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Abstract

Testicular spermatozoa acquire fertility only after 1 or 2 weeks of transit through the epididymis. At the end of this several meters long

epididymal tubule, the male gamete is able to move, capacitate, migrate through the female tract, bind to the egg membrane and fuse to

the oocyte to result in a viable embryo. All these sperm properties are acquired after sequential modifications occurring either at the level

of the spermatozoon or in the epididymal surroundings. Over the last few decades, significant increases in the understanding of the

composition of the male gamete and its surroundings have resulted from the use of new techniques such as genome sequencing,

proteomics combined with high-sensitivity mass spectrometry, and gene-knockout approaches. This review reports and discusses the

most relevant new results obtained in different species regarding the various cellular processes occurring at the sperm level, in particular,

those related to the development of motility and egg binding during epididymal transit.
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Introduction

The formation of fertile spermatozoa is the result of
spectacular stages of cell differentiation that begin in
the male gonad and finish in the female tract. The
initialization and formation of the male gamete take
place in the epithelium of the seminiferous tubules and
are characterized by a series of genetically time-
controlled cellular modifications. The spermatozoon
developed at the output of the testis is morphologically
complete but immotile and unable to fertilize an oocyte.
For all mammals, this fertilization ability of the
spermatozoon is the result of discrete post-gonadal
differentiation stages that occur during transit along the
several meters of the epididymal tubule. These modifi-
cations occur in a male gamete that lost its transcrip-
tional and translation abilities during the last stages of
spermatid differentiation. It is postulated that such post-
gonadal sperm differentiation is controlled by the
surrounding environment. Such extracellular control of
gamete differentiation, also called ‘epididymal sperm
maturation’, appears to be unique in the body. Several
investigations have been undertaken over more than
60 years to understand the mechanisms involved in the
development of fertility of the male gamete.

The post-gonadal stages of sperm differentiation are set
up by successive modifications that occur when the
gamete transits specific parts of the epididymal tubule. At
the same time, outside the gametes, the composition of
the luminal epididymal environment also changes
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sequentially throughout the epididymis. In view of
these two parallel events, most investigations have
involved assessing the relationships between these two
events and identifying the epididymal signals able to
control spermatozoon fertility.

The most recent research using new techniques such
as transcriptomic and proteomic approaches has
involved identification of these events occurring on/in
the sperm and in their surrounding epididymal environ-
ment. The role of certain epididymal and sperm proteins
involved in this sperm maturation has also been
investigated by gene deletion in mice. Furthermore, as
epididymal sperm maturation is a common phenom-
enon in mammals, comparative studies have been
developed to identify mechanisms common between
species that could be the fundamental mechanisms of
post-testicular differentiation.
The epididymal sperm environment: a specific
continuously modified milieu

From their haploid stage, the male germ cells are isolated
from the rest of the body by a blood barrier that is present
from the testis to the deferent duct. Such restrictive
exchange results in the formation of a unique sperm
environment controlled successively by Sertoli cells and
by epididymal epithelium activity. The epididymal fluid
is certainly the most sequentially modified milieu of the
body in which the spermatozoa are bathed for 1 or
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2 weeks. The most important change in this luminal fluid
is induced by water reabsorption. This water movement
occurs principally in the efferent ducts where almost
80–90% of the testicular fluid is reabsorbed and
continues at a lower level up to the first part of the
epididymis. These water changes through aquaporin
channels are driven by the transepithelial movement of
NaC, ClK and HCO3

K and also result in important
modifications in the ionic composition of the lumen fluid
throughout the epididymal tubule (Da Silva et al. 2006).

The first consequence of such water movement is a
spectacular increase in the luminal sperm concentration,
increasing from 108 spermatozoa/ml in the rete testis
fluid to 109 in the deferent duct, with a maximum in the
first part of the epididymis. The second consequence is
the modification of the protein concentration from 2 to
4 mg/ml in the rete testis fluid and the initial segment of
the epididymis to a maximum of 50–60 mg/ml in the
distal caput. It then returns to 20–30 mg/ml in the more
distal regions of the organ (Fouchecourt et al. 2000,
Belleannee et al. 2011b, Dacheux et al. 2012). For all the
mammals studied, these changes occur in the anterior
part of the epididymis and are always associated with the
first sperm modifications such as the migration of the
cytoplasmic droplet, the beginning of flagellum beating
and binding to the zona pellucida (ZP). As most of these
sperm modifications have never been successfully
induced in vitro for testicular spermatozoa, their triggers
may have an epididymal origin. Among the epididymal
factors potentially involved, it is becoming clearer that
the surrounding proteins may be directly or indirectly
involved in the changes in sperm properties during their
transit through this organ.
Composition, identification and origin of the luminal
epididymal proteins

Defining the protein composition of the epididymal fluid
has been the aim of several studies since the
1970s–1980s (Turner et al. 1979, Brooks 1981). The
first research in this field was carried out mostly to find
specific epididymal proteins directly involved in sperm
maturation and available as immunological targets for
male contraception.

In such research, protein identification was based only
on isolated proteins. Our understanding of epididymal
proteins has increased spectacularly with genome
sequencing and new proteomic technology using
large-scale analysis in the last 10 years. Today, several
hundred proteins can be identified using mass spec-
trometer technology in a single study. However, due to
the huge range of protein concentrations in the
epididymal fluid, spanning around 12 orders of
magnitude, only four to six orders can be measured in
a whole sample using the current most sensitive
mass spectrometer. The complete identification of all
Reproduction (2014) 147 27–42
luminal epididymal proteins thus remains a techno-
logical challenge.

Several hundred epididymal proteins have already
been identified from the epididymal fluid of different
species. All these epididymal fluids are characterized by
the presence of proteins in high concentrations, and no
more than 20 proteins represent 80–90% of the total
luminal proteins (Fig. 1). Several of these proteins are
common to different species such as lactoferrin (LTF),
lipocalin 5 (LCN5, E-RAPB), clusterin (CLU), glutathione
peroxidase (GPX5), prostaglandin D2 synthase (PTGDS),
transferrin (TF), Niemann–Pick disease, type C2 (NPC2),
phosphoethanolamine-binding protein 4 (PEBP4),
b-N-acetyl-hexosaminidase (HEXB), glutathione
S-transferase (GST), gelsolin (GSN), actin (1.4%), and
b-galactosidase (GLB1). For the human epididymis, 77%
of the total luminal proteins are represented by albumin
(ALB) (43.8%), CLU (7.6%), NPC2 (6%), LTF (5.9%),
extracellular matrix protein (ECM1) (3.2%), a1-anti-
trypsin (SERPINA1 (A1AT)) (2.7%), PTGDS (2.2%,
1.7%), TF (1.3%), and actin (ACT) (1.2%) (Dacheux
et al. 2006). Most of these epididymal proteins are highly
polymorphic due to glycosylation and other post-
translational modifications.

