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Abstract

B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and

function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past

decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the

development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells

and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3+ regulatory T cells with

an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates

peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and

limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription

factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8+ T cells, Blimp-1 expression

is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory

formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine

receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function

of effector and memory CD8+ T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell

activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity.

In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate

the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T

lymphocyte homeostasis.
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Background
B lymphocyte-induced maturation protein-1 (Blimp-1)1,

a zinc-finger motif-containing transcriptional repressor,

is encoded by the positive regulatory domain 1 gene

(Prdm1)1 and was initially characterized as a negative

regulator of β-interferon (IFN-β) gene expression [1].

Blimp-1 was further identified as a master regulator that

orchestrates plasma cell development and the

differentiation of immunoglobulin-secreting B lympho-

cytes [2, 3] and also controls the differentiation of the

myeloid lineage [4]. The expression of Blimp-1 is dy-

namic in primordial germ cells and is critical for mouse

embryonic development [5–7]. Generation of loss-of-

function Blimp-1 mutants by gene targeting is

embryonic-lethal in mice [8]. Therefore, Blimp-1 in-

structs diverse cell fates in the embryo and plays essen-

tial roles in multiple hematopoietic lineages.

The number of studies demonstrating the importance

of Blimp-1 expression in different subsets of T lympho-

cytes for the regulation of immune networks has grown

dramatically over recent years. Blimp-1 has been re-

vealed as a key regulator of T cell homeostasis, and its

ablation in T cells is responsible for downregulating
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expression of interleukin (IL)-10 and upregulating ex-

pression of IL-2 and gamma interferon (IFN-γ) [9, 10].

Recent experiments have demonstrated that Blimp-1 is

also critical for CD4+ T helper (Th) cell differentiation.

In CD4+ T cells, Blimp-1 inhibits Th1 differentiation

[11] and opposes the formation of follicular helper T

(Tfh) cells [12]. In contrast to the inhibition of Tfh com-

mitment by constitutive expression of Blimp-1 in CD4+

T cells, deletion of Blimp-1 in CD4+ T cells augments

Tfh differentiation [13]. Blimp-1 and interferon regula-

tory factor 4 (IRF4) were shown to be indispensable and

to cooperate to regulate the expression of IL-10 and C-C

chemokine receptor 6 (CCR6) in effector regulatory T

(Treg) cells [14]. Furthermore, Blimp-1 instructs tran-

scriptional regulation to control the expression of IL-2,

IL-21 and IL-10 in effector CD4+ T cells for the main-

tenance of T cell homeostasis [14–19]. In addition to

CD4+ T cells, Blimp-1 is also a critical component of the

transcriptional program controlling the generation of

heterogeneous CD8+ T cell populations. The importance

of Blimp-1 in the formation of killer-cell lectin-like re-

ceptor G1 (KLRG1)hiIL-7 receptor (IL-7R)lo short-lived

effector cells (SLECs), KLRG1loIL-7Rhi memory precur-

sor effector cells (MPECs), effector memory (EM,

KLRG1hiIL-7RαhiCD62LlowCCR7low) cells, central mem-

ory (CM, KLRG1lowIL-7RαhiCD62LhiCCR7hi) cells, and

exhaustion of CD8+ T cells during immune responses

has been demonstrated [20]. Moreover, Blimp-1 plays a

critical role in the functions of CD8+ T cells including

migration, cytotoxicity, survival, proliferation and cyto-

kine production [20–22]. The genes regulated by the B

cell lymphoma-6 (Bcl-6)/Blimp-1 axis serve as a cardinal

switch to enable cytokine secretion and effector function

predominantly in CD4+ and CD8+ T lymphocytes [23].

These studies highlight the complexity of the transcrip-

tional programs coordinated by Blimp-1 for the develop-

ment, differentiation and effector function of T

lymphocytes. Here, we briefly review the findings con-

cerning the significance of Blimp-1 in T lymphocytes

and demonstrate divergent roles for Blimp-1 in different

T lymphocyte lineages.

The expression of Blimp-1 in T cell lineages
Blimp-1 is expressed not only in the B cell lineage but

also in other cell lineages including T cells, granulocytes,

macrophages, epithelial cells, retinal neurons, muscle

cells and primordial germ cells [24]. In mice, the expres-

sion of Blimp-1 is detected in both CD4+ and CD8+ T

cells that have the characteristics of effector and mem-

ory cells [9, 10].

CD4+ T cells

Martins et al. reported that they could detect little

steady-state expression of Blimp-1 mRNA in thymocytes

by reverse transcription–quantitative polymerase chain

reaction. Double-negative (DN) thymocytes, CD4 single-

positive thymocytes and peripheral naïve CD4+ T cells

expressed similar levels of Blimp-1 mRNA, which were

threefold higher than the levels of Blimp-1 mRNA in

double-positive (DP) thymocytes [10]. These results were

similar to the results of another group who demon-

strated Blimp-1 expression in DP thymocytes using

microarray [25]. However, Kallies et al. did not detect

any intrathymic Blimp-1 expression using a green fluor-

escent protein (GFP) knock-in strategy [9]. Martins et al.

found that expression of Blimp-1 was higher in the

memory, effector and regulatory T cell populations, and

was induced after in vitro activation of naïve CD4+ T

cells by T cell receptor (TCR) and/or IL-2 stimulation.

The level of Blimp-1 mRNA in T cells was similar to that

in lipopolysaccharide (LPS)-activated splenic plasma

cells 6 days after in vitro stimulation with anti-CD3 and

anti-CD28 antibodies and IL-2 [10]. Likewise, Kallies et

al. demonstrated that the GFP+CD4+ T cells were

CD44hi and mainly CD62Llo, a cell surface phenotype in-

dicating effector and memory CD4+ T cells, and that

these cells showed high expression of other activation

markers such as CD122 and glucocorticoid-induced

tumor necrosis family related gene (GITR) protein [9].

Consistent with this, Gong et al. reported that Blimp-1

protein was expressed in both CD4+ and CD8+ T cells

after anti-CD3 stimulation and that Blimp-1 protein

levels in activated T cells were similar to those found in

LPS-activated B cells by western blot analysis. Moreover,

Blimp-1 expression in both CD4+ and CD8+ T cells was

detected 24 h after activation with anti-CD3 antibody,

and it was clearly expressed after 48 h in culture [15].

Taken together, these findings suggest that Blimp-1 ex-

pression is mainly confined to activated T cells.

Kallies et al. assessed Blimp-1 expression during the

differentiation of GFP knock-in mouse CD4+ T cells into

effector cells; they cultured CD62L+CD4+GFP− T cells

under Th1- or Th2-polarizing conditions. GFP analysis

showed that Blimp-1 was induced in effector cells of

both Th1 and Th2 lineages [9]. Salehi et al. sorted naive

CD4+ T cells from Blimp-1-yellow fluorescent protein

reporter mice and stimulated these cells under neutral,

Th1, Th2 or Th17 conditions to analyze Blimp-1 mRNA

expression at different time points. They found that cells

cultured in Th1 or Th2 conditions began to express

Blimp-1 sooner than cells cultured in neutral conditions

but that Th1 cells expressed significantly more Blimp-1

than Th2 cells and at earlier time points. In contrast,

cells cultured under Th17 conditions did not signifi-

cantly upregulate Blimp-1, and only 5% of the cells

expressed Blimp-1 at day 7.5 poststimulation. The differ-

ential expression of Blimp-1 during the differentiation of

different Th populations was confirmed by either mRNA
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or protein analysis. Consistent with these findings,

Blimp-1 was reported to be induced in Th1 and Th2

cells but not repressed in Th17 cells by transforming

growth factor (TGF)-β [26]. Moreover, Blimp-1 mRNA

was also detected in Treg cells [9, 10]. Cretney et al. ex-

amined the expression of Blimp-1 in Treg cells using

GFP reporter mice and demonstrated that Blimp-1 was

expressed in the subset of Foxp3+ Treg cells with an ef-

fector phenotype that produce IL-10. It was dispensable

for the formation of effector Treg cells but essential for

their ability to produce IL-10 [14].

