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Kidney fibrosis is an inevitable outcome
of all kinds of progressive chronic kidney
disease (CKD).1 Despite a great deal of
intense study, comprehensive under-
standing of the pathogenesis of renal scar
formation after injury remains a daunt-
ing task that poses a major obstacle to-
ward designing effective therapeutic
strategies. In the past several years, epi-
thelial-mesenchymal transition (EMT),
a process by which fully differentiated
epithelial cells undergo transition to a fi-
broblast phenotype, has emerged as an
important pathway leading to generation
of matrix-producing fibroblasts and
myofibroblasts in diseased kidney.

The concept of EMT, originally formu-
lated in embryonic development and tu-

mor metastasis,2,3 highlights the tremen-
dous plasticity of differentiated epithelial
cells and prompts an appreciation for the
role of epithelia in the evolution of fibrotic
lesions in adult kidney. We and others have
written comprehensive reviews on EMT in
kidney fibrosis approximately 6 years
ago.4,5 Since then, EMT has become argu-
ably one of the most interesting topics in
the field of renal fibrosis and has attracted a
great deal of attention.6–12

EMT IN KIDNEY FIBROSIS

Many studies from different laborato-
ries illustrate that tubular epithelial
cells in vitro undergo phenotypic con-

version after incubation with fibro-
genic TGF-�1 (TGF�); the transition is
characterized by loss of epithelial pro-
teins such as E-cadherin, zonula occlu-
dens-1 (ZO-1) and cytokeratin, and ac-
quisition of new mesenchymal markers
including vimentin, �-smooth muscle
actin (�-SMA), fibroblast-specific pro-
tein-1 (FSP1), interstitial matrix com-
ponents type I collagen, and fibronec-
tin.4,8 These alterations in protein
expression are usually accompanied by
morphologic changes to a fibroblastoid
appearance and an enhanced migra-
tory capacity. Several years ago, we
proposed that EMT is an orchestrated,
highly regulated process that consists
of four key steps: loss of epithelial cell
adhesion, de novo �-SMA expression
and actin reorganization, disruption of
tubular basement membrane, and en-
hanced cell migration and invasion.4,13

Conclusive demonstration of EMT in
vivo in the setting of kidney diseases ap-
pears very challenging. Nevertheless,
Iwano and colleagues14 provide the most
convincing evidence for EMT in vivo as a
source of interstitial, matrix-producing fi-
broblasts. Using genetically tagged proxi-
mal tubular epithelial cells, they show that
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ABSTRACT
Epithelial-mesenchymal transition (EMT), a process by which differentiated epithe-
lial cells undergo a phenotypic conversion that gives rise to the matrix-producing
fibroblasts and myofibroblasts, is increasingly recognized as an integral part of
tissue fibrogenesis after injury. However, the degree to which this process con-
tributes to kidney fibrosis remains a matter of intense debate and is likely to be
context-dependent. EMT is often preceded by and closely associated with chronic
interstitial inflammation and could be an adaptive response of epithelial cells to a
hostile or changing microenvironment. In addition to tubular epithelial cells, recent
studies indicate that endothelial cells and glomerular podocytes may also undergo
transition after injury. Phenotypic alteration of podocytes sets them in motion to
functional impairment, resulting in proteinuria and glomerulosclerosis. Several
intracellular signal transduction pathways such as TGF�/Smad, integrin-linked ki-
nase (ILK) and Wnt/�-catenin signaling are essential in controlling the process of
EMT and presently are potential targets of antifibrotic therapy. This review high-
lights the current understanding of EMT and its underlying mechanisms to stimu-
late further discussion on its role, not only in the pathogenesis of renal interstitial
fibrosis but also in the onset of podocyte dysfunction, proteinuria, and
glomerulosclerosis.