There are wide variations in the concentrations of
these major proteins between species. No phylogenic
studies have been carried out between mammalian
species, but the major proteins seem to be a proteomic
signature for closed species, as observed for bovine and
ovine species (Dacheux et al. 2012). However, there is
considerable divergence between extreme mammalian
classes such as eutherians and monotremes. For
monotremes such as the platypus, the luminal protein
composition in the epididymis is unique among
mammals, with numerous species-specific proteins
such as E-OR20 (a new lipocalin), SPARC, and
PXN-FBPL (Dacheux et al. 2009).

Most of the luminal proteins are actively secreted by
the epididymal epithelium, but their secretion is
dependent on the region of the organ. Such sequential
secretion along the epididymal tubule results in a
continuous change in the epididymal fluid proteome
(Fig. 1). Furthermore, the secretion pattern is species
specific, but several proteins can be found in similar
epididymal regions (e.g. PTGDS, GPX5, and RNASE10
in the proximal epididymal regions and LT, NCP2, GSN,
and several glucosidases in the middle and distal parts of
the organ). However, for several other proteins, such as
LCN5, principally secreted in the epididymal caput in
the mouse but in the corpus cauda in the bull, ram, and
boar, the secretory epididymal region is different
(Dacheux et al. 2012).

Of all the major epididymal secreted proteins, the
most commonly secreted is CLU. This protein, originally
found to be a Sertoli cell secretion (Fritz et al. 1983),
represents around 30% of the total epididymal secretion
for all the species studied to date. Furthermore, this
www.reproduction-online.org
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Figure 1 Epididymal proteome and secretome and sperm surface proteins of three species. For the proteome, the same quantity of epididymal
proteins from nine zones of the epididymis corresponding to the three principal regions was separated by 1D gel electrophoresis and silver stained.
The plates illustrating the secretory activities correspond to the autoradiograms of the same 1D gel separations presented for the proteome of the boar
(Syntin et al. 1996), stallion (Fouchecourt et al. 2000), and bull (Belleannee et al. 2011b). The sperm surface proteins correspond to the 1D SDS–
PAGE, western blot, and streptavidin peroxidase detection of the NP40 extracts of the sulpho-NHS-biotin-labelled surface membrane proteins of
spermatozoa collected from eight or nine epididymal zones (C Belleannnée and J L Dacheux, 2006 unpublished data).

Epididymal sperm maturation R29
protein can be secreted at different levels of the
epididymis and as several isoforms (three in the horse
and at least two in the bull and the ram).

The local concentration of a protein in the luminal
fluid is generally related to the secretory activity of the
adjacent epithelium. Thus, a major protein found in the
luminal fluid corresponds to a major secretion. However,
the concentration of each secreted protein is linked not
only to its secretion but also to its reabsorption in specific
www.reproduction-online.org
epithelium regions. Some proteins or isoforms are
present only in their secreted region (e.g. RNASE10,
porcine, ovine and murine species (Castella et al. 2004),
and some isoforms of CLU in equine species
(Fouchecourt et al. 2000)). For other proteins such as
GPX5, several glucosidases, and PTGDS (Fouchecourt
et al. 2000, Belleannee et al. 2011b), the luminal
concentration is modulated by their reabsorption
intensity or by their accumulation during epididymal
Reproduction (2014) 147 27–42
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transit (e.g. lactoferrin in equine species and LCN5 in
bovine species) (Dacheux et al. 2012).

Most of these major secretory proteins are soluble in
the luminal fluid and secreted by conventional and
unconventional secretion pathways for the proteins
lacking signal peptides. However, several secreted
proteins have been found to be highly hydrophobic
such as the 17 and 22 kDa ram epididymal proteins
(extracted as lipoprotein) (Gatti et al. 2000), prion
protein (PRP; Gatti et al. 2002, Ecroyd et al. 2005), and
several glycosylphosphatidylinositol (GPI)-anchored
proteins, such as CD52 (Kirchhoff 1996). The secretion
mechanism of such hydrophobic proteins in the luminal
fluid is still unclear. Some of these proteins have been
found to be associated with luminal membrane vesicles.
These vesicles are liberated from the surface of the
principal cells as vesicular blebs (Ilio & Hess 1994,
Frenette et al. 2002, Hermo & Jacks 2002, Gatti et al.
2005) and named ‘epididymosomes’ (see review by
Sullivan & Saez (2013)). However, secreted hydrophobic
proteins are not only associated with such luminal
membrane vesicles but also found in soluble high-mass
protein complexes such as CLU, cauxin, PRNP, 17 kDa
hydrophobic protein, and several glycosidases (Ecroyd
et al. 2005).
Functions of the most abundant luminal
epididymal proteins

Most of the major epididymal proteins are also found in
other tissues, and thus their general functions can be
identified. However, their presence at high concen-
trations is surprising in the sperm environment. This is
the case for the huge amounts of enzymes such as
glycosidases (a-D-mannosidase, b-hexosaminidase,
GLB1, a-glucosidase, b-glucuronidase, etc.), numerous
proteases (kallikrein, cathepsin A-D-H-L-S-L, gACE,
ADAM2–7, furin, MMP2, etc.) and several protease
inhibitors (serpin, eppin, CRES, serpin2, HE4, etc.). Most
of these enzymes have been found to be active in vitro,
except for certain specific epididymal proteins, such as
RNASE10 (Castella et al. 2004). Several of these
enzymes, such as different matrix metalloproteases
(MMPs), are secreted as a pro-form and activated after
processing in the fluid (Metayer et al. 2002).

However, the presence of such concentrations of
active enzymes in vivo suggests the presence of
enormous quantities of substrates, but to date such
substrates remain hypothetical. It is also possible that the
function(s) of these enzymes may be different from those
displayed in other tissues. This can be illustrated by
glutathione-independent PTGDS that is intensively
secreted in the epididymal caput and known to catalyse
the conversion of prostaglandin H2 (PGH2) to prosta-
glandin D2 (PGD2), but in the epididymis its role is only
as a carrier for hydrophobic substrates in the luminal
fluid (Fouchecourt et al. 2002).
Reproduction (2014) 147 27–42
The other intriguing finding is the fact that some
enzymes and their specific inhibitors (such as proteases
and protease inhibitors) are found together in the same
luminal fluid. This suggests that the enzymes’ activities
could be controlled and functional only in a limited part
of the epididymis and blocked by specific inhibitors
downstream during transit through the organ. Such
sequential enzyme activity is highly probable, but it
has not been demonstrated to date.

