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Abstract: In this study, a modified design of the internal model control (IMC) filter is proposed for improving
closed-loop system performance of load disturbance rejection, especially for slow processes in industrial and
chemical engineering practices. The deficiency of a conventional IMC filter design for controller tuning is
revealed with regard to load disturbance rejection. By constructing one or more asymptotic canceling
constraints for disturbance rejection, a modified IMC filter is proposed to reduce the influence from the time
constant(s) of the process or repetitive-type load disturbance to the closed-loop disturbance rejection
performance. Similar to a conventional IMC filter, there is essentially a single adjustable parameter in the
proposed IMC filter, which can be monotonically tuned to meet with the compromise between the achievable
disturbance rejection performance and the closed-loop system stability. Quantitative tuning formulae and
guidelines for this adjustable parameter are developed in terms of the widely used first- and second-order
process models with time delay. Illustrative examples are given to show the effectiveness and merits of the
proposed IMC filter.
1 Introduction
Load disturbance rejection is one of the most important
issues in the context of process control. Internal model
control (IMC) design [1] has been widely recognised and
applied for closed-loop disturbance rejection in engineering
practices [2–4]. A large number of controller tuning
methods based on the unity feedback control structure have
been well developed in terms of the IMC principle, leading
to superior disturbance rejection performance as compared
with other tuning methods. To enumerate a few, earlier
literature [5] presented simple IMC tuning formulae for
low-order industrial processes; a unified IMC-based PID
or high-order controller design was proposed [6] in terms
of the standard/recursive least-squares (LS) fitting
algorithm to achieve a desired closed-loop response
specification; [7–10] developed analytical PI/PID tuning
formulae for a variety of linear time-invariant process
models by means of the Taylor series or Padé
approximation; according to the integral-square-error (ISE)
criterion, two numerical optimisation methods were
8
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recently presented [11, 12] to refine some of the
aforementioned IMC tuning formulae for industrial
processes with time delay. Based on the standard IMC
structure, Liu et al. [13] developed an analytical decoupling
control method for multivariable processes with time
delays, obtaining improved disturbance rejection
performance compared to other decoupling control
methods. To separately optimise system performance for
load disturbance rejection without sacrificing the nominal
set-point tracking performance, the standard two-degree-
of-freedom (2DOF) IMC structure shown in Fig. 1 can be
utilised [1]. Tian and Gao [14] demonstrated that such a
2DOF control structure is particularly effective for chemical
processes with dominant time delay. It can be verified, by
comparing the transfer functions respectively for set-point
tracking and load disturbance rejection, that the standard
2DOF IMC structure with a conventional IMC filter of
type I prescribed for the two controllers is capable of the
same closed-loop system performance with [15, 16], both
of which had shown their superiority of load disturbance
rejection over many other control methods.
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The key to IMC-based controller design lies with the
choice of a suitable IMC filter to prescribe a desired
closed-loop complementary sensitivity function. Given a
process model Gm ¼ GAGM, where GA is an all-pass
portion and GM a minimum-phase portion, the IMC-
based complementary sensitivity function can be
determined as T ¼ GAf , where f denotes the IMC filter
[17]. A conventional IMC filter of type I,
f (s) ¼ 1=(ls þ 1)n, is generally chosen for step change in
set-point or load disturbance, and type II,
f (s) ¼ (nls þ 1)=(ls þ 1)n, is for ramp change, where n is
an integer large enough to ensure f =GM proper. Most of
IMC-based controller tuning methods, including the
aforementioned, are based on the filter type I, since a step
change in set-point or load disturbance can be physically
regarded as a summation of sinusoidal signals of different
frequencies. The key feature of IMC filter type I is that it
can lead to the H2 optimal performance objective [1],
min kek2

2, for set-point tracking and step change of the load
disturbance acting on the process output side (denoted as
do in Fig. 1). However, for a load disturbance seeping into
the process, denoted as di in Fig. 1, the corresponding
transfer function is Hdi

¼ GSdi, where S ¼ 1� T is the
closed-loop sensitivity function. It can be seen that the
time constant(s) of G is enclosed in the characteristic
equation of Hdi

, and therefore, affects the achievable
disturbance rejection performance, no matter how the IMC
filter is tuned in T. For a slow process with a large time
constant, the recovery trajectory of the disturbance response
is subject to ‘a long tail’ (i.e. sluggish load disturbance
suppression), as early reported by Horn et al. [18]. Besides,
if there exists a load disturbance transfer function, Gd, as
shown in Fig. 1, the achievable disturbance rejection
performance is also restricted by the time constant(s) of Gd.
In many industrial cases, Gd has a similar form to G, so the
influence of d̂ o may be transformed into di to be treated
with [4].

Using an idea of eliminating the slowest pole of G, Horn
et al. [18] suggested a improved IMC filter design for some
delay-free processes, and first-order processes with small
time delay that can be properly approximated by the first-
order Padé expansion. Further extended PID tuning

Figure 1 Two-degree-of-freedom IMC structure
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methods were recently presented for improving disturbance
rejection [19]. Middleton and Graebe [20] analysed the
necessity of canceling the slow stable pole(s) of a delay-free
process for controller design in terms of the unity feedback
control structure. Campi et al. [21] presented another type
of IMC filter for industrial systems with an unstable pole,
with two adjustable parameters respectively for regulating
the closed-loop bandwidth and the recovery time.

In this paper, by establishing asymptotic canceling
constraints to reduce the influence from the time constant(s)
of the process or repetitive-type load disturbance, a modified
IMC filter design is proposed to improve disturbance
rejection performance for slow processes with time delay.
Quantitative tuning formulae and guidelines are developed
in terms of the widely used first- and second-order process
models with time delay. The closed-loop structure for
disturbance rejection in the standard 2DOF IMC structure
shown in Fig. 1 is adopted to present the proposed IMC
filter design, where the feedback controller, F, is to be
configured with the proposed IMC filter. Note that, by
using the equivalent transform between the standard IMC
structure and the conventional unity feedback control loop
[1], the proposed IMC filter can also be applied to tune the
loop controller for load disturbance rejection. The paper is
organised as follows: Section 2 presents the proposed IMC
filter design based on the widely used first- and second-
order process models with time delay, together with some
discussions on the achievable disturbance rejection
performance. In Section 3, robust stability constraints
associated with tuning the proposed IMC filter are analysed
for the presence of process uncertainties. Illustrative examples
are given in Section 4 to demonstrate the effectiveness and
merits of the proposed IMC filter. Finally, conclusions are
drawn in Section 5.

2 Proposed IMC filter design
It can be seen from Fig. 1 that in the nominal case, G ¼ Gm,
the transfer function of load disturbance response relating di

to y can be derived as

ydi

di

¼ G(1� FGm) (1)

Note that the nominal closed-loop complementary sensitivity
function can be formulated as T ¼ FG, which is actually
equivalent to the transfer function from the load
disturbance di to the controller output fd. Therefore (1) can
be rewritten as

ydi

di

¼ G(1� T ) (2)

To reduce the influence arising from the process time
constant(s) to the load disturbance response, it is of course
ideal to eliminate the corresponding pole(s) from the
characteristic equation of (2). It is thus expected that 1� T
449
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(i.e. S), rather than T, has the corresponding zero(s) to cancel
the pole(s) of G, such that the characteristic equation is
governed only by the time constant of T (i.e. an adjustable
parameter in the IMC filter). The numerator of 1� T ,
however, is unavoidably involved with time delay factor(s)
for a process with time delay, so it cannot be analytically
factorised to make zero-pole cancellation with the
denominator of G. The following asymptotic constraint(s)
is therefore proposed to realise the above idea

lim
s!�pi

(1� T ) ¼ 0, i ¼ 1, 2, . . . , m (3)

where pi is the reciprocal of the process time constant(s).

Based on the widely used first- and second-order process
models with time delay, the proposed IMC filter design is
detailed in the following two subsections.

2.1 IMC filter for first-order process

A first-order process is generally modelled as

G1 ¼
k

ts þ 1
e�us (4)

where k is the proportional gain, t is the time constant and u

is the process time delay.

According to the IMC theory, the conventional IMC filter
should be configured as

fIMC�1 ¼
1

ls þ 1
(5)

where l is a user specified time constant, that is, an adjustable
parameter. Correspondingly, the nominal closed-loop
complementary sensitivity function is obtained as

TIMC�1 ¼
e�us

ls þ 1
(6)

To improve the load disturbance response, the conventional
IMC filter in (6) is hereby rectified as

fRIMC�1 ¼
as þ 1

(lf s þ 1)2
(7)

where a is an additional parameter used to satisfy the
following asymptotic constraint

lim
s!�1=t

(1� T ) ¼ 0 (8)

Accordingly, it follows that

TRIMC�1 ¼
(as þ 1)e�us

(lf s þ 1)2
(9)

Substituting (9) into (8) yields

a ¼ t 1�
lf

t
� 1

� �2

e�u=t

" #
(10)

It is thus seen that a is a function of lf . So, there is
essentially a single adjustable parameter, lf , in the
proposed IMC filter.

Using the nominal closed-loop relationship, T ¼ FG,
we obtain the feedback controller

FRIMC�1 ¼
(as þ 1)(ts þ 1)

k(lf s þ 1)2
(11)

Remark 1: Note that FRIMC�1 ¼ 1=k when lf is tuned as t
(or td of Gd ), for which T becomes the same as G (or Gd).
When lf is tuned larger than t (or td), the load
disturbance response will be slower than G (or Gd). Hence,
it is suggested to tune lf , t for load disturbance
rejection, unless it is intentionally violated to obtain
sustainable closed-loop stability in order to accommodate
for process uncertainties.