CD8+ T cells

Blimp-1 expression in different subsets of CD8+ T cells in

mice

Previous studies demonstrated that in vitro stimulation

with anti-CD3ε, anti-CD28 and IL-2 induced high levels

of Blimp-1 mRNA expression in naïve T cells with de-

layed postactivation kinetics [9, 10], suggesting that the

expression of Blimp-1 is enhanced in CD8+ T cells when

they encounter a cognate antigen. Indeed, the amount of

Blimp-1 was significantly increased in antigen-specific

effector CD8+ T cells during acute influenza virus,

lymphocytic choriomeningitis virus (LCMV) or vaccinia

virus infection [27–29]. When they encounter antigen,

naïve CD8+ T cells undergo differentiation to generate

KLRG1hiIL-7Rlo SLECs and KLRG1loIL-7Rhi MPECs that

have different fates and potentials for memory cell devel-

opment. After an infection is cleared, the MPECs will

generate memory CD8+ T cells that can be either EM

(KLRG1hiIL-7RαhiCD62LlowCCR7low) or CM (KLRG1lowIL-

7RαhiCD62LhiCCR7hi) cells [22]. During the acute phase of

LCMV infection, the IL-7Rαlow effector CD8+ T cells with

high KLRG1 and low CCR7 mRNA expression exhibited

elevated expression of Blimp-1 mRNA [30]. Blimp-1 ex-

pression was always higher in KLRG1hiIL-7Rlo SLECs than

in KLRG1loIL-7Rhi MPECs and remained heightened in

CM T subsets after LCMV infection [28]. In contrast to the

situation during acute viral infections, during chronic viral

infections, virus-specific CD8+ T cells undergo an altered

profile of transcription and become exhausted. Blimp-1 ex-

pression was higher in virus-specific CD8+ T cells undergo-

ing exhaustion during chronic viral infection than in

antigen-specific T cells after acute infection, suggesting a

correlation between Blimp-1 expression and exhaustion

[31]. Overall, these results indicate that during virus infec-

tion, Blimp-1 expression exhibits a heterogeneous pattern

in different CD8+ Tcell subsets.

The expression of BLIMP-1 in human CD8+ T cells

In addition to mouse T cells, the expression of BLIMP-1

in human CD8+ T cells was also demonstrated in several

recent studies. In CD161++IL-18Rα+CD8+ human T

cells, a newly identified subset of memory cells, the

transcription level of BLIMP-1 was significantly higher

than that in classical CD27+CD45RA− memory CD8+ T

cells. This high level of BLIMP-1 expression may con-

tribute to the differentiated effector-type features of

CD161++IL-18Rα+ CD8+ human T cells [32]. Lee et al.

identified a novel population of IL-6RαhiCD45RA
+/−CCR7−CD8+ EM T cells, which may serve as a reser-

voir of effector CD8+ T cells. These IL-6Rαhi CD8+ EM

T cells produce high levels of Th2 cytokines and GATA

binding protein 3 (GATA3), and are expanded in the

peripheral blood mononuclear cells of asthma patients.

Moreover, they express low levels of the transcription

factors T-BET, Eomesodermin (EOMES) and BLIMP-1,

suggesting that they are not terminally differentiated

CD8+ T cells [33]. In addition to different expression

levels in CD8+ T cell subsets, HIV-1 transactivator of

transcription (Tat) protein treatment enhanced the tran-

scription of PRDM1 after T cell receptor stimulation.

This effect of Tat on PRDM1 expression was inhibited

by blocking integrins, indicating that Tat modulates

BLIMP-1 through the interaction of integrins with their

ligands [34].

The effects of Blimp-1 on T cell functions

Deletion of Blimp-1 in T cells leads to the dysregulation

of T lymphocytes and the expression of an abnormally

activated phenotype. This phenomenon is supported by

evidence that Blimp-1 is necessary for normal thymocyte

survival and controls T cell homeostasis. Blimp-1 is also

critical for T helper differentiation and cytokine

production.

CD4+ T cells

Blimp-1 is important for thymocyte development

Martins et al. observed that the numbers of immature

DP thymocytes are reduced and that they are prone to

apoptosis in mice with T cell-specific Blimp-1 deletion

generated using the proximal-Lck-Cre deletion system,

suggesting that Blimp-1 may function in early T cell

maturation and that its dysfunction is responsible for

survival defects in DP thymocytes [10]. In addition, Lin

et al. reported that Blimp-1 modulates lymphocyte de-

velopment. The number of thymocytes in 6-week-old

Blimp-1 transgenic mice was increased compared with

controls and was even higher in conditional knockout

(CKO) mice lacking Blimp-1 in T cells. The numbers of

DP thymocytes in both transgenic and CKO mice were

significantly increased compared with controls, suggest-

ing that Blimp-1 may have a complicated and stage-

dependent modulatory effect on thymocyte survival and/

or expansion. After stimulation through the TCR or with

phorbol-12-myristate-13-acetate plus ionomycin, the

proliferation of thymocytes was significantly impaired in

Blimp-1-transgenic mice compared with controls. In
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contrast, it was dramatically enhanced in Blimp-1-CKO

mice compared with controls, indicating a suppressive

role of Blimp-1 in thymocyte proliferation [35]. Deletion

of Blimp-1 under control of Cd4 or the proximal-Lck

promoter resulted in global T cell defects during early

thymic development. However, Blimp-1-deficient mice

created using a distal-Lck-Cre system, which promotes

deletion of genes during the late single-positive thymic

development stage, had a normal number of thymocytes

and did not show any signs of spontaneous autoimmun-

ity [36]. Furthermore, Bach et al. showed that T cell-

specific expression of the IL-2-inducible kinase-spleen

tyrosine kinase (Itk-Syk) oncogene in mice leads to an

early onset and aggressive polyclonal T cell lymphopro-

liferation. They found that high Itk-Syk expression in

thymocytes induced Blimp-1-mediated premature ter-

minal differentiation, resulting in oncogene-expressing

cells being eliminated early in development [37]. Thus,

Blimp-1 is required to induce cell elimination in the

thymus.

Blimp-1 maintains peripheral homeostasis

Kallies et al. and Martins et al. both reported that

Blimp-1 is expressed in effector and memory T cells.

Kallies et al. generated Blimp-1-GFP knock-in mice and

demonstrated that the GFP+ CD4+ T cells were effector

and memory CD4+ T cells with high expression of acti-

vation markers such as CD122 and GITR, which accu-

mulated in vivo and contributed to severe early-onset

colitis [9]. Martins et al. showed that mice lacking

Blimp-1 specifically in the T cell lineage had more ef-

fector CD4+ and CD8+ cells in the periphery [10]. Both

mice with a T cell-specific deletion and Rag1−/− mice

reconstituted with Prdm1gfp/gfp fetal liver cells displayed

a dysregulated population expansion that resulted in ei-

ther T cell-mediated immune pathology or multiorgan

infiltration, suggesting a linkage between Blimp-1 and

the cell-intrinsic control of T cell activation and homeo-

stasis [9, 10]. Studies from Sytwu’s group illustrated that

Blimp-1 deficiency in T cells leads to higher numbers of

activated CD4+ T cells, and this is associated with a

homeostatic dysregulation of effector/memory T cells

that contributes to both severe colitis in nonobese dia-

betic (NOD) mice and the exacerbation of autoimmune

encephalomyelitis in myelin oligodendrocyte glycopro-

tein (MOG)35–55-immunized mice [35, 38, 39]. There-

fore, Blimp-1 is a key regulator of effector T cells and

controls their homeostasis.

Kallies et al. reported that Blimp-1 controls T cell pro-

liferation and apoptosis. Blimp-1-mutant T cells are less

susceptible to apoptosis than wild-type cells: when cell

death was impaired in Prdm1gfp/gfp mice, the numbers of

Blimp-1-mutant T cells increased, suggesting a mechan-

ism that contributes to effector T cell expansion in vivo.

They suggested that Blimp-1 in late-stage T cells con-

trols activation-induced cell death (AICD) [9]. In con-

trast, Martins et al. showed that CKO and control CD4+

T cells were similarly susceptible to AICD. They demon-

strated that when naive CKO CD4+ T cells were stimu-

lated via the TCR, more cells produced IL-2 and

proliferated than in wild-type mice [10]. Lin et al. dem-

onstrated the inhibitory function of Blimp-1 on T cell

proliferation in Blimp-1-transgenic mice. This downreg-

ulated proliferation may be the result of Blimp-1-

mediated suppression of IL-2 production, because the

production of IL-2 by stimulated transgenic CD4+ T cells

was significantly decreased compared with that by con-

trol cells. In contrast, IL-2 production was remarkably

increased in CKO T cells, indicating that Blimp-1 critic-

ally modulates T cell activation and proliferation [35].

Blimp-1-deficiency in T cells results in both enhanced

proliferation and attenuated AICD, resulting in aber-

rantly large numbers of activated T cells. However, the

detailed mechanism by which Blimp-1 regulates prolifer-

ation and cell death needs further investigation.

During chronic and acute viral infections, the antiviral

T cell response is controlled through a host-regulated

process. Hua et al. identified T-bet- and Blimp-1-

dependent development of CD4+ T cells with cytotoxic

potential and showed that this development was induced

during influenza virus infection by antiviral type I IFNs

and IL-2. Blimp-1 deficiency impaired the binding of T-

bet to the Gzmb and Prf1 promoters, suggesting that

Blimp-1 controls the development of CD4+ T cells with

cytotoxic potential by regulating the binding of T-bet to

the promoters of the genes for cytolytic molecules [40].

In addition, increasing expression of IL-10 regulates the

suppression of viral-specific T cell responses. A recent

study demonstrated that virus-specific Th1 cells with el-

evated and sustained Blimp-1-dependent IL-10 expres-

sion displayed reduced inflammatory function during

chronic LCMV infection [41]. Another study showed

that Blimp-1 is highly expressed in CD4+ memory T cells

compared with naive CD4+ T cells and that it limits

HIV-1 transcription in CD4+ memory T cell subsets, the

primary reservoir of latent HIV-1 [42]. Therefore,

Blimp-1 plays an important role in regulating the ef-

fector function of CD4+ T cells during viral infections to

maintain T cell homeostasis.

Blimp-1 controls T cell differentiations

Naïve CD4+ T cells can differentiate into different ef-

fector lineages including Th1, Th2, Th17 and Treg cells

that express lineage-specific transcription factors (such

as T-bet, GATA3, retinoic acid-related orphan receptor

(ROR)γt or Foxp3) upon environmental stimulation and

in a specific cytokine milieu [43]. Using a GFP knock-in

strategy to delete Blimp-1 in T cells, it was demonstrated
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that Prdm1gfp/gfp CD4+ T cells can differentiate into Th1

and Th2 effector cells that secrete levels of IFN-γ, IL-4

and IL-10 similar to those produced by wild-type ef-

fector cells, indicating that Blimp-1 is not required for

initiation of differentiation and cytokine production.

These findings suggest that early CD4+ T cell effector

differentiation is independent of Blimp-1 and that

Blimp-1 expression is not essential for the acquisition of

effector functions in the T-cell lineage [9]. Blimp-1 con-

trols the differentiation of some Th cell lineages, includ-

ing promoting Th2 lineage commitment by opposing the

differentiation of IFN-γ-secreting Th1 cells [11], antag-

onizing follicular Th (Tfh) cells [12] and cooperating

with IRF4 to maintain the function of Treg cells [14].

Th1 cells also express Blimp-1 to limit Tfh lineage com-

mitment by suppressing the expression of both Bcl6 and

C-X-C chemokine receptor type 5 (CXCR5), a chemo-

kine receptor that is characterized as a signature marker

for Tfh cells migrating into B-cell follicles [44, 45]. Re-

cently, several studies reported that Blimp-1 regulates

IL-17-secreting Th17 cells [26, 35, 39]. Lin et al. demon-

strated that transgenic expression of Blimp-1 in T cells

attenuates autoimmune diabetes through suppression of

Th17 cells, while Blimp-1 deficiency leads to an increase

in Th17 cells [35]. In addition, Blimp-1 regulates and

maintains homeostasis of the intestinal mucosa by limit-

ing the numbers of Th17 cells [26]. Disruption of the IL-

23–Th17 axis ameliorates the severity of T cell-specific

Blimp-1 deficiency-mediated colitis in CKO mice [39].

Elevated susceptibility to experimental autoimmune en-

cephalomyelitis in Blimp-1-deficient mice involves in-

creased Th1 and Th17 responses [38]. Deletion of

Blimp-1 in T cells leads to the inability to suppress Th1

and Th17 cells in mice with colitis or autoimmune dia-

betes [9, 10, 26, 35, 39]. Therefore, Blimp-1 is clearly

central to effector CD4+ T cell differentiation.

The interplay between Blimp-1 and cytokines

Kallies et al. and Martins et al. agree that Blimp-1-

deficient CD4+ T cells produce higher levels of IL-2 and

IFN-γ but less IL-10 and IL-4 [9, 10] than wild-type

cells. Further reports showed that the mean fluorescence

intensity of IFN-γ staining per cell in these CKO CD4+

T cells was increased, indicating that each CKO cell pro-

duces more IFN-γ. Blimp-1 attenuates IFN-γ production

in CD4+ T cells activated in vitro under nonpolarizing

conditions and in vivo [11, 35, 38]. Wang et al. showed

that Blimp-1 is very strongly induced and plays a role in

IL-2 inhibition when naive T cells are stimulated in the

presence of IL-4, both in vitro and in vivo [46]. IL-2 is

critical for T cell immunity to promote proliferation, ac-

tivation and differentiation of T cells [47]; it induces

Blimp-1 expression in activated T cells and inhibits its

own production through the induction of Blimp-1 in a

negative feedback loop [15, 16]. Lack of Blimp-1 expres-

sion in CD4+ cells under the control of the proximal-Lck

or Cd4 promoters leads to intrinsic functional defects

and an increase in IL-17-producing cells in vivo, estab-

lishing a new role for Blimp-1 in regulating IL-17 pro-

duction [26, 35, 38, 39]. The overexpansion of Th1 and

Th17 cells in CKO mice was significantly reduced by

introducing a Blimp-1 transgene, supporting the crucial

role of Blimp-1 in autoimmunity [35, 38]. Thymic dele-

tion of Blimp-1 in T cells results in T cell development

defects and spontaneous autoimmunity. However, per-

ipheral deletion of Blimp-1 driven by the distal-Lck pro-

moter led to reduced Th17 activation and reduced

severity of autoimmune encephalomyelitis. Jain et al. also

identified Blimp-1 as a key transcription factor induced

by IL-23 to drive the inflammatory function of Th17

cells by enhancing expression of IL-23 receptor,

granulocyte-macrophage colony stimulating factor and

IFN-γ in the peripheral T cells [36].

IL-21 is a pleiotropic cytokine that induces expression

of Blimp-1 that is controlled by cooperation between

signal transducer and activator of transcription 3

(STAT3) and IRF4 [17]. A high percentage and absolute

number of IL-21-producing CD4+ T cells were observed

in MOG35–55-immunized Blimp-1-deficient mice, and

the numbers of central nervous system (CNS)-infiltrat-

ing Th1, Th17, IFN-γ+IL-17A+ and IL-21+IL-17A+ CD4+

T cells were markedly increased in the brain and spinal

cord of these Blimp-1 CKO mice at an early effector

phase, suggesting a critical role of Blimp-1 in control of

IL-21 production [38]. These findings raise the possibil-

ity that a negative feedback loop exists wherein IL-21 in-

hibits its own production through induction of Blimp-1;

this possibility needs to be further investigated.

IL-10 is an anti-inflammatory cytokine produced by

CD4+ T cells, Treg cells, CD8+ T cells, dendritic cells

(DCs), macrophages and B cells [48]. IL-10-producing

CD4+ T cells have been reported to be a self-regulation

mechanism during viral or parasitic infections [49, 50].

A population of effector T cells producing IL-10 (IL-10
+IFN-γ+ double producers) defined as T regulatory 1

(Tr1) cells is responsible for T-cell plasticity or repro-

gramming [51]. Blimp-1 has been implicated as a key

transcription factor involved in the molecular mechanisms

directing IL-10 production in effector T cells. Blimp-1-

deficient CD4+ T cells produce less IL-10 [9, 10], and tar-

geting tumor necrosis factor receptor 1 assembly in

Blimp-1 CKO mice regulates Th1/Th17 effector status by

increasing the frequency of IL-10-producing cells and the

levels of IL-10 in Th1 and Th17 cells [39]. Virus-specific

T cells self-limit their responsiveness and reduce their in-

flammatory function via Blimp-1-dependent IL-10 expres-

sion during chronic LCMV infection [41]. Type I

interferon-mediated induction of Blimp-1, and a
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subsequent expansion of Tr1 cells, has been reported to

limit Plasmodium-specific Tfh accumulation and to con-

strain antimalarial humoral immunity during blood-stage

Plasmodium infection [52]. In addition, IL-27, together

with TGF-β, is critical for IL-10 production in Th1-driven

immune responses both in vitro and in models of infec-

tion with Toxoplasma gondii [53, 54]. Moreover, IL-23

counteracts the IL-27- and IL-12-mediated effects on

Blimp-1-induced Tr1 development and stabilizes the in-

flammatory Th17 phenotype, leading to uncontrolled

Th17 cell-driven CNS pathology [18]. TGF-β antagonizes

Blimp-1, is a key driver of IL-10 production in proinflam-

matory effector T cells downstream of IL-12 and IL-27,

and shifts IL-10 regulation from a Blimp-1-dependent to a

Blimp-1-independent pathway by inducing c-Maf in Tr1

cells [19]. Importantly, Blimp-1-dependent IL-10 produc-

tion by Tr1 cells is a major regulator of tumor necrosis

factor (TNF)-mediated inflammation [55]. In summary,

these studies demonstrate an essential role for Blimp-1 in

the transcriptional framework regulating the intrinsic

plasticity of Th cells in an inflammatory milieu.

Blimp-1 controls regulatory T cell function

Treg cells are required for peripheral tolerance, and

Blimp-1 is a target of Foxp3 in Treg cells [56]. Because

Treg cells are dependent on IL-2 for their maintenance,

the feedback regulatory loop between Blimp-1 and IL-2

shown in activated T cells may also be important for

Treg homeostasis.

IL-10 production by Tregs is significantly downregu-

lated in Blimp-1-CKO mice, suggesting that Blimp-1 has a

critical role in Treg function, which is important for limit-

ing severe T cell-mediated immune pathology [10, 38].

However, Kallies et al. reported that Blimp-1-deficient

Treg cells protect lymphopenic hosts from colitis elicited

by injection of T cell populations depleted of Treg cells

[9]. Intriguingly, Blimp-1 overexpression upregulates the

suppressive ability of Treg cells in Blimp-1-transgenic or

Blimp-1-CKO mice, suggesting that Blimp-1 critically

modulates and rescues the expansion and functions of

Tregs [35, 38]. Importantly, the acquisition of Treg ef-

fector functions in Foxp3+ Tregs by production of IL-10

also requires the expression of Blimp-1 [14, 57]. A popula-

tion of follicular regulatory T (TFR) cells expressing

Blimp-1was identified in the germinal center, which lim-

ited Tfh cell and germinal center B cell numbers. Notably,

Bcl-6 is essential for TFR cell formation, and Blimp-1

limits the numbers of TFR cells, suggesting that Bcl-6 co-

ordinates with Blimp-1 to control TFR formation and

homeostasis [58]. Blimp-1 was also upregulated in associ-

ation with the activation of virus-reactive T-bet+ Treg and

with acquired expression of IL-10 in a mouse model of in-

fluenza virus infection, thereby conferring a functional

specialization to an antiviral immune response [59].

Furthermore, Blimp-1, together with elevated levels of

TGF-β, IL-10, IFN-β and CXCR3, plays a crucial role in

the ability of graft-infiltrating Foxp3+ Treg cells to main-

tain spontaneously induced kidney allograft tolerance in

the DBA/2 (H-2d) to C57BL/6 (H-2b) mouse strain com-

bination [60]. Therefore, upregulation of Blimp-1 is essen-

tial for modulating the immunoregulatory and effector

functions of Treg cells.

Blimp-1 is associated with CD4+ T cell exhaustion

During chronic viral infection, both the CD4+ and CD8+

T cell responses are impaired by a dysfunctional or

exhausted state characterized by diminished effector

function and enhanced expression of inhibitory mole-

cules in T cells [61]. Higher levels of BLIMP-1 are

expressed in T cells from patients with progressive

chronic HIV infection [62] and are associated with lower

levels of HIV expression in memory CD4+ T cells from

nonprogressors [63]. BLIMP-1 is also induced in T cells

stimulated by HIV-pulsed DCs and is associated at both

the RNA and protein levels with other protein markers

of exhaustion, including programmed death-1 (PD-1),

lymphocyte activation gene-3 (LAG-3), cytolytic T-

lymphocyte antigen-4 (CTLA-4) and T-cell immuno-

globulin mucin-containing domain-3 (TIM-3) [64, 65].

Interestingly, expression of BLIMP-1 is translationally

regulated by microRNA miR-9 [66]. Reduced levels of

miR-9 in CD4+ T cells have been shown to play a func-

tional role in the higher levels of BLIMP-1 expression in

patients with progressive chronic HIV infection who

have reduced IL-2 expression and generalized T-cell dys-

function, indicating a novel miR-9/BLIMP-1/IL-2 axis

that is dysregulated in progressive HIV infection [62].

Elevated expression of IL-10 mediated by Blimp-1 is

involved in the suppression of viral-specific T cell re-

sponses during the course of chronic LCMV infection

[41]. In addition, Blimp-1 is a critical regulator of CD4 T

cell exhaustion with elevated levels of inhibitory factors

being expressed during chronic toxoplasmosis [67].

Therefore, Blimp-1 is highly upregulated in exhausted

CD4+ T cells.

CD8+ T cells

The effects of Blimp-1 on CD8+ T cell differentiation

Over recent years, the functions of Blimp-1 in program-

ming the differentiation of CD8+ T cells have been grad-

ually established. During acute LCMV infection, a

deficiency of Blimp-1 in activated CD8+ T cells

(Prdm1flox/flox GzB-cre+ mice) disturbs the normal ex-

pression of several cytolytic molecules. Blimp-1-deficient

CD8+ T cells acquired mature memory features includ-

ing enhanced survival, proliferation potential, IL-2 pro-

duction and increased formation of KLRG1loIL-7Rhi

MPECs as well as CD62Lhi CM CD8+ T cells at early
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time points after infection. In addition, in the absence of

Blimp-1, the transition rate from effector to memory

cells was increased, indicating that Blimp-1 is critical in

the development of CD8+ T cells during viral infection

at stages from terminal differentiation to memory cell

maturation [28]. During chronic infection, virus-

specific CD8+ T cells become exhausted and accom-

panied by a hierarchical loss of effector function and

sustained expression of several inhibitory molecules.

In exhausted CD8+ T cells, Blimp-1 plays an import-

ant role in the regulation of expression of inhibitory

molecules including PD-1, 2B4, LAG-3 and CD160,

indicating that it has a role in controlling T cell ex-

haustion during chronic viral infection. Moreover,

Blimp-1 functions as a transcriptional rheostat that

intrinsically regulates the effector function and the

exhaustion of CD8+ T cells at low and high expres-

sion levels, respectively [31]. In addition to its role

during viral infection, Blimp-1 also affects effector

CD8+ T cell differentiation during DC vaccination.

However, the expansion of CD8+ T cells and the for-

mation of functional memory T cells is not affected

in Blimp-1-deficient OT-I cells responding to DC vac-

cination, suggesting a critical role for Blimp-1 in the

formation of SLECs but not MPECs in the absence of

inflammation [68].

IRF4 directly binds to the regulatory elements of

Prdm1 to control Blimp-1 expression. During Listeria

monocytogenes infection, Irf4−/− CD8+ T cells retained

a “precursor-like” state with impaired acquisition of

an effector phenotype that was similar to that of

Prdm1−/− CD8+ T cells, suggesting that IRF-4 func-

tions upstream of Blimp-1 in the development of pro-

tective effector CD8+ T cells during an immune

response against an intracellular bacterium [69]. Dur-

ing virus infection, signals via costimulatory molecules

and cytokines are critical for the generation of ef-

fector CD8+ T cells. After virus clearance, downregu-

lation of costimulatory and cytokine receptors may

promote apoptosis of the effector population. Blimp-1

can recruit the histone-modifying enzymes G9a and

histone deacetylase 2 (HDAC2) to the regulatory ele-

ments of Il2ra and Cd27, thereby repressing the ex-

pression of these genes, further dictating the fate of

effector CD8+ T cells [70]. Previous studies estab-

lished a critical role for Blimp-1 in integrating inflam-

mation and antigen signaling during effector T cell

priming. Recently, Stelekati et al. demonstrated that

the negative impact of persistent LCMV infection on

CD127+KLRG1− memory CD8+ T cell development

was abolished in Prdm1flox/flox Gzmb-Cre OT1 cells,

suggesting that Blimp-1 regulates memory CD8+ T

cell differentiation in the presence of bystander

chronic infection and prolonged inflammation [71].

The effects of Blimp-1 on effector functions of CD8+ T cells

Blimp-1, Bcl-6, T-bet and Eomes orchestrate a transcrip-

tional program that regulates the differentiation of ef-

fector and memory CD8+ T cells. In addition to cell

differentiation, Blimp-1 is required for the function of

cytotoxic T cells. Kallies et al. demonstrated that Blimp-

1 is required for the migration of viral antigen-specific

CD8+ T cells from lymph nodes into the lungs during in-

fluenza virus infection. They observed that Blimp-1-

deficient T cells had decreased and elevated expression

of lung-homing CCR5 and lymph organ-localizing

CCR7, respectively, suggesting that Blimp-1 suppresses

CCR7 expression to control the efficient trafficking of

CD8+ T cells from lymph nodes to peripheral tissues

[27]. Blimp-1 is also required for the cytotoxic function

of CD8+ T cells. Conditional deletion of Blimp-1 in acti-

vated CD8+ T cells (Prdm1flox/flox Gzmb-Cre) did not

affect the production of effector cytokines and CD107a

but attenuated the granzyme B expression and cytotox-

icity of viral antigen-specific CD8+ T cells during chronic

infection [31]. Rutishauser et al. also observed that

Blimp-1-deficient cytotoxic T cells had decreased gran-

zyme B expression after acute LCMV infection. More-

over, their results revealed that the percentage of

polyfunctional (IFN-γ, TNF-α and IL-2 triple cytokine-

producing) cells was increased in Prdm1−/− (Prdm1flox/

flox GzB-Cre) mice. In addition to altering effector mol-

ecule expression, Blimp-1 antagonized the proliferation

of virus-specific effector CD8+ T cells stimulated by viral

antigens and homeostatic cytokines [28].

Inhibitor of DNA binding 3 (Id3) is expressed by ef-

fector CD8+ T cells and supports their survival during

the effector-to-memory cell transition. Ji et al. demon-

strated that Blimp-1 triggers the death of terminally dif-

ferentiated CD8+ T cells through directly repressing Id3

expression and consequently increasing E2A transcrip-

tional activity [29]. It is well established that CD25, a

subunit of the IL-2 receptor, and CD27, a costimulatory

molecule in the TNF receptor family, play important

roles in regulating CD8+ responses, proliferation and

survival during the different stages of viral infection

[72–75]. Blimp-1 acts as an epigenetic regulator to con-

trol the chromatin state of Cd25 and Cd27 by recruiting

histone-modifying enzymes G9a and HDAC2, but not

Ezh2, in CD8+ T cells at the peak of the response to

LCMV infection, suggesting that Blimp-1 downregulates

cytokine receptor expression to promote the death of ef-

fector cells [70].

In contrast to its function as a repressor, Blimp-1 can

also function as an enhancer of IL-10 production. Dur-

ing influenza virus infection, antiviral CD8+ cytotoxic T

lymphocytes produce IL-10 to prevent excess inflamma-

tion [76]. Sun et al. demonstrated that CD4+ T cell-

produced IL-2 and innate cell-derived IL-27 act
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synergistically via Blimp-1 to amplify IL-10 production

in CD8+ T cells in the respiratory tract during influenza

virus infection [77]. Moreover, the authors recently

demonstrated that type I interferons can enhance the

synergistic effect of IL-2 and IL-27 to promote Blimp-1-

mediatedI L-10 production by effector CD8+ T cells dur-

ing influenza infection [78].

Transcriptional regulation of Blimp-1 in T cells

Blimp-1 in T cells is induced upon activation. Blimp-1 is

associated with an abundance of chromatin-modifying

enzymes that induce epigenetic changes at specific tar-

gets or recruit corepressor complexes to mediate gene

silencing to regulate diverse cell fates [24].

CD4+ T cells

Transcriptional control of Blimp-1 in CD4+ T cells

It has been reported that nuclear factor-κB signaling is

required for induction of Prdm1 expression in B cells

[79]. In addition, the BTB and CNC homology 2 (Bach2)

protein functions mainly to repress Blimp-1 in B cells

[4]. Recently, Bach2 was shown to be expressed also in

T cells and to function as a critical regulator suppressing

EM-related genes in naive T cells [80]. The expression of

Bach2 mRNA is high in CD4 single-positive thymocytes,

Foxp3+ CD4 single-positive thymocytes, naïve T cells,

splenic CD4+ and CD8+ T cells, and Treg cells in the

spleen, but very low in DN, DP and CD8 single-positive

thymocytes [80, 81]. Although the protein expression of

Bach2 in naive T cells is high, it is lower than that in B

cells [80]. Bach2 plays crucial roles in CD4+ T cell differ-

entiation, generation of EM T cells and survival and de-

velopment of Treg cells by regulating the effector and

differentiation transcriptional program. Blimp-1, upregu-

lated in EM T cells, is repressed by Bach2 in T cells, con-

sistent with its repression by Bach2 in B cells [80–82].

The level of Prdm1 expression was elevated in Bach2−/−

Treg cells or naive Bach2−/− CD4 T cells after TCR

stimulation [80, 82]. Binding of Bach2 to Prdm1 was

measured in induced Treg cells by chromatin immuno-

precipitation with massively parallel sequencing (ChIP-

Seq) [81]. Bach2 protein functions mainly to repress

Blimp-1 in T cells to regulate T cell homeostasis, activa-

tion and differentiation. Other studies have also indi-

cated that the abundance of Blimp-1, and consequently

the secretion of proinflammatory cytokines, is regulated

by enhancing miR-9 expression to target the 3′ untrans-

lated region of Prdm1 upon TCR activation [62, 66]. To-

gether, these data indicate that Blimp-1 can be regulated

at transcriptional and posttranscriptional levels.

Transcriptional involvement of Blimp-1 in effector T cells

Blimp-1 is expressed in memory and effector popula-

tions of T cells [9, 10]. Blimp-1 antagonizes the

expression of Bcl-6 to regulate the effector function and

differentiation program not only of B cells but also of T

cells [23]. Martins et al. reported that Blimp-1 CKO

CD4+ effector T cells had twice the abundance of Bcl6

mRNA transcripts as did control effector cells, indicat-

ing that Bcl-6 repression was impaired in Blimp-1-

deleted CD4+ effector T cells [10]. Moreover, Bach2 sup-

presses the EM-related expression of ST-2, Blimp-1, IL-

10 and S100a to maintain the naïve status of T cells in a

cell-intrinsic manner. Expression of these EM-related

proteins was upregulated in Bach2−/− naive T cells [80].

Therefore, Blimp-1 is a critical component in the com-

plex genetic programs that control effector and memory

lymphocytes.

Cooperation of Blimp-1 with transcription factors in T

helper differentiation

An emerging role of Blimp-1 is to regulate differenti-

ation programs in T cells. The Bcl-6 and Blimp-1 regula-

tory axis is critical for B cell differentiation, while Blimp-

1 expression is repressed by Bcl-6 in mature B cells. In

T cells, Blimp-1 also functions as an antagonistic tran-

scription factor because Blimp-1 expression is sup-

pressed when Bcl-6 expression is initiated [10]. Initial

reports have indicated high levels of Bcl-6 expression in

the Tfh cells responsible for the antigen-specific regula-

tion of B cell immunity, while high levels of Blimp-1 are

expressed in non-Tfh cells [12, 23, 83].

Bcl-6 is involved in Th1 differentiation by repressing

Th2 cytokine expression via decreasing GATA3 protein

levels [84] and repressing IL-5 transcription [85]. In con-

trast to Bcl-6, Blimp-1 counteracts Th1 differentiation

during Th2 lineage commitment by directly binding to

Ifng, Tbx21 and Bcl6 genes. Blimp-1 mRNA and protein

are more highly expressed in Th2 cells than in Th1 cells,

and mice lacking Blimp-1 in CD4+ T cells exhibit im-

paired humoral Th2 responses. However, Bcl-6 mRNA is

more highly expressed in Th1 cells than in Th2 cells

[11]. In addition, Bach2−/− naive T cells have increased

expression of IL-4, IL-10, Blimp-1 and GATA3, suggest-

ing that a lack of the Blimp-1 repressor in T cells predis-

poses them to differentiate into Th2 cells [80]. The

suppressive effect of Blimp-1 in Th1 cells is supported

by evidence that transgenic Blimp-1 expression in T cells

attenuates Th1 cell expansion through downregulation

of Tbx21 and Ifng [35]. Other studies also indicated that

Blimp-1 is able to bind to at least one site in the Il17a

gene in Th2 cells but that this is not sufficient to down-

regulate Il17a transcription in cells stimulated under

Th17 conditions [26]. Blimp-1 is reported to impede the

development of Th17 cells via Rora and Rorc downregu-

lation after transgenic Blimp-1 expression in Blimp-1 de-

ficient T cells under control of the proximal-Lck

promoter [35]. However, peripheral deletion of Blimp-1
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resulted in reduced Th17 activation, and IL-23-induced

Blimp-1 was found to colocalize with RORγt, STAT3

and p300 at the Il23r, Il17a/f and Csf2 cytokine genes to

enhance their expression and to drive the inflammatory

function of Th17 cells [36]. The mechanism by which

Blimp-1 regulates Th17-mediated immunopathology de-

pends on the model that is used, and it causes either

thymic T cell developmental defects or deletion of genes

during the late SP thymocyte developmental stage that

continues in peripheral T cells.

Bcl-6 orchestrates Tfh cell lineage commitment to

support B cell maturation into antibody-producing cells

[86], whereas Blimp-1 functions as an antagonistic tran-

scription factor to oppose Tfh cell differentiation [12].

Fazilleau et al. demonstrated that the differentiation and

diversity of effector Tfh cells in vivo was related to the

strength of TCR binding. Expression of Blimp-1 distin-

guished “lymphoid” Th effector cells (CD62LhiCCR7hi)

from those Bcl-6-expressing CXCR5hi “resident” effector

Tfh cells (CD62LloCCR7lo) by high expression of IL-4,

IL-21 and PD-1 after stimulation with TCR of higher af-

finity [83]. Multiple signals are involved in negatively

regulating Tfh cells. Recent studies have reported that

STAT5 signaling, induced by IL-2, negatively regulates

Tfh cell differentiation and controls humoral immunity

and B cell tolerance by upregulating Blimp-1 to repress

Bcl6 expression, suggesting that the IL-2/STAT5 axis

functions to regulate Blimp-1 expression [87, 88]. It has

been reported that there is a flexibility between Th1 and

Tfh-like gene expression patterns as a result of strong

IL-2 signaling that decreases the ratio of Bcl-6 to T-bet

and controls the Bcl-6–Blimp-1 axis, leading to Blimp-1-

mediated repression of Tfh signature genes in effector

Th1 cells [45]. Another transcription factor, Kruppel-like

factor 2 (KLF2), binds to the promoter region of Prdm1

and restricts Tfh cell differentiation by inducing Blimp-1

to inhibit Bcl-6 expression after T cell activation [89].

Notably, recent studies have demonstrated a critical role

for T cell factor 1 (TCF-1) function upstream of the Bcl-

6–Blimp-1 axis to direct the differentiation of the Tfh

lineage [90–92]. After viral infection, effector CD4+ T

cells differentiate into TCF-1highBlimp-1low Tfh and

TCF-1lowBlimp-1high Th1 cells. In the absence of TCF-1,

cells were unable to maintain the transcriptional and

metabolic signatures of Tfh cells and displayed an abnor-

mal “Th1-like” gene expression profile with increased

expression of Il2ra and Prdm1, which limit the Tfh re-

sponse [91]. TCF-1 was also found to bind directly to

the Bcl6 promoter and Prdm1 5′ regulatory regions,

resulting in activation of Bcl-6 but repression of Blimp-1

[92]. Downregulation of TCF-1 binding to the Prdm1 in-

tron leads to upregulation of Blimp-1 and Blimp-1-

mediated repression of Bcl-6 in Th1 cells, while its re-

tention on the upstream region of Bcl6 in Tfh cells

results in upregulation of Bcl-6 and suppression of

Blimp-1 during Tfh differentiation [90]. Consequently,

the balance between Bcl-6 and Blimp-1 expression in T

cells plays an essential role in regulating T cell

differentiation.

Transcriptional regulation of Blimp-1 in cytokine production

Blimp-1 is also crucial for inducing cytokine production

by inflammatory T helper cells and effector Treg cells.

The gene encoding IL-2 is one of the most import-

ant genes targeted by Blimp-1 in T cells, because IL-2

production is indispensable for T cell proliferation

and differentiation. The relationship between IL-2 and

Blimp-1 was reported as a negative feedback loop in

which IL-2 signaling induces Prdm1 transcription and

Blimp-1 represses Il2 transcription in T cells [15].

Further studies reveal that IL-2 production in Blimp-

1-deficient CD4+ T cells is upregulated upon TCR

stimulation and that Blimp-1 in T cells represses IL-2

production by direct repression of Il2 and Fos tran-

scription [10, 16]. Furthermore, IL-21-activated

STAT3 is a potent inducer of Blimp-1 expression in B

cells [93] and CD4+ T cells [17]. The molecular basis

for IL-21-mediated Blimp-1 induction in CD4+ T cells

was clarified by the identification of an IL-21 re-

sponse element downstream of Prdm1 that binds

STAT3 and IRF4, which cooperatively mediate signaling

and are required for optimal Prdm1 expression [17].

IRF4 regulates the activation of Blimp-1 expression

not only during plasma cell differentiation [94] but also

in all effector Treg cells by binding strongly to two pre-

viously identified binding sites in the 3′ region and be-

tween exons 5 and 6 of Prdm1 (conserved noncoding

sequence 9) [14]. Strong binding of IRF4 to the first in-

trons of Il10 and Ccr6 and binding of Blimp-1 specific-

ally to intron 1 of the Il10 locus were further identified

by chromatin immunoprecipitation (ChIP) analysis, sug-

gesting that IRF4 together with Blimp-1 regulates Il10

expression in Treg cells. This study also demonstrated

that both IRF4 and Blimp-1 are required for active his-

tone modification and that the IRF4–Blimp-1 axis is es-

sential for the acquisition of Treg cell effector functions

[14]. Consistent with these features of effector Treg cells,

TFR cells express elevated levels of Blimp-1, IL-10, GITR,

CTLA-4 and inducible T cell costimulator [58]. Blimp-1

expression specifies a distinct population of effector

Treg cells expressing the anti-inflammatory cytokine IL-

10 and is important for the function and homeostasis of

Treg cells.

Blimp-1 deficiency in T cells results in downregulation

of IL-10 production [9, 10], and Blimp-1 is critical for

IL-10 expression in Treg cells [14]. Likewise, the IL-27-

mediated induction of IL-10 in CD8+ T cells depends on

Blimp-1 [77]. An early study of IL-27 signal transduction

Fu et al. Journal of Biomedical Science  (2017) 24:49 Page 9 of 17



for IL-10 production in CD4+ T cells indicated that the

involvement of early growth response gene 2 (Egr-2) and

Blimp-1 is required for IL-10 production in CD4+ T cells

and controls the balance between regulatory and inflam-

matory cytokines. Furthermore, this study demonstrated

that IL-27-induced expression of Egr-2, which binds to

the promoter region of Prdm1 to activate its transcrip-

tion, is dependent on STAT3 in CD4+ T cells [95]. Pub-

lished studies have further identified an essential

function for Blimp-1 in IL-10 production induced by IL-

27 in inflammatory T helper cells [18, 19]. Notably, pre-

committed Th17 cells adopt an IL-27- and IL-12-

mediated Tr1-like phenotype, producing IL-10 and IFN-

γ, by upregulating Blimp-1, while IL-12 signaling results

in phosphorylation of STAT4, which binds directly to

regulatory elements of Prdm1 [18]. Blimp-1 is also es-

sential for IL-10 expression by Th1 cells through direct

binding to a regulatory element in the Il10 locus that is

mainly dependent on IL-12-mediated activation of

STAT4, which binds to conserved noncoding sequence-

sin the Prdm1 locus and to the same region (conserved

noncoding sequence-9) as Blimp-1 in the Il10 locus. In

addition, c-Maf acts synergistically with Blimp-1 to in-

duce IL-10 expression in Th1 cells by binding to the

conserved noncoding sequence-9 region in the Il10 pro-

moter, the same region bound by Blimp-1 and STAT4.

c-Maf further enhances Blimp-1 expression by binding

to the intron 5 Maf recognition site but not to the pro-

moter of Prdm1, suggesting that it interferes with the re-

pressive function of Bach2 by binding to the same DNA

motif [19]. These studies have also demonstrated that

IL-27 induces Blimp-1-dependent IL-10 production in

Th cells, whereas TGF-β antagonizes Blimp-1 expression

and mediates IL-10 production driven by c-Maf and

AhR [18, 19], consistent with a previous report that

TGF-β acts as a suppressor of Blimp-1 expression during

Th17 differentiation [26]. Therefore, Blimp-1 regulates

cytokine production by T cells via a complex pathway co-

ordinated by diverse transcriptional programs depending

on various stimuli from the surrounding environment.

CD8+ T cells

The molecular regulation of Blimp-1 expression in CD8+ T

cells

The molecular regulation of Blimp-1 expression is dis-

tinct in naïve, effector and memory CD8+ T cells. Previ-

ous studies demonstrated that additional culture of

activated CD8+ T cells in IL-2, IL-4 or IL-12 but not in

IL-15 maintains the expression of Blimp-1 [15]. IL-21 in-

duces higher and more rapid expression of Prdm1 in T

cells than does IL-4 stimulation. The induction of Prdm1

expression by IL-21 was abrogated and diminished in

Stat3−/− and Irf4−/− T cells, indicating that IL-21-

mediated Prdm1 gene expression is dependent on

STAT3 and IRF4. ChIP and luciferase assay experiments

revealed that STAT3 and IRF4 broadly cooperate to

regulate IL-21-induced Prdm1 gene expression in T cells

[17, 69]. Cui et al. demonstrated that the IL-21–IL-10–

STAT3 pathway is critical to the differentiation, matur-

ation and self-renewal of memory CD8+ T cells during

LCMV infection through regulating individual transcrip-

tion factors including Blimp-1, Eomes and Bcl-6. The

amounts of Eomes, T-bet, Bcl-6 and Blimp-1 protein in

Stat3−/− CD8+ T cells are comparable to those in Stat3
+/+ cells at day 8 after LCMV infection, suggesting that

STAT3 signaling is not critical to the translational ex-

pression of these molecules in the differentiation of ef-

fector CD8+ T cells. However, the expression of Blimp-1,

Eomes and Bcl-6 was significantly decreased in Stat3−/−

memory T cells compared with Stat3+/+ memory cells,

suggesting that IL-21–IL10–STAT3 signaling necessarily

regulates Blimp-1 expression during the effector-to-

memory transition [96].

During DC vaccination, the expression of Blimp-1 was

correlated with the number of antigen-specific T cells.

The expression of Prdm1 was more highly induced in ef-

fectors when low numbers (104) compared with high

(106) numbers of OT-I cells were transferred prior to

DC vaccination. Moreover, the induction of Prdm1 was

dependent on IL-2, indicating that the IL-2/Blimp-1 axis

is a key regulator of SLEC differentiation in vivo in this

low-inflammation model of DC immunization [68]. Dur-

ing influenza virus infection, the splenic IL-2Rα-

deficient antigen-specific CD8+ T cells fail to develop

into KLRG1+IL-7R− SLECs and express less Blimp-1

than wild-type cells. However, the differentiated Il2Ra−/−

antigen-specific SLECs express high levels of Blimp-1,

indicating that IL-2 signaling is not essential for Blimp-1

expression but is required for its optimal expression in

CD8+ T cells during virus infection. Moreover, IL-2–

STAT5 can cooperate with IL-12–STAT4 to induce high

amounts of Blimp-1 and SLEC differentiation [97].

The Hippo pathway, a conserved developmental sys-

tem triggered by cell–cell contact signals to trigger dif-

ferentiation, induces yes-associated protein degradation

and Blimp-1 expression [98]. Rodriguez et al. demon-

strated that suppressor of cytokine signaling1 (Socs1)−/−

MHC-I-restricted premelanosome protein-1 (Pmel-1)

transgenic TCR CD8+ T cells expressed higher levels of

Blimp-1 upon stimulation with cognate self-antigen

(mgp10025–33) than did wild type Pmel-1 cells, suggest-

ing that SOCS1 regulates Blimp-1. However, the under-

lying mechanism of this effect is unknown [99]. Kurachi

et al. demonstrated that a basic leucine zipper transcrip-

tion factor (BATF) is essential for operation of the differ-

entiation checkpoint in early effector CD8+ T cells.

BATF binds to regulatory regions in Prdm1 and many

other genes encoding effector transcription factors to
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form a “BATF-centric” interaction network of transcrip-

tion factors to regulate the differentiation of effector

CD8+ T cells [100]. Moreover, BATF overexpression en-

hances Blimp-1 and granzyme B expression to promote

the quality and quantity of virus-specific CD8+ Tcells dur-

ing infection. In addition, the IL-21–STAT3–BATF axis

cooperates with antigen-induced IRF4 to maintain Blimp-

1 expression and CD8+ T cell effector functions [101].

Recently, Yamada et al. demonstrated that a deficiency

of menin, a tumor suppressor protein, in CD8+ T cells

will result in impaired immune responses of antigen-

specific CD8+ T cells to infection. Their results revealed

that menin inhibits terminal effector differentiation and

enhances memory development by suppressing expres-

sion of T-bet and Blimp-1 [102]. Although the under-

lying mechanism by which menin suppresses Blimp-1

expression is unknown, the authors suggest that menin

interacts with JunD and acts as a repressor of AP-1.

The molecular regulation of Blimp-1 in CD8+ T cell

functions

Growing evidence suggests that the interactions between

Blimp-1 and other factors mediate counter-regulatory

influences to produce functional T cells. After an acute

influenza virus infection, the transcriptional profiles of

Tbx21, Eomes and Bcl6 are changed in virus-specific

Blimp-1-deficient CD8+ T cells, suggesting that Blimp-1

is required for the differentiation of effector CD8+ T

cells by regulating the transcriptional programs of ef-

fector and memory T cell differentiation [27]. Recently,

Xin et al. demonstrated that Blimp-1 cooperates with T-

bet to drive effector CD8+ T cell differentiation by regu-

lating overlapping and distinct transcriptional signatures

during virus infection. T-bet overexpression partially

compensates for KLRG1 expression and downregulates

IL-7R and Eomes in Blimp-1-deficient CD8+ T cells dur-

ing viral antigen-specific SLEC differentiation and mem-

ory cell formation. However, T-bet protein expression

does not differ significantly between antigen-specific

wild-type and Blimp-1-deficient CD8+ T cells during in-

fluenza virus infection, indicating that the expression of

T-bet protein in CD8+ T cells is largely independent of

Blimp-1 [97]. Id2 and Id3 are expressed by effector CD8
+ T cells and support their survival during the naïve-to-

effector cell and effector-to-memory cell transitions, re-

spectively [103, 104]. Ji et al. demonstrated that Blimp-1

represses Id3 expression by directly targeting the Id3

promoter in effector CD8+ T cells. Id3 regulates the sur-

vival of SLECs partly through antagonizing the binding

of E2A to DNA, suggesting that the Blimp-1–Id3–E2A

axis determines the fate of effector CD8+ T cells [29]. In

addition to Id3, Blimp-1 directly regulates Il2ra and

Cd27 expression through recruitment of histone-

modifying enzymes H3 methyltransferase G9a and

HDAC2, indicating that Blimp-1 acts as an epigenetic

regulator to regulate effector CD8+ T cell development

in response to an acute virus challenge [70]. Moreover,

Blimp-1 directly represses Pd1 transcription by regulat-

ing expression of nuclear factor of activated T cells

(NFAT)c1, altering local chromatin structure and evict-

ing NFATc1 from its binding sites on the Pd1 gene dur-

ing the early stages of effector CD8+ T cell

differentiation after acute virus infection [105].

Genetic disruption of Blimp-1 in T cells and its ef-

fect on predisposition to disease

The role of Blimp-1 in autoimmune diseases, infectious

diseases and lymphoid malignancies has been studied

intensively.

Animal disease models

Blimp-1 is expressed in effector T cells and is required for

controlling their homeostasis. Mice either lacking Blimp-1

specifically in T cells or reconstituted with Blimp-1-

deficient fetal liver cells develop progressive colitis or a le-

thal wasting disease with increased effector CD4+ and

CD8+ T lymphocyte infiltration [9, 10]. C57BL/6 mice in

which Blimp-1 is ablated develop severe colitis. A similar

phenotype is observed in NOD mice with T cell-specific

Blimp-1 disruption that have increased Th1/Th17 effector

cell populations [35, 39], while transgenic Blimp-1 attenu-

ates the diabetogenic effect of lymphocytes and thereby

ameliorates the disease progression of autoimmune dia-

betes in NOD mice [35]. Blimp-1 is also able to suppress

autoimmune encephalomyelitis through downregulation

of Th1 and Th17 cells [38].

The function of Blimp-1 has been studied in multiple

infectious disease models. During influenza virus infec-

tion, deficiency of Blimp-1 in T cells (Prdm1flox/flox prox-

imal-Lck-Cre) will lead to a delayed recovery from

infection and increased cellular infiltration in the lungs,

indicating a significant role of Blimp-1 in T cell responses

against influenza infection [27]. Although Blimp-1-

deficient memory CD8+ T cells are capable of providing

protection during a second LCMV infection [28], double

mutant Tbx21−/−Prdm1flox/floxLck-Cre mice showed accel-

erated weight loss and death during LCMV infection com-

pared with single-mutant and wild-type mice, indicating

that Blimp-1 cooperates with T-bet for the differentiation

of protective effector CD8+ T cells [97].

Blimp-1 also participates in the development of T cell

lymphoma. High expression of the Itk-Syk oncogene in

thymocytes induces Blimp-1 expression regulated by

STAT3 and IRF4 cooperation. Furthermore, the high Itk-

Syk-expressing thymocytes may undergo Blimp-1-

mediated premature terminal differentiation, leading to

the elimination of oncogene-expressing cells at an early

developmental stage. In contrast, the expression of
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a b

Fig. 1 Regulators for Blimp-1 expression in a CD4+ T cells and b CD8+ T cells. Bach2, BTB and CNC homology 2; BATF, Basic leucine zipper tran-

scription factor; Blimp-1, B lymphocyte-induced maturation protein-1; Egr-2, Early growth response gene 2; IL, Interleukin; IRF4, Interferon regula-

tory factor 4; KLF2, Kruppel-like factor 2; MHC II, Major histocompatibility complex class II; Prdm1, Positive regulatory domain 1; SOCS, Suppressor

of cytokine signaling; STAT, Signal transducers and activators of transcription; TCR, T cell receptor. The solid line indicates direct action by activa-

tion of expression of the Prdm1 gene. The dashed line indicates regulations that require further investigation for underlying mechanisms

a

b

Fig. 2 Blimp-1 cooperates with different molecules to regulate the differentiation and function of a CD4+ T cells and b CD8+ T cells. Bcl-6, B cell

lymphoma-6; Blimp-1, B lymphocyte-induced maturation protein-1; Eomes, Eomesodermin; HDAC2, Histone deacetylase 2; Id2, Inhibitor of DNA

binding 2; Id3, Inhibitor of DNA binding 3; IL, Interleukin; IRF4, Interferon regulatory factor 4; MPECs, Memory precursor effector cells; RORγt, Retin-

oic acid-related orphan receptor γt; SLECs, Short-lived effector cells; STAT, Signal transducers and activators of transcription; TCF-1, T cell factor 1;

Tfh, Follicular helper T cells; Th, T helper
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Blimp-1 was not observed in lymphocytes expressing

low levels of Itk-Syk. Therefore, low and high expression

levels of the Itk-Syk fusion transcript induce early and

delayed onset of clonal T cell lymphoma, respectively,

through regulating Blimp-1 expression [37].

Human diseases

BLIMP-1 is considered to be a candidate tumor suppres-

sor gene in lymphoid malignancies. Early studies indi-

cated that BLIMP-1β lacking its PR domain and having

a diminished capacity to repress target genes was

expressed in myeloma cell lines [106], and mutational

inactivation of BLIMP-1 has been identified in a subset

of diffuse large B-cell lymphomas [107, 108]. An involve-

ment of BLIMP-1β in T cell lymphoma was also re-

ported, where a high expression level was correlated

with chemotherapy resistance [109]. Another study has

also indicated that loss of BLIMP-1 occurs in anaplastic

large T-cell lymphomas [110]. In addition, BLIMP-1 is

inactivated in extranodal NK/T-cell lymphoma, nasal

type (EN-NK/T-NT) where its downregulation is medi-

ated by miR-223, providing a prognostic indicator for

evaluating the clinical outcomes of EN-NK/T-NT pa-

tients [111]. Recent study reported that infiltration of

BLIMP-1+ FOXP3+ effector Treg cells into tumor can

improve prediction of disease recurrence in a cohort of

colorectal cancer patients [112]. BLIMP-1 has been

further identified as an important factor in T cell ex-

haustion during progressive chronic HIV infection. IL-2-

induced expression of BLIMP-1 is repressed by upregu-

lation of miR-9, which leads to reduced binding of

BLIMP-1 to the IL2 promoter. Published studies have

further identified that a regulatory miR-9/Blimp-1/IL-2

pathway is impaired in progressive HIV disease [21, 62].

Low expression of PRDM1 was associated with high

HIV genome transcription levels in resting CD4+ CM T

cells, suggesting that BLIMP-1 might be involved in con-

trolling the HIV reservoirs in the CM T cell subset [63].

Therefore, BLIMP-1 functions as a gatekeeper of T cell

activation and suppression to prevent or dampen auto-

immune disease, antiviral responses and antitumor

immunity.

Conclusion

This review has focused on the findings over the past

decade that have led to a better understanding of the es-

sential role of Blimp-1 in instructing T cell destiny and

effector functions. Expression of Blimp-1 is observed in

a

b

Fig. 3 Overview of Blimp-1-mediated regulations in T cells. a Broad influence of Blimp-1 in the expression of different molecules. Bcl-6, B cell

lymphoma-6; Blimp-1, B lymphocyte-induced maturation protein-1; Id3, Inhibitor of DNA binding 3; IFN-γ, interferon-γ; IL, Interleukin; IL2ra,

Interleukin 2 receptor subunit alpha; PD-1, Programmed death-1. The solid line indicates direct action. The dashed line indicates regulations that require

further investigation for underlying mechanisms. b Blimp-1 regulates divergent functions of T cells. +: Positive regulation; −: Negative regulation; x:

Unidentified regulation
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both CD4+ and CD8+ T cells (Fig. 1), and its expression

promotes the differentiation and cytokine production of

effector T cells through cooperation with other tran-

scription factors while suppressing the transcriptional

signatures of naïve and memory T cells (Fig. 2). Blimp-1

is conventionally regarded as a repressor that regulates

T cell differentiation and function, but notably, Blimp-1

is identified as an enhancer of IL-10 production to fine-

tune the extent of inflammation and injury (Fig. 3). It is

intriguing that Blimp-1 together with cooperating tran-

scription factors can function as either an activator or a

repressor and can determine the fate of multiple T-cell

lineages. Understanding the expression patterns of tran-

scriptional regulators in T cell subsets suggests that the

determination of activation and repression of T cells is a

combinatorial process mediated by these molecules to

maintain immune homeostasis. Because Blimp-1 appears

to orchestrate cascades of explicit gene expression pro-

grams in T lymphocytes, studying Blimp-1 and identify-

ing its target genes has revealed important aspects of

this regulatory machinery and may help to provide im-

portant insights into the regulation of immune homeo-

stasis and the potential for therapeutic intervention.

Endnote
1Fully capitalized PRDM1 and BLIMP-1 were referred

as human gene and protein names, respectively, while

only an initial capital letter of Prdm1 and Blimp-1 were

represented as mouse gene and protein names,

respectively.
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