Thus, in addition to the sequential changes in the
protein composition of the epididymal fluid, the
activities of these proteins could also be sequentially
controlled. Such duality between the presence and
activity of an epididymal protein in a specific region
makes their understanding in relation to spermatozoa
more complex than expected.

Nevertheless, by analogy with the activity of these
proteins in other tissues, several general functions of
these proteins can be suggested in the epididymis. The
most realistic function is protection of the sperm during
epididymal transit. Several proteins successively
secreted in the epididymal fluid may be involved in the
reduction of reactive oxygen species in the luminal
fluid such as GPX5 (Chabory et al. 2010, Taylor et al.
2013), thioredoxin, GSTM1–3, SOD1, and PRDX2–5.
This protective function may also be illustrated by
the presence of several proteins and peptides such
as several b-defensins (Yamaguchi & Ouchi 2012),
lipocalins, and CRES proteins against bacterial attack
(Wang et al. 2012).

The epididymal proteins may also be involved directly
in the protection of active sites on the sperm surface,
illustrated by the fact that when epididymal sperm are
washed free from epididymal proteins, sperm head-
to-head agglutination occurs very rapidly. Such
protection may be attributed to several proteins with
binding properties such as CLU, lactoferrin, TF, apo-
lipoprotein A-1, PEBP, and some other glycoproteins
involved in the glycocalyx composition of the gamete
(Fabrega et al. 2012).

Other important functions of epididymal proteins may
be linked to molecular exchange or as carriers of
hydrophobic components (e.g. cholesterol, retinoic
acid, and androgen). Several epididymal proteins
may be involved individually, such as NCP2, LCN5,
PTGDS, androgen-binding protein (SHBG (ABP)),
vitamin D-binding protein, lactoferrin, TF, and cerulo-
plasmin (Guyonnet et al. 2011), or combined together in
a soluble high-molecular mass lipophilic complex
(Ecroyd et al. 2005).

Several potential roles may thus be attributed to these
major luminal proteins, but they are still mostly
hypothetical. In the mouse, the knockout (KO) gene for
several of these proteins (e.g. lactoferrin, SOD1, GSTM1,
CLU, GPX5, PTGDS, LCN5, hexosaminidase, CRISP1,
and CRISP4) does not result in a reduction in male fertility
in vivo, except for the inactivation of the Rnase10 gene.
www.reproduction-online.org
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The exact functionality and importance of all these major
epididymal proteins, therefore, remain to be evaluated in
relation to sperm survival, maturation in the epididymis
and species diversity.
Epididymal spermatozoa: continuous epididymal
sperm surface modifications

As for epididymal fluid composition, the spermatozoa
are sequentially modified throughout their transit in this
organ. One of most visible morphological changes is
the migration of the cytoplasmic droplet, a remnant of
the germ cell cytoplasm. This structure slides from the
beginning to the end of the intermediate piece of the
flagella in the middle part of the epididymal caput.
The mechanism involved in this cytoplasmic migration
has not been elucidated, but it is worth noting that the
transport of this droplet occurs from a very restricted
epididymal region that corresponds to the maximum
concentration of spermatozoa in the lumen and where
the epithelium protein secretions are the most active.
The relationship between epithelium functions and
molecular mechanisms of such cellular modification
remain to be identified. Such migration is an important
sign of sperm maturation, since any defect in droplet
migration is related to a decrease in sperm fertility
(Cooper 2005) but not to the activation of sperm motility
in the epididymis.

The other relevant but less visible sperm modifications
involve the membrane and sperm surface composition.
Over several decades (Scott et al. 1967, Dacheux &
Voglmayr 1983), many studies have shown that
numerous sequential changes occur in the lipid and
protein composition of the sperm membrane during
epididymal transit.

The characterization of these modifications was first
oriented to those directly involved in egg-binding and
-fertilization ability of spermatozoa. Based on the
inhibition of sperm–oocyte binding/fusion with the use
of specific antibodies, several surface proteins such as
CRIP1 (protein D/E), acrosin, fertilin, PH20, IZUMO,
and SPAM1 were identified (Supplementary Table 1, see
section on supplementary data given at the end of this
article). Several of these surface proteins are processed
during epididymal transit by a cascade of proteolytic
cleavages such as the well-documented ADAM family
proteins (ADAM1/a-fertilin, ADAM2/b-fertilin, and
ADAM3/cyritestin). Most of these cleavages occur as
soon as the gamete enters the epididymis or in the
first part of this organ. The cleaved peptides of these
proteins are either relocated in different plasma
membrane domains (e.g. ADAMs) or released into the
surroundings, as is the case for ACE, which becomes a
major protein in the epididymal fluid for several species
(Gatti et al. 1999).
www.reproduction-online.org
Several sperm membrane proteins such as luminal
epididymal proteins that bind to the surface of gametes
(e.g. CRISP1, cathepsin, ADAM7, EPPIN, MAN2A2,
SPAM1, MFGE8, GPX5, CLU, and MIF) have also been
identified (Supplementary Table 1). Some of these
proteins are adsorbed at the sperm surface by electro-
static interaction or are integrated into the plasma
membrane. For hydrophobic and GPI-anchored
proteins, the exchange between the epididymal
secretion and the sperm membrane has not been
completely resolved yet. It may be mediated by soluble
intermediates such as the epididymal vesicles (epididy-
mosomes) or soluble hydrophobic protein complexes
present throughout the epididymal tubules. The quantity
of epididymosomes appears to be relatively low and
limited compared with the total number of spermatozoa
(no more than 0.5% of the total volume of spermatozoa).
Furthermore, the exact mechanism of protein transfer
remains to be clarified, since the exchange is protein
specific and not all proteins of the vesicles are transferred
or retrieved on the sperm surface. Thus, if these vesicles
are the potential major route of hydrophobic protein
transfer, it may be via very subtle exchange mechanisms
that remain to be elucidated.