By substituting (9) into (2) and taking the inverse Laplace
transform, the time response for a step change of di can be
derived as (see (12))

Note that ydi
(t) increases monotonically in the time

interval t [ (u, 2u] and dydi
(t)=dtjt¼2u = 0. Its peak value

should be reached in the time interval (2u, 1). The time to
reach the disturbance response peak (DP) can be derived by
solving dydi

(t)=dt ¼ 0 for the final phase as

tDP ¼ 2uþ
l2

f e�u=t

tþ (lf � t)e�u=t
(13)

Substituting (13) into (12), we obtain

ydi
(tDP) ¼ k 1þ

lf

t
� 1

� �
e�u=t

� �

� e�((lf =t)e(�u=t))=1þ(lf =t�1)e�(u=t)

(14)

To make clear the tuning relationship between the adjustable
parameter lf and DP, the following proposition is given.

ydi
(t) ¼

0, t � u ;
k(1� e�½t�u=t�), u , t � 2u ;

k[1� e�(u=t)
þ

1þ [(lf =t)� 1]e�(u=t)

lf

(t � 2u)]e�½(t�2u)=lf �, t . 2u

8>><
>>: (12)
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Proposition 1: For a first-order process, DP of the load
disturbance response (ydi) increases monotonically with
respect to lf .

Proof: Letting A ¼ 1þ (lf =t� 1)e�u=t and B ¼ 1� e�u=t,
the first derivative of ydi

(tDP) shown in (14) can be derived as

dydi
(tDP)

dlf

¼
k

t
e(B=A)�(u=t)�1 1�

B

A

� �

Owing to the fact that A . B . 0, there exists
dydi

(tDP)=dlf . 0. Hence, it follows the conclusion in
Proposition 1. A

Note that the above analysis of DP may be utilised to assess
the maximum deviation from the set-point value for the
presence of load disturbance in engineering practices.

Define the recovery time, tre, as the period from the
moment that a step change of load disturbance is added to
the process to the moment that the load disturbance
response recovers into the 5% error band that is usually
specified for set-point tracking in practice. It follows from
(12) that

1� e�u=t þ
tre � 2u

lf

1þ
lf

t
� 1

� �
e�u=t

� �
¼ 0:05 e(tre�2u)=lf

(15)

Apparently, (15) is a transcendental equation that cannot be
solved analytically. Numerical computation in terms of the
Newton–Raphson algorithm is therefore cultivated to
disclose the quantitative tuning relationship between lf and
tre. By sweeping over the ratio regions of lf =t [ [0:1, 2:0]

and u=t [ [0:1, 2:0], the numerical results of scaled
recovery time, tre=k, are plotted in Fig. 2. Note that t ¼ 1
is assumed to obtain the scaled recovery time shown in
Fig. 2. Given t = 1, the recovery time can be graphically
read as tre ¼ ttrejt¼1, in view of that tre=t and trejt¼1

correspond to the identical solution of lf=t for (15).

Remark 2: Although the mathematical Lambert W
function, defined as the multi-inverse function for
v 7! vev, may be employed to solve (15) to yield an
‘analytical’ expression, tre ¼ 2uþ lf [�W (� e�A=B=B)
�A=B], where A ¼ 20(1� e�u=t) and B ¼ 20[1þ
(lf =t� 1)e�u=t], it may lead to an incorrect result because
the principle branch value of the Lambert W function
is generally yielded in commercial symbolic software
packages [22]. Note that, in the above expression
�W (�e�A=B=B)� A=B should be positive since tre . 2u,
but it may give a negative value because
W (�e�A=B=B) . W (�Ae�A=B=B) ¼ �A=B is yielded from
the principle branch of the Lambert W function.
According to the numerical results given in Fig. 2, the
secondary real branch of the Lambert W function should
be used to compute tre from the above expression.

2.2 IMC filter for second-order process

A second-order process is generally described as

G2 ¼
kv2

n

s2 þ 2jvns þ v2
n

e�us (16)

where vn denotes the natural frequency and j the damping
ratio.

Figure 2 Recovery time for a first-order process
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According to the IMC theory, the conventional IMC filter
should be configured as

fIMC�2 ¼
1

(ls þ 1)2
(17)

To improve the load disturbance response, the conventional
IMC filter shown in (17) is rectified as

fRIMC�2 ¼
as2
þ bs þ 1

(lf s þ 1)4
(18)

where a and b are utilised to satisfy the following asymptotic
constraints

lim
s!�p1

(1� T ) ¼ 0 (19)

lim
s!�p2

(1� T ) ¼ 0 (20)

where

p1 ¼
vn(j� j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p
), 0 , j , 1

vn(j�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p
), j � 1

(
,

p2 ¼
vn(jþ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p
), 0 , j , 1

vn(jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1

p
), j � 1

(

Note that�p1 and�p2 are the two poles of G2. When j ¼ 1,
there exists p1 ¼ p2 ¼ vn, so (19) becomes the same as (20).
Another asymptotic constraint should therefore be imposed
to derive a and b, that is

lim
s!�p1

d

ds
(1� T ) ¼ 0 (21)

Accordingly, the nominal closed-loop complementary
sensitivity function can be derived as

TRIMC�2 ¼
(as2
þ bs þ 1) e�us

(lf s þ 1)4
(22)

When j = 1, by substituting (22) into (19) and (20),
respectively, we obtain

a ¼
p1 e�up2 (p2lf � 1)4

� p2 e�up1 (p1lf � 1)4
� p1 þ p2

p1p2( p2 � p1)

(23)

b ¼
p2

1 e�up2 (p2lf � 1)4
� p2

2 e�up1 (p1lf � 1)4
� p2

1 þ p2
2

p1p2( p2 � p1)

(24)

For the case that j ¼ 1, by substituting (22) into (19) and
2
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(21), respectively, we obtain

a ¼
1

v2
n

[1þ e�vnu(vnlf � 1)3

� (1þ vnuþ 3vnlf � v2
nulf )] (25)

b ¼
1

vn

[2þ e�vnu(vnlf � 1)3

� (2þ vnuþ 2vnlf � v2
nulf )] (26)

Thereby, it is seen that both a and b are functions of lf . So,
there is still a single adjustable parameter, lf , in the proposed
IMC filter. It follows that

FRIMC�2 ¼
(as2
þ bs þ 1)(s2

þ 2jvns þ v2
n)

kv2
n(lf s þ 1)4

(27)

By substituting (16) and (22) into (2) and taking the inverse
Laplace transform, the time response to a step change of di

can be derived from

ydi
(t) ¼ L�1 kv2

ne�us

s(s2 þ 2jvns þ v2
n)

1�
as2
þ bs þ 1

(lf s þ 1)4
e�us

" #( )

(28)

In view of that DP cannot be analytically solved from (28),
numerical guidelines are explored herein to disclose the
quantitative tuning relationship between DP and lf . By
using the scaled complex variable, s

_
¼ s=(jvn), it can be

verified from (28) that, given the values of lf (jvn) and
u(jvn), DP/k is determined only by j, regardless of vn. By
sweeping over the regions of lf (jvn) [ [0:2, 2] and
u(jvn) [ [0:1, 2], the numerical results for the three cases
of j ¼ 0:5, j ¼ 1:0 and j ¼ 1:5 are plotted in Fig. 3,
respectively. It can be seen that DP/k becomes larger as j

becomes smaller. Fig. 3a indicates that the admissible
tuning range of lf will be severely narrowed when j is
small. Figs. 3b and 3c show that DP/k increases
monotonically with respect to lf (jvn) and u(jvn),
respectively. Note that DP for other values of j may be
quantitatively assessed using a linear interpolation method.

For the case that the load disturbance d̂ o affects the process
output with a first-order transfer function as often modelled
for simplicity in engineering practices

Gd ¼
kd

tds þ 1
e�uds (29)

it can be derived from Fig. 1 that

ydi

d̂ o

¼ Gd(1� T ) (30)

To reduce the influence arising from the time constant of
Gd to the load disturbance response, the IMC filter is
IET Control Theory Appl., 2010, Vol. 4, Iss. 3, pp. 448–460
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Figure 3 DP for a second-order process with

a j ¼ 0.5 b j ¼ 1.0 c j ¼ 1.5
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rectified accordingly as

fRIMC�3 ¼
as þ 1

(lf s þ 1)3
(31)

where a is utilised to satisfy the following asymptotic
constraint

lim
s!�1=td

(1� T ) ¼ 0 (32)

Note that the closed-loop complementary sensitivity function
is therefore obtained as

TRIMC�3 ¼
as þ 1

(lf s þ 1)3
e�us (33)

Substituting (33) into (32) yields

a ¼ td 1þ
lf

td

� 1

� �3

e�u=td

" #
(34)

Accordingly, the feedback controller can be derived as

FRIMC�3 ¼
(as þ 1)(s2

þ 2jvns þ v2
n)

kv2
n(lf s þ 1)3

(35)

It can be seen from (33) and (34) that DP=kd is related to
lf =td and u=td, regardless of the time delay, ud. By
sweeping over the regions of lf =td [ [0:2, 2] and
u=td [ [0:1, 2], the numerical tuning guidelines are given
in Fig. 4.
4
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3 Robust tuning constraints
For a single-input-single-output (SISO) system, it is
practical to lump multiple sources of process uncertainty
into a multiplicative form to deal with [23]. According to
the standard M � D structure for robustness analysis [24],
the transfer function connecting the input and output of
the process multiplicative uncertainty can be derived in
terms of the closed-loop structure shown in Fig. 1, which
is exactly equivalent to the closed-loop complementary
sensitivity function, T. Hence, it follows from the small
gain theorem that the perturbed closed-loop structure with
the process multiplicative uncertainty holds robust stability
if and only if

kTk1 ,
1

kDk1
(36)

where D ¼ (G � Gm)=Gm denotes the process multiplicative
uncertainty.

Note that for a SISO system, there exist
kTk1 ¼ sup (jT (jv)j) and kDk1 ¼ sup (jD( jv)j), 8v [
[0,þ1). Denote jDjm ¼ sup (jD( jv)j) for the convenience
of analysis detailed in the following two subsections,
respectively, for first- and second-order processes.

3.1 Tuning constraints for first-order
process

It follows from (9) that

jT ( jv)j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2v2 þ 1
p

l2
f v

2 þ 1
(37)
Figure 4 DP for a first-order load disturbance transfer function
IET Control Theory Appl., 2010, Vol. 4, Iss. 3, pp. 448–460
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The first derivative can be obtained as

djT ( jv)j

dv
¼

v(a2
� 2l2

f � a2l2
f v

2)

(l2
f v

2 þ 1)2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2v2 þ 1
p (38)

It can be verified by solving djT ( jv)j=dv ¼ 0 that v ¼ 0 is
the unique extreme point to reach sup (jT ( jv)j) for
lf � a=

ffiffiffi
2
p

, that is, sup (jT ( jv)j) ¼ jT (0)j ¼ 1.

For 0 , lf , a=
ffiffiffi
2
p

, there are two extreme points v1 ¼ 0

and v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2l2

f

q
=(alf ). Substituting the latter into (37)

yields

jT ( jv2)j ¼
a2

2lf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2l2

f

q

It can be concluded from (a2
� 2l2

f )2
. 0 that

jT ( jv2)j . 1. Therefore it follows that

sup(jT ( jv)j) ¼

1 lf � a=
ffiffiffi
2
p

;

a2

2lf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2l2

f

q 0 , lf , a=
ffiffiffi
2
p

8>><
>>: (39)

To make clear the robust stability constraint to the tuning of
lf , the following proposition is given:

Proposition 2: Only a positive real root, lf ¼ (t=2)

[2� (1=1)e(u=t)
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� (1=1) e(u=t))2

þ 4(eu=t � 1)

q
], exists

for the equation of lf ¼ 1a, that is, lf ¼

1t[1� (lf =t� 1)2 e�u=t], 81 . 0, which increases
monotonically with respect to 1.

Proof: See Appendix 1. A

For lf � a=
ffiffiffi
2
p

, it can be solved using Proposition 2 that

lf �
t

2
2�

ffiffiffi
2
p

eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�

ffiffiffi
2
p

eu=t)2
þ 4(eu=t � 1)

q� �
(40)

Accordingly, it can be seen from (39) that once lf is
increased into this region, the upper bound of jT (jv)j is
fixed as the unity, such that jDjm , 1 must be required for
the closed-loop stability, regardless of the tuning of lf in
this region. In other words, tuning lf in this region will
not affect the permissible upper bound of jDjm.

For 0 , lf , a=
ffiffiffi
2
p

, it follows from Proposition 2 that

lf ,
t

2
2�

ffiffiffi
2
p

eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�

ffiffiffi
2
p

eu=t)2
þ 4(eu=t � 1)

q� �
(41)
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Combining (36) with (39), the robust stability constraint can
be determined as

a2

2lf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2l2

f

q ,
1

jDjm
(42)

It follows from solving (42) that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jDj2m

q
2

vuut
a , lf ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jDj2m

q
2

vuut
a (43)

Denote

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jDj2m

q
2

vuut
, g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jDj2m

q
2

vuut

Using Proposition 2 to solve (43), we obtain

t

2
2�

1

h
eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1

h
eu=t

� �2

þ4(eu=t � 1)

s2
4

3
5 , lf

,
t

2
2�

1

g
eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1

g
eu=t

� �2

þ4(eu=t � 1)

s2
4

3
5

(44)

Note that h , 1=
ffiffiffi
2
p

and g . 1=
ffiffiffi
2
p

. Comparing (41) and
(44), we obtain the robust tuning constraint

t

2
2�

1

h
eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1

h
eu=t

� �2

þ4(eu=t � 1)

s2
4

3
5 , lf

,
t

2
2�

ffiffiffi
2
p

eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�

ffiffiffi
2
p

eu=t)2
þ 4(eu=t � 1)

q� �
(45)

Remark 3: For the process gain uncertainty, Dk, the robust
stability constraint of (36) is equivalent to the Nyquist
stability criterion, jT ( jv)j , 1=jD( jv)j, since Dk [ R.
However, the above robust tuning constraint of (45) may
be somewhat conservative for other process uncertainties.
For instance, parameter uncertainties of the time constant
and time delay are far less likely to result in a phase change
over �p in practice, so sup(jT ( jv)j) , 1=jDjm is not
necessary if jT ( jv)j , 1=jD( jv)j is satisfied for v [ [0, 1).

3.2 Tuning constraints for second-order
process

It follows from (22) that

jT (jv)j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2v2 � 1)2

þ b2v2

q
(l2

f v
2 þ 1)2

(46)
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The first derivative can be obtained as

djT ( jv)j

dv
¼

v

(l2
f v

2 þ 1)3

2a(av2
� 1)þ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(av2 � 1)2
þ b2v2

q (l2
f v

2
þ 1)

2
64

� 4l2
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(av2 � 1)2

þ b2v2

q 3
75 (47)

Obviously, v ¼ 0 is an extreme point corresponding to
jT (0)j ¼ 1. For v = 0, it follows from djT ( jv)j=dv ¼ 0
that

2a2l2
f x2
þ [3l2

f (b2
�2a)�2a2]xþ4l2

f þ2a�b2
¼0 (48)

where x¼v2. Denote A0¼ 2a2l2
f , B0¼ 3l2

f (b2
�2a)�2a2

and C0 ¼ 4l2
f þ 2a� b2, the quadratic discriminant of (48)

can be expressed as d0 ¼ B2
0 � 4A0C0. Correspondingly, the

robust constraint to the tuning of lf is given in the following
proposition.

Proposition 3: For a second-order process described in
(16), the closed-loop structure shown in Fig. 1 for load
disturbance rejection holds robust stability if and only if
sup (jT ( jv)j) , 1=jDjm, where (see equation at the bottom
of the page)

v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 � 4A0C0

q
2A0

vuut
and

v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 � 4A0C0

q
2A0

vuut

Proof: See Appendix 2. A

For the case to reject d̂0 from the process output side with a
first-order transfer function, it follows from (33) that

jT ( jv)j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2v2 þ 1
p

(l2
f v

2 þ 1)3=2
(49)

The first derivative can be derived as

djT ( jv)j

dv
¼

v

(l2
f v

2þ 1)5=2

a2(l2
f v

2
þ 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2v2þ 1
p � 3l2

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2v2þ 1

p" #

Note that v ¼ 0 is an obvious extreme point corresponding

to jT (0)j ¼ 1. The robust constraint to tuning lf is given
in the following proposition.

Proposition 4: For a second-order process described in
(16), the closed-loop structure for rejecting load
disturbances from the process output side with a first-order
transfer function holds robust stability if and only if
jDjm , 1.

Proof: See Appendix 3. A

Remark 4: It is implied by Proposition 4 that the tuning of
lf does not affect the closed-loop robust stability since
sup(jT (jv)j) ¼ 1 for lf [ (0,þ1). Hence, tuning lf can
be focused purely on the desired closed-loop performance
for rejecting such load disturbance.

4 Illustration
Example 1: Consider the slow process with time delay

G ¼
e�30s

100s þ 1

A conventional IMC filter should determine the feedback
controller shown in Fig. 1 for load disturbance rejection as
FIMC ¼ (100s þ 1)=(ls þ 1). Using the proposed IMC
filter shown in (7), it follows from the proposed formula of
(11) that

FRIMC�1 ¼
(as þ 1)(100s þ 1)

(lf s þ 1)2

where a ¼ 100[1� (0:01lf � 1)2e�0:3]. For comparison,
adding a unit step change of di to the process and taking
l ¼ lf ¼ 40, we obtain the output responses shown in
Fig. 5. It is seen that obviously improved load disturbance
rejection is obtained by the proposed IMC filter. The
conventional IMC filter has led to a long ‘tail’ in the load
disturbance response due to the influence resulting from
the slow time constant of the process. To obtain the same
DP with the proposed IMC filter, l ¼ 20 is required for
the conventional IMC filter, as shown in Fig. 5, but the
recovery time is still about 50% longer.

Assume that there exists 30% error in the process
parameter estimation. The worst case is that the process
time constant is actually 30% smaller and the time delay
30% larger. The corresponding output responses are shown

sup (jT ( jv)j) ¼

max {1, jT ( jv1)j} d0 . 0, C0 � 0;
max {1, jT ( jv1)j, jT ( jv2)j} d0 . 0, B0 , 0, C0 . 0;

max 1, T ( j

ffiffiffiffiffiffiffiffiffi
�B0

2A0

r
)

����
����

� 	
d0 ¼ 0, B0 , 0;

1 else

8>>>><
>>>>:
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in Fig. 6, demonstrating that the proposed IMC filter
performs better against the severe process uncertainties.

Example 2: Consider the second-order process studied in
the recent paper [8]

G ¼
e�s

(20s þ 1)(2s þ 1)

Skogestad [8] derived a IMC-based PID controller,
C ¼ 10(0:125=s þ 1)(2s þ 1), to optimise the system

Figure 6 Perturbed output responses for Example 1

Figure 5 Nominal output responses for Example 1
Control Theory Appl., 2010, Vol. 4, Iss. 3, pp. 448–460
i: 10.1049/iet-cta.2008.0472
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performance against load disturbance, of which the
adjustable parameter, tc ¼ 1:0, corresponds to l ¼ 1:0 in
the conventional IMC filter shown in (17). The feedback
controller F in Fig. 1 should be configured as
FIMC ¼ (20s þ 1)(2s þ 1)=(ls þ 1)2 according to the
conventional IMC filter. Using the proposed IMC filter
shown in (18), it follows from (23), (24) and (27) that

FRIMC�2 ¼
(as2
þ bs þ 1)(20s þ 1)(2s þ 1)

(lf s þ 1)4

where

a ¼ 2:6957(0:5lf � 1)4
� 42:2769(0:05lf � 1)4

þ 40,
b ¼ 0:1348(0:5lf � 1)4

� 21:1384(0:05lf � 1)4
þ 22.

For comparison, adding a unit step change of di to the process
and taking l ¼ lf ¼ 1:0, we obtain the output responses
shown in Fig. 7. It is again seen that apparently improved
load disturbance response is obtained using the proposed
IMC filter. To obtain the same DP with the proposed
IMC filter, l ¼ 0:09 and tc ¼ 0:15 are required
respectively for the conventional IMC filter and the IMC-
based controller of Skogestad [8]. It is seen that the
recovery time cannot be efficiently reduced by using the
conventional IMC filter, whereas the controller of
Skogestad [8] yields an oscillatory response. Moreover, it
can be verified that, if the process time delay is actually
20% larger and the slower time constant (t1 ¼ 20) is 20%
smaller, the proposed IMC filter maintains well the closed-
loop stability, whereas the conventional IMC filter with
l ¼ 0:09 cannot hold the closed-loop stability any longer,
and the IMC-based controller of Skogestad [8] yields very
oscillatory response.

Figure 7 Nominal output responses for Example 2
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To demonstrate the achievable performance for rejecting
load disturbance from the process output side (denoted as
d̂ 0 in Fig. 1) with slow dynamics, for example,
Gd ¼ e�2s=(10s þ 1), the proposed IMC filter shown in
(31) should be used to design the feedback controller as

FRIMC�3 ¼
(as þ 1)(20s þ 1)(2s þ 1)

(lf s þ 1)3

where a ¼ 10[1þ (0:1lf � 1)3e�0:1]. Assume that there
exists 50% error for estimating the time constant of the
load disturbance transfer function. The worst case is that
the time constant is actually 50% smaller. Note that the
time delay, ud ¼ 2, of the load disturbance transfer
function does not affect the disturbance response
performance as discussed in the filter design procedure in
Section 2.2. By adding a unit step change of d̂0, and taking
l ¼ lf ¼ 1:0, l ¼ 0:45 and tc ¼ 0:6 for comparison, we
obtain the output responses shown in Fig. 8. It is seen that
the proposed IMC filter results in apparently improved
disturbance rejection, given the severe time constant error
of modelling the load disturbance transfer function.

5 Conclusions
Filter design is a key in the IMC theory for closed-loop
controller tuning. This paper has proposed a modified
IMC filter design to improve controller tuning for load
disturbance rejection. The idea lies with countering the
influence resulting from the slow time constant(s) of the
process or repetitive-type load disturbance by establishing
asymptotic canceling constraints. Based on the widely used

Figure 8 Output responses of Example 2 for the presence of
a slow load disturbance
8
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uthorized licensed use limited to: Hong Kong University of Science and Technology. D
first- and second-order time delay process models,
analytical formulae and quantitative guidelines have been
developed for tuning the single adjustable parameter of the
proposed IMC filter, in terms of the commonly used
disturbance rejection specifications, recovery time and DP,
for assessment of disturbance response performance in
engineering practices. Note that the proposed IMC filter
design and the corresponding robust stability analysis can
be directly applied to tune an IMC-based controller in the
unity feedback control structure, and also can be
transparently extended to higher order processes. Illustrative
examples have demonstrated that the proposed IMC filter
can result in noteworthy improvement of disturbance
rejection performance for slow processes or for the presence
of repetitive-type load disturbance with slow dynamics.
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8 Appendix 1: proof of
Proposition 2
Substituting a ¼ t[1� ((lf=t)� 1)2 e�u=t] into the
equation shown in Proposition 2, we obtain

lf

t
� 1

� �2

þ
1

1
eu=t

lf

t
� eu=t ¼ 0 (50)

Then it can be derived from (50) that there exist two real
roots

lf�1,2 ¼
t

2
2�

1

1
eu=t+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1

1
eu=t

� �2

þ4(eu=t� 1)

s2
4

3
5. 0

In view of that lf is an adjustable parameter of F, the negative
real root should be abandoned.

Let

f (1) ¼ 2�
1

1
eu=t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1

1
eu=t

� �2

þ4(eu=t � 1)

s

the first derivative of f (1) can be derived as

df (1)

d1
¼

1

12
eu=t 1þ

2� (1=1)eu=tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� (1=1)eu=t)2

þ4(eu=t�1)

q
2
64

3
75. 0

Hence, f (1) increases monotonically with respect to 1, and so
is for lf with respect to 1.

9 Appendix 2: proof of
Proposition 3
There are six cases categorised for deriving sup(jT (jv)j).
Note that d0 . 0 is for cases (i) and (ii). Case (iv), ‘else’,
includes three subcases that lead to no positive real solution
of (48), that is, ‘d0 , 0’, ‘d0 . 0, B0 . 0, C0 . 0’ and
‘d0 ¼ 0, B0 � 0’.

For d0 . 0, there are two real roots for (48), that is

x1,2 ¼
�B0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 � 4A0C0

q
2A0

If C0 , 0, that is, case (i), it can be seen that
ffiffiffiffiffi
d0

p
. jB0j,

corresponding to x1 . 0 and x2 , 0. Accordingly, there
exists only one positive real root of x ¼ v2, that is,
v1 ¼

ffiffiffiffiffi
x1
p

. So, sup (jT ( jv)j) may be reached at v ¼ 0 or
v1. For case (ii), it can be seen that

ffiffiffiffiffi
d0

p
, jB0j,

corresponding to x1 . 0 and x2 . 0. Accordingly, there
exist two positive real roots of x ¼ v2, that is, v1 ¼

ffiffiffiffiffi
x1
p
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and v2 ¼
ffiffiffiffiffi
x2
p

. So, sup(jT ( jv)j) may be reached at v ¼ 0,
v1 or v2.

For case (iii), it can be seen that (48) has a dual positive
root at x ¼ �B0=2A0. Correspondingly, sup (jT (jv)j) may
be reached at v ¼ 0 or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B0=2A0

p
.

For the case that d0 , 0, there is no real roots for (48)
according to the solvability of a linear quadric equation.
Thus, sup(jT (jv)j) can only be reached at v ¼ 0. This
conclusion can be similarly drawn for the other two
subcases of case (iv).

Hence, using the small gain theorem, we obtain the
conclusion in Proposition 3.

10 Appendix 3: proof of
Proposition 4
It follows from djT ( jv)j=dv ¼ 0 that

a2(l2
f v

2
þ 1)� 3l2

f (a2v2
þ 1) ¼ 0 (51)

The solution of (51) can be derived as

v2
¼

a2
� 3l2

f

2a2l2
f

(52)

To obtain a positive solution of v, it requires that

lf ,
affiffiffi
3
p (53)

The extreme point can thus be derived as

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3l2

f

q
ffiffiffi
2
p

alf

(54)
0
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Substituting (54) into (49) yields

jT (jv)j ¼
2a3

3
ffiffiffi
3
p

lf (a2 � l2
f )

(55)

Let g(lf ) be a function with respect to lf , that is

g(lf ) ¼ 3
ffiffiffi
3
p

lf (a
2
� l2

f ) (56)

The first derivative of g(lf ) can be derived as

g 0(lf ) ¼ 3
ffiffiffi
3
p

(a2
� 3l2

f ) (57)

Combining (53) with (57), it can be seen that g0(lf ) . 0.
Thus, lf ¼ a=

ffiffiffi
3
p

is the unique extreme point to reach the
maximum of g(lf ), that is

max{g(lf )} ¼ 3
ffiffiffi
3
p affiffiffi

3
p a2

�
affiffiffi
3
p

� �2
" #

¼ 2a3 (58)

Substituting (58) into (55) yields

jT ( jv)j , 1, 8v . 0

Hence, sup (jT ( jv)j) is reached only at v ¼ 0, that is,
sup (jT (jv)j) ¼ 1.

Using the small gain theorem, we conclude
that sup jD( jv)j , 1 is required to hold the closed-loop
stability.
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