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Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and
aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term
treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular
and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy
and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and
compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng,
Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and
flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past
ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating
aging-related diseases with herbal medicine.

1. Introduction

Aging, which can be divided into pathological and physiolog-
ical aging, is a complex biological process characterized by
functional decline of tissues and organs, structural degenera-
tion, and reduced adaptability and resistance, all of which
contribute to an increase in morbidity and mortality caused
by multiple chronic diseases [1, 2]. As fertility declines and
life expectancy increases, the proportion of people aged 60
and older is increasing. According to the UNESA population
division, approximately 900 million people are 60 years or
older worldwide, and this will increase to 21.5% of the global
population by 2050 [3] (see Figure 1). As aging progresses, it
increases one’s susceptibility to diseases associated with this
process, such as vascular aging disorders [4–6], diabetes [7],
muscle dysfunction [8, 9], macular degeneration [10], Alz-
heimer’s disease (AD) [11, 12], skin diseases [13], and a series

of other diseases [14–18] (see Figure 2). Aging-related dis-
eases pose a serious threat to human health and reduce the
quality of life among elderly people. In addition, it has
become a global difficulty to clarify the mechanisms of aging,
slow the process of aging, reduce the occurrence of aging-
related diseases, and maintain that unfading appearance
during the aging process.

Aging is a complex process with complicated mecha-
nisms. At present, one of the accepted theories is related to
oxidative stress [19–21]. In the process of aerobic metabo-
lism, reactive oxygen species (ROS), including hydroxyl rad-
icals, superoxide anions, and hydrogen peroxide (H2O2), can
be produced in cells [22–24]. When ROS level exceeds the
antioxidant capacity of cells, they react with lipids, proteins,
and nucleic acids in cells, resulting in oxidation or peroxide
formation. This leads to the destruction of the cell membrane
structure, changes in permeability, and a cytotoxic reaction.
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High levels of ROS can directly damage DNA, proteins, and
lipids in cells, causing a DNA damage response [25] and acti-
vation of p38MAPK for p16 upregulation. This leads to cell
senescence and development of aging-related diseases [26].
DNA damage response also provides an appropriate trigger
for the onset of telomere-induced senescence through the
p53 pathway [25, 27, 28]. In addition to oxidative stress, var-
ious factors play a role in the aging process. Some reviews
have reported the mechanisms of aging [26, 29–32]; however,
only one of the mechanisms was examined; for example,
some researchers [29, 30] described the role of miRNAs in
aging while others [31, 32] placed an emphasis on autophagy.

In this review article, by mainly retrieving PubMed, here,
we identify and critically analyzed nearly 10 years of pub-
lished studies focusing on the mechanisms of aging and
aging-related diseases, while summarizing some herbs and
compounds that were more extensively used and studied
for slowing aging. Compared with the latest published article
describing the efficacy, mechanism, and safety of herbal
medicine in slowing aging [33], this review is aimed at dis-
cussing the cellular and molecular mechanisms of aging
from multiple perspectives, also emphasizing the interaction
between exosome and autophagy in aging, and discussing
age-related diseases and the progress of herbal medicine as
potential therapeutic agents for aging and aging-related dis-
eases. The adverse effects of herbs also get our attention in
this review.

2. Cell Types Involved in Aging

2.1. Endothelial Cells. Endothelial cells are an essential part of
the heart and vasculature [34]. They possess multiple func-
tions through paracrine and endocrine actions, such as regu-
lating vascular tension, maintaining blood circulation, and
mediating inflammation, immune response, and neovascu-
larization [35–37]. Endothelial dysfunction caused by endo-
thelial cell senescence is closely linked to the development
of aging. Several studies revealed that ROS and inflammation
play a role in the apoptosis of endothelial cells [38–41]. Oxi-
dative stress combined with thioredoxin-interacting protein

(TXNIP) could activate NOD-like receptor family pyrin
domain containing 3 (NLRP3) and inflammatory corpuscles
during senescence of endothelial cells. In addition, the
production of the proinflammatory cytokine, interleukin-1
(IL-1), which is induced by the activation of NLRP3 inflam-
matory corpuscles, could promote senescence of endothelial
cells [42]. In recent years, it has been well established that
autophagy and exosomes play significant roles in the course
of a disease [43, 44]. Endothelial dysfunction and impaired
autophagic activity are associated with age-related diseases
[45]. Exosomes containing harbor miRNAs also participate
in the regulation of endothelial function [46]. Studies dem-
onstrated that miR-216a, a molecular component of miR-
NAs, could be induced during endothelial aging and play
an important role in aging-related diseases by regulating
autophagy-related genes, such as Beclin1 (BECN1) [47].

2.2. Stem Cells. Stem cells are pluripotent cells characterized
as undifferentiated and immature with the ability to self-
renew. Stem cell therapy is widely used in clinic, especially
in cardiovascular regenerative medicine [48]. Under certain
conditions, stem cells can be differentiated into various func-
tional cells, with the potential function of regenerating vari-
ous tissues and organs [49]. Changes in the cell cycle and a
decline in the self-renewal ability of stem cells are closely
related to aging. Although some changes in their function
are intrinsic [50, 51], more external factors can lead to
impairment in their function [52]. Studies have shown that
the physiological levels of ROS could regulate the balance
between self-renewal and stem cell differentiation [53, 54].
Nevertheless, oxidative stress due to high ROS levels could
lead to DNA damage, shortening of telomeres [55], and the
onset of premature aging markers, such as prelamin A, the
lamin A. Nicotinamide adenine dinucleotide phosphate oxi-
dase isoform 4 (Nox4) component of ROS could be localized
to promyelocytic leukemia nuclear bodies (PML-NB) related
to prelamin A, which could control the aging of stem cells
[56]. Additionally, decline in self-renewal factors contributes
to stem cell aging [57].

2.3. Vascular Smooth Muscle Cells. There are evidence sug-
gesting that senescent vascular smooth muscle cells (VSMCs)
have been observed in aging-related diseases, such as diabetes
mellitus and atherosclerosis [58, 59], which indicate that
senescent VSMCs contribute to aging. According to a study
by Zhan et al. [60], VSMCs pretreated with the AMPK acti-
vator and mammalian target of rapamycin (mTOR) inhibitor
could delay the replicative senescence of these cells. They
revealed that the AMPK/TSC2/mTOR signaling pathway
can regulate the replication and aging of VSMCs, which is
mainly manifested as inhibition of the AMPK/TSC2/mTOR
pathway which can inhibit the replication and aging of
VSMCs. Another study showed that miR-34c-5p downregu-
lation promoted VSM aging through a mechanism that
might be mediated by the Bcl-2 modifying factor (BMF),
which is a functional target of miR-34c-5p. LncRNAES3
was also found to act as a competing endogenous RNA
(ceRNA) of miR-34c-5p to enhance BMF expression [61].
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Figure 1: Epidemiological trends of aging worldwide.
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3. Molecules or Signal Transduction
Pathways in Aging

3.1. Molecules in Aging

3.1.1. MicroRNAs (miRNAs).MicroRNAs (miRNAs, approx-
imately 20-25 nucleotides) are a class of endogenous noncod-
ing RNAs with regulatory functions found in eukaryotes.
Recently, miRNAs were found to play an important role in
aging [62–82] (see Table 1). According to a study by Du et al.
[62], miR-17 extends the lifespan of transgenic mice by
upregulating MKP and FoxO3 and downregulating mTOR
and JNK through two targets, ADCY5 and IRS1. This study
also found that ADCY5 or IRS1 can activate autophagy
and inhibit cell aging and apoptosis. Dzakah et al. [63]
demonstrated the role of miR-83 in modulating lifespan in
Caenorhabditis elegans. Their study found that the deletion
of miR-83 extended the lifespan of C. elegans and the expres-
sion of miR-83 decreased with age. The life-prolonging effect
of miR-83 was achieved by high expression of the transcrip-
tion factors, daf-16 and din-1. Lyu et al. [64] revealed that
the regulation of transforming growth factor-β (TGF-β)
signaling promotes senescence via miR-29-induced loss of
H4K20me3. Their study found that miR-29 mediated the
loss of suv4-20h2, downregulated H4K20me3 expression in
mouse fibroblast senescent cells, and promoted cell senes-
cence. Meanwhile, TGF-β accelerated cellular senescence by
promoting the miR-29-mediated loss of H4K20me3. Fan
et al. [65] observed the role of miR-1292 in cellular senes-
cence of human adipose-derived mesenchymal stem cells
(hADSCs). They found that FZD4 downregulation acted as

a potential target of miR-1292, leading to overexpression
of miR-1292, which promoted hADSC aging and osteogenic
differentiation. This event was found to occur via the Wnt/β-
catenin signaling pathway. Accumulating evidence suggest
that miR-335-3p, which is neuron-enriched, is strongly
linked to aging and age-related neurological diseases. Schil-
ling et al. [66] found that statin-associated impairment of
cognitive dysfunction is associated with PSD95 decrease,
indicating that cholesterol levels are tightly linked to PSD95
levels. According to a study by Raihan et al. [67], overexpres-
sion of miR-335-3p, which could suppress cholesterol by
inhibiting the expression of 3-hydroxy-3-methylglutaryl-
CoA synthase-1 (HMGCS1) and 3-hydroxy-3-methylgluta-
ryl-CoA reductase (HMGCR) in astrocyte, led to impaired
cognitive function and memory. To add, the decrease in cho-
lesterol levels was associated with the decrease in PSD95.
When the miR-335-3p expression was reduced in the hippo-
campal brain of elderly patients, cognitive impairment and
synaptic function could be restored in the aging process.

3.1.2. Telomere. Telomeres, composed of the telomere DNA
sequence and telomere protein, are nucleoprotein structures
located at the end of chromosomes, which control the cell
division cycle and maintain the genome’s integrity [83].
Studies have shown that decreases in telomere attrition and
telomerase activity are two of the main drivers of aging and
age-associated damage that lead to cellular senescence [84].
The most well-established driver is the connection between
adverse social conditions with DNA damage and accelerated
telomere shortening [85, 86]. Epel et al. [87] used standard-
ized questionnaires to assess the previous month’s stress
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levels of 58 healthy premenopausal women. The control
group included women with at least one healthy biological
child, and the experimental group included the biological
mother of a child with a chronic disease (n = 39). Mean
telomere length and telomerase activity were measured to
evaluate stress-induced changes. The results showed that
stress in the experimental group was significantly higher
than that in the control group. In addition, women in the
experimental group had lower telomerase activity and
shorter telomere length than those in the control group.
These findings shed light on the cellular level of stress,
which can affect one’s health by modulating cell aging, pos-
sibly leading to the early onset of age-related diseases.
Accumulated evidence indicates that DDR-related protein
components are found in senescence-associated DNA dam-
age foci (SDFs) [88]. Once ATM/ATR is activated, phosphor-

ylation occurs in Chk1/Chk2, which further acts on effectors
such as p53, leading to cell cycle arrest and failure to con-
tinue the cell cycle for a certain period of time, ultimately
resulting in cell aging and even apoptosis [89, 90]. Further
studies have also confirmed that telomere DNA shortening
can induce ATM/ATR-mediated DDR and activate the
downstream p53-p21 signal transduction pathway, leading
to cell senescence [91].

3.1.3. Sirtuins. Sirtuins containing seven different subtypes
(SIRT1-SIRT7), which are members of NAD+ dependent
histone deacetylase III, play an important role in cell stress
resistance, energy metabolism, apoptosis, and aging [92].
Evidence exists that SIRT1 could deacetylate FOXO, block
foxo-dependent transcription and the apoptotic pathway,
and promote the survival of senescent cells. This occurs

Table 1: MicroRNAs involved in aging-related diseases.

miR type Model Function Target gene Reference

miR-17 H2O2 induced senescent cells Inhibited mTOR and JNK activation ADCY5, ISR1 [62]

miR-83 Caenorhabditis elegans Inhibitory activity of miR-83 din-1, daf-16 [63]

miR-29
Senescent embryonic

fibroblast cell
Mediated loss of H4K20me3

promotes senescence
Suv4-20h2 [64]

miR-1292 hADSCs
Accelerated hADSC senescence
and restrained osteogenesis

FZD4 [65]

miR-335-3p Male C57B/6J mice Reduced cholesterol and impaired memory Cholesterol [66, 67]

miR-195 Neonatal mouse cardiomyocyte
Promote apoptosis, causing lipotoxic

cardiomyopathy
SIRT1 [68]

miR-126 HUVECs
Regulate high-fat diet-induced endothelial

permeability and apoptosis
TGF-β [69]

miR-138 Aging participants
Regulating the memory function

of the elderly
DCP1B [70]

miR-451
Streptozotocin-induced
diabetic mouse heart

Participated in cardiac fibrosis TGF-β1 [71]

miR-34
Myocardial infarction (MI) in neonatal

and adult mice
Its inhibition diminished cell apoptosis Bcl2, cyclin D1, Sirt1 [72]

miR-146a
Human microvascular endothelial

cells (HMVECs)
Ameliorates endothelial inflammation
and the progression of atherosclerosis

Receptor-associated
factor 6 (TRAF6)

[73]

miR-21 Human umbilical vein ECs Promoting endothelial inflammation PPARα [74]

miR-155
Human nasopharyngeal cancer

and cervical cancer cells
Prevention of an age-induced deleterious

decrease in autophagy
RHEB, RICTOR,

RPS6KB2
[75]

miR-24 H9C2 cardiomyocytes
Attenuate cardiomyocyte apoptosis

and myocardial injury
Keap1 [76]

miR-181 Apolipoprotein E-deficient mice
Dampen the inflammatory
response in the endothelium

NF-κB [77]

miR-18a Naturally aged mice
Regulation of extracellular matrix production

during aging cardiomyopathy
CTGF, TSP-1 [78]

miR-377 Old skin tissues Promotes fibroblast senescence
DNA

methyltransferase
1 (DNMT1)

[79]

miR-9-5p
Human neuroblastoma

cell line SH-SY5Y
Suppression in cell apoptosis,

inflammation, and oxidative stress
SIRT1 [80]

miR-124
Normal human epidermal

keratinocytes
Cause skin cell senescence MEK1, cyclin E1 [81]

miR-15 Human dermal fibroblast
Counteracting senescence-associated

mitochondrial dysfunction
SIRT4 [82]
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through an increase in SIRT1 expression with age, suggesting
that Sirt1 is involved in longevity [93, 94]. SIRT 2 is closely
related to age-related diseases, such as Alzheimer’s disease
(AD) and Parkinson’s [95]. Studies have shown that inhibi-
tion of SIRT2 expression could delay the progression of these
diseases. In addition, knockout of SIRT2 and SIRT5 could
alleviate the neurodegenerative lesion induced by 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The expres-
sion of SIRT2 was found to inhibit the dephosphorylation
of FOXO3a and increase the level of Bim, leading to apopto-
sis and acceleration of the process of aging [96]. The mecha-
nism by which SIRT5 deletion reduced apoptosis might be
related to the reduction of SOD2 (manganese superoxide
dismutase) expression [97]. SIRT3 has been reported to be
associated with longevity. It can interact with FOXO3a to
remove ROS and inhibit oxidative stress to prolong one’s life-
span [98]. In the latest research by Zhang et al. [99], they
found that by performing a whole-body knockout of “longev-
ity gene” SIRT6 in nonhuman primates, they could obtain
the world’s first cynomolgus monkey model of longevity gene
knockout, thereby revealing the new role of the SIRT6 gene in
regulating embryonic development of primates. They could
also elucidate the differences in aging and longevity regula-
tion pathways between primates and rodents, laying an
important foundation for research on the mechanisms of
human development and aging and the treatment of related
diseases [99]. SIRT7 could result in antiaging and prolong life
by regulating the repair of the nonhomologous DNA damage
to maintain the stable heredity of cells [100].

3.1.4. Klotho Gene. The Klotho gene, located on human
chromosome 13, contains five exons and exerts antiaging
effects. Studies have confirmed that the decrease in Klotho
expression with an increase in age leads to aging [101].
Ullah and Sun [102] found that lack of the Klotho gene
reduced the activity of telomerase by modifying the expres-
sion of TERF1 and TERT, leading to apoptosis of pluripotent
stem cells. Sustained exposure to Wnt accelerated cellular
senescence both in vitro and in vivo [103]. However, studies
revealed that the tissue and organs of Klotho-deficient ani-
mals could enhance the Wnt signaling pathway to cause
cell senescence [103]. A few other studies showed that
Klotho downregulation leads to premature aging of human
fibroblasts, which might be achieved by regulating the insu-
lin/IGF-1 pathway to upregulate p53 and p21 protein levels
[104–106]. According to study by Gao et al. [107], Klotho
deficiency could downregulate SIRT1, which reduce activi-
ties of AMP-activated protein kinase alpha (AMPKα) and
endothelial nitric oxide synthase (eNOS), and upregulate
NADPH oxidase activity, ultimately leading to aging-related
aortic stiffness.

3.1.5. p16, p53/p21. Cell cycle stagnation is the premise of
aging [108]. Although cell aging involves a series of gene
expression and cell morphological changes, which are not
as simple as cycle stagnation, many experiments have con-
firmed that the increase in p16 or p53/p21 is enough to cause
cell aging [89, 109–113]. In mouse embryonic fibroblasts,
overexpression of miR-20a increased p16 and upregulated

the transcriptional activity of INK4a/ARF, leading to cell
senescence [114]. P53 is not only an initiator of cell aging
but also a participant in antiaging. These effects of p53 are
closely related to its involvement in the regulation of the
mTOR pathway, which is closely related to autophagy.
P53 can play an antiaging role by inhibiting the activity
of mTOR and can also activate mTOR to inhibit the aging
process [115]. Meanwhile, p53, through its downstream
p53/p21/CDK2 signaling pathway, was found to result in cell
cycle arrest and enter the aging state [111]. Studies have
found that azithromycin might cause aging of VSMCs by
activating the mTOR signaling pathway and increasing the
expression of p53/p21/p16. When the activity of mTOR
was inhibited, the autophagy level of proteins related to the
mTOR signaling pathway increased, leading to a decrease
in the expression of p53/p21/p16, thereby delaying the aging
of VSMCs [116].

3.2. Signaling Pathway in Aging

3.2.1. Mammalian Target of Rapamycin (mTOR) Pathway.
mTOR, activated by growth factors and nutrients, inhibits
autophagy and promotes protein synthesis. Over time,
mTOR may promote cellular stress, such as protein aggrega-
tion, organelle dysfunction, and oxidative stress, which may
lead to the accumulation of damage and cell function decline,
ultimately promoting the occurrence of age-related diseases
[117]. The classical pathway of mTOR is the PI3K/Akt/m-
TOR signaling pathway. Tan et al. [118] transfected human
VSMCs with mTOR siRNA and scrambled siRNA and found
that PI3K/Akt/mTOR plays a significant role in VSMC repli-
cation and aging, which might be related to the regulation of
oxidative stress and telomere function. Additionally, mTOR
activation induced stem cell depletion, which reduced tissue
repair and aggravated tissue dysfunction. Experimental stud-
ies have also shown that by inhibiting the mTOR signaling
pathway through gene knockout, rapamycin or dietary
restriction can delay aging of various biological models,
including yeast, worms, fruit flies, and mice [119].

3.2.2. Nuclear Factor of Activated B-Cell (NF-κB) Signaling
Pathway. NF-κB, activation of the transcription factor pro-
tein family, is involved in oxidative stress, immunity, inflam-
mation, cell proliferation, apoptosis, and aging of gene
transcription regulation. Studies have confirmed that NF-
κB has a highly conserved REL homologous domain consist-
ing of 300 amino acids and that its protein family members
include p50, p52, REL, REL-A, and REL-B [120]. The NF-
κB signaling pathway is activated by senescence-related
inflammatory factors. Activated NF-κB enters the nucleus
and binds to DNA, thereby participating in cellular immune
response [121]. Studies have confirmed that the occurrence
of various senile degenerative diseases is closely related to
the aging signaling pathway regulated by NF-κB. Postmor-
tem examination revealed an increase in NF-κB activity in
brain tissues of Alzheimer disease (AD) patients. In addition,
the immunological activity of p65 was detected in neurons
and glial cells adjacent to degenerative neurons and senile
plaques [122]. The activation of NF-κB is related to the
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deposition of β-amyloid (Aβ). Studies have found that Aβ
deposition could activate NF-κB in cultured neurons with
the formation of NO products related to oxidative stress
[123]. Autopsy studies found that the number of NF-κB-pos-
itive dopaminergic neurons in the brain of patients with Par-
kinson’s disease was 70 times higher than that of normal
people, suggesting that the activation of NF-κB is related to
the pathological mechanism of Parkinson’s disease [123, 124].

3.2.3. Nuclear Factor-E2-Related Factor 2 (Nrf2) Signaling
Pathway. Nrf2 is a key factor of antioxidant activity in cells.
When oxidative stress occurs, Nrf2 is transferred to the
nucleus to bind with the antioxidant response element
(ARE) and regulates the expression of various antioxidant
proteins and detoxification enzymes downstream, ultimately
playing a role in endogenous protection [125]. Suh et al.
[126] found that total Nrf2 protein and the amount of
nuclear Nrf2 protein in rat liver cells significantly decline
with an increase in aging. As age increases, the antioxidant
capacity of ovarian cells decreases, and the imbalance
between oxidation and antioxidants causes gradual apoptosis
of ovarian cells, which is one of the important causes of ovar-
ian aging. Studies have found that Nrf2 gene knockout can
increase the ovary’s sensitivity to toxic substances and accel-
erate the aging of ovaries in mice [127]. Chen et al. [128]
found that the upregulation of Nrf2 expression could allevi-
ate oxidative stress and DNA damage and inhibit the p53-
p21 p16-rb signaling pathway, thereby slowing cell aging.
Nrf2 can regulate mitochondrial biogenesis and kinetics to
maintain muscle mass and function, and its deficiency with
aging increasingly promotes age-related skeletal muscle mito-
chondrial dysfunction and muscle atrophy [129, 130]. Study
also found that Nrf2 activation could inhibit age-related
inflammatory responses and oxidative stress and delay the
occurrence of aging and age-related diseases [131]. Activation
of Nrf2 also improved learning and memory of aging mice
administered with D-galactose (D-gal) [132].

3.2.4. Wnt/β-Catenin Signaling Pathway. TheWnt/β-catenin
signaling pathway is an evolutionarily, highly conserved
signaling pathway with a wide range of biological func-
tions. Studies found that this pathway plays an important
regulatory role in cell aging and its activation could lead to
senescence changes in mesenchymal stem cells [133]. Studies
have also shown that activation of this pathway could lead to
DNA damage response and increase the expression of the
p53 protein, which might be one of the important mecha-
nisms for stem cell senescence [134]. The p53/p21 pathway
and DNA oxidative damage response have been confirmed
to play an important role in the aging process of hematopoi-
etic stem/progenitor cells caused by theWnt/β-catenin signal
pathway [135]. Skin aging is the most important external
manifestation of human body aging, and the related compo-
nents of WNT/β-catenin signal pathway are abnormally
overexpressed in aged skin tissues [136]. The WNT/β-
catenin signal pathway was found to be enhanced in the
aging mouse model, and inhibition of the WNT/β-catenin
signal pathway could reverse age-related skeletal muscle
regeneration injury [137].

3.2.5. Adenosine Monophosphate Protein Kinase (AMPK)
Signaling Pathway. AMPK is a highly conserved cellular
energy metabolism regulator that plays an important role in
regulating cell growth, proliferation, survival, and energy
metabolism [138]. AMPK is involved in the regulation of
a series of senescence-related signaling pathways, such as
SIRT1 and CRTC-1. Studies have shown that AMPK first
enhanced the expression of niacinamide phosphoribose
transferase and then increased the intracellular concentration
of NAD+ to activate SIRT1, which then activates the down-
stream PGC-1, FoxO1, and FoxO3, ultimately interfering
with the aging process [139]. Mair et al. [140] identified
that CRTC-1 is the phosphorylation site of AMPK/AAK-2
with the nematode model, and AMPK/AAK-2 prevented its
nuclear translocation via CRTC-1 phosphorylation, thereby
inhibiting the transactivation of CREB transcriptional regu-
lator crh-1 which extended the nematode’s lifespan. AMPK
activates p53 at certain phosphorylation sites and induces cell
cycle arrest, leading to cell aging [141].

4. Aging-Related Diseases and Therapy

4.1. Vascular Aging. With an increase in age, the degenera-
tion of vascular structure and function causes vascular sclero-
sis, which is called vascular aging. The main manifestations
of vascular aging are increased arterial stiffness, pulse wave
velocity, systolic blood pressure, and central venous pressure
[142]. Vascular aging is a major risk factor for atherosclerosis
and cardiovascular disease. Vascular aging mainly includes
atherosclerosis and arteriosclerotic cardiovascular disease
(ASCVD), such as coronary heart disease, hypertension,
stroke, cognitive dysfunction, dementia, and peripheral vas-
cular disease [143].

Studies have shown that decreased vasorin magnified the
angiotensin II- (Ang II-) mediated increase in the TGF-β1
signaling cascade and caused vascular remodeling, thus lead-
ing to vascular aging [144, 145]. Increased Ang II with age led
to activation of its downstream molecules MMP, McP-1,
and TGF-β. This pathological change made the aortic wall
of the elderly present a proinflammatory profile, which could
promote atherosclerosis [146, 147]. Vascular endothelial cell
senescence is one of the important pathological changes of
vascular aging while oxidative stress is one of the main causes
of endothelial senescence. eNOS has a significant effect on
cardiovascular protection, and oxygenation should stimulate
the decreased expression, resulting in a decrease in NO bio-
availability, vascular diastolic dysfunction, and arteriosclero-
sis, ultimately promoting vascular aging [148]. Vascular
endothelial cell aging is identified by ROS, the secretion of
inflammatory cytokines, eNOS uncoupling, DNA damage,
and telomere dysfunction, leading to obstacles in the struc-
ture and function of the cardiovascular system. It is also asso-
ciated with coronary atherosclerotic heart disease [149, 150].
Studies have shown that atherosclerosis is associated with
pathological thickening of vascular intima, loss of vascular
smoothmuscle cells, lipid deposition, and infiltration of mac-
rophages [151]. Senescence was also found to accelerate ath-
erosclerosis by inducing endoplasmic reticulum stress in
VSMCs [152].
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Complex functional impairment of cerebral microvessels
and astrocytes may lead to neurovascular dysfunction and
cognitive decline, which results in aging and age-related neu-
rodegenerative diseases [153].

Early intervention of vascular aging can delay the occur-
rence of ASCVD and protect target organs. Presently, early
intervention of vascular aging mainly includes lifestyle
improvement and drug therapy. Caloric restriction and low-
sodium diet combined with exercise can delay vascular aging.
Meanwhile, active control of cardiovascular risk factors, such
as hypertension, diabetes, and hyperlipidemia, can also pre-
vent vascular aging. Drug therapy can target structural com-
ponents of vascular aging, thus delaying development of
aging. These mainly include antihypertensive drugs, statins,
and hypoglycemic drugs. Antihypertensive drugs such as
angiotensin-converting enzyme inhibitors (ACEI)/angioten-
sin-receptor antagonists (ARBs) have been shown to delay
vascular aging due to their antifibrotic effects. Statins can not
only regulate fat but also interfere with the process of vascular
aging. Hypoglycemic drugs can increase the sensitivity of insu-
lin, improve blood sugar, prevent the reconstruction of blood
vessels, and inhibit inflammation of the tube wall.

4.2. Diabetes Mellitus.Diabetes is closely related to aging, and
dysfunction of the pancreatic β cells plays an important role
in the occurrence and development of diabetes. Aging of β
cells in islets is mainly manifested as a decrease in the num-
ber of β cells and reduction in their secretion capacity. The
mechanisms between islet cell failure in diabetes and aging
are complex. Nonetheless, study found that the expression
of autophagy signature proteins, LC3/Atg8 and Atg7, was
decreased in aging islet cells. Similarly, the autophagy
function of islets in aged rats was found to decrease [154].
Upregulation of P16ink4a/p19ARF expression, decrease in
bmi-1 and EZH2 levels, and abnormal regulation of
platelet-derived growth factor signals are important factors
leading to a decline in the proliferation and insulin secretion
of age-related β cells [155, 156]. The main interventions for
diabetes include diet control, exercise, weight loss, and com-
bination of hypoglycemic drugs.

4.3. Alzheimer’s Disease.Alzheimer’s disease (AD) is a neuro-
degenerative disease that occurs in old age and preold age.
Brain aging is the basis and condition for the formation of
neurodegenerative diseases. Alzheimer’s disease is character-
ized by amyloid-β protein (Aβ) deposits that form plaques
and by hyperphosphorylation of Tau protein that forms tan-
gles of neurons (NFT). Abnormal mitochondria accumulate
in neurons, leading to reduced ATP production, large release
of oxygen-free radicals, the production of Aβ, and the inten-
sification of Tau protein phosphorylation [157]. Mutations of
PSEN 1 and PSEN 2 cause lysosomal dysfunction, and the
presence of lysosomal dysfunction leads to a large number
of autophagosomes generated by enhanced mitochondrial
autophagy, leading to lysosomal overload and further aggra-
vating brain injury [158]. Chronic activation of the NF-κB
pathway can cause the transcription of various inflammatory
cytokines and promote glial cells to secrete inflammatory
cytokines, leading to nerve cell injury and apoptosis [159,

160]. Currently, drugs used in the clinical treatment of AD
are mainly noncompetitive N-methyl-D-aspartic acid recep-
tor antagonists (such as memantine) and cholinesterase
inhibitors (such as donepezil and galantamine).

4.4. Skin Aging. Skin aging, which is a part of the overall aging
of the body, not only affects its appearance but also reduces
its function as the body’s barrier. This can lead to various
diseases, such as depression and self-abasement. Tashiro
et al. [161] cultured skin fibroblasts from women of differ-
ent ages to study the relationship between autophagy and
skin aging. They found that the autophagy degradation
step was inhibited in skin fibroblasts of elderly donors,
leading to the accumulation of autophagosomes. This sug-
gests that the impairment of autophagy function in skin
fibroblasts of elderly people may impact the skin’s integrity
and strength. Some researchers constructed a Drosophila
model of skin aging and found that the increased expression
of the autophagy marker, Atg7, was associated with skin
aging [162]. Another study found that exosome miR-30a
can regulate the apoptosis of epidermal cells, and its overex-
pression led to impaired epidermal differentiation by directly
targeting AVEN (encodes a caspase inhibitor), IDH1
(encodes isocitrate dehydrogenase, an enzyme of cellular
metabolism), and LOX (encodes lysyl oxidase, a regulator
of the proliferation/differentiation balance of keratinocytes),
inducing severe barrier dysfunction and skin aging [163].
Treatment for skin aging mainly includes oral antioxidant
drugs, topical antiaging agents, and photoelectric and acous-
tic physical technology.

4.5. Aging-Related Macular Degeneration. Age-related macu-
lar degeneration (AMD) is one of the major causes of vision
impairment in people older than 60 years of age. AMD can be
divided into two types: dry AMD (atrophic), accounting for
85 to 90% of AMD cases and is a pattern of atrophy caused
by the absence of retinal pigment epithelial cells and photore-
ceptor cells, and wet AMD (exudative, neovascular), which is
caused by bleeding and exudation of neovascularization into
the retina pigment epithelium (RPE) and into the sensory
layer of the retina. Accumulating evidence suggests that the
abnormal function of autophagy is related to the AMD forma-
tion. According to a study by Cai et al. [164], activation of
mTOCR1 in aging RPE cells led to impaired lysosomal func-
tion and decreased autophagy in RPE cells. When the expres-
sion level of miR-29 is increased, the activity of mTORC1 is
inhibited to enhance autophagy and remove protein aggre-
gates to delay the occurrence of AMD. Another study found
that SQSTM1/p62, a marker of autophagy injury, is deposited
in the RPE along with the decrease in autophagy, which acti-
vates the inflammatory body, impairs protein clearance, and
damages RPE cells, leading to AMD formation [165].

5. Herbal Medicines: Promising Therapeutic
Agents for the Management of Aging and
Aging-Related Diseases

Studies had shown that many herbs had curative effect of
slowing aging; selected herbs and compounds that were more
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extensively used and studied for review include Ginkgo
biloba, ginseng, Panax notoginseng, Radix astragali, Lycium
barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum
chuanxiong, resveratrol, curcumin, and flavonoids. The
chemical structural formula of the main active ingredients
of herbs and compounds was shown in Figure 3.

5.1. Herbs

5.1.1. Ginkgo biloba (Yinxing). Ginkgo biloba extract (EGb)
has definite pharmacological effects of protecting the vascu-
lar endothelium, improving insulin resistance, and prevent-
ing atherosclerosis [166]. In addition, EGb exerts a good
intervention in various age-related diseases, such as type 2
diabetes mellitus, dementia, cognitive impairment, and coro-
nary heart disease [167]. The first international expert con-
sensus regarding the clinical application of EGb for the
treatment of dementia and moderate cognitive impairment
was published in 2019 [168]. Dong et al. [169] pretreated
senescent endothelial progenitor cells (EPCs) with 10, 25,
and 50mg/L of EGb and found that it could inhibit the senes-
cence of EPCs and increase the activity of telomerase, espe-
cially at the concentration of 25mg/L. The mechanism
whereby EGb inhibited the aging of EPCs may be related to
the activation of the PI3k/Akt signaling pathway. Zhou
et al. [170] administered EGb-761 to aging mice at different
doses of 20, 40, 80, and 100mg/kg once every 3 days for 12

months and found that EGb could reduce ischemic injury
and oxidative stress caused by ischemia in aging mice. Its
mechanism might be related to the upregulation of protein
phosphatase 2 (PP2A) and reduction in extracellular signal-
regulated kinase (ERK) activation. Tian et al. [171] adminis-
tered EGB to streptozotocin- (STZ-) induced diabetic ApoE-
/- mice at doses of 200 and 400mg/kg/day for 12 weeks and
found that EGb could regulate glucose and lipid metabolism,
reduce arterial plaque, and upregulate autophagy to relieve
endoplasmic reticulum stress (ERS). Its mechanisms might
be related to the inhibition of ERS through the restoration
of autophagy via the mTOR signaling pathway.

5.1.2. Panax ginseng (Renshen). Ginsenosides are the main
active ingredients of Panax ginseng. Studies have shown that
ginsenosides display plentiful pharmacological effects such as
relieving fatigue, improving immunity, slowing aging, inhi-
biting metastasis of cancer cells, regulating blood glucose,
and protecting liver and kidney functions [172].

Aging mice were intraperitoneally injected with the
ginsenoside Rg1, at a dose of 20mg/kg/day for 28 days con-
tinuously. Rg1 could retard testis senescence in mice via anti-
oxidation and the downregulation of the p19/p53/p21
signaling pathway [173]. Zhou et al. [174] cultured aging
Sca-1+ hematopoietic stem cells in ginsenoside for 6 h and
found that ginsenoside could protect hematopoietic stem
cells from aging. Its possible mechanisms of action might
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involve the regulation of the p16-Rb signaling pathway, the
repair of worn telomeres, and maintenance of telomerase
activity. Aging mice were fed an experimental diet based on
AIN-93G containing 10 g/kg and 30 g/kg ginseng powder
for 24 weeks continuously. The results suggested that long-
term ginseng feeding could improve aging-related cognitive
ability, which was achieved by regulating the cholinergic and
antioxidant systems [175]. Other studies found that Rg1 could
decrease oxidative stress and downregulate Akt/mTOR signal-
ing to attenuate cognitive impairment in mice and senescence
of neural stem cells induced by D-gal [176].

5.1.3. Panax notoginseng (Sanqi). Panax notoginseng con-
tains the notoginseng saponins Rh1, Rh2, Rg1, Rg2, Rgb1,
and others, with pharmacological actions such as antitumor
activity, enhanced learning and memory, hemolysis, hemo-
stasis, antiaging, and antifatigue [177, 178]. Zhou et al.
[179] administered Panax notoginseng saponins (PNS) at
10, 30, and 60mg/kg/day to natural aging mice and found
that it could significantly and dose-dependently inhibit the
apoptosis of myocardial cells in senescent rats by attenuating
oxidative damage. Li et al. [180] pretreated aging H9c2 cells
induced by D-gal with different concentrations of total sapo-
nins of Panax notoginseng (5, 25, and 50 g/mL) for 4 h. They
found that the number of positive cells stained with galacto-
sidase in the total saponins of the Panax notoginseng group
was significantly reduced; SOD activity was found to signifi-
cantly increase while MDA content and ROS fluorescence
intensity were significantly decreased. Results suggest that
PNS could resist aging of H9c2 cells induced by D-gal by
improving their antioxidant capacity and reducing apoptosis.

5.1.4. Radix astragali (Huangqi). Radix Astragalus mainly
contains astragalus polysaccharides, saponins, flavonoids,
and other active components, which have various pharmaco-
logical actions such as antioxidation, antiaging, myocardium
protection, and enhancement of immune function and
hematopoietic function [181].

Ma et al. [182] used different doses (100, 200, 400, and
600mg/kg) of astragalus extract for intervention in the ani-
mal model of sustained myocardial ischemia in vivo. They
found that Astragalus can reduce myocardial injury and
protect cardiac function, which are related to the reduction
of oxidative damage and free radical generation. Ma et al.
[182] also conducted in vitro experiments to interfere with
the oxidative stress model of cardiac myocytes using Astrag-
alus membranaceus at different concentrations (100, 200,
400, and 600μg/mL). They found that Astragalus could
reduce the number of cell apoptosis by attenuating oxidative
injury and arresting Ca2+ influx to block cell death. Li et al.
[183] administered different doses (8, 16, and 32mg/kg) of
astragalosides via the intragastric route to the rat model with
learning and memory impairment. They found that astraga-
losides could improve the learning and memory ability and
ameliorate the neurodegenerative lesion of hippocampal
CA1, which are related to the reduction of intracerebral amy-
loid precursor protein (APP) and a-secretase and β-secretase
mRNA levels. Astragalus polysaccharides can also protect the
mitochondria by scavenging ROS, inhibiting mitochondrial

permeability transition (PT), and increasing antioxidant
enzyme activity to improve aging in mice [184].

5.1.5. Lycium barbarum (Gouqi). Lycium barbarum has
pharmacological actions such as regulating immunity, anti-
tumor activity, nervous system function, liver protection,
and slow aging process [185]. Hu et al. [186] administered
different doses of Chinese wolfberry, via the intragastric
route, to a mouse model of AD induced by the combination
of AlCl3 and D-gal. They found that the quantity of horizon-
tal and vertical movements increased while AChE and ChAT
levels decreased significantly in mice. These events were
related to the modulation of the mitochondrial pathway of
apoptosis and the cholinergic system. Jeong et al. [187] used
goji berry (150 and 300mg/kg/day) to interfere with aging
rats and found that goji berry could elevate the level of testos-
terone and reduce the expression of cell apoptosis activators,
which are associated with its antioxidant action. Yu et al.
[188] used L. barbarum to interfere with oxygen glucose dep-
rivation and reoxygenation-induced injury of neurons. They
found that L. barbarum inhibits oxygen glucose deprivation
and reoxygenation-induced neuronal cell and autophagic cell
death by activating the PI3K/Akt/mTOR pathway.

5.1.6. Rhodiola rosea (Hongjingtian). Rhodiola rosea contains
alkaloids, flavonoids, glycosides, phenolic compounds, vola-
tile oils, coumarins, steroids, and organic acids, plus small
amounts of nonorganic elements, which could protect the
heart and brain vessels by exhibiting antifibrosis, antioxida-
tion, anti-inflammatory, antivirus, antiapoptosis, and antifa-
tigue activities [189]. Zhou et al. [190] orally administered R.
rosea (60 and 120mg/kg daily) to an atherosclerosis rat
model for 9 weeks continuously. The results showed that R.
rosea could contribute to antiatherosclerosis via lowering
blood lipids, antioxidant, and anti-inflammatory activities
and by regulating endothelial function. Schriner et al. [191]
demonstrated that R. rosea could prolong the lifespan of
Drosophila by perturbing the silent information regulator 2
(SIR2) proteins, insulin and insulin-like growth factor signal-
ing (IIS), and the target of rapamycin (TOR). Furthermore,
R. rosea could prolong the life of silkworms by improving
antioxidant capacity [192].

5.1.7. Angelica sinensis (Danggui). The active components of
Angelica sinensis mainly include volatile oils (ligustilide,
Angelica sinensis ketone), organic acids (ferulic acid, succinic
acid, niacin, and azelaic acid), polysaccharides, and flavo-
noids (ferulic acid, succinic acid, niacin, anisolic acid, and
azelaic acid) [193]. Zhang et al. [194, 195] orally adminis-
tered Angelica polysaccharide (ASP, 200mg/kg/) to aging
mice induced by X-ray whole-body uniform irradiation.
HSCs were then separated and purified after mice were
sacrificed. The results showed that ASP could significantly
reduce the positive rate of SA-β-gal staining and the pro-
portion of G1 phase in the aging group of HSCs, reduce
ROS production, downregulate p16 mRNA, and increase
the ability of mixed colony formation and T-AOC. Cheng
et al. [196] showed that ASP restored cognitive impair-
ment caused by D-gal administration, promoted neural
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stem cell (NSC) proliferation, attenuated D-gal-induced
NSC senescence, decreased the level of oxidative stress by
enhancing antioxidative capacity, and decreased the levels
of inflammatory cytokines of NSCs. These events slowed
the aging speed by enhancing the antioxidant and anti-
inflammatory capacity and downregulating the p53/p21
signaling pathway [197, 198].

5.1.8. Ligusticum chuanxiong (Chuanxiong). Ligusticum
chuanxiong contains tetramethylpyrazine (TMP), ligustra-
zine, vanillin, emodin, ferulic acid, and other active ingre-
dients which display various pharmacological actions in the
cardiac and cerebrovascular system, nervous system, and
respiratory system [199]. Chen et al. [200] demonstrated
that TMP at different doses of 1, 3, and 10mg/kg interfered
with 6-ohda-induced Parkinson’s disease in mice which
confirmed that TMP protects against dopaminergic (DA)
neurodegeneration and attenuates DA neuronal apoptosis
by activating the PI3K/Akt/GSK3β signaling pathway. Wei
and Wang [201] found that ligustrazine alleviated hypoxia-
induced HUVEC cell injury, enhanced cell viability, and
inhibited cell apoptosis, all of which are related to the upregu-
lation of miR-135b and subsequent activation of JNK/SAPK
and PI3K/AKT/mTOR pathways. These events promoted
hypoxia-treated HUVEC cell growth. Another study has
shown that TMP could inhibit the accumulation of senescent
LepR+ mesenchymal stem/progenitor cells in bone marrow,
reduce bone loss, and improve the metabolic microenviron-
ment of aging mice via the AMPK-mTOR-Hif1a-VEGF path-
way [202]. As a potential treatment, TMP could improve bone
diseases related to human age and promote a healthy lifespan.

5.1.9. Other Herbs.Hou et al. [203] selected aging, 24-month-
old guinea pigs as the animal experimental models and fed
them with a diet containing different doses (75, 100, or
150mg/kg/day) of water-soluble extract components of
Salvia miltiorrhiza Bunge for 28 days continuously. The
study found a significant decrease in whole blood viscosity
and improvement of blood viscosity and viscoelasticity at
the dose of 150mg/kg/day. Park et al. [204] gave old (20-
month-old) specific pathogen-free male Sprague-Dawley rats
with magnesium lithospermate B, extracted from Salvia at a
dose of 2 or 8mg/kg/day for 16 consecutive days. The results
suggested that it reduces the renal damage of oxidative stress
in old rats. After the researchers fed the fruit flies a full or die-
tary restriction diet supplemented with oregano-cranberry
(OC) mixture, the study found that OC could extend the life-
span of fruit flies, especially females, while only OC supple-
mentation at the young age interval increased reproduction
in females [205, 206].

After 8 weeks of intraperitoneal injection of 100mg/kg/d
d-galactose to establish a rat model of aging with different
doses of Ganoderma lucidum extract, it was found that
Ganoderma lucidum could delay the progression of AD by
regulating DNAmethylation [207]. Lobo et al. [208] gave dif-
ferent concentrations (0.5-5.0mg/mL) of the Gynostemma
pentaphyllum extract to mouse dermal fibroblasts, which
were placed under 8-watt ultraviolet C (UVC) light at a dis-
tance of 50 cm to induce oxidative stress. The results showed

that Gynostemma pentaphyllum extract prolongs viability of
mouse dermal fibroblasts damaged by UVC light-induced
oxidative stress, especially at 4.5mg/mL, and it suggested that
Gynostemma pentaphyllum extract had potential therapeutic
effect on dermal cell aging.

5.2. Compounds

5.2.1. Resveratrol. Resveratrol is a natural polyphenol with
anticardiovascular, anticancer, antibacterial, anti-inflamma-
tory, antiaging, antineurodegenerative, and other pharmaco-
logical effects [209]. Wu et al. [210] used different doses (30
and 100mg/kg/day) of resveratrol to intervene in mice with
premature ovarian aging caused by chemotherapy. They
found that resveratrol could improve premature ovarian
aging caused by chemotherapy and ameliorate the renewal
ability of oogonial stem cells by attenuating oxidative stress
injury via Nrf2 activation.

Dehghani et al. [211] used resveratrol combined with
calcitriol to intervene in D-gal-induced aging rats. This com-
bination could protect the heart and its antioxidant status by
modulating hemodynamic parameters and increasing the
serum level of Klotho, respectively. Du et al. [212] used res-
veratrol (5, 10, and 50μM) to intervene in aging cells and
found that it could improve cell activity and increase SOD
level by regulating autophagy to achieve delayed aging. Amos
et al. [213] intervened in damages to Drosophila melanoga-
ster induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP) with resveratrol (0, 7.5, 15, 30, 60, and
120mg/kg diet) and found that it could improve the survival
rate, prolong the lifespan, and improve the behavioral defects
of D. melanogaster; these effects were related to its anti-
inflammatory and antioxidant activities.

Posadino et al. [214] treated HUVECs loaded with the
ROS probe H2DCF-DA with different concentrations of
RES (1–50μM), and the results showed that low concentra-
tions of RES enhanced PKC activity, promoted DNA synthe-
sis, and reduced apoptosis; high RES concentrations elicit an
opposite effect. The results suggested that resveratrol had a
biphasic concentration-dependent effect on endothelial cell
survival, thus providing a guide for future investigation.
Another study by Posadino et al. [215] showed low doses of
resveratrol (0.5μM) effectively acting as an antioxidant agent
by significantly reducing the roGFP oxidation state as com-
pared with roGFP-infected control cells. With the increase
of resveratrol dose, cell survival and metabolic activity
decreased in parallel, suggesting that antioxidant and proox-
idation effects were strongly related to dose. In addition, res-
veratrol was shown to increase skeletal muscle resistance to
fatigue in aging mice for the alleviation of age-related skeletal
muscle aging [216].

5.2.2. Curcumin. Curcumin, the main component extracted
from the rhizome of turmeric and zedoary, has various phar-
macological actions, including antiaging, anti-inflammatory,
and antioxidant actions [217–219].

Shailaja et al. [220] showed that curcumin could reduce
the level of C-reactive protein (CRP) and enhance the level
of malondialdehyde (MDA), which play a favorable role in
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slowing aging by inhibiting the expression of age-related
inflammatory cytokines. By using concentrations of 1μM,
5μM, 10μM, and 20μM, Pirmoradi et al. [221] found the
intervention effect of curcumin in rat adipose tissue-derived
stem cells (rADSC) in vitro. Their results showed that curcu-
min could promote the proliferation of rADSC and reduce
the senescence of adipose stem cells by promoting TERT gene
expression. Hu et al. [222] revealed that curcumin could
reduce extracellular matrix degradation and interstitial fibrosis
induced by hypertension from modulating covalent histone
modification and TIMP1 gene activation, thus protecting
against hypertension-related vascular damage. Furthermore,

curcumin could prolong the lifespan of Drosophila under heat
stress conditions by increasing the antioxidant activity and
mitigating the effect of heat shock responses [223]. Curcumin
could also alleviate aging-related skeletal muscle mass loss and
dysfunction [224].

5.2.3. Flavonoids. Flavonoids are a kind of natural polyphe-
nols, mainly including flavonoids, flavanols, flavonoids,
anthocyanins, and isoflavones [225]. Studies had shown that
flavonoids had definite efficacy in the treatment of age-
related neurodegenerative diseases [226], cardiovascular dis-
eases [227, 228], atherosclerosis [229], etc. Some progress has
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Table 2: Preclinical studies of herbal medicine for aging-related diseases.

Active ingredients Dosage Administration Model Possible mechanism Reference

In vitro studies

EGb
10, 25, and
50mg/L

Pretreatment
for 24 h

EPCs cultured on
fibronectin-coated
culture dishes

Activation of telomerase through
the PI3k/Akt signaling pathway

[169]

Ginsenoside Rg1 10 μmol/L
Cultured for

6 h

Aging Sca-1+
hematopoietic

cells

Regulating the p16-Rb signaling
pathway, repairing worn telomeres,
and maintaining telomerase activity

[174]

PNS
5, 25, and
50μg/mL

Pretreatment
for 4 h

D-Galactose induced
aging H9c2 cells

Increase antioxidant capacity and
reduce apoptosis

[180]

Astragalus
membranaceus

100, 200, 400,
and 600μg/mL

Pretreatment
for 24 h

Cardiomyocyte model
of oxidative stress

Attenuating the oxidative injury
and arresting the influx of Ca2+ to

block cell death
[182]

Lycium barbarum
15, 30, and
60μg/mL

Pretreatment
for 24 h

Primary hippocampal
neurons

Activating the PI3K/Akt/mTOR
signaling pathway

[188]

Angelica sinensis — —
Aging hematopoietic

stem cells

Increase in the length of telomere
and the activity of telomerase,

downregulation of the expression
of P53 protein

[194]

Ligustrazine
50, 100, and
200μM

Pretreated
for 24 h

Hypoxia-induced injury
of HUVECs

Upregulation of miR-135b and
subsequent activation of JNK/SAPK
and PI3K/AKT/mTOR pathways

[201]

Gynostemma
pentaphyllum
extract

0.5-5.0mg/mL —
Mouse dermal fibroblasts
induced oxidative stress

Reduce oxidative stress [208]

Resveratrol
5, 10, and
50μM

Cultured for
24 h

H2O2 induced aging
of HUVECs

Upregulation of autophagy [212]

Curcumin
1, 5, 10, and

20μM
Treatment
for 48 h

Rat adipose tissue-derived
stem cells

Promoting TERT gene expression [221]

In vivo studies

EGb-761
20,40, 80, and
100mg/kg

i.g. every
3 days, for
12 months

Aged mice (24 months)
of middle cerebral artery

occlusion

Upregulation of phosphatase PP2A
and diminished extracellular
signal-regulated kinase (ERK)

activation

[170]

EGb 200, 400mg/kg/day i.g. 12 weeks
Streptozotocin-induced
diabetic ApoE-/- mice

Inhibiting endoplasmic reticulum
stress via restoration of autophagy

through the mTOR signaling
pathway

[171]

Ginsenoside Rg1 20mg/kg/day i.p. 28 days
D-Galactose-induced

aging mice

Antioxidation and downregulation
of the p19/p53/p21 signaling

pathway
[173]

Panax notoginseng
saponins

10, 30, and
60mg/kg/day

i.g. 6 months Natural aging rats Attenuating oxidative damage [179]

Astragalus
membranaceus

100, 200, 400,
and 600mg/kg

i.g. twice per
day for 7 times

Rat model of persistent
myocardial ischemia

Reducing oxidative damage and
free radical generation

[182]

Astragalosides
8, 16, and
32mg/kg

i.g. 14 days
Rats with learning and
memory impairment

Downregulate the mRNA levels of
APP and β-secretase, decrease
expression of APP and Aβ1–40

in hippocampus

[183]

Astragalus
polysaccharides

100, 200, and
300mg/kg/d

i.g. 7 weeks
D-Galactose induced

aging mice

Scavenging ROS, inhibiting
mitochondrial PT, and increasing

the activities of antioxidases
[184]

Lycium barbarum 0.5 or 2.0 g/kg i.g. 4 weeks

A mouse model of
AD induced by the
combination of AlCl3

and D-galactose

Modulation of the mitochondrial
pathway of apoptosis and the

cholinergic system
[186]
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been made in the study of flavonoids in prolonging lifespan
[230]. Hung et al. [231] injected 1-methyl-4-phenylpyridi-
nium (MPP+, a Parkinsonian neurotoxin) into the brains of
rats and randomly divided them into three groups which
received different does (10, 30mg/kg/day) of baicalein, a phe-
nolic flavonoid for 7 days. The study found that baicalein
could inhibit inflammatory activities and MPP+-induced
apoptosis and autophagy in the nigrostriatal dopaminergic
system of the rat brain. The results suggested that baicalein
was of therapeutic significance in Parkinson’s disease. Studies
also showed that flavonoids could exert ameliorative antiox-
idant capacity and reduce Aβ-induced toxicity in Caenor-
habditis elegans, thus prolonging lifespan of Caenorhabditis
elegans [232, 233].

6. Adverse Effects of Herbal Medicine

Cianfrocca et al. [234] observed that a 49-year-old man
received herbal therapy with Ginkgo biloba (40mg, 3 times
daily) for 2 weeks to improve his cognitive abilities, and the
patient complained of two palpitations within a month. The
12-lead ECG had a normal morphology but showed sinus
rhythm with frequent ventricular premature beats, and with
the withdrawal of ginkgo biloba extract, electrocardiographic
evidence of ventricular arrhythmias resolved. Erdle et al.
[235] reported allergic reactions in two pediatric patients
after inhaling and atomizing American ginseng powder, the
former with urticaria and respiratory symptoms and the
latter with recurrent allergic conjunctivitis, and there was evi-
dence of sensitization to American ginseng on skin prick test-
ing (SPT) (13 × 12 mm wheal). The researchers concluded
that excessive oral administration of astragalus could cause
allergy, headache, hypertension, or other symptoms; astraga-
lus injection mainly caused fever, shock, and acute asthma
[236]. Larramendi et al. [237] carried out a skin test of goji
berry on 30 patients with plant food allergy and found that

24 patients showed positive results, which suggested that goji
berries are potentially allergenic to people at high risk of food
allergies. Chang et al. [238] reevaluated the postmarketing
safety of depside salt injection (made from Radix Salvia mil-
tiorrhiza) based on the real world and found that most com-
mon adverse drug reactions were headache, head distention,
dizziness, facial flushing, skin itching, thrombocytopenia,
and the reversibility of elevated aspartate transaminase.
Chaudhari et al. [239] concluded that curcumin commonly
used in dermatologic conditions may cause skin allergies,
mainly manifested as contact urticaria.

The safety of drug use is one of the important contents of
clinical pharmacology; herbal medicine has drawbacks in this
respect. Further studies are needed to completely understand
these widely used herbs or compounds and their efficacy in
aging-related diseases.

7. Conclusion and Perspectives

Aging and aging-related diseases pose a serious threat to
human health and reduce the quality of life of elderly people.
Therefore, exploring the mechanisms of aging and against
the occurrence of aging-related diseases is of great significance.
In this paper, we discuss cellular and molecular mechanisms
of aging and aging-related diseases, including oxidative stress,
inflammatory response, autophagy and exosome interactions,
mitochondrial injury, and telomerase damage (see Figure 4).
We also discuss the possible mechanisms of age-related dis-
eases (see Figure 5) and modern medical treatment for dis-
eases related to aging. However, modern medicines result in
many adverse reactions when used to treat aging-related dis-
eases. Although drug therapy may improve the symptoms of
early AD, they are not effective in patients with advanced AD
and are associated with gastrointestinal toxicity. Intravitreal
injection of antivascular endothelial growth factor is the most
effective way to inhibit angiogenesis and control vascular

Table 2: Continued.

Active ingredients Dosage Administration Model Possible mechanism Reference

Goji berry 150, 300mg/kg i.g. 6 weeks Natural aging rats Antioxidative stress [187]

Rhodiola rosea 60, 120mg/kg i.g. 9 weeks
Abdominal aorta of
atherosclerosis rats

Hypolipemic, antioxidant, and
anti-inflammatory activities

[190]

Angelica
polysaccharide

140mg/kg i.p. 27 days
Aging nestin-GFP mice
induced by D-galactose

Enhancing the antioxidant and
anti-inflammatory capacity,
upregulation of p53/p21

signaling pathway

[196]

Tetramethylpyrazine
1, 3, and
10mg/kg

i.p. 7 or 14 days
6-OHDA-induced

Parkinson’s disease mice
Activation of PI3K/Akt/GSK3β

signaling pathway
[200]

Resveratrol 30, 100mg/kg/d i.g. 2 weeks
Mice with chemotherapy-
induced ovarian aging

Attenuating oxidative stress
injury by activating Nrf2

[210]

Curcumin
100, 200, and
400mg/kg/d

i.g. 6 months Natural aging rats
Suppressing age-related changes

in inflammatory indices
[220]

Baicalein 10, 30mg/kg/day i.p. 7 days
MPP+-induced Parkinson’s

disease mice

Inhibit inflammatory activities
and MPP+-induced apoptosis

and autophagy
[231]

Abbreviations: EGb: Ginkgo biloba extract; EPCs: endothelial progenitor cells; HUVECs: human umbilical endothelial vein cells; i.g.: intragastric gavage; i.p.:
intraperitoneally injected.
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leakage. However, intravitreal injection has many disadvan-
tages which include risk of infection, the requirement of
repeated treatment, and high cost. Most importantly, some
patients still experience progressive visual impairment after
treatment. Exploring the mechanisms of the multitargeted
actions of herbal medicine will therefore help establish novel
drugs for the treatment of aging-related diseases. In this
review, we initially explored the possible mechanisms of
herbal medicines in the treatment of aging and aging-
related diseases (Table 2). Through in vivo and in vitro stud-
ies, various components of herbal medicine have been found
to possess the ability to intervene in aging-related diseases
by activating telomerase, increasing antioxidant capacity,
reducing apoptosis and anti-inflammatory activities, and
regulating aging-related pathways and exosomes. We also
summarized the clinical randomized controlled trials (RCTs)
of herbal medicine in the treatment of aging-related diseases
(Table 3) [240–250]. These trials found that herbal medicine
displays certain clinical efficacy in the treatment of age-
related diseases such as type 2 diabetes, vascular dementia,
AD, and atherosclerosis. A few clinical studies on AMD exist,
but this disorder is considered to be related to the special
technique used for intravitreal administration when treating
macular lesions. Of note, as shown in Table 3, there are some
adverse reactions in the clinical use of herbal medicines,
including gastrointestinal discomfort, dry mouth, and abnor-
mal alanine aminotransferase [245–247, 250]. Experimental
studies had also found that there was a dose-response curve
characterized by stimulation at a low dose and inhibition at
a high dose. For example, the researchers used different con-
centrations of the drug to interfere with endothelial cells and
found that cell survival rates decreased as the dose of the drug
increased [214, 251–253]. This indicates that drugs have the
effect of dose-dependent bidirectional regulation. When con-
ducting study, attention should be paid not only to the dose-
effect relationship but also to the optimal benefit concentra-
tion of drugs. Further analysis of the herbs mentioned in
the article found that adverse reactions might occur with
herbal treatment, such as palpitations, recurrent allergic con-
junctivitis, urticaria and respiratory symptoms, fever, shock,
and acute asthma [234–239]. Researchers should analyze
the reasons for the adverse reactions and promote the stan-
dard and safe use of herbs.

In conclusion, high-quality RCTs should be carried out to
observe the effectiveness and safety of herbal medicine in the
treatment of aging and aging-related diseases. It is also
important that the intervention of integrated traditional Chi-
nese and western medicine be monitored in aging and aging-
related diseases.
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