Using these earlier identification approaches, sperm
membrane modifications were studied protein by
protein. However, other major protein modifications
can be visualized on the sperm surface using more
global surface labelling techniques such as surface
protein biotinylation and 1D or 2D electrophoresis gel
separation (Figs 1 and 2). Such approaches demonstrate
that modifications occur continuously at the surface
membrane level. It is assumed that most of the surface
proteins originating from testicular gametes are modified
or disappear and new compounds can be visualized in
the terminal regions of the epididymis. Such modifi-
cations occur for all the mammalian species, but the
protein characteristics and the patterns of the sequential
changes involved are different between species (Fig. 1).
Such species differences raise the question of whether
rodents are the most appropriate model to study
epididymal sperm maturation in other species.

The current challenge is the systematic identification
of the sperm surface proteins involved in epididymal
maturation, whatever the species, and particularly for
human spermatozoa. Proteomic analysis is a promising
approach to identify epididymal proteins. The first global
proteomic studies on the male gamete were based on
2D gel electrophoresis separation. Such an approach has
the advantage of separating and quantifying several
thousand compounds and isoforms, but mainly the most
abundant compounds and less well the high-molecular
weight and hydrophobic proteins. Nevertheless, coupled
with 2D LC–mass spectrometry, such proteomic
approaches provide the opportunity to identify several
proteins of the mature spermatozoon (see review by
Brewis & Gadella (2010)).
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Figure 2 Silver staining of 2D separation of purified surface proteins
from immature (A) and mature (B) epididymal boar sperm.
(C) Composite 2D gels from immature (green) and mature (red) sperm.
Adapted from Belleannee C, Belghazi M, Labas V, Teixeira-Gomes AP,
Gatti JL, Dacheux JL, Dacheux F 2011a Purification and identification
of sperm surface proteins and changes during epididymal maturation.
Proteomics 11 1952–1964.
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The recent improvements in mass spectrometer
technology provide the opportunity to identify sperm
proteins directly from the whole lysate of mature sperm
without previous electrophoresis separation. In these
‘deep proteomic analyses’ (Oliva et al. 2009), several
thousand proteins have been collected from mature
spermatozoa (epididymal or ejaculated) of different
species such as the mouse (Baker et al. 2008b, Chauvin
Reproduction (2014) 147 27–42
et al. 2012), rat (Baker et al. 2008a), bull (Peddinti et al.
2008), and human (Johnston et al. 2005). The maximum
number of proteins identified by this technique in human
sperm is around 5000 (Wang et al. 2013).

Several methods of analysis have been developed to
increase the identification of the low-abundance
proteins on subcellular parts of the spermatozoa such
as the head and flagellum (Cao et al. 2006, Amaral et al.
2013, Baker et al. 2013), acrosomal matrix, (Guyonnet
et al. 2012), detergent-resistant membrane (Sleight et al.
2005, Nixon et al. 2009), phosphorylated proteins (Platt
et al. 2009), and proteins involved in capacitation
(Ficarro et al. 2003) and motility (Zhao et al. 2007,
Martinez-Heredia et al. 2008, Chan et al. 2009) and of
sperm–egg interactions (Stein et al. 2006, Petit et al.
2013). In spite of the lack of a dynamic range of mass
spectrometers to identify the low-represented pro-
teomes, these ‘shotgun’ mass spectrometer approaches
provide the opportunity to identify additional proteins
involved in new or unexpected metabolic pathways for
mature sperm (Amaral et al. 2013).

Few systematic proteomic studies have been pub-
lished about epididymal sperm maturation. Most of them
have combined 2D gel electrophoresis and MS on the
total extracts of immature and mature epididymal
sperm from the mouse (Ijiri et al. 2011), rat (Guo et al.
2007), or hamster (Kameshwari et al. 2010), or on
subcellular compartments such as the head and flagella
(Suryawanshi et al. 2011), acrosomal and membranous
proteins (Park et al. 2012), and phosphopeptides
(Baker et al. 2012), or on purified sperm surface proteins
(Belleannee et al. 2011a). About 20 proteins involved
in sperm maturation have been identified by these
studies, of which only two or three have been found to be
common between two studies or species. In view of
the numerous changes visualized by specific labelling
of the surface proteins during epididymal transit,
many more proteins and their isoforms remain to be
identified (Fig. 2).
Relationship between epididymal activity and
sperm maturation

The principal characteristics of a ‘mature’ spermatozoon
can be summarized as a male gamete that is able to
activate its motility (forward and hyperactivated), be
capacitated, bind to the pellucida, fuse to the oocyte
membrane, and be able to result in a viable embryo.
How can epididymal activity be involved in these
essential sperm functions during transit of the gamete?
Epididymal surroundings and sperm motility

The most visible and quantifiable change in the
epididymal sperm is the development of motility, the
activation of which is the result of progressive steps.
www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/22/2022 06:39:13PM
via free access



Epididymal sperm maturation R33
It begins with an increase in asymmetry and irregular
flagella beating in the anterior part of the epididymis to
reach symmetrical propagation of waves on each side of
the flagella, inducing the forward motility of the
spermatozoa in more distal parts of the organ (Bork
et al. 1988, Chevrier & Dacheux 1992). However, such
motility is only observed in vitro when epididymal sperm
have been washed free of epididymal fluids and diluted
and incubated in an artificial medium. In vivo, weak
beating flagella can be seen in the rete testis and efferent
duct fluids, but after the increase in sperm concentration
in the epididymal fluid, most of the spermatozoa
maintain quiescent motility whatever the position in
the epididymis.

Thus, for the majority of mammalian species, sperm
motility in the epididymis is balanced by two important
components: one concerning the final differentiation of
the flagella machinery, which can be analysed only
in vitro after its activation, and the other controlling or
repressing this machinery to avoid sperm movement.
In vitro, sperm motility increases progressively from

the corpus to the cauda epididymis, with testicular and
caput epididymal sperm showing only irregular curva-
tures of the flagella. The progressive maturation of the
complex interactions between tubulin and dynein
molecules should occur during epididymal transit.
However, it has been known for many years that forward
motility can be induced in immature sperm in vitro. Such
activation can be achieved with intact testicular
spermatozoa (Dacheux et al. 1979, Okamura et al.
1991, Jaiswal & Majumder 1996b), intact epididymal
sperm (Acott et al. 1983, Smith et al. 1996, Vijaya-
raghavan et al. 1996), or demembranated immature
sperm (White & Voglmayr 1986, Ishijima & Witman
1991, Patil et al. 2002). Such observations indicate that
the flagellum machinery of the spermatozoon at the
output of the testis is molecularly functional but
inactivated in vivo.

Although these results have been known for several
years, the exact mechanism of the activation of sperm
motility in the epididymis is still unclear, particularly the
influence of the epididymal surroundings. A few studies
on the epididymal maturation of sperm motility have
been published recently, with most of them being more
focused on the potential capacitation of the epididymal
sperm than on the motility process.

The motility of mature spermatozoa is dependent on
the intracellular cAMP generated by adenylyl cyclase
and on subsequent successive protein phosphorylations
including protein kinase A (PKA), A-kinase anchor
proteins (AKAPs) and many other phosphorylated
proteins (see review by Turner (2006)). A cascade of
very short (in the order of nanoseconds) phosphoryl-
ations and dephosphorylations of dynein arms is
generated by serine/tyrosine kinases and serine/tyrosine
phosphatases. Such activities induce active bend propa-
gation and regular flagella beating by alternate sliding of
www.reproduction-online.org
microtubules along the length of the flagellum
(Morisawa 1994).

During epididymal transit, the sperm’s intracellular
cAMP level increases from the corpus to the cauda
(Hoskins et al. 1974, Dacheux & Paquignon 1980,
Pariset et al. 1985), simultaneously with metabolic
capacity and ATP production (Inskeep & Hammerstedt
1982). The production of cAMP is generated by an
atypical sperm soluble adenylyl cyclase (sAC or SACY;
Okamura et al. 1985, Wandernoth et al. 2010), which is
biochemically distinct from the transmembrane adenylyl
cyclases located throughout the sperm midpiece (Hess
et al. 2005) and regulated by bicarbonate and calcium
(Buck et al. 1999, Chen et al. 2000, Xie et al. 2006). The
role of cAMP and adenylate cyclase in spermatozoa is
now genetically established by KO of the Adcy10 (sAc)
gene, which induces male sterility linked to a sperm
motility defect (Esposito et al. 2004).

The control of the intracellular cAMP levels of the
spermatozoa and consequently protein phosphorylation
are the keys to understanding the gradual (potential)
activation of motility during epididymal transit. The
bicarbonate and Ca2C concentrations are two important
components of the luminal epididymal fluid that could
directly control the intracellular cAMP concentrations in
the epididymal spermatozoa and consequently activate
protein phosphorylation and motility.

Role of luminal bicarbonate in epididymal
sperm motility

The bicarbonate originating from the testis (20 mM) in
the lumen of the epididymal tubule is partially
reabsorbed between the seminiferous tubules and the
caput of the epididymis by the HCO3

K transporter
(Breton 2001, Liu et al. 2012) and by carbonic anhydrase
activity (Hermo et al. 2005). In the rat epididymis,
the bicarbonate concentration is around 2–6 mM
(Levine & Marsh 1971), with a slight increase in the
cauda and vas deferens being linked to bicarbonate
secretion by the principal epididymal cells (see review
by Shum et al. (2011)).

The intracellular concentration of bicarbonate in the
epididymal spermatozoa is constitutionally regulated by
HCO3

K transporters (SLC4 and SLC26 families), by
HCO3

K-permeable transmembrane proteins (AE2 and
CFTR) (Liu et al. 2012), and by carbonic anhydrase
activity. All these regulatory enzymes are already present
and potentially activated in testicular sperm except for
carbonic anhydrase IV (CAR4). This enzyme appears on
the sperm surface only when the gamete transits through
the epididymal corpus (Ekstedt et al. 2004, Wandernoth
et al. 2010) and is retained on the membranes of mature
epididymal sperm (Stein et al. 2006) and ejaculated
sperm (Ficarro et al. 2003).

During epididymal transit, the transport of [HCO3
K]

and HCO3
K in the spermatozoa decreases significantly.
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In the caput epididymis, the transport is over three times
higher than that in the corpus and cauda epididymis
(Okamura et al. 1988). For mature spermatozoa, the
intracellular [HCO3

K] is also regulated by the diffusion of
CO2, but the significance of such a regulatory pathway is
still unclear (Carlson et al. 2007) since Cah4-KO male
mice remain fertile (Shah et al. 2005).

sAC is now well established as a bicarbonate
chemosensor for immature and mature spermatozoa.
In vivo bicarbonate modulates the enzymatic activity of
sAC directly to produce cAMP under pH-independent
conditions (Chen et al. 2000). A high concentration of
bicarbonate should thus be associated with high cAMP
production and the reverse. However, the relationship
between bicarbonate and sAC activity has not been
elucidated for immature sperm. Indeed, for testicular
sperm and for spermatozoa from the initial part of
the epididymis, the luminal HCO3

K concentration is the
highest and therefore the (cAMP) level is predicted to
be high also, but in fact all the values available are the
opposite. Furthermore, the presence of 25 mM bicarbon-
ate has been shown to stimulate the cAMP content of
cauda spermatozoa more than the caput content (Baker
et al. 2003). Therefore, the luminal bicarbonate
concentration affects the activity of the sperm sAC, but
a high concentration of bicarbonate is not always
associated with high intracellular cAMP content in vivo
and an increase in bicarbonate content in vitro does not
initiate the motility of caput spermatozoa.

Low levels of extra- and intracellular bicarbonate in
the epididymis in mature sperm reduce sAC activity, and
consequently the intracellular cAMP levels, and
maintain the sperm in a quiescent state during
transit and storage in vivo (Jones & Murdoch 1996). An
increase in bicarbonate concentration activates sAC in
a few minutes in a pH-independent manner for
mature sperm (Chen et al. 2000) and rapidly reverses
the motility quiescence (Okamura et al. 1985), accel-
erating flagella beat frequency (Wennemuth et al.
2003b) and changing the membrane characteristics
(Gadella & Harrison 2002).

Role of luminal calcium in epididymal
spermatozoa motility

The concentration of Ca2C is another important factor in
the control of epididymal sperm motility through the
regulation of sAC (Morton et al. 1974, Armstrong et al.
1994) and through other calcium pathways independent
of cAMPand PKA such as the calmodulin (CaM) pathway
(Jaiswal & Conti 2003).

Significant luminal variations in Ca2C concentrations
surround spermatozoa during epididymal transit.
Between the caput and the distal cauda epididymis,
free luminal ionic calcium concentration decreases from
0.8 to 0.25 mM in the rat epididymis (Jenkins et al.
1980). The luminal Ca2C ion is mostly absorbed by the
Reproduction (2014) 147 27–42
epithelium TRPV6 channel, with the Ca2C concentration
being increased tenfold in the caudal epididymal fluid
when the Trpv6 gene is deleted (Weissgerber et al. 2012).

Cellular calcium levels have been reported to be six
times higher in caput spermatozoa than in caudal
spermatozoa, and the rate of calcium uptake in caput
spermatozoa to be about two to three times higher than
that in caudal spermatozoa (Vijayaraghavan et al. 1989,
White & Aitken 1989). The high calcium concentration
in caput spermatozoa could be linked to a higher rate of
mitochondrial calcium accumulation in caput sperm
than in caudal sperm (Vijayaraghavan et al. 1989), to the
presence of the cytoplasmic droplet, which possesses
relatively high levels of calcium, and also to the
immaturity of the calcium regulatory pathways
(Okamura et al. 1992).

The low retention of intracellular calcium by the
sperm is controlled by at least two Ca2C-ATPases
(Wennemuth et al. 2003a). The first, ATP2A (SERCA)1–3,
a sarcoplasmic/endoplasmic reticulum Ca2C-ATPase,
sequestrates calcium in the acrosome, mitochondria,
and probably also in the cytoplasmic droplet. The other,
ATP2B1–4, a plasma membrane Ca2C-ATPase, is the
most active in Ca2C clearance, exporting Ca2C outside
the gamete and mainly located on the membrane of the
proximal principal piece of the flagellum. The activity
of this Ca2C-ATPase pump increases significantly from
the caput sperm to the epididymal cauda sperm
(Sanchez-Luengo et al. 2004). The transfer of epididymal
Ca2C-ATPase isoform 4 (PMCA4a) from the apical
membrane of the cauda epididymal epithelium to the
sperm membrane has recently been reported to be
associated with the low Ca2C concentration in cauda
sperm (Brandenburger et al. 2011).

Several constitutive channels have been evidenced for
cellular Ca2C entry (see review by Darszon et al. (2006))
such as voltage-gated Ca2C channels (CaVs; Benoff et al.
2007) and sperm-specific cation channels known as
CatSper (CatSper1–4 and CatSperb, CatSpergd and
CatSperg) (Quill et al. 2001, Ren et al. 2001, Lobley
et al. 2003, Wang et al. 2009, Chung et al. 2011).

The role of Ca2C in the maturation of sperm motility in
the epididymis is unclear. In vitro, physiological [Ca2C]
directly activates sAC and increases (cAMP) production
by mature sperm (epididymal or ejaculated) indepen-
dently of CaM binding to sAC (Jaiswal & Conti 2003).
Furthermore, an additive effect of HCO3

K and Ca2C on
sAC activity has also been observed on mature
epididymal sperm (Jaiswal & Conti 2003). The influx of
Ca2C is required to activate motility in most caudal
epididymal sperm samples. This Ca2C entry is not
immediately linked to the CatSper channel, since the
deletion of any genes of CatSper isoforms does not
prevent the activation of quiescent epididymal sperm
(Ren et al. 2001, Quill et al. 2006).

Calcium combined with HCO3
K ions is able to speed

up the flagellar beating of mature sperm in vitro
www.reproduction-online.org
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(Carlson et al. 2007) and to change the symmetrical
flagellar wave propagation, according to the level of
internal [Ca2C] (Lindemann et al. 1991). On the other
hand, the removal of Ca2C prevents this speeding up of
flagellar beating (Carlson et al. 2003). The low
concentration of luminal and intracellular sperm
[Ca2C] in the terminal part of the epididymis thus
contributes to the maintenance of sperm motility
quiescent for mature epididymal sperm.

The action of Ca2C is more complex for immature
sperm. As for [HCO3

K], high [Ca2C] content in the
anterior part of the epididymis is expected to activate
sAC and consequently cAMP and flagellar activity, but
such activation has never been described. However, the
calcium concentration gradient in the luminal fluid
seems to be important. After the deletion of the TRPV6
calcium channel, which prevents absorption of luminal
Ca2C, the motility of mature caudal sperm cannot be
normally activated (Weissgerber et al. 2012). Recently,
several b-defensins (Supplementary Table 1) specifically
secreted in epididymal caput have been shown to be
associated with the activation of Ca2C channels and
initiation of motility of immature spermatozoa in vitro
(Zhou et al. 2004).

For these immature spermatozoa, the progressive
decrease in [Ca2C] concentration during epididymal
maturation and appropriate regulation of intraluminal
Ca2C concentration by the epididymal epithelium are
thus essential for the establishment of potential sperm
motility, but the exact effect of such changes in Ca2C

concentration is still unclear.

Sperm protein phosphorylation during epididymal transit

The flagellar movement is regulated by a network of
kinases and phosphatases that induce numerous post-
transcriptional protein modifications, mostly phos-
phorylations, in various compartments of the flagellum
and axonema. Two signalling pathways involved in the
phosphorylation of these proteins, the cAMP–PKA and
calcium signalling pathways, are generally recognized to
be essential for the regulation of mammalian sperm
motility (Suarez et al. 1987, Ho & Suarez 2001).

In the epididymis, the development of a cAMP–PKA-
dependent pathway leading to protein tyrosine phos-
phorylation has often been reported in concert with the
sperm’s ability to undergo capacitation. The increase in
cAMP production induced by the spermatozoa in the
epididymis is associated with the progressive develop-
ment of a cAMP–PKA-dependent signalling pathway,
which is parallel to the potential activation of motility
(Pariset et al. 1985, Jaiswal & Majumder 1996a, Baker
et al. 2003). PKA subunits are associated with the flagella.
After activation by cAMP, the PKA RII regulatory subunit
transits to a specific location between the coarse fibres
(Pariset et al. 1989), bound to the sperm-specific AKAP3
and/or AKAP4, the main constituents of fibrous sheath
www.reproduction-online.org
proteins of the sperm flagellum (Miki et al. 2002; see
review by Luconi et al. (2011)). The free catalytic subunits
of PKA induce serine/threonine (Ser/Thr) phosphorylation
for several proteins including AKAPs and activate several
tyrosine kinases downstream, such as ABL1 (ABL), CSK,
SRC (cSRC), and TEC, and many others that remain to be
identified (Battistone et al. 2013).

The rates of tyrosine phosphorylation and phosphory-
lated proteins appear to be different between immature
and mature spermatozoa. In the rat, immature epididy-
mal spermatozoa exhibit more tyrosine phosphorylation
than mature sperm (Lewis & Aitken 2001, Baker et al.
2003), but most of this phosphorylation is not related to
cAMP or bicarbonate concentrations (Baker et al. 2003).
On the other hand, in the mouse, the cAMP-dependent
tyrosine phosphorylation is more active in mature
epididymal sperm (Visconti et al. 1995, Ecroyd et al.
2004, Lin et al. 2006). The cAMP signal transduction
pathway appears not to be fully functional in immature
sperm, whatever the species differences.

The low activity of the cAMP-dependent tyrosine
phosphorylation pathway in immature sperm has been
attributed in part to the inhibitory effect of high levels of
[Ca2C]i (Ecroyd et al. 2004). However, the decreasing
[Ca2C]i content in caput spermatozoa does not activate
motility, although the cAMP-mediated signal transduction
pathway is effectively activated (Ecroyd et al. 2004).

However, the initiation and stimulation of motility
for caput epididymal spermatozoa have been shown
to be induced, independently of calcium, by the
inhibition of Ser/Thr-protein phosphatase I (PPI) activity
(Vijayaraghavan et al. 1996). In most cells, PPI activity is
controlled by the presence of specific inhibitors such as
inhibitor-2 (I2), which forms a PPI–I2 complex, and by
glycogen synthase kinase 3 (GSK3), which can reactivate
PPI by dissociation of this complex. In epididymal
sperm, the presence of twofold higher levels of PPI
activity, identified as PP1g2, and sixfold higher levels of
GSK3 activity than in mature motile caudal sperm can be
linked to the weak activity of the cAMP-mediated signal
transduction pathway in immotile caput epididymal
sperm (see review by Fardilha et al. (2011)).

Recent studies on the mature spermatozoa of mice
(Baker et al. 2006, Krapf et al. 2010) and humans
(Battistone et al. 2013) have revealed that a cSrc family
kinase (SFK) induced the inactivation of Ser/Thr phos-
phatases and could be involved in the signalling
pathways associated with sperm capacitation and also
in sperm motility. This tyrosine kinase is detected in the
flagellar midpiece of mature mouse sperm, but surpris-
ingly this kinase is not present in sperm from the caput
epididymis. This cSrc is incorporated into spermatozoa
(Krapf et al. 2012) during their transit from the corpus to
the cauda. Normal tyrosine phosphorylation is displayed
in cSrc-null mice, but forward sperm motility is
significantly reduced (Krapf et al. 2012). However,
there are differences between mature mouse sperm
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and human sperm for such effects of SFK activity on
motility (Varano et al. 2008, Krapf et al. 2010, Battistone
et al. 2013). The hypothesis that this kinase is important
during epididymal sperm maturation is strong, but needs
further investigation.

The involvement of the ‘endocannabinoid system’ in
the development of sperm motility in the epididymis has
recently been proposed (Cobellis et al. 2010). The low
levels of cAMP production induced by sAC from
immature sperm may be related to the inhibitory effect
on sAC exerted by the activated cannabinoid receptor
CNR1 present on the sperm cell membrane. The
inhibitory activity of the CNR1 receptor during epididy-
mal transit may be induced by the decrease in
2-arachidonoylglycerol (2-AG) levels from the caput to
the cauda. Such a decrease in 2-AG levels may
hypothetically be associated with certain sperm
membrane modifications that remain to be identified.

Another pathway, PI3K–AKT, has also been found to
be involved in the phosphorylation of target proteins
associated with mature sperm motility (Luconi et al.
2011, Sagare-Patil et al. 2013), but its activity during
epididymal transit is yet to be demonstrated.
Epididymal surroundings and sperm proteins involved
in egg-binding components

The development of sperm motility during transit in the
epididymis is the first essential step for the spermatozoa
to acquire fertility, but motile activated testicular
spermatozoa are never fertile. The second important
maturation step is the gradual acquisition of the ability to
bind to the ZP and the oocyte membrane. The plasma
membrane, i.e. the inner acrosomal membrane and the
equatorial segment exposed to the sperm surface after
the acrosome reaction, participates in interactions with
the egg plasma membranes. The interactions between
the male and female gametes are the result of successive
sperm surface remodelling initiated in the testis, during
epididymal transit and ending in the female tract after
capacitation. The sperm plasma membrane proteins
involved in ZP binding have been the most studied ones.

Different types of methodologies have been used to
identify sperm and epididymal proteins involved in
sperm–egg membrane interactions. Most of them have
been developed using specific sperm antibodies (com-
petitor or inhibitor) to prevent the binding of a candidate
protein to the ZP or oocyte membrane. More global
approaches have also been developed such as phage
display technology (Naz 2005, Samoylova et al. 2012),
and the ZP affinity properties of sperm proteins have
been analysed using different global and selective
proteomic approaches (Stein et al. 2006, Brewis &
Gadella 2010, Belleannee et al. 2011a, Guyonnet et al.
2012, Petit et al. 2013). Many protein candidates have
been proposed following these in vitro studies, and more
than 50 proteins have already been reported to be
Reproduction (2014) 147 27–42
involved in sperm–egg interactions (Supplementary
Table 1). However, the effective role of several of them
in male fertility has not been confirmed, as no significant
modification has been observed after their gene deletion.
More surprising is the fact that when infertility was
induced after gene KO for some of these proteins,
sterility was found to be not linked to the lack of sperm
binding to the oocyte components, as expected, but to a
modification of sperm motility or to an unknown sperm
surface component preventing the gamete from passing
through the uterotubal junction (Supplementary Table 1).
Furthermore, the gene deletion technique provided the
opportunity to identify several other sperm proteins
(ACE, CLG, HSPA2, PDILT or TPST2) (Supplementary
Table 1) not directly involved in sperm–egg interactions,
but linked to male sterility, although the sperm
production, morphology and motility of the KO male
mice were normal.

The most important role of the epididymis in the
development of the sperm–egg interactions may be
linked to the control of the processing and domain
redistribution of several testicular sperm surface
proteins, particularly for different members of the
ADAM protein family (e.g. ADAM1B, ADAM2,
ADAM3, ADAM5 and ADAM32) and also for other
proteins such as tACE, basigin and TEX101 (Supple-
mentary Table 1). Most of these surface changes,
occurring principally in the first part of the epididymis,
are linked to the local activation of proteolytic activities
either on the sperm surface itself or from luminal
components. However, no luminal protease activities
already identified in the epididymal tubule have formally
been reported to be linked to such sperm surface
processes (Metayer et al. 2002). These testicular sperm
surface modifications may be associated with the
development of the binding properties of the spermato-
zoa, but synchronization between these two events
during epididymal transit is not obvious. The develop-
ment of egg–sperm binding may also be induced by the
adsorption or fusion of several epididymal proteins to the
sperm membrane (e.g. ARSA, CD52, CRISP1, CRISP4,
CRISP7, DCX, EPPIN, MFGE8, SPAM1 and SPINK13).
The contribution of each of these epididymal proteins to
the egg-binding properties of mature epididymal sperm
is difficult to evaluate, as no gene KO of these proteins
has induced a severe reduction in male fertility to date
(Supplementary Table 1).

Nevertheless, among the many proteins reported to
have binding affinity to the ZP and oocyte membrane,
two appear to be more strongly associated with sperm
fertility. The first, IZUMO, is a newly discovered member
of the immunoglobulin superfamily but apparently not
involved in the epididymal sperm maturation process,
since it is detectable on the mature sperm surface only
after the acrosome reaction. The complete sterility of
Izumo1K/K male mice is induced by a defect in
sperm–egg fusion, although the sperm is able to bind
www.reproduction-online.org
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to and penetrate the ZP and also to bind to the egg
plasma membrane (Inoue et al. 2005). The egg partners
of IZUMO and its role in the egg fusogen function
remain to be determined.

The second is ADAM3 (cyritestin), a 42 kDa surface
protein of epididymal sperm resulting from the proces-
sing of a 110 kDa testicular precursor in the first part of
the epididymis. The sterility of Adam3-deficient male
mice is mainly linked to a lack of sperm migration from
the uterus to the oviduct. Adam3K/K mouse sperm have
poor binding affinity to the ZPand egg plasma membrane
in vitro, but are fertile after oviduct AI or IVF with
cumulus-intact and ZP-intact eggs. The same phenotype
of Adam3K/K male sterility is also obtained after gene
KO for at least ten sperm proteins (i.e. ACE, CLGN,
ADAM2, ADAM1A, CALR3, TPST2, PDILT, PMIS2,
PRSS37, and TEX101) (Supplementary Table 1). Among
all these KO genes in male mice, Adam3 is strongly
reduced or incorrectly located on the mature epididymal
sperm surface. The loss of ADAM3 from the mature
sperm surface was also observed after Rnase10 gene KO,
a protein secreted only in the initial segment of the
epididymis and without any sperm membrane affinities
(Krutskikh et al. 2012). Such results show that the
stability, integrity, and location of ADAM3 at the sperm
surface are linked to the presence and/or activities of
several other proteins. In the testis, several chaperone
proteins (e.g. calmegin, CALR3, and PDILT), different
ADAM proteins associated in a complex with ADAM3
(ADAM1b, ADAM2 and ADAM6), and other proteins
such as TPST2 and ACE (see review by Cho (2012)) are
essential for the location of ADAM3 on the sperm
surface. In the epididymis, the activity of unknown
proteases is needed to cleave the prodomain and MMP
domains of ADAM3, which is also dependent on the
removal of TEX101 from the sperm surface in the
epididymis (Fujihara et al. 2013).

Thus, when one or more of these essential proteins for
ADAM3 are missing, all or a great number of the ADAM3
molecules (Cho 2012) are specifically removed from the
sperm surface during epididymal transit by the activity of
an unknown protease. Therefore, ADAM3 seems to be a
key protein in male fertility, but its removal from the
sperm surface only prevents the sperm from passing
through the uterotubal junction but not from fertilizing
cumulus-intact eggs after oviduct insemination. Further-
more, such an ADAM protein is not present in human
sperm, since human ADAM3 genes are not found to be
functional (Grzmil 2001).

The mechanisms involved in sperm–egg interactions
in mammals (including humans) are still unclear. The
interactions between male and female gametes appear to
be more complicated than a simple ligand–receptor
model. Most of the sperm proteins involved in egg–
membrane interactions, such as the ADAM protein
family, are present in very low quantities at the sperm
surface and can only be visualized at the sperm surface
www.reproduction-online.org
by sensitive techniques such as immunodetection.
Therefore, it is realistic that the binding force between
the sperm and the egg generated by only one of these
proteins would not be enough to maintain such an
interaction in vivo. It is now accepted that more than one
protein is involved and that these proteins could be
combined together in a protein complex (Reid et al.
2011), potentially included in the lipid raft domains of
the sperm membrane. Such a protein complex might be
formed by several ADAMs and also by other known or
as-yet-unknown sperm components such as HSPA2,
HSPA5, ARSA, SPAM1, or CCT/TRiC complex and
ITM2B, already identified as major sperm surface
proteins (Belleannee et al. 2011a, Bromfield & Nixon
2013; Fig. 2). In the epididymis, an abnormal compo-
sition of such a sperm surface complex might induce
abnormal epididymal protease activity towards some of
these sperm surface proteins such as ADAM3.

The identification of sperm proteins and the exact role
of the epididymis in the molecular mechanisms really
involved in gamete interactions is still a challenge.
Despite the complexity, the role of epididymal matu-
ration in the development and/or the control of the
egg–sperm binding properties is indisputable.
Conclusion

The epididymal maturation of spermatozoa is an essential
post-testicular stage in the acquisition of fertility by the
male gamete. During the 1 or 2 weeks of transit of the
sperm in this organ, subtle sequential changes occur
successively in several subdomains of the gamete. In spite
of the significant improvement in the understanding of
the protein composition of the spermatozoa and the
molecular mechanisms involved in both the motility
process and egg binding during the last 10 years, the role
of the epididymis is still not fully explained. Different
signalling pathways between immature and mature
spermatozoa are now well described, but their targets,
such as the motility process, initiation of capacitation, or
other metabolism changes, have not been fully identified.
The role of the epididymal surroundings in the activation
or inactivation of several of these sperm signalling
pathways is undeniable, but the mechanisms by which
several luminal components such as ionic components
(calcium, pH, and HCO3

K) exert either inhibitory or
stimulatory effects according to the maturation stage of
the gamete remain to be fully elucidated. Furthermore,
the fact that the sperm modifications occurring during
epididymal transit have a physiological effect only when
the gametes are in the female tract make the in vitro
evaluation of such modifications more complicated and
perhaps liable to misinterpretation. This may be the
case for the sperm surface proteins involved in the
egg-binding components.

With the recent increase in the understanding of the
protein composition of spermatozoa and the epididymal
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surroundings, it is now evident that there are consider-
able differences between species. The post-testicular
maturation of the spermatozoon is a general process in
mammals, but most of the recent results, in particular,
those obtained using KO genes, have been obtained from
rodent studies. The study of epididymal sperm matu-
ration in other species will be an important step in the
understanding of the species specificity of sperm fertility,
particularly for humans.
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