) has two possible ex-

pressions:
1) If I(Y1; U |X2) ≤ I(Y2; U, X2) we have that

(R
out (b)′

1 , R
out (b)′

2 ) = (14)

(I(Y1; X1, U |X2), I(Y2; U, X2) − I(Y1; U |X2)) , (15)

which suggests thatX2 is again the common primary
message and the cognitive message is divided into a public
and private part,U andX1 respectively.

2) If I(Y1; U |X2) > I(Y2; U, X2) we have that

(R
out (b)”
1 , R

out (b)”
2 ) = (I(Y2; U, X2) + I(Y1; X1, U |X2), 0) . (16)

In this case the outer bound has only one corner point where
both rates are non zero. Note that we can always achieve the
point

(R
in (b)”
1 , R

in (b)”
2 ) = (I(Y1; X1, U |X2), 0)

by having transmitter 2 send a known signal. In this case we
haveR

out (b)”
2 = R

in (b)”
2 andR

out (b)”
1 ≤ R

in (b)”
1 since

I(Y1; X1, U |X2) ≥ I(Y2; U, X2) + I(Y1; X1, U |X2)
I(Y1; U |X2) ≥ I(Y2; U, X2).

So in this case showing the achievability of the point in
equation (13) is sufficient to show capacity.

Guided by these observations, we consider a scheme that
has only the componentsU2c, U1c and U1pb. That is, the
primary messagew2 is common and the cognitive message
w1 is split into a private and a public message. With this
scheme we are able to extend the capacity results in the “very
weak interference” of Theorem III.4 and the “very strong
interference” of Theorem III.5. This scheme coincides with
the scheme of [26] which achieves capacity if the cognitive
receiver is required to decode both messages (with and without
the secrecy constraint).

Theorem VII.1. Capacity in the “better cognitive decoding”
regime.

When the following condition holds

I(Y1; X2, U) ≥ I(Y2; X2, U) ∀pX1,X2,U , (17)

the capacity region of the DM-CIFC is given by Theorem III.1.

Proof: Consider the achievable rate region of Theorem
V.1 when setting

X1 = U1pb

X2 = U2c = U2pb

so that
R2 = R2c

R2pa = R2pb = 0
R′

1c = R′
1pb = R′

2pb = 0.

In the resulting scheme, the message from transmitter 2 to
receiver 2 is all common while the message from transmitter 1
to receiver 1 is split into common and private parts. The
achievable region of this sub-scheme is:

R2 + R1c ≤ I(Y2; U1c, X2), (18a)

R2 + R1c + R1pb ≤ I(Y1; U1c, X2), (18b)

R1c + R1pb ≤ I(Y1; U1c, X1|X2), (18c)

R1pb ≤ I(Y1; X1|X2, U1c). (18d)

By applying Fourier-Motzkin elimination [27] we obtain the
achievable rate region

R1 ≤ I(Y1; U1c, X1|X2), (19a)

R2 ≤ I(Y2; U1c, X2), (19b)

R1 + R2 ≤ I(Y2; U1c, X2) + I(Y1; X1|X2, U1c), (19c)

R1 + R2 ≤ I(Y1; X2, U1c, X1). (19d)

By letting U1c = U we see that (1a) matches (19a), (1b)
matches (19b), (1c) matches (19c), and (19d) is redundant
when

I(Y1; X2, X1, U) ≥ I(Y2; U, X2) + I(Y1; X1|X2, U),

or equivalently when

I(Y1; U, X2) ≥ I(Y2; U, X2). (20)

We term the condition in equation (20) “better cognitive
decoding” since decoder 1 has a higher mutual information
between its received channel output and the RVsU and X2

than the primary receiver.

Remark VII.2 . The “better cognitive decoding” in (20) is
looser than both the “very weak interference” condition of
(6) and the “very strong interference” condition of (7). In fact
summing the two equations of condition (6) we have

I(U ; Y1|X2) + I(X2; Y1) ≥ I(U ; Y2|X2) + I(X2; Y2)
m

I(Y1; U, X2) ≥ I(Y2; U, X2),

which corresponds to condition (20). Similarly by summing
the two equation of condition (7) we obtain

I(Y1; X1, X2) + I(X1; Y2|X2) ≥ I(Y2; X1, X2)
+I(X1; Y1|X2) ⇐⇒

I(Y1; X1, X2) − I(X1; Y1|X2) ≥ I(Y2; X1, X2)
−I(X1; Y2|X2) ⇐⇒

I(Y1; X1, X2, U) − I(X1; Y1|X2) ≥ I(Y2; X1, X2, U)
−I(X1; Y2|X2) ⇐⇒

I(Y1; X2, U) ≥ I(Y2; X2, U)
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which again corresponds to condition (20).
Since both (6) and (7) imply the (20), we conclude that (20)

is more general than the previous two.
The scheme that achieves capacity in “very weak interfer-

ence” is obtained by settingU1c = X2 so that all the cognitive
message is private and the primary message is common. The
scheme that achieves capacity in “very strong interference” is
obtained by settingU1c = X1 so that both transmitters send
only public messages. The scheme that we use to show the
achievability in the “strong cognitive decoding” regime mixes
these two schemes by splitting the cognitive message into pub-
lic and private messages. This relaxes the “strong interference”
achievability conditions as now the cognitive encoder needs to
decode only part of the cognitive message. The scheme also
relaxes the “very weak” achievability condition since it allows
the cognitive encoder to decode part of the cognitive message
and remove its unwanted effects. For this reason, the resulting
achievability conditions are looser than both cases.

VIII. C APACITY FOR THE SEMI-DETERMINISTIC CIFC

Consider the specific class of DM-CIFC for which the signal
received at the cognitive receiver is a deterministic function
of the channel inputs, that is

Y1 = f1(X1, X2), (21)

for some functionf1. This class of channels is termed semi-
deterministic CIFC and it was first introduced in [24]. In
[24] the capacity region is derived for the caseI(Y1; X2) ≥
I(Y2; X2); we extend this result by determining the capacity
region in general (no extra conditions). Note that the authors
of [24] consider the case wheref1 is invertible; we do not
require this condition.

Theorem VIII.1. The capacity region of the semi-
deterministic cognitive interference channel in (21) consists
of all (R1, R2) ∈ R

2
+ such that

R1 ≤ H(Y1|X2), (22a)

R2 ≤ I(Y2; U, X2), (22b)

R1 + R2 ≤ I(Y2; U, X2) + H(Y1|U, X2), (22c)

taken over the union of all distributionspU,X1,X2 .

Proof:
Converse:We consider the outer bound of Theorem III.1

with the additional deterministic assumption in (21) i.e.
H(Y1|X1, X2) = 0.

Achievability: The region of Theorem V.1 computed for
U2c = U1c = ∅, U1 = U1pb and U2 = U2pb, and
R2c = R1c = R1pb = 0 becomes:

R′
1 ≥ I(U1; X2), (23a)

R′
1 + R′

2 ≥ I(U1; U2, X2), (23b)

R2 + R′
2 ≤ I(Y2; U2, X2), (23c)

R1 + R′
1 ≤ I(Y1; U1), (23d)

for any PU1U2X1X2 . After Fourier-Motzkin elimination, the
region in (23) may be rewritten as

R1 ≤ I(Y1; U1) − I(U1; X2), (24a)

R2 ≤ I(Y2; U2, X2)

= I(Y2; X1, X2) − I(Y2; X1|U2, X2), (24b)

R1 + R2 ≤ I(Y2; U2, X2) + I(Y1; U1) − I(U1; U2, X2)

= (24a) + (24b)− I(U1; U2|X2). (24c)

Finally, by choosingU1 = Y1 (possible becauseY1 is a
deterministic function of the inputs and both inputs are known
at transmitter 1) andU2 = U , the achievable region in (24)
reduces to the outer bound.

Remark VIII.2 . The achievable scheme in (23) cannot be
obtained as a special case of any previously known achievable
scheme but [13]. The RVU2pb, which broadcasts the private
primary message from transmitter 1, appears in [24] as well.
In this case it is possible to reobtain the scheme in (23)
with a specific choice of the RVs. Here the same message
is embedded inU2pb and the private primary message, this
performs strictly worse than using onlyU2pb.

Remark VIII.3 . The achievability scheme for the semi-
deterministic C-IFC has been used (see [2], [28]) to providea
unified scheme which achieves a constant additive gap for the
Gaussian C-IFC in the whole parameter space. This supports
the notion that results for (semi)-deterministic channel models
may carry over to noisy networks.

IX. CAPACITY FOR THE DETERMINISTICCIFC

In the deterministic CIFC both outputs are deterministic
functions of the channel inputs, that is

Y1 = f1(X1, X2),

Y2 = f2(X1, X2), (25a)

for some functionf1 and f2. This class of channels is a
subclass of the semi-deterministic CIFC of Section VIII, and
we already have obtained the capacity region for this case.
However, we re-derive the capacity region in a new fashion
for this channel, which illustrates two new ideas:

We show the achievability of the outer bound of Theorem
IV.1 when letting Y ′

2 = Y2, instead of the outer bound of
Theorem III.1.

Theorem IX.1. The capacity region of the deterministic
cognitive interference channel consists of all(R1, R2) ∈ R

2
+

such that

R1 ≤ H(Y1|X2), (26a)

R2 ≤ H(Y2), (26b)

R1 + R2 ≤ H(Y2) + H(Y1|Y2, X2), (26c)

taken over the union of all distributionspX1,X2 .

Proof: Outer bound:The outer bound is obtained from
Theorem IV.1 using the deterministic conditions in (25a).

Achievability:Consider the scheme in (24) and letU1pb =
Y1, U2pb = Y2 to achieve the region in (26).
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Fig. 3. The “asymmetric clipper” of Section X-A.

X. EXAMPLES

The scheme that achieves capacity in the deterministic and
semi-deterministic CIFC uses the RVU2pb to perform Gel’fand
Pinsker binning to achieve the most general distribution among
(X2, U1pb, U2pb), but interestingly, withR2pb equal to zero.
This feature of the capacity achieving scheme does not provide
a clear intuition on the role of the RVU2pb. For this reason
we present two examples of deterministic channels where the
encoders can choose their respective codebooks in a way that
allows binning of the interference without rate splitting.To
make these examples more interesting we choose them so that
they do not fall into the category of the “very strong inter-
ference regime” of Theorem III.5 which, in the deterministic
case, reduces to

H(Y1|X2) ≤ H(Y2|X2)

H(Y2) ≤ H(Y1) ∀pX1,X2 . (27)

Unfortunately, checking for the “very weak interference condi-
tion” of Theorem III.4 is not possible as no cardinality bounds
on U are available.

A. Example I: the “Asymmetric Clipper”

Consider the channel in Fig. 3. The input and output
alphabets areX1 = Y1 = [0, 1, 2, 3] and X2 = Y2 =
[0, 1, 2, 3, 4, 5, 6, 7] and the input/output relationships are

Y1 = X1 ⊕4 X2, (28)

Y2 = 1{2,3}(X1) ⊕8 +X2, (29)

where1{A}(x) = 1 if x ∈ A and zero otherwise, and⊕N

denotes the addition operation over the ring[1 : N ]. Also
let U(S) be the uniform distribution over the setS. First we
show that the channel in (29) does not fall in the “very strong
interference” class. Consider the input distribution:

X2 ∼ U(1) =⇒ P [X1 = 0] = 1,
X2 ∼ U(X2).

For this input distribution, we haveY1 ∼ U(Y1) and Y2 ∼
U(Y2), so that

H(Y2) = log(|Y2|) = 3 > 2 = log(|Y1|) = H(Y1),

which does not satisfy the “very strong interference” condition
of (27).

For this channel we have:

H(Y1|X2) ≤ H(Y1) ≤ log(|Y1|) = 2,

H(Y2) ≤ log(|Y2|) = 3,

H(Y1|X2, Y2) ≤ H(X1|1{2,3}(X1)) ≤ 1,

where the last bound follows from the multiplicity of the
solutions of an addition in a Galois field. This shows that
the outer bound in Theorem IX.1 is included in

R1 ≤ 2, (30a)

R2 ≤ 3, (30b)

R1 + R2 ≤ 4. (30c)

We now show that the region in (30) indeed corresponds
to Theorem IX.1 when considering the union over all input
distributions. The corner point(R1, R2) = (1, 3) in (30) is
obtained in Theorem IX.1 with the input distribution:

X1 ∼ U([0, 1]),
X2 ∼ U(X2).

The corner point(R1, R2) = (2, 2) in (30) is obtained in
Theorem IX.1 by considering the input distribution:

X1 ∼ U(X1),
X2 ∼ U(X2).

Time sharing shows that the region of (30) and the region
of Theorem IX.1 indeed coincide.

We next show the achievability of the corner point
(R1, R2) = (1, 3). Consider the following strategy:

• transmitter 2 sends symbols fromX2 = [0 : 7] with
uniform probability,

• transmitter 1 transmits[x1 − x2]2 (where the inverse of
the difference operation is taken over the ringG2);

• receiver 1 decodeŝw1 = ⌊ y2

2 ⌋;
• receiver 2 decodeŝw2 = y2.

It can be verified by inspection of Table I that the rate pair
(R1, R2) = (1, 3) is indeed achievable.

TABLE I
ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (1, 3) IN

EXAMPLE I IN SECTION X-A: FOR EACH POSSIBLE MESSAGE PAIR
(w1, w2), WE INDICATE THE CORRESPONDING CHANNEL INPUTS(x1, x2),

CHANNEL OUTPUTS(y1, y2) AND DECODING MESSAGE( bw1, bw2).

w1 w2 x1 x2 y1 y2 bw1 bw2

0 0 0 0 0 0 0 0 0
1 0 1 1 0 2 2 1 0
2 0 2 0 2 2 2 2 0
3 0 3 1 3 2 0 3 0
4 0 4 0 4 0 0 4 0
5 0 5 1 5 0 2 5 0
6 0 6 0 6 0 2 6 0
7 0 7 1 7 0 0 7 0
8 1 0 1 0 0 1 0 1
9 1 1 0 0 2 1 1 1
10 1 2 1 2 2 3 2 1
11 1 3 0 3 2 3 3 1
12 1 4 1 4 0 1 4 1
13 1 5 0 5 0 1 5 1
14 1 6 1 6 0 3 6 1
15 1 7 0 7 0 3 7 1
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Now we show the achievability of the corner point
(R1, R2) = (2, 2). Consider the following strategy:

• transmitter 2 sends symbols fromx2 ∈ [0, 2, 4, 6] with
uniform probability;

• transmitter 1 transmits[x1 − x2]4 (where the inverse of
the difference operation is taken over the ringG4);

• receiver 1 decodeŝw1 = y1;
• receiver 2 decodeŝw2 = ⌊ y2

2 ⌋.
It can be verified by the inspection of Table II that the rate
pair (R1, R2) = (2, 2) is indeed achievable.

TABLE II
ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (2, 2) IN

EXAMPLE I IN SECTION X-A: FOR EACH POSSIBLE MESSAGE PAIR

(w1, w2), WE INDICATE THE CORRESPONDING CHANNEL INPUTS(x1, x2),
CHANNEL OUTPUTS(y1, y2) AND DECODING MESSAGE( bw1, bw2).

w1 w2 x1 x2 y1 y2 bw1 bw2

0 0 0 0 0 0 0 0 0
1 0 1 2 2 0 3 0 1
2 0 2 0 4 0 4 0 2
3 0 3 2 6 0 7 0 3
4 1 0 1 0 1 0 1 0
5 1 1 3 2 1 3 1 1
6 1 2 1 4 1 4 1 2
7 1 3 3 6 1 7 1 3
8 2 0 2 0 2 0 2 0
9 2 1 0 2 2 2 2 1
10 2 2 2 4 2 5 2 2
11 2 3 0 6 2 6 2 3
12 3 0 3 0 3 1 3 0
13 3 1 1 2 3 2 3 1
14 3 2 3 4 3 5 3 2
15 3 3 1 6 3 6 3 3

In this example we see how the two senders jointly design
the codebook to achieve the outer bound and in particular
how the cognitive transmitter 1 adapts its strategy to the
transmissions from the primary pair so as to avoid interfering
with it.

In achieving the point(R1, R2) = (1, 3), transmitter 2’s
strategy is that of a point to point channel. Transmitter 1
chooses its codewords so as not to interfere with the primary
transmission. Only two codewords do not interfere: it alterna-
tively picks one of these two codewords to produce the desired
channel output. For example, when the primary message is
sendingw2 = 0 (line 0 and 8 in Table I) transmitter 1 can
send either1 or 2 without creating interference at receiver 2.
On the other hand, these two values produce a different output
at receiver 1, allowing the transmission of 1 bit.

In achieving the point(R1, R2) = (2, 2), the primary
receiver picks its codewords so as to tolerate 1 unit of
interference. Transmitter 1 again chooses its input codewords
in order to create at most 1 unit of interference at the
primary decoder. By adapting its transmission to the primary
symbol, the cognitive transmitter is able to always find four
such codewords. It is interesting to notice the tension at
transmitter 1 between the interference it creates at the primary
decoder and its own rate. There is an optimal trade off between
these two quantities that is achieved by carefully picking the
codewords at the primary transmitter. For example, when the
primary receiver is sendingw2 = 0 (lines 0, 4, 8 and 12),
transmitter 1 can sendx1 ∈ [0, 1, 2, 3] and create at most
1 bit of interference at receiver 2. Each of these four values

Fig. 4. “Symmetric Clipper” of Section X-B

TABLE III
THE INPUT DISTRIBUTION THAT ACHIEVES THE OUTER BOUND OF

THEOREM IX.1 FOR THE CHANNEL IN EXAMPLE II

X2, X1 1 2 3 4 pX1

0 1/8 1/8 1/8 1/8 1/2
1 1/8 1/8 0 0 1/4
2 1/8 1/8 0 0 1/4
pX2

3/8 3/8 1/8 1/8

produces a different output at receiver 1], thus allowing the
transmission of 2 bits.

B. Example II: the “Symmetric Clipper”

Consider the now channel in Fig. 4. The channel input and
output alphabets areX1 = [0, 1, 2, 3] = Y2, X2 = [0, 1, 2], and
Y1 = [0, 1]. The input/output relationships are:

Y1 = 1{1,2}(X1) ⊕2 1{1,2}(X2),
Y2 = 1{0,1}(X1) ⊕ X2.

Consider the input distribution: Consider the input distribu-
tion:

P [X1 = 3] = 1,
X2 ∼ U([1, 2]),

in this caseH(Y1) = 0 andH(Y2) = 1. This shows that there
exists at least one input distribution for whichH(Y2) > H(Y1)
and thus this channel is not in the “very strong interference”
regime. The outer bound of Theorem IX.1 is achieved here by
a single input distributionpX1,X2 : consider the distribution in
Table III. This distribution producesH(Y1) = 1 = log2(|Y1|)
andH(Y2) = 2 = log(|Y2|) and clearly no larger outer bound
can exist given the output cardinality. We therefore conclude
that the region of Theorem IX.1 can be rewritten as:

R1 ≤ 1,

R2 ≤ 2. (31)

This region can be shown to be achievable using the
transmission scheme described in Table IV. The decoding
is simply ŵi = Yi, i ∈ [1, 2]. This transmission scheme
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TABLE IV
ACHIEVABILITY TABLE FOR THE RATE POINT (R1, R2) = (1, 2) IN

EXAMPLE II: FOR EACH POSSIBLE MESSAGE PAIR(w1, w2), WE INDICATE
THE CORRESPONDING CHANNEL INPUTS(x1, x2) AND CHANNEL

OUTPUTS(y1, y2).

w1 w2 x1 x2 y1 y2

0 0 0 3 0 0 0
1 0 1 0 0 0 1
2 0 2 1 1 0 2
3 0 3 1 1 0 3
4 1 0 2 0 1 0
5 1 1 1 0 1 1
6 1 2 0 1 1 2
7 1 3 0 1 1 3

achieves the proposed outer bound, thus showing capacity. The
transmission scheme can be described as follows:

• encoder 2 transmits[x2 − 1]+;
• encoder 1 transmits the valueX1 that simultaneously

makesY1 = w1 andY2 = w2. For eachw1 andw2 such
a value always exists becauseX2 takes on only three
possible values;

• receivers 1 and 2 decodêw1 = Y1 and ŵ2 = Y2.

This example is particularly interesting since both de-
coders obtain the transmitted symbol without suffering any
interference from the other user. Here cognition allows the
simultaneous cancelation of the interference at both decoders.
Encoder 2 has only three codewords and relies on transmitter1
to achieve its full rate ofR2 = 2. In fact encoder 1 is able to
design its codebook to transmit two codewords for its decoder
and still contribute to the rate of primary user by making the
codewords corresponding tow2 ∈ [2, 3] distinguishable at the
cognitive decoder.

This feature of the capacity achieving scheme is intriguing:
the primary transmitter needs the support of the cognitive
transmitter to achieveR2 = 2 since its input alphabet has
cardinality three. The transmitters optimally design their code-
books so to make the effectX1 on both outputs the desired
one.

For example consider the transmission ofw2 = 2 or 3 (lines
2, 3, 6 and7). In this case transmitter 1 sendsx1 = 0 or x1 = 1
to simultaneously influence both channel outputs so that both
decoders receive the desired symbols. This simultaneous can-
celation is possible due to the channel’s deterministic nature
and the extra message knowledge at the cognitive transmitter.

XI. CONCLUSION

In this paper we focused on the discrete memoryless cog-
nitive interference channel and derived new inner and outer
bounds, derived the capacity region for a class of “better
cognitive decoding” channels, and obtained the capacity region
for the semi-deterministic cognitive interference channel. We
proposed a new outer bound using an idea originally devised
for the broadcast channel in [29]. This outer bound does not
involve auxiliary RVs and is thus more easily computable. We
also proposed a new inner bound that generalizes all other
known achievable rate regions. We determined capacity for a
class of channels that we term the “better cognitive decoding”
regime. The conditions defining this regime are looser than the

“very weak interference condition” of [6] and the “very strong
interference condition” of [17] and is the largest region where
capacity is known. We also determined the capacity region for
the class of semi-deterministic cognitive interference channels.
Furthermore, for channels where both outputs are deterministic
functions of the inputs, we showed the achievability of our
new outer bound. The scheme that achieves capacity in the
deterministic cognitive interference channel uses Gelf’and-
Pinsker binning against the interference created at the primary
receiver. This binning is performed by the cognitive encoder
for the primary decoder. This feature of the transmission
scheme was never known before to be capacity achieving.
Extensions of the results presented here to Gaussian channels
will be presented in [28].
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APPENDIX

A. Proof of outer bound of Theorem IV.1

By Fano‘s inequality we have thatH(Wi|Y N
i ) ≤ NǫN , for

someǫN such thatǫN → 0 asN → 0 for i ∈ [1, 2]. The rate
of user 1 can be bounded as

N(R1 − ǫN ) ≤ I(W1; Y
N
1 )

(a)

≤ I(W1; Y
N
1 |W2)

(b)
= I(W1, X

N
1 (W1, W2); Y

N
1 |W2, X

N
2 (W2))

(c)
= H(Y N

1 |W2, X
N
2 ) − H(Y N

1 |W2, W1, X
N
1 , XN

2 )

(d)

≤ H(Y N
1 |XN

2 ) − H(Y N
1 |W2, W1, X

N
1 , XN

2 )

(e)
= H(Y N

1 |XN
2 ) − H(Y N

1 |XN
1 , XN

2 )

(f)
=

N∑

i=1

H(Y1i|X
N
2 , (Y1)

i−1
1 ) − H(Y1i|X

N
2 , XN

2 , (Y1)
i−1
1 )

(g)

≤
N∑

i=1

H(Y1i|X2i) − H(Y N
1 |X1i, X2i)

(h)
= NI(Y1T ; X1T |X2T , T )

(i)
= N(H(Y1T |X2T , T )− H(Y1T |X1T , X2T , T ))

(j)
= N(H(Y1T |X2T , T ) − H(Y1T |X1T , X2T ))

(k)

≤ N(H(Y1T |X2T ) − H(Y1T |X1T , X2T ))

(l)
= NI(Y1T ; X1T |X2T ), (32a)

whereT is the time sharing RV, informally distributed over the
set [1 : N ]. The (in)equalities follow from: (a) independence
of messagesW1, W2, (b) the channel model whereXN

1

depends onW1 and W2, while XN
2 depends only onW2,

(c) by definition, (d) as conditioning reduces entropy, (e) as
(W1, W2) → (XN

1 , XN
2 ) → (Y N

1 ) forms a Markov chain, (f)
the chain rule, (g) memorylessness and conditioning reduces
entropy, (h) and (i) by definition and introduction of the time-
sharing RV T , (j) as the channel output depends only on
channel inputs, (k) conditioning reduces entropy, (l) definition.

The rate of user 2 can be bounded as

N(R2 − ǫN ) ≤ I(Y N
2 ; W2)

(a)

≤ I(Y N
2 ; W2, W1)

(b)
= H(Y N

2 ) − H(Y N
2 |W1, W2, X

N
2 (W2), X

N
1 (W1, W2))

(c)
= H(Y N

2 ) − H(Y N
2 |XN

2 , XN
1 )

(d)
=

N∑

i=1

H(Y2i|(Y2)
i−1
1 ) − H(Y2i|X

N
1 , XN

2 , (Y2)
i−1
1 )

(e)

≤
N∑

i=1

H(Y2i) − H(Y2i|X1i, X2i)

(f)

≤ NI(Y2T ; X1T , X2T |T )

(g)
= N(H(Y2T |T ) − H(Y2T |X1T , X2T , T ))

(h)

≤ N(H(Y2T ) − H(Y2T |X1T , X2T ))

(i)
= NI(Y2T ; X1T , X2T ). (32b)

Here the (in)equalities follow from (a) non-negativity of
mutual information, (b) definition and channel model, (c)
as (W1, W2) → (XN

1 , XN
2 ) → (Y N

1 ) forms a Markov
chain, (d) the chain rule, (e) conditioning reduces entropy, (f)
introduction of the time-sharing RVT uniformly distributed
over the set[1 : N ], (g) definition, (h) conditioning reduces
entropy and channel outputs depend only on channel inputs,
(i) definition.

Next let Y ′
2 be any RV such thatPY ′

2 |X1,X2
= PY2|X1,X2

but with any joint distributionPY1,Y ′
2 |X1,X2

. The sum-rate can
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then be bounded as

N(R1 + R2 − 2NǫN) ≤ I(W1; Y1) + I(W2; Y2)

(a)

≤ I(W1; Y
N
1 |W2) + I(W2; Y

N
2 )

(b)

≤ I(W1; Y
N
1 , Y ′N

2 |W2) + I(W2; Y
N
2 )

(c)
= I(W2; Y

N
2 ) + I(W1; Y

′N
2 |W2) + I(W1; Y

N
1 |Y ′N

2 , W2)

(d)
= H(Y N

2 ) +
(
− H(Y N

2 |W2) + H(Y ′N
2 |W2)

)

− H(Y ′N
2 |W1, W2) + H(Y N

1 |Y ′N
2 , W2)

− H(Y N
1 |Y ′N

2 , W1, W2)

(e)
= H(Y N

2 ) + H(Y N
1 |W2, X

N
2 , Y ′N

2 )

− H(Y ′N
2 |W1, W2, X

N
1 , XN

2 )

− H(Y N
1 |Y ′N

2 , W1, W2, X
N
1 , XN

2 )

(f)
= H(Y N

2 ) + H(Y N
1 |W2, X

N
2 , Y ′N

2 )

− H(Y N
2 |XN

1 , XN
2 ) − H(Y N

1 |Y ′N
2 , XN

1 , XN
2 )

(g)

≤ H(Y N
2 ) + H(Y N

1 |XN
2 , Y ′N

2 )

− H(Y N
2 |XN

1 , XN
2 ) − H(Y N

1 |Y ′N
2 , XN

1 , XN
2 )

(h)
= I(Y N

2 ; XN
1 , XN

2 )

+

N∑

i=1

H(Y1i|X
N
2 , Y ′N

2 , (Y1)
i−1
1 )

−
N∑

i=1

H(Y1i|X
N
1 , XN

2 , Y ′N
2 , (Y1)

i−1
1 )

(i)

≤ I(Y N
2 ; XN

1 , XN
2 )

+

N∑

i=1

H(Y1i|X2i, Y
′
2i) − H(Y1i|X1i, X2i, Y

′
2i)

(j)
= N (I(Y2T ; X1T , X2T ) + H(Y1T |X2T , Y ′

2T , T )

−H(Y1T |X1T , X2T , Y ′
2T ))

(k)

≤ N (I(Y2T ; X1T , X2T ) + I(Y1T ; X1T |X2T , Y ′
2T )) . (32c)

Here the (in)equalities follow from (a) non-negativity of mu-
tual information and independence ofW1, W2, (b) addition
of side-informationY

′N
2 , (d) definition, (e) asY2 and Y ′

2

have the same marginals and the channel model whereXN
1

depends onW1 andW2, while XN
2 depends only onW2, (f) as

(W1, W2) → (XN
1 , XN

2 ) → (Y N
1 ) forms a Markov chain, (g)

conditioning reduces entropy, (h) chain rule, (i) conditioning
reduces entropy and memorylessness, (j) and (k) by definition
and definition of the time-sharing RVT uniformly distributed
over the set[1 : N ] .

B. Error analysis of the achievable regionRRTD of Theorem
V.1

Without loss of generality assume that the message
(w1c, w2c, w2pa, w1pb, w2pb) = (1, 1, 1, 1, 1) was sent and let
(b0, b1, b2) be the tuple(b0, b1, b2) chosen at encoder 1. Let
(ŵ1c, ŵ2c, ŵ2pa, ŵ2pb, b̂0, b̂2) be the estimate at the decoder 2

and ( ̂̂w1c, ̂̂w2c, ̂̂w1pb,
ˆ̂
b0,

ˆ̂
b1) be the estimate at the decoder 1.

The probability of error at decoderu, u ∈ [1, 2], is bounded
by

P [error u] ≤ P [error u|encoding successful]
+P [encoding NOT successful].

An encoding error occurs if encoder 1 is not able to find a
tuple(b0, b1, b2) that guarantees typicality. A decoding error is
committed at decoder 1 when( ̂̂w1c, ̂̂w1pb) 6= (1, 1). A decod-
ing error is committed at decoder 2 when(ŵ2c, ŵ2pa, ŵ2pb) 6=
(1, 1, 1).

C. Encoding Error

Since the codebooks are generated iid according to

p(codebook)

= pU2c
pX2|U2c

pU1c|U2c
pU2pb|U2c,U1c,X2

pU1pb|U2c,U1c

(33)

but the encoding forces the actual transmitted codewords to
look as if they were generated iid according to

p(encoding)

= pU2c
pX2|U2c

pU1c|U2c,X2
pU2pb|U2c,U1c,X2

,

pU1pb|U2c,U1c,X2,U2pb
, (34)

We expect the probability of encoding error to depend on

E
[
log p(encoding)

p(codebook)

]
= E

[
log

pU1c|U2c,X2
pU1pb|U2c,U1c,X2,U2pb

pU1c|U2c
pU1pb|U2c,U1c

]

= I(U1c; X2|U2c) + I(U1pb; X2, U2pb|U2c, U1c).

The probability that the encoding fails can be bounded as:

P [encoding NOT successful] = P

[⋂2NR′
1c

b0=1

⋂2
NR′

1pb

b1=1

⋂2
NR′

2pb

b2=1(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
/∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)
]

= P [K = 0] ≤ Var[K]
E2[K]

where

K =

2NR′
1c∑

b0=1

2
NR′

1pb∑

b1=1

2
NR′

2pb∑

b2=1

Kb0,b1,b2

and

Kb0,b1,b2

= 1( `

UN
2c(1), X

N
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

´

∈ T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

)

),

where1{x∈A} = 1 if x ∈ A and zero otherwise.
The mean value ofK (neglecting all terms that depend on

ǫ and that eventually go to zero) is:

E[K] =
2NR′

1c∑

b0=1

2
NR′

1pb∑

b1=1

2
NR′

2pb∑

b2=1

P [Kb0,b1,b2 = 1]

= 2N(R′
1c+R′

1pb+R′
2pb−A)
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with

2−NA = P [Kb0,b1,b2 = 1] = E[Kb0,b1,b2 ]

= P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

(uN
1c,uN

1pb
,uN

2pb
)∈T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
|uN

2c,xN
2 )

pU1c|U2c
pU2pb|U2c,U1c,X2

pU1pb|U2c,U1c

≥ 2−N [I(U1c;X2|U2c)+I(U1pb;X2,U2pb|U1c,U2c)].

The variance ofK (neglecting all terms that depend onǫ
and that eventually go to zero) is:

Var[K] =
∑2NR′

1c

b0=1

∑2
NR′

1pb

b1=1

∑2
NR′

2pb

b2=1

∑2NR′
1c

b′0=1
∑2

NR′
1pb

b′1=1

∑2
NR′

2pb

b′2=1

(
P [Kb0,b1,b2 = 1, Kb′0,b′1,b′2

= 1]

−P [Kb0,b1,b2 = 1]P [Kb′0,b′1,b′2
= 1]

)

=
∑

b′0=b0,(b1,b2,b′1,b′2)

(
P [Kb0,b1,b2 = 1, Kb0,b′1,b′2

= 1]

−P [Kb0,b1,b2 = 1]P [Kb0,b′1,b′2
= 1]

)

≤
∑

b0,(b1,b2,b′1,b′2)
P [Kb0,b1,b2 = 1, Kb0,b′1,b′2

= 1]

because whenb0 6= b′0, that is,UN
1c(:, b0) andUN

1c(:, b
′
0) are

independent, the RVsKb0,b1,b2 andKb′0,b′1,b′2
are independent

and they do not contribute to the summation. We thus can
focus only on the caseb0 = b′0. We can write:

Var[K] ≤
X

b0, b1=b′1, b2=b′2

P [Kb0,b1,b2 = 1]

| {z }

=E[K]

+
X

b0, b1=b′1, b2 6=b′2

P [Kb0,b1,b2 = 1]P [Kb0,b1,b′2
= 1|Kb0 ,b1,b2 = 1]

| {z }

=E[K] 2
N(R′

2pb
−B)

+
X

b0, b1 6=b′1, b2=b′2

P [Kb0,b1,b2 = 1]P [Kb0,b′1,b2
= 1|Kb0 ,b1,b2 = 1]

| {z }

=E[K] 2
N(R′

1pb
−C)

+
X

b0, b1 6=b′1, b2 6=b′2

P [Kb0,b1,b2 = 1]P [Kb0,b′1,b′2
= 1|Kb0 ,b1,b2 = 1]

| {z }

=E[K] 2
N(R′

1pb
+NR′

2pb
−D)

and

2−NB = P [Kb0,b1,b′2
= 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b′2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)|(

UN
2c(1), XN

2 (1, 1), UN
1c(1, 1, b0), U

N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

uN
2pb

∈T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

|uN
2c,xN

2 ,uN
1c,uN

1pb
)

pU2pb|U2c,U1c,X2

= 2−NI(U2pb;U1pb|U2c,U1c,X2),

and

2−NC = P [Kb0,b′1,b2 = 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b′1),

UN
2pb(1, 1, b0, 1, b2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)|(

UN
2c(1), XN

2 (1, 1), UN
1c(1, 1, b0), U

N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

uN
1pb

∈T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

|uN
2c,xN

2 ,uN
1c,uN

2pb
) pU1pb|U2c,U1c

= 2−NI(U1pb;X2,U2pb|U1c,U2c),

and

2−ND = P [Kb0,b′1,b′2
= 1|Kb0,b1,b2 = 1]

= P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b′1),

UN
2pb(1, 1, b0, 1, b′2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)|(

UN
2c(1), XN

2 (1, 1), UN
1c(1, 1, b0), U

N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)]

=
∑

(uN
1pb

,uN
2pb

)∈T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

|uN
2c,xN

2 ,uN
1c)

pU2pb|U2c,U1c,X2
pU1pb|U2c,U1c

= 2−NI(U1pb;X2,U2pb|U1c,U2c) = 2−NC .

Hence, we can boundP [K = 0] as:

P [K = 0] ≤
1 + 2N(R′

1pb−C) + 2N(R′
2pb−B) + 2N(R′

1pb+R′
2pb−C)

2N(R′
1c+R′

1pb
+R′

2pb
−I(U1c;X2|U2c)−C)

andP [K = 0] → 0 if

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C > 0

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C

− (R′
2pb − B) > 0

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C

− (R′
1pb − C) > 0

R′
1c + R′

1pb + R′
2pb − I(U1c; X2|U2c) − C

− (R′
1pb + R′

2pb − C) > 0

that is, if

R′
1c + R′

1pb + R′
2pb > I(U1c; X2|U2c) + I(U1pb; X2, U2pb|U1c, U2c)

= I(U1c, U1pb; X2|U2c) + I(U1pb; U2pb|U1c, U2c, X2)
R′

1c + R′
1pb > I(U1c; X2|U2c) + I(U1pb; X2|U1c, U2c)

= I(U1c, U1pb; X2|U2c)
R′

1c + R′
2pb > I(U1c; X2|U2c),

R′
1c > I(U1c; X2|U2c)

as in (10a)-(10c), because the second to last equation is
redundant.

D. Decoding Errors at decoder 2

Depending on which messages are wrongly decoded at
decoder 2, the transmitted sequences and the receivedY n

2 are
generated iid according to

p2|⋆ , pU2c
pX2|U2c

pU1c|U2c
pU2pb|U2c,U1c,X2

pY2|⋆, (35)
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TABLE V
ERROR EVENTS AT DECODER2.

Event w2c (w1c, b1) w2pa w2pb pY2|⋆

E2,1 X · · · · · · · · · pY2

E2,2a 1 X X · · · pY2|U2c

E2,2b 1 1 X · · · pY2|U2c,U1c

E2,3a 1 X 1 X pY2|U2c,X2

E2,3b 1 1 1 X PY2|U2c,U1c,X2

where “⋆” indicates the messages decoded correctly. However,
the actual transmitted sequences and the receivedY n

2 consid-
ered at decoder 2 look as if they were generated iid according
to

p2 ,

pU2c
pX2|U2c

pU1c|U2c,X2
pU2pb|U2c,U1c,X2

pY2|U2c,U1c,X2,U2pb
.

(36)

Hence we expect the probability of error at decoder 2 to
depend on terms of the type

I2|⋆ = E

[
log

p2

p2|⋆

]

= E

[
log

pU1c|U2c,X2
pY2|U2c,U1c,X2,U2pb

pU1c|U2c
pY2|⋆

]

= I(U1c; X2|U2c) + I(Y2; U2c, U1c, X2, U2pb|⋆). (37)

If decoder 2 decodes(ŵ2c, ŵ2pa, ŵ2pb) 6= (1, 1, 1), then an
error is committed. The probability of error at decoder 2 is
bounded as:

P [error 2|encoding successful] ≤
∑

i∈[1,2a,2b,3a,3b]

P [E2,i],

whereE2,i, i ∈ [1, 2a, 2b, 3a, 3b], are the error events defined
in Table V. In Table V, an “X” means that the corresponding
message is in error (when the header of the column contains
two indices, an “X” indicates that at least one of the two
indexes is wrong), a “1” means that the corresponding message
is correct, while the dots “· · · ” indicates that “it does not
matter whether the corresponding message is correct or not;
in this case the most restrictive case is when the message is
actually wrong.” The last column of Table V specifies thepY2|⋆

to be used in (35).

We have thatP [error 2|encoding successful] → 0 when
N → ∞ if:

• When the eventE2,1 occurs we havêw2c 6= 1. In this
case the receivedY N

2 is independent of the transmitted
sequences. This follows from the fact that the codewords
UN

2c are generated in an iid fashion and all the other
codewords are generated independently conditioned on
UN

2c . Hence, when decoder 2 finds a wrongUN
2c , all the

decoded codewords are independent of the transmitted

ones. We can bound the error probability ofE2,1 as:

P [E2,1] = P
[⋃

ew2c 6=1, ew2pa, ew1c, ew2pb,b0,b2

(Y N
2 , UN

2c(w̃2c), U
N
1c(w̃1c, w̃2c, b0), X

N
2 (w̃2c, w̃2pa),

UN
2pb(w̃2c, w̃2pa, w̃1c, b0, w̃2pb, b2)) ∈ T N

ǫ

(
pY2,U2c,U1c,X2,U2pb

)]

≤ 2N(R2c+R2pa+R1c+R′
1c+R2pb+R′

2pb)∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb
)∈T N

ǫ (pY2,U2c,U1c,X2,U2pb)
p2|⋆|⋆=∅

≤ 2N(R2c+R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=∅)

for p2|⋆ given in (36) andI2|⋆ given in (37). Hence
P [E2,1] → 0 asN → ∞ if (23c) is satisfied.

• When the eventE2,2 occurs, i.e., eitherE2,2a or E2,2b,
we have ŵ2c = 1 but ŵ2pa 6= 1. Whether ŵ1c is
correct or not, it does not matter since decoder 2 is not
interested inŵ1c. However we need to consider whether
the pair(ŵ1c, b̂0) is equal to the transmitted one or not
because this affects the way the joint probability among
all involved RVs factorizes. We have:

– CaseE2,2a: either ŵ1c 6= 1 or b̂0 6= b0. In this case,
conditioned on the (correct) decoded sequenceUN

2c ,
the outputY N

2 is independent of the (wrong) de-
coded sequencesUN

1c , XN
2 and also ofUN

2pb (because
UN

2pb is superimposed to the wrong pair(UN
1c , X

N
2 )).

It is easy to see that the most stringent error event
is when bothŵ1c 6= 1 and b̂0 6= b0. Thus we have

P [E2,2a] = P
[⋃

ew2pa 6=1, ew1c 6=1,b0 6=b0, ew2pb,b2

(Y N
2 , UN

2c(1), UN
1c(1, w̃1c, b0), X

N
2 (1, w̃2pa),

UN
2pb(1, w̃2pa, w̃1c, b0, w̃2pb, b2))

∈ T N
ǫ

(
pY2,U2c,U1c,X2,U2pb

)]

≤ 2N(R2pa+R1c+R′
1c+R2pb+R′

2pb)∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb
)∈T N

ǫ (pY2,U2c,U1c,X2,U2pb)
p2|⋆|⋆=U2c

≤ 2N(R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=U2c
)

for p2|⋆ given in (36) andI2|⋆ given in (37). Hence
P [E2,2a] → 0 asN → ∞ if (10e) is satisfied.

– CaseE2,2b: both ŵ1c = 1 and b̂0 = b0. In this case,
conditioned on the (correct) decoded(UN

2c , U
N
1c), the

output Y N
2 is independent of the (wrong) decoded

sequences(XN
2 , UN

2pb). Thus we have

P [E2,2b] = P
[⋃

ew2pa 6=1, ew2pb,b2

(Y N
2 , UN

2c(1), UN
1c(1, 1, b0), X

N
2 (1, w̃2pa),

UN
2pb(1, w̃2pa, 1, b0, w̃2pb, b2))

∈ T N
ǫ

(
pY2,U2c,U1c,X2,U2pb

)]

≤ 2N(R2pa+R2pb+R′
2pb)∑

(yN
2 ,uN

2c,uN
1c,xN

2 ,uN
2pb

) ∈T N
ǫ (pY2,U2c,U1c,X2,U2pb)

p2|⋆|⋆=(U2c,U1c)

≤ 2N(R2pa+R2pb+R′
2pb−I2|⋆|⋆=(U2c,U1c))

for p2|⋆ given in (36) andI2|⋆ given in (37). Hence
P [E2,2b] → 0 asN → ∞ if (10f) is satisfied.

• When the eventE2,3 occurs, i.e., eitherE2,3a or E2,3b,
we haveŵ2c = 1,ŵ2pa = 1 but ŵ2pb 6= 1. Again, whether
ŵ1c is correct or not, it does not matter since decoder 2
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is not interested inŵ1c. However we need to consider
whether the pair(ŵ1c, b̂0) is equal to the transmitted one
or not because this affects the way the joint probability
among all involved RVs factorizes. The analysis proceeds
as for the eventE2,2.
We have:

– CaseE2,3a: either ŵ1c 6= 1 or b̂0 6= b0. In this
case, conditioned on the (correct) decoded sequences
(UN

2c , X
N
2 ), the outputY N

2 is independent of the
(wrong) decoded sequences(UN

1c , U
n
2cU

N
2pb). It is

easy to see that the most stringent error event is when
both ŵ1c 6= 1 and b̂0 6= b0. Thus we have

P [E2,3a] = P
[⋃

ew1c 6=1,b0 6=b0, ew2pb,b2

(Y N
2 , UN

2c(1), UN
1c(1, w̃1c, b0), X

N
2 (1, 1),

UN
2pb(1, 1, w̃1c, b0, w̃2pb, b2))

∈ T N
ǫ

(
pY2,U2c,U1c,X2,U2pb

)]

≤ 2N(R1c+R′
1c+R2pb+R′

2pb)∑
(yN

2 ,uN
2c,uN

1c,xN
2 ,uN

2pb
)∈T N

ǫ (pY2,U2c,U1c,X2,U2pb)
p2|⋆|⋆=(U2c,X2)

≤ 2N(R2pa+R1c+R′
1c+R2pb+R′

2pb−I2|⋆|⋆=(U2c,X2))

for p2|⋆ given in (36) andI2|⋆ given in (37). Hence
P [E2,3a] → 0 asN → ∞ if (10g) is satisfied.

– CaseE2,3b: both ŵ1c = 1 and b̂0 = b0. In this
case, conditioned on the (correct) decoded sequences
(UN

2c , X
N
2 , UN

1c), the outputY N
2 is independent of

the (wrong) decoded sequenceUN
2pb. However, since

(UN
2c , X

N
2 , UN

1c) is the triplet that passed the encod-
ing binning step, they are jointly typical. Hence, in
this case we cannot use the factorization inp2|⋆ given
in (36), but we need to replacepU1c|U2c

in (36) with
pU1c|U2c,X2

. Thus we have

P [E2,3b] = P
[⋃

ew2pb,b2

Y N
2 , UN

2c(1), UN
1c(1, 1, b0), X

N
2 (1, 1),

UN
2pb(1, 1, 1, b0, w̃2pb, b2))

∈ T N
ǫ

(
pY2,U2c,U1c,X2,U2pb

)]

≤ 2N(R2pb+R′
2pb)∑

(yN
2 ,uN

2c,uN
1c,xN

2 ,uN
2pb

)∈T N
ǫ (pY2,U2c,U1c,X2,U2pb)

pU2c
pX2|U2c

pU1c|U2c,X2
pU2pb|U2c,U1c,X2

pY2|U1c,U2c,X2

≤ 2N(R2pb+R′
2pb−I(Y2;U2pb|U1c,U2c,X2))

HenceP [E2,3b] → 0 asN → ∞ if (10h) is satisfied.

E. Decoding Errors at Decoder 1

Depending on which messages are wrongly decoded at
decoder 1, the transmitted sequences and the receivedY n

1 are
generated iid according to

p1|⋆ , pU2c
pU1c|U2c

pU1pb|U2c,U1c
pY1|⋆, (38)

where “⋆” indicates the messages decoded correctly. However,
the actual transmitted sequences and the receivedY n

1 consid-
ered at decoder 1 look as if they were generated iid according
to

p1 , pU2c
pU1c|U2c

pU1pb|U2c,U1c
pY1|U2c,U1c,U1pb

. (39)

TABLE VI
ERROR EVENTS AT DECODER1.

Event w2c (w1c, b1) w1pb pY1|⋆

E1,1 X · · · · · · pY1

E1,2 1 X · · · pY1|U2c

E1,3 1 1 X PY1|U2c,U1c

Hence we expect the probability of error at decoder 1 to
depend on terms of the type

I1|⋆ = E

[
log

p1

p1|⋆

]

= E

[
log

pY1|U2c,U1c,U1pb

pY1|⋆

]

= I(Y1; U2c, U1c, U1pb|⋆). (40)

The probability of error at decoder 1 is bounded as:

P [error 1|encoding successful] ≤
3∑

i=1

P [E1,i],

where P [E1,i] is the error event defined in Table VI. The
meaning of the symbols in Table VI is as for Table V. We
have thatP [error 1|encoding successful] → 0 whenN → ∞
if:

• When the eventE1,1 occurs we havêw2c 6= 1. In this
case the receivedY N

1 is independent of the transmitted
sequences. We can bound the error probability ofE1,1

as:

P [E1,1] = P
[⋃

ew2c 6=1, ew1c, ew1pb,b0,b1

(Y N
1 , UN

2c(w̃2c), U
N
1c(w̃1c, w̃2c, b0),

UN
1pb(w̃2c, w̃2pa, w̃1c, b0, w̃2pb, b1)) ∈ T N

ǫ

(
pY1,U2c,U1c,U1pb

)]

≤ 2N(R2c+R1c+R′
1c+R1pb+R′

1pb)∑
(yN

1 ,uN
2c,uN

1c,uN
1pb

)∈T N
ǫ (pY1,U2c,U1c,U1pb)

p1|⋆|⋆=∅

≤ 2N(R2c+R2pa+R1c+R′
1c+R2pb+R′

2pb−I1|⋆|⋆=∅)

for p1|⋆ given in (36) andI1|⋆ given in (40). Hence
P [E1,1] → 0 asN → ∞ if (10i) is satisfied.

• When the eventE1,2 occurs, either̂w1c 6= 1, b̂0 6= b0 or
both. In this case, conditioned on the (correct) decoded
sequenceUN

2c , the outputY N
1 is independent of the

(wrong) decoded sequencesUN
1c and UN

1pb . It is easy
to see that the most stringent error event is when both
ŵ1c 6= 1 and b̂0 6= b0. Thus we have

P [E1,2] = P
[⋃

ew1c 6=1,b0 6=b0, ew1pb,b1

(Y N
1 , UN

2c(1), UN
1c(1, w̃1c, b0), U

N
1pb(1, w̃1c, b0, w̃1pb, b1))

∈ T N
ǫ

(
pY1,U2c,U1c,U1pb

)]

≤ 2N(R1c+R′
1c+R1pb+R′

1pb)∑
(yN

1 ,uN
2c,uN

1c,uN
1pb

)∈T N
ǫ (pY1,U2c,U1c,U1pb)

p1|⋆|⋆=U2c

≤ 2N(R1c+R′
1c+R1pb+R′

1pb−I1|⋆|⋆=U2c
)

for p1|⋆ given in (39) andI1|⋆ given in (40). Hence
P [E1,2] → 0 asN → ∞ if (10j) is satisfied.

• When the eventE1,3 occurs, either̂w1pb 6= 1, b̂1 6= b1 or
both. In this case, conditioned on the (correct) decoded
sequenceUN

2c and UN
1c), the outputY N

1 is independent



18

of the (wrong) decoded sequencesUN
1pb. It is easy to see

that the most stringent error event is when bothŵ1pb 6= 1

and b̂1 6= b1. Thus we have

P [E1,3] = P
[⋃

ew1pb 6=1,b1 6=b1

(Y N
1 , UN

2c(1), UN
1c(1, 1, b0), U

N
1pb(1, 1, b0, w̃1pb, b1))

∈ T N
ǫ

(
pY1,U2c,U1c,U1pb

)]

≤ 2N(R1pb+R′
1pb)∑

(yN
1 ,uN

2c,uN
1c,uN

1pb
)∈T N

ǫ (pY1,U2c,U1c,U1pb)
p1|⋆|⋆=U2c,U1c

≤ 2N(R1c+R′
1c+R1pb+R′

1pb−I1|⋆|⋆=U2c,U1c
)

for p1|⋆ given in (39) andI1|⋆ given in (40). Hence
P [E1,3] → 0 asN → ∞ if (10k) is satisfied.

F. Proof of Lemma V.3

An encoding error is committed if we cannot find ab0 in the
first step or if, upon finding the correctb0 in the first encoding
step, we cannot find the correct(b1, b2) in the second step. Let
Ee,0 the probability of the first event andEe,12 of the latter,
than:

P [encoding NOT successful] ≤ P [Ee,0] + P [Ee,12|Ec
e,0]

where

P [Ee,0] = P [
⋂2NR′

1c

b0=1

(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0)
)

/∈ T N
ǫ (pU2c,X2,U1c

)]
= (1 − P [

(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0)
)

/∈ T N
ǫ (pU2c,X2,U1c

)])2
NR′

1c .

Using standard typicality arguments we have

P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0)
)

/∈ T N
ǫ (pU2c,X2,U1c

)]
=

∑
u1c∈T N

ǫ (pU2c,X2,U1c
|U2c,X2)

≥ (1 − ǫ)2N(I(U1c;X2|U2c)+δ).

Now we can write

P [Ee,0] ≤ (1 − (1 − ǫ)2N(I(U1c;X2|U2c)+δ))2
NR′

1c

≤ exp
(
1 − (1 − ǫ)2N(R′

1c−I(U1c;X2|U2c)+δ))
)

so thatP [Ee,0] → 1 whenN → 0 if (11a) is satisfied.
Now the error eventEe,12 can be divided in three distinct

error events:

• Ee,21 a: it is not possible to find b1 such that
(UN

2c , X
N
2 , UN

1c , U
N
1pb) ∈ T N

ǫ (pU2c,X2,U1c,U1pb
),

• Ee,21 b: it is not possible to find b2 such that
(UN

2c , X
N
2 , UN

1c , U
N
2pb) ∈ T N

ǫ (pU2c,X2,U1c,U2pb
).

• Ee,21 c Given that we can findb1 andb2 satisfy the first
two equations, we cannot find a couple(b1, b2) such that
(UN

2c , X
N
2 , UN

1c , U
N
1pb, U

N
2pb) ∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
).

We now establish the rate bounds that guarantee that the
probability of error of each of these events goes to zero.

For Ee,21 a we have:

P [Ee,21 a] = (1 − P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0),

UN
1pb(1, 1, b0, 1, b1)

)
/∈ T N

ǫ (pU2c,X2,U1c,U1pb
)])2

NR′
1pb

,

where

P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1)

)

/∈ T N
ǫ (pU2c,X2,U1c,U1pb

)] ≥ (1 − ǫ)2−N(I(X2;U1pb|U2c,U1c)+δ).

As for Ee,0, this implies thatP [Ee,21 a] → 1 whenN → 0
if (11b) is satisfied.

For Ee,21 b, we have that the probability of this event goes
to one for largeN given that (U2c, X2, U1c) appear to be
generated according to the distributionpU2c,X2,U1c

and U2pb

is generated according topU2pb|U2c,X2,U1c
.

For Ee,21 c we have:

P [Ee,21 c] = (1 − P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0),

UN
1pb(1, 1, b0, 1, b1), U

N
1pb(1, 1, b0, 1, b2)

)

/∈ T N
ǫ (pU2c,X2,U1c,U1pb,U2pb

)])2
N(R′

1pb
+R′

2pb
)

,

where

P [
(
UN

2c(1), XN
2 (1, 1), UN

1c(1, 1, b0), U
N
1pb(1, 1, b0, 1, b1),

UN
2pb(1, 1, b0, 1, b2)

)
/∈ T N

ǫ (pU2c,X2,U1c,U1pb,U2pb
)] ≤ 2I()+δ.

This implies thatP [Ee,21 c] → 1 when N → 0 if (11c) is
satisfied.

G. Containment of [23, Thm. 1] inRRTD of Section VI-A

We refer to the region in [23, Thm. 1] asRDMT for brevity.
We show this inclusion ofRDMT in RRTD with the following
steps:
• We enlarge the regionRDMT by removing some rate
constraints.
• We further enlarge the region by enlarging the set of possible
input distributions. This allows us to remove theV11 and Q
from the inner bound. We refer to this region asRout

DMT since
is enlarges the original achievable region.
• We make a correspondence between the RVs and corre-
sponding rates ofRout

DMT andRRTD.
• We choose a particular subset ofRRTD, Rin

RTD, for which
we can more easily showRDMT ⊆ Rout

DMT ⊂ Rin
RTD ⊆

RRTD, sinceRout
DMT and Rin

RTD have identical input distri-
bution decompositions and similar rate bound equations.

Enlarge the region RDMT

We first enlarge the rate region of [23, Thm. 1],RDMT by
removing a number of constraints (specifically, we remove
equations (2.6, 2.8, 2.10, 2.13, 2.14, 2.16 2.17) of [23, Thm.
1]). Also, following the line of thoughts in [30, Appendix D]
it is possible to show that without loss of generality we can
setX1 to be a deterministic function ofV11 andV12, allowing
us insertX1 next toV11, V12. With these consideration we can
enlarge the original region and defineRout

DMT as in (41). taken
over the union of distributions

pW pV11pV12pX1|V11,V12
pV21|V11V12

pV22|V11,V12
pX2|V11,V12,V21,V22

. (42)

Using the factorization of the auxiliary RVs in [23, Thm.
1], we may insertX1 next toV11 in equation (41f).
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R′
21 = I(V21; X1, V11, V12|W ) (41a)

R′
22 = I(V22; X1, V11, V12|W ) (41b)

R11 ≤ I(Y1, V12, V21; V11|W ) (41c)

R21 + R′
21 ≤ I(Y1, X1, V11, V12; V21|W ) (41d)

R11 + R21 + R′
21 ≤ I(Y1, V12; V11, V21|W ) + I(V11; V21|W ) (41e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X1, V11, V12, V21|W ) + I(X1, V11, V12; V21|W ) (41f)

R22 + R′
22 ≤ I(Y2, V12, V21; V22|W ) (41g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21|W ) + I(V22; V21|W ) (41h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12|W ) + I(V22, V21; V12|W ) (41i)

For equation (41c):

R11 ≤ I(Y1, V12, V21; V11|W )
= I(Y1, V21; V11|V12, W ) + I(V12; V11|W )
= I(Y1, V21; V11|V12, W )
= I(Y1, V21; X1, V11|V12, W )
= I(Y1; X1, V11|V12, V21, W ) + I(V21; X1, V11|V12, W ).

For equation (41e) we have:

R11 + R21 + R′
21 ≤ I(Y1, V12; V11, V21|W )

+I(V11; V21|W )
= I(Y1; V11, V21|V12, W ) + I(V12; V11, V21|W )

+I(V11; V21|W )
= I(Y1; V11, V21|V12, W ) + I(V12; V21|V11, W )

+I(V11; V21|W )
= I(Y1; V11, V21|V12, W ) + I(V11, V12; V21|W )
= I(Y1; X1, V11, V21|V12, W ) + I(X1, V11, V12; V21|W )

The original region is thus equivalent to the region in (43).
union over all distributions that factor as in (42).
Enlarge the class of input distribution and eliminate V11

and W
Now increase the set of possible input distributions of equation
(42) by lettingV11 have any joint distribution withV12. This
is done by substitutingpV11 with pV11|V12

in the expression of
the input distribution. With this substitution we have:

pW pV11|V12
pV12pX1|V11,V12

pV21|X1,V11V12
pV22|X1,V11,V12

pX2|X1,V11,V12,V21,V22

= pW pV12pV11,X1|V12
pV21|X1,V11V12

pV22|X1,V11,V12

pX2|X1,V11,V12,V21,V22

= pW pV12pX′
1|V12

pV21|X′
1,V12

pV22|X′
1,V12

pX2|X′
1,V12,V21,V22

with X ′
1 = (X1, V11). SinceV12 is decoded at both decoders,

the time sharing randomW may be incorporated withV12

without loss of generality and thus can be dropped. The region
described in (43) is convex and thus time sharing is not needed.
With these simplifications, the regionRout

DMT is now defined
as the region in (44), taken over the union of all distributions

pV12pX′
1|V12

pV21|X′
1,V12

pV22|X′
1,V12

pX2|X′
1,V12,V21,V22

.

Correspondence between the random variables and
rates. When referring to [23] please note that the index
of the primary and cognitive user are reversed with respect

to our notation (i.e1 → 2 and vice-versa). Consider the
correspondences between the variables of [23, Thm. 1] and
those of Theorem V.1 in Table VII to obtain the regionRout

DMT

defined as the set of rate pairs satisfying the inequalities in
(45),

taken over the union of all distributions

pU2c
pX2|U2c

pU1c|X2
pU1pb|X2

pX1|X2,U1c,U1pb
. (46)

Next, we using the correspondences of the table and restrict
the fully general input distribution of Theorem V.1 to match
the more constrained factorization of (46), obtaining a region
Rin

RTD ⊆ RRTD defined as the set of rate tuples satisfying the
inequalities in (47) union of all distributions that factoras

pU2c,X2pU1c|X2
pU1pb|X2

pX1|X2,U1c,U1pb
.

Equation-by-equation comparison. We now show that
Rout

DMT ⊆ Rin
RTD by fixing an input distribution (which are the

same for these two regions) and comparing the rate regions
equation by equation. We refer to the equation numbers
directly, and look at the difference between the corresponding
equations in the two new regions.

• (47c)-(47a) vs (45c)-(45a): Noting the cancelation / in-
terplay between the binning rates, we see that

((47c)− (47a)) − ((45d)− (45a)) = 0.

• (47d)-(47a) vs. (45d)-(45a):

((47d)− (47a)) − ((45d)− (45a))
= −I(X2; U1c) + I(U1c; X2, U2c)
= I(U2c; U1c|X2)
= 0

• (47e)-(47a) vs. (45e)-(45a): again noting the cancelations,

((47e)− (47a)) − ((45e)− (45a)) = 0

• (47f) vs. (45f):

(47f)− (45f) = 0
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R′
21 = I(V21; X1, V11, V12|W ) (43a)

R′
22 = I(V22; X1, V11, V12|W ) (43b)

R11 ≤ I(Y1; X1, V11|V12, V21|W ) + I(V21; X1|V12, W ) (43c)

R21 + R′
21 ≤ I(Y1, X1, V11, V12; V21|W ) (43d)

R11 + R21 + R′
21 ≤ I(Y1; X1, V11, V21|V12, W ) + I(X1; V21|W ) (43e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X1, V11, V21, V12|W ) + I(X1, V11, V12; V21|W ) (43f)

R22 + R′
22 ≤ I(Y2, V12, V21; V22|W ) (43g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21|W ) + I(V22; V21|W ) (43h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12|W ) + I(V22, V21; V12|W ) (43i)

R′
21 = I(V21; X

′
1, V12) (44a)

R′
22 = I(V22; X

′
1, V12) (44b)

R11 ≤ I(Y1; X
′
1|V12, V21) + I(V21; X1|V12) (44c)

R21 + R′
21 ≤ I(Y1, X

′
1, V12; V21) (44d)

R11 + R21 + R′
21 ≤ I(Y1; X

′
1, V21|V12) + I(X1; V21) (44e)

R11 + R21 + R′
21 + R12 ≤ I(Y1; X

′
1, V21, V12) + I(X ′

1, V12; V21) (44f)

R22 + R′
22 ≤ I(Y2, V12, V21; V22) (44g)

R22 + R′
22 + R21 + R′

21 ≤ I(Y2, V12; V22, V21) + I(V22; V21) (44h)

R22 + R′
22 + R21 + R′

21 + R12 ≤ I(Y2; V22, V21, V12) + I(V22, V21; V12) (44i)

TABLE VII
ASSIGNMENT OFRVS OFAPPENDIXG

RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
U2c, R2c V12, R12 TX 2 → RX 1, RX 2
U1c, R1c V21, R21 TX 1 → RX 1, RX 2
U1pb, R1pb V22, R22 TX 1 → RX 1
X2, R2pa X′

1, R11 TX 2 → RX 2
U2pb = ∅, R′

2pb
= 0 – TX 1 → RX 2

R′
1c = I(U1c;X2|U2c) L21 − R21 = I(V21;V11, V12) Binning rate

R′
1pb

= I(U1pb;X2|U1c, U2c) L22 − R22 = I(V22;V11, V12) Binning rate
X1 X2

R′
1c = I(U1c; X2, U2c) (45a)

R′
1pb = I(U1pb; X2, U2c) (45b)

R2pa + R1c + R′
1c + R2c ≤ I(Y2; U1c, U2c, X2) + I(X2, U2c; U1c) (45c)

R2pa + R1c + R′
1c ≤ I(Y2; X2, U1c|U2c) + I(X2; U1c) (45d)

R1c + R′
1c ≤ I(Y2, X2, U2c; U1c) (45e)

R2pa ≤ I(Y2; X2|U2c, U1c) + I(U1c; X2|U2c) (45f)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1; U1pb, U1c, U2c) + I(U1pb, U1c; U2c) (45g)

R1c + R1pb + R′
1c + R′

1pb ≤ I(Y1, U2c; U1pb, U1c) + I(U1pb; U1c) (45h)

R1pb + R′
1pb ≤ I(Y1, U2c, U1c; U1pb) (45i)
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R′
1c = I(U1c; X2|U2c) (47a)

R′
1c + R′

1pb = I(X2; U1c, U1pb|U2c) (47b)

R2c + R1c + R2pa + R′
1c ≤ I(Y2; U2c, U1c, X2) + I(U1c; X2|U2c) (47c)

R2pa + R1c + R′
1c ≤ I(Y2; U1c, X2|U2c) + I(U1c; X2|U2c) (47d)

R1c + R′
1c ≤ I(Y2; U1c|U2c, X2) + I(U1c; X2|U2c) (47e)

R2pa ≤ I(Y2; X2|U2c, U1c) + I(U1c; X2|U2c) (47f)

R1pb + R′
1pb + R1c + R′

1c + R2c ≤ I(Y1; U2c, U1c, U1pb) (47g)

R1c + R1pb + R′
1c + R′

1pb ≤ I(Y1; U1c, U1pb|U2c) (47h)

R1pb + R′
1pb ≤ I(Y1; U1pb|U2c, U1c) (47i)

• (47g)-(47b) vs. (45g)-(45b)-(45a)

((47g)− (47b)) − ((45g)− (45b)− (45a))
= −I(X2; U1c, U1pb|U2c)

−I(U1pb, U1c; U2c) + I(U1c; U2c, X2)
+I(U1pb; U2c, X2)

= −I(U1pb, U1c; X2, U2c) + I(U1c; U2c, X2)
+I(U1pb; U2c, X2)

= −I(U1pb; X2, U2c) − I(U1c; X2, U2c|U1pb)
+I(U1c; U2c, X2) + I(U1pb; U2c, X2)

= −I(U1c; X2, U2c|U1pb) + I(U1c; U2c, X2)
= −H(U1c|U1pb) + H(U1c|X2, U2c, U1pb)

+H(U1c) − H(U1c|X2, U2c)
= I(U1c; U1pb) > 0

where we have used the fact thatU1c and U1pb are
conditionally independent given(U2c, X2).

• (47h)− (47b) vs. (45h)− (45b)− (45a):

((47h)− (47b)) − ((45h)− (45b)− (45a))
= −I(X2; U1c, U1pb|U2c) − I(U2c; U1c, U1pb)

+I(U1pb; U2c, X2) − I(U1pb; U1c)
+I(U1c; X2, U2c)

= −I(X2, U2c; U1c, U1pb) + I(U1pb; U2c, X2)
−I(U1pb; U1c) + I(U1c; X2, U2c)

= −I(X2, U2c; U1pb) − I(U1c; X2, U2c|U1pb)
+I(U1pb; U2c, X2) − I(U1pb; U1c)
+I(U1c; X2, U2c)

= −I(U1c; X2, U2c, U1pb) + I(U1c; X2, U2c)
= −I(U1c; X2, U2c) − I(U1c; U1pb|X2, U2c)

+I(U1c; X2, U2c)
= 0

where we have used the fact thatU1c and U1pb are
conditionally independent given(U2c, X2).

• (47i)− (47b)+ (47a) vs. (45i)− (45b):

((47i)− (47b)+ (47a)) − ((45i)− (45b))
= −I(U1pb; X2|U2c, U1c) − I(U1pb; U2c, U1c)

+I(U1pb; X2, U2c)
= −I(U1pb; X2, U2c, U1c) + I(U1pb; U2c, X2)
= −I(U1pb; U1c|U2c, X2)
= 0

H. Containment of [24, Thm. 2] inRRTD of Section H

The independently derived region in [12, Thm. 2] uses a
similar encoding structure as that ofRRTD with two excep-
tions: a) the binning is done sequentially rather than jointly as
in RRTD leading to binning constraints (43)–(45) in [12, Thm.
2] as opposed to (10a)–(10c) in Thm.V.1. Notable is that both
schemes have adopted a Marton-like binning scheme at the
cognitive transmitter, as first introduced in the context ofthe
CIFC in [12]. b) While the cognitive messages are rate-splitin
identical fashions, the primary message is split into 2 parts in
[12, Thm. 2] (R1 = R11 + R10, note the reversal of indices)
while we explicitly split the primary message into three parts
R2 = R2c + R2pa + R2pb. We show that the region of [12,
Thm.2], denoted asRCC ⊆ RRTD in two steps:

• We first show that we may WLOG setU11 = ∅ in [12,
Thm.2], creating a new regionR′

CC .

• We next make a correspondence between our RVs and those
of [12, Thm.2] and obtain identical regions.

We note that the primary and cognitive indices are permuted
in [12].

We first show that U11 in [12, Thm. 2] may be
dropped WLOG. Consider the regionRCC of [12,
Thm. 2], defined as the union over all distributions
pU10,U11,V11,V20,V22,X1,X2pY1,Y2|X1,X2

of all rate tuples satis-
fying:

R1 ≤ I(Y1; V11, U11, V20, U10) (48)

R2 ≤ I(Y2; V20, V22|U10) − I(V22, V20; U11|U10) (49)

R1 + R2 ≤ I(Y1; V11, U11|V20, U10) + I(Y2; V22, V20, U10)

− I(V22; U11, V11|V20, U10) (50)

R1 + R2 ≤ I(Y1; V11, U11, V20, U10) + I(Y2; V22|V20, U10)

− I(V22; U11, V11|V20, U10) (51)

2R2 + R1 ≤ I(Y1; V11, U11, V20|U10) + I(Y2; V22|V20, U10)

+ I(Y2; V20, V22, U10) − I(V22, V20; U11|U10)

− I(V22; U11, V11|V20, U10) (52)

Now let R′
CC be the region obtained by settingU ′

11 = ∅
and V ′

11 = (V11, U11) while keeping all remaining RVs
identical. Then R′

CC is the union over all distributions
pU10,V ′

11,V20,V22,X1,X2
pY1,Y2|X1,X2

, with V ′
11 = (V11, U11) in
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RCC , of all rate tuples satisfying:

R1 ≤ I(Y1; V11, U11, V20, U10) (53)

R2 ≤ I(Y2; V20, V22|U10) (54)

R1 + R2 ≤ I(Y1; V11, U11|V20, U10) + I(Y2; V22, V20, U10)

− I(V22; U11, V11|V20, U10) (55)

R1 + R2 ≤ I(Y1; V11, U11, V20, U10) + I(Y2; V22|V20, U10)

− I(V22; U11, V11|V20, U10) (56)

2R2 + R1 ≤ I(Y1; V11, U11, V20|U10) + I(Y2; V22|V20, U10)

+ I(Y2; V20, V22, U10) − I(V22; U11, V11|V20, U10)
(57)

Comparing the two regions equation by equation, we see that

• (48)= (53)
• (49) < (54) as this choice of RVs sets the generally

positive mutual information to 0
• (50)=(55)
• (51)=(56)
• (52) < (57) as this choice of RVs sets the generally

positive mutual information to 0

From the previous, we may setU11 = ∅ in the region
RCC of [12, Thm. 2] without loss of generality, obtaining
the regionR′

CC defined in (53) – (57). We show thatR′
CC

may be obtained from the regionRRTD with the assigment
of RVs, rates and binning rates in Table VIII.

Evaluating R′
CC defined by (53) – (57) with the above

assignment, translating all RVs into the notation used here,
we obtain the region:

R
′
1c ≥ 0 (58a)

R
′
1pb + R

′
2pb ≥ I(U1pb; U2pb|U2c, U1c)

(58b)

R2pb + R
′
2pb ≤ I(Y2; U2pb|U2c, U1c) (58c)

R2pb + R
′
2pb + R1c + R

′
1c ≤ I(Y2; U1c, U2pb|U2c) (58d)

R2pb + R
′
2pb + R1c + R

′
1c + R2c ≤ I(Y2; U1c, U2c, U2pb) (58e)

R1pb + R
′
1pb ≤ I(Y1; U1pb|U2c, U1c) (58f)

R1pb + R
′
1pb + R1c + R

′
1c ≤ I(Y1; U1pb, U1c|U2c) (58g)

R1pb + R
′
1pb + R1c + R

′
1c + R2c ≤ I(Y1; U1pb, U1c, U2c) (58h)

Note that we may take binning rate equationsR′
1c ≥ 0 and

R′
1pb + R′

2pb ≥ I(U1pb; U2pb|U2c, U1c) to be equality without
loss of generality - the largest region will takeR′

1c, R
′
1pb, R

′
2pb

as small as possible. The regionRRTD with R2pa = 0

R
′
1c ≥ 0 (59a)

R
′
1c + R

′
1pb ≥ 0 (59b)

R
′
1c + R

′
1pb + R

′
2pb ≥ I(U1pb; U2pb|U2c, U1c) (59c)

R2pb + R
′
2pb ≤ I(Y2; U2pb|U2c, U1c) (59d)

R2pb + R
′
2pb + R1c + R

′
1c ≤ I(Y2; U1c, U2pb|U2c) (59e)

R2pb + R
′
2pb + R1c + R

′
1c + R2c ≤ I(Y2; U1c, U2c, U2pb) (59f)

R1pb + R
′
1pb ≤ I(Y1; U1pb|U2c, U1c) (59g)

R1pb + R
′
1pb + R1c + R

′
1c ≤ I(Y1; U1pb, U1c|U2c) (59h)

R1pb + R
′
1pb + R1c + R

′
1c + R2c ≤ I(Y1; U1pb, U1c, U2c) (59i)

For R′
1c = 0 these two regions are identical, showing that

RRTD is surely no smaller thanRCC . For R′
1c > 0, RRTD ,

the binning rates of the regionRRTD are looser than the ones
in RCC . This is probably due to the fact that the first one
uses joint binning and latter one sequential binning. Therefore

RRTD may produce rates larger thanRCC . However, in
general, no strict inclusion ofRCC in RRTD has been shown.

I. Containment of [13, Thm. 4.1] inRRTD of Section VI-C

In this scheme the common messages are created indepen-
dently instead of having the common message from transmit-
ter 1 being superposed to the common message from trans-
mitter 2. The former choice introduces more rate constraints
than the latter and allows us to show inclusion inRRTD.

Again, following the argument of [30, Appendix D], we can
show that without loss of generality we can takeX1 andX2
to be deterministic functions. With this consideration we can
express the region of [13, Thm. 4.1] as:

R
′
22 ≥ I(W2; V1, X1|U1, U2) (60a)

R
′
11 + R

′
22 ≥ I(W2; W1, V1, X1|U1, U2) (60b)

R11 + R
′
11 ≤ I(V1, X1, W1; Y1|U1, U2) (60c)

R12 + R11 + R
′
11 ≤ I(U1, V1, X1, W1; Y1|U2) (60d)

R21 + R11 + R
′
11 ≤ I(U2, V1, X1, W1; Y1|U1) (60e)

R12 + R21 + R11 + R
′
11 ≤ I(U1, V1, X1W1, U2; Y1) (60f)

R22 + R
′
22 ≤ I(W2; Y2|U1, U2) (60g)

R21 + R22 + R
′
22 ≤ I(U2, W2; Y2|U1) (60h)

R12 + R22 + R
′
22 ≤ I(U1, W2; Y2|U2) (60i)

R12 + R21 + R22 + R
′
22 ≤ I(U1, U2, W2; Y2). (60j)

taken over the union of all distributions

pU1pV1|U1
pX1|V1,U1

pU2pW1,W2|V1,U1,U2
pX0|W1,W2,V1,U1,U2

pY1,Y2|X1,X0

for (R′
11, R

′
22, R11, R12, R21, R22) ∈ R

6
+.

We can now eliminate one RV by noticing that

pU1pV1|U1
pX1|V1,U1

pU2pW1,W2|V1,U1,U2
pX0|W1,W2,V1,U1,U2

pY1,Y2|X1,X0

= pU1pV1,X1|U1
pU2pW1,W2|V1,U1,X1,U2

pX0|W1,W2,V1,U1,X1,U2

pY1,Y2|X1,X0
,

and settingV ′
1 = [V1, X1], to obtain the region

R
′
22 ≥ I(W2; V

′
1 |U1, U2) (61a)

R
′
11 + R

′
22 ≥ I(W2; W1, V

′
1 |U1, U2) (61b)

R11 + R
′
11 ≤ I(V ′

1 , W1; Y1|U1, U2) (61c)

R12 + R11 + R
′
11 ≤ I(U1, V

′
1 , W1; Y1|U2) (61d)

R21 + R11 + R
′
11 ≤ I(U2, V

′
1 , W1; Y1|U1) (61e)

R12 + R21 + R11 + R
′
11 ≤ I(U1, V

′
1W1, U2; Y1) (61f)

R22 + R
′
22 ≤ I(W2; Y2|U1, U2) (61g)

R21 + R22 + R
′
22 ≤ I(U2, W2; Y2|U1) (61h)

R12 + R22 + R
′
22 ≤ I(U1, W2; Y2|U2) (61i)

R12 + R21 + R22 + R
′
22 ≤ I(U1, U2, W2; Y2) (61j)

taken over the union of all distributions of the form

pU1pV ′
1 |U1

pU2pW1,W2|V ′
1 ,U1,U2

pX0|W1,W2,V ′
1 ,U1,U2

pY1,Y2|V ′
1 ,X0

.

We equate the RVs in the region of [13] with the RVs in
Theorem V.1 as in Table IX.
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TABLE VIII
ASSIGNMENT OFRVS OFSECTION H

RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
U2c, R2c U10, R10 TX 2 → RX 1, RX 2
X2 = U2c, R2pa = 0 U11 = ∅, R11 = 0 TX 2 → RX 2
U1c, R1c V20, R20 TX 1 → RX 1, RX 2
U1pb, R1pb V22, R22 TX 1 → RX 1
U2pb, R2pb V11 TX 1 → RX 2
R′

1c L20 − R20

R′
1pb

L22 − R22

R′
2pb

L11 − R11

X1 X2

X2 X1

TABLE IX
ASSIGNMENT OFRVS OFSECTION I

RV, rate of Theorem V.1 RV, rate of [23, Thm. 1] Comments
U2c, R2c U1, R12 TX 2 → RX 1, RX 2
X2, R2pa V ′

1 , R′
11 TX 2 → RX 2

U1c, R1c U2, R21 TX 1 → RX 1, RX 2
U1pb, R1pb W2, R22 TX 1 → RX 1
U2pb, R2pb = 0 W1 TX 1 → RX 2
R′

1c L20 − R20

R′
1pb

L11 − R11

R′
2pb

L22 − R22

X1 X0

X2 X1

With the substitutions of Table IX in the achievable rate
region of (??), we obtain the region

R
′
1pb ≥ I(U1pb; X2|U2c, U1c) (62a)

R
′
1pb + R

′
2pb ≥ I(U1pb; U2pb, X2|U2c, U1c) (62b)

R2pa + R
′
2pb ≤ I(X2, U2pb; Y2|U2c, U1c) (62c)

R2c + R2pa + R
′
2pb ≤ I(U2c, X2, U2pb; Y2|U1c) (62d)

R1c + R2pa + R
′
2pb ≤ I(U1c, X2, U2pb; Y2|U2c) (62e)

R2c + R1c + R2pa + R
′
2pb ≤ I(U2c, X2, U1c, U1pb; Y2) (62f)

R1pb + R
′
1pb ≤ I(U1pb; Y1|U2c, U1c) (62g)

R1c + R1pb + R
′
1pb ≤ I(U1c, U1pb; Y1|U2c) (62h)

R2c + R1pb + R
′
1pb ≤ I(U2c, U1pb; Y1|U1c) (62i)

R2c + R1c + R1pb + R
′
1pb ≤ I(U2c, U1c, U1pb; Y1). (62j)

taken over the union of all distributions of the form

pU1c
pU2c

pX2|U2c
pU1pb,U2pb|U1c,U2c,X2

pX1|U2c,U1c,U1pb,U2pb
.

Set R2pb = 0 and R′
1c = I(U1c; X2|U2c) in the achievable

scheme of Theorem V.1 and consider the factorization of the
remaining RVs as in the scheme of (62), that is, according to

pU1c
pU2c

pX2|U2c
pU1pb,U2pb|U1c,U2c,X2

pX1|U2c,X2,U1c,U1pb,U2pb
.

With this factorization of the distributions, we obtain the
achievable region

R
′
1c = I(U1c; X2|U2c) (63a)

R
′
1pb ≥ I(U1pb; X2|U2c, U1c) (63b)

R
′
1pb + R

′
2pb ≥ I(U1pb; X2, U2pb|U2c, U1c) (63c)

R2pa + R
′
2pb ≤ I(Y2; X2, U2pb|U2c, U1c)

+ I(U1c; X2|U2c) (63d)

R1c + R2pa + R
′
2pb ≤ I(Y2; U1c, X2, U2pb|U2c) (63e)

R2c + R1c + R2pa + R
′
2pb ≤ I(Y2; U2pb, U1c, U2c, X2) (63f)

R1pb + R
′
1pb ≤ I(Y1; U1pb|U2c, U1c) (63g)

R1c + R1pb + R
′
1pb ≤ I(Y1; U1c, U1pb|U2c) (63h)

R2c + R1c + R1pb + R
′
1pb ≤ I(Y1; U2c, U1c, U1pb) (63i)

Note that with this particular factorization we have that
I(U1c; X2|U2c) = 0, sinceX2 is conditionally independent
of U1c given U2c.

We now compare the region of (62) and (63) for a fixed
input distribution, equation by equation:

(63b) = (62a)
(63c) = (62b)
(63d) = (62c)
(63e) = (62e)
(63f) = (62f)
(63g) = (62g)
(63h) = (62h)
(63i) = (62j)

We see that (62d) and (62i) are extra bounds that further
restrict the region in [13] to be contained in the region of
Theorem V.1.