J Am Soc Nephrol 21: 212–222, 2010. doi: 10.1681/ASN.2008121226

BRIEF REVIEW www.jasn.org

212 ISSN : 1046-6673/2102-212 J Am Soc Nephrol 21: 212–222, 2010



up to 36% of all FSP1-positive fibroblasts
within the interstitial space originate from
renal proximal tubules after unilateral ure-
teral obstruction. This landmark study
clearly illustrates the significant contribu-
tion of EMT to the pathogenesis of chronic
kidney fibrosis in that model. Interestingly,
recent studies using a similar cell lineage-
tracing technique show that a substantial
number of interstitial fibroblasts also come
from capillary endothelia by endothelial-to-
mesenchymal transition (EndoMT).15,16

Because endothelial cells are a specialized
type of epithelia, this EndoMT represents
another form of EMT that occurs in the
injured kidney. This finding illustrates that
the originality and multiplicity of intersti-
tial fibroblasts in diseased kidney are much
more complex than one previously
thought. Evidence for EMT in vivo is
emerging in various other animal models
of CKD, including obstructive nephropa-
thy,13,15 diabetic nephropathy,17,18 rem-
nant kidney after 5/6 nephrectomy,19,20 ex-
perimental GN,21,22 nephrotoxic serum
nephritis,23 and chronic allograft nephrop-
athy.24–27

Clinical studies utilizing human kid-
ney biopsies also suggest that EMT likely
plays a role in the pathogenesis of human
CKD. Tubular expression of mesenchy-
mal markers such as vimentin and FSP1
is found in various progressive kidney dis-
eases including diabetic nephropathy,28,29

lupus nephritis,30 pauci-immune crescen-
tic GN,31 IgA nephropathy,32 and chronic
allograft nephropathy.26,33,34 Furthermore,
the expression of these transitional pro-
teins in tubular epithelial cells often is well
correlated with declining renal func-
tion.28,34

The extent to which EMT contrib-
utes to renal fibrosis in vivo remains a
matter of intense debate and is likely to
be context-dependent.35–37 There are
numerous reasons why EMT is often
underestimated in injured kidney, as
discussed previously.4 Although loss of
epithelial markers such as E-cadherin,
ZO-1, and cytokeratin is a universal
feature of EMT, fibroblastic conver-
sion has been more difficult to define
because of a lack of specificity of many
available phenotypic markers.38 Com-
monly used mesenchymal markers in-

clude vimentin, �-SMA, FSP1, desmin,
collagen I, fibronectin, N-cadherin, the
transcription factor Snail, and matrix
metalloproteinases 2 and 9 (MMP-2
and MMP-9, respectively). However,
most of these markers are not abso-
lutely specific for fibroblasts because
they are also present in other cells such
as inflammatory cells and endothelial
cells. Furthermore, tubular epithelial
cells and endothelial cells after injury
in vivo may not undergo a complete
EMT in many circumstances; rather,
they undergo a partial EMT, also
known as pre-EMT or in situ EMT, in
which these cells only change one or
two phenotypic markers but not actu-
ally leave their local microenviron-
ment.34 The discussion surrounding
the relative role, even the very exis-
tence, of EMT in renal fibrogenesis is
likely to continue, particularly in hu-
man CKD, because it is impossible to
obtain conclusive evidence by utilizing
the cell lineage-tracing technique in
humans for the obvious reasons.

EMT AND PERITUBULAR
MICROENVIRONMENT

Renal fibrosis is generally considered
the result of a failed tissue injury/repair
response and the entire process can be
arbitrarily divided into several phas-
es.1,39,40 Tubular epithelial cells ini-
tially produce various chemokines and
cytokines in response to various envi-
ronmental stresses, including high
ambient glucose, protein overload,
hypoxia, and increased reactive oxygen
species, as well as other injurious stim-
uli such as persistent infection, auto-
immune reactions, and chemical in-
sults. The chemokine gradients built
up around tubular and capillary com-
partments attract and direct the influx
of inflammatory cells, including mono-
cytes/macrophages and lymphocytes
(particularly T cells), to the tubulointer-
stitial space. Infiltrating cells in turn ac-
tivate and produce a mixture of soluble
factors, including proinflammatory,
profibrotic cytokines and MMPs.1,40

This cytokine milieu creates a hostile mi-

croenvironment for tubular epithelial
and endothelial cells, rendering them
adaptable to changing cell phenotype for
the sake of escaping apoptosis. Not sur-
prisingly, many EMT regulatory genes
such as Snail also play an important role
in modulating cell survival.41,42 In that
regard, EMT could be viewed as an adap-
tive response of epithelial cells after
chronic stress/injury.

Many factors and extracellular cues in
the tubular and capillary microenviron-
ment clearly play a critical role in regu-
lating EMT in different phases of renal
fibrogenesis.4 The list of these EMT reg-
ulatory factors is constantly growing
(Table 1, A and B) and includes various
cytokines, growth factors, and proteases
as well as other environmental cues. In
the early inflammatory phase of renal fi-
brosis, cytokines produced by infiltrat-
ing cells play a decisive role in initiating
EMT. This notion is substantiated by a
study in which oncostatin M from con-
ditioned media of activated peripheral
blood mononuclear cells promotes tu-
bular EMT in vitro.43,44 Likewise, proin-
flammatory cytokine IL-1 is an impor-
tant regulator of EMT.45 Of interest,
some proinflammatory cytokines such as
a mixture of IL-1, TNF�, and IFN-� pro-
foundly potentiate tubular EMT trig-
gered by TGF� by inducing TGF� recep-
tor expression, although they have little
effect by themselves.46 TNF�-dependent
NF-�B activation also stabilizes the tran-
scription factor Snail by blocking its
ubiquitination, providing another mo-
lecular linkage between inflammation
and EMT.47 The significance of renal in-
flammation in initiating and promoting
EMT is also manifested by many obser-
vations that renal fibrosis is almost al-
ways preceded by and closely associated
with chronic interstitial inflamma-
tion.48 –51

The major driving force behind
EMT during the fibrogenic phase of re-
nal fibrosis appears to be various pro-
fibrotic growth factors, including
TGF�,6,13 basic fibroblast growth fac-
tor,52 and connective tissue growth
factor,17,53 as well as angiotensin II,54

the principal component of the renin-
angiotensin system. Produced by
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stressed/injured tubular epithelial
cells, infiltrating inflammatory cells,
and/or residential activated fibro-
blasts, these factors establish a fibro-
genic niche in the interstitial space that
drives tubular epithelial and endothe-
lial cells to transition. Among them,
TGF� is the most widely studied and
likely the most potent EMT inducer.6,38

As a sole factor, TGF� can initiate and
complete the entire course of EMT
processes.13 The essential role of TGF�
in EMT is also consistent with the ob-
servation that its expression is univer-
sally upregulated in every kind of CKD
in experimental models and in clinical
settings.55

The fibrogenic phase is often followed
by tissue repair and remodeling.40,56 In
this stage, many matrix-degrading pro-
teases are activated, secreted into the
tubulointerstitial space, and partici-

pate in extracellular matrix remodel-
ing. Surprisingly, these proteases also
play a crucial role in promoting EMT.
It has been reported that MMP-2 is
necessary and sufficient for inducing
tubular EMT in vitro, and overexpres-
sion of MMP-2 in transgenic mice pro-
motes renal fibrosis.57,58 MMPs also in-
duce the proteolytic shedding of
E-cadherin, which causes the nuclear
translocation of �-catenin and the in-
duction of Snail2 (Slug), leading to
EMT in tubular epithelial cells.59 In-
triguingly, plasmin is demonstrated to
bind to the tubular cell membrane re-
ceptor, protease-activated receptor-1,
and initiates a cascade of signal trans-
duction events leading to induction of
EMT.60 We have also reported that tis-
sue-type plasminogen activator facili-
tates tubular EMT by inducing MMP-9
expression and promoting the destruc-

tion of tubular basement membrane
integrity.61,62

Sustained injury eventually causes peri-
tubular endothelial dysfunction and/or
EndoMT, leading to hypoxia. In the ad-
vanced stage of CKD, renal parenchymal
hypoxia, generation of reactive oxygen
species, advanced glycation end products,
andadvancedoxidationproteinproductsare
predominant pathologic features.27,63–67

In an elegant study by Higgins and col-
leagues,68 the condition of hypoxia,
through hypoxia-inducible factor-1 (HIF-
1), is a powerful cue for inducing tubular
EMT in vivo and in vitro. Stable expression
of HIF-1� in tubular epithelial cells
through ablation of von Hippel-Lindau tu-
mor suppressor, a ubiquitin ligase respon-
sible for HIF-1� degradation, consistently
promotes interstitial fibrosis.69 Recent
studies further demonstrate that HIF-1�
directly induces Twist, a key EMT regula-
tory transcription factor in kidney tubular
cells subjected to hypoxia.70 Likewise, ad-
vanced glycation end products are shown
to induce tubular EMT in a TGF�-depen-
dent and -independent manner.71,72 Al-
though not tested, it would not be surpris-
ing if advanced oxidation protein products
also induce EMT in diseased kidney.

Extensive studies also identify a di-
verse array of factors that negatively reg-
ulate EMT (Table 1). Hepatocyte growth
factor and bone morphogenic protein-7
directly target TGF�/Smad signaling and
prevent, and even reverse in some cases,
EMT and renal fibrosis.23,73,74 The antifi-
brotic effects of several therapeutic
agents such as vitamin D analogues, re-
nin-angiotensin system inhibitors, sta-
tin, and rapamycin are, at least to some
extent, attributable to their action in
suppressing EMT.75–79

PODOCYTE EMT AND
PROTEINURIA

In addition to tubular EMT and En-
doMT as discussed above, recent find-
ings indicate that glomerular podo-
cytes also undergo phenotypic
conversion, characterized by loss of
podocyte-specific markers and gain of
transitional features, a process remi-

Table 1A. Factors in the peritubular microenvironment that induce or
promote EMT

Factors References

Cytokines
IL-1 45
oncostatin M 43, 44

Growth factors
TGF�1 6, 13, 38
FGF-2 52
connective tissue growth factor 17

Component of renin-angiotensin system
angiotensin II 54

Proteases
MMP-2 57
tissue-type plasminogen activator 61
plasmin 60

Environmental stresses
hypoxia/reactive oxygen species 27, 66, 68
advanced glycation end products 17, 72

Table 1B. Factors in the peritubular microenvironment that suppress EMT

Factors References

Growth factors
hepatocyte growth factor 74
bone morphogenic protein-7 23

Nuclear receptor activator
Vitamin D 75

Renin-angiotensin system inhibitors
angiotensin II receptor blocker 76

Other
statin 13, 77
rapamycin 78, 79
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niscent of EMT.80 This implies that
EMT in kidney diseases goes beyond
the tubulointerstitial compartment. It
is attractive to speculate that the tran-
sition of podocytes after injury may
play a critical role in causing podocyte
dysfunction, which ultimately leads to
a defective glomerular filtration, pro-
teinuria, and glomerulosclerosis.

Podocytes are specialized visceral
epithelial cells that reside on the glo-
merular basement membrane (GBM)
outside of the glomerular capillar-
ies.81,82 Similar to the cells in most
parts of the nephron, podocytes are devel-
opmentally derived from the metanephric
mesenchyme through mesenchymal to epi-
thelial transdifferentiation. In this context, it
seems not completely surprising that
podocytes also undergo EMT, a process of
reverse embryogenesis, under pathologic
conditions. Recent studies demonstrate
that podocytes in culture, upon incubation
with TGF�, reduce the slit diaphragm-as-
sociated proteins P-cadherin, ZO-1, and
nephrin, changes consistent with loss of the
epithelial feature.80 Meanwhile, these cells
begin to express the intermediate filament
protein desmin, secret MMP-9, produce
the interstitial matrix components fi-
bronectin and collagen I, and upregulate
the transcription factor Snail.80 As a result,
these alterations in cell phenotype eventu-
ally impair podocytes’ filtration barrier
function, as demonstrated by a paracellular
albumin flux assay.80

Podocyte EMT also occurs in protein-
uric kidney diseases.80,83 In human biopsy
samples of diabetic nephropathy and focal
and segmental glomerulosclerosis, loss of
nephrin and ZO-1 expression in glomeru-
lar podocytes is a common feature,
whereas these cells express mesenchymal
markers such as desmin, FSP1, MMP-9,
and key EMT regulators Snail and inte-
grin-linked kinase (ILK).80,83,84 In a rat
model of puromycin aminonucleoside ne-
phropathy, several mesenchymal interme-
diate filament proteins such as desmin, vi-
mentin, and nestin are upregulated
predominantly in injured podocytes.85 In
an innovative cell lineage tracing study,86

genetically tagged podocytes completely
lost their molecular signatures such as
Wilms tumor protein 1, synaptopodin,
nephrin, and podocin, and presumably
migrate to and repopulate in glomerular
crescents during the early phases of cellular
crescent formation in anti-GBM GN.
These studies provide compelling evidence
for profound phenotypic changes of podo-
cytes in vivo under pathologic conditions.
Of particular interest, several key EMT reg-
ulatory intracellular signal transduction
pathways, including Wnt/�-catenin sig-
naling,87 ILK,88 Snail,80,89 and Jaggad/
Notch signaling,90,91 are often activated
specifically in glomerular podocytes in var-
ious proteinuric kidney diseases, suggest-
ing an active EMT program at work in
podocytes after various insults.

The hypothesis of podocyte EMT

offers a novel explanation for how in-
jury causes podocyte dysfunction and a
defective glomerular filtration barrier.
We envision that EMT is an integral
part of the spectrum of podocyte re-
sponses after injury. As illustrated in
Figure 1, in response to injurious stim-
uli, podocytes undergo a range of adap-
tive changes, including hypertrophy,
dedifferentiation, detachment, and ap-
optosis, depending on the severity and
duration of the injury.80,92 The initial
response may be cell hypertrophy, an
adaptive change in cell size in an at-
tempt to compensate for any lost func-
tion.93 However, if the injury is pro-
gressive, podocytes will undergo EMT
to escape from apoptosis, which results
in the loss of highly specialized podo-
cyte features and acquisition of new
mesenchymal markers. This leads to an
impaired glomerular filtration barrier,
thereby ensuring the onset of proteinuria.
More severe and/or longer injury induces
podocyte detachment from GBM and/or
apoptosis, resulting in podocyte loss,
which certainly exacerbates proteinuria
and leads to glomerulosclerosis. The in-
volvement and relative contribution of
these podocyte responses may not only de-
pend on the severity and duration of a
particular injury, but also vary in different
disease models. For instance, podocyte hy-
pertrophy may be a predominant feature
in aging nephropathy, whereas cell loss
could be a major finding in nephrotoxin-
induced proteinuric glomerular diseases.
We suspect that for many common glo-
merular diseases such as diabetic nephrop-
athy, EMT could be a primary pathway
leading to podocyte dysfunction and de-
tachment, proteinuria, and glomeruloscle-
rosis.

At this stage, the notion of podocyte
EMT remains controversial because
these cells possess sophisticated foot
processes in vivo and already express a
low level of vimentin at baseline.94 Un-
like tubular EMT, in which the trans-
formed cells invade into the interstitial
space and become matrix-producing
cells, podocytes become motile after
EMT, resulting in detachment from the
GBM and leading to washout in urine
or inclusion in glomerular crescent for-
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Podocyte EMT 

Mesenchymal markers Epithelial markers EMT-related mediators 
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MMP-9 

Collagen I 
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Wnt/β-catenin 
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Figure 1. Schematic presentation of the spectrum of podocyte responses after injury.
Depending on the severity and duration of the injury, podocytes may respond to
injurious stimuli in different ways, including hypertrophy, dedifferentiation and mes-
enchymal transition (EMT), detachment and apoptosis (depletion). EMT could be a
primary pathway leading to podocyte dysfunction, proteinuria, and glomerulosclerosis
in many common forms of proteinuric kidney diseases.
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mation.83,86 Despite these differences, tu-
bular and podocyte EMT likely share
similar hallmarks and could operate
through communal mechanisms.

INTRACELLULAR SIGNALING AND
MECHANISM OF EMT

The mechanism governing EMT has
been studied in great detail in recent
years. Because EMT can be induced by a
wide variety of stimuli (Table 1), it is not
difficult to imagine that a diverse array of
intracellular signal pathways and media-
tors is potentially involved in regulating
this process.6,11 Depending on the spe-
cific pathophysiologic circumstances,
these different signaling networks and
mediators likely cooperate to induce a set
of phenotypic changes that are consistent
with EMT. In the setting of CKD, it is
conceivable that three major signaling
pathways (i.e., TGF�/Smad, integrin/
ILK, and Wnt/�-catenin signaling) are
essential for conferring tubular and

podocyte EMT, although little is known
about EndoMT. These pathways are in-
tricately connected and integrated at dif-
ferent levels, and together they control a
host of transcription regulators and sig-
naling mediators that are imperative for
EMT (Figure 2).

TGF� Signaling
Mounting evidence establishes a cru-
cial role for TGF� signaling in mediat-
ing EMT.6,38 TGF� is the prototypic in-
ducer of tubular and podocyte
EMT,13,80 whereas the effects of other
mediators are often context-depen-
dent, variable, and incomplete. Given
the universal upregulation of its ex-
pression in the fibrotic kidney, TGF�-
induced EMT is particularly relevant to
the pathogenesis of kidney fibrosis.
Smad proteins mainly mediate the sig-
nals of TGF�. Upon stimulation by
TGF�, transmembrane type II TGF�
receptor forms tight complexes with
the type I receptor, leading to phos-
phorylation and activation of Smad2

and Smad3. Phosphorylated Smads then
heteroligomerize with the common part-
ner Smad4 and translocate into the nu-
cleus, where they control the transcrip-
tion of TGF�-responsive genes through
interaction with specific cis-acting ele-
ments in the regulatory regions.95,96 Of
interest, various EMT related genes are
the targets of TGF�/Smad signaling,
such as connective tissue growth factor,
ILK, PINCH-1, �1-integrin, Wnt, Snail,
Id1, �-SMA, collagen IA2, and MMP-
2.97–100

The necessity of Smad signaling in
EMT is clearly illustrated in vivo in
Smad3 knockout mice after obstructive
injury. Mice lacking Smad3 are pro-
tected from renal interstitial fibrosis
and show reduced EMT and collagen
accumulation after unilateral ureteral
obstruction.101 Consistent with this,
primary tubular epithelial cells from
the Smad3 null mice are resistant to in-
duction of EMT and key EMT regula-
tory genes.101,102 Targeting Smad sig-
naling by inhibitory Smad7 also blocks
tubular EMT and reduces renal fibrotic
lesions.103,104 Of note, Smad signaling
in diseased kidney appears drastically
hyperactive, not only because of TGF�
upregulation but also the dysregula-
tion of Smad co-repressors and their
regulators.105–108 Blockade of Smad sig-
naling is also mechanistically linked to
the inhibition of EMT by hepatocyte
growth factor and bone morphogenic
protein-7.23,109,110

Smad-independent signaling of
TGF� apparently also plays a role in
regulating EMT. Non-Smad pathways
of TGF� signaling involved in EMT in-
clude RhoA, p38 mitogen-activated
protein kinase (MAPK), and phopshati-
dylinositol-3-kinase/Akt. In most cir-
cumstances, activation of these non-
Smad pathways provides the context for
induction and specification of EMT and
is necessary for some aspects of EMT. For
instance, the small GTPase, RhoA, is im-
portant for morphologic changes, activa-
tion of �-SMA promoter, and cytoskeletal
rearrangements during TGF�-induced
EMT.111,112 TGF� also activates p38
MAPK. However, studies show that
TGF�-mediated p38 MAPK activation is

Target genes: 
ILK, PINCH-1, 
β1-integrin, Wnt, Id1 

β-cat 

LEF1 

Target genes: 
Snail, Twist, LEF1 
Jagged1 

LRP5/6 
Fzd 

Wnt 

Wnt/β-catenin 

β α 

ECM 

Integrin/ILK 

R-I R-II 

TGF-β1 

TGF-β signaling 

Dvl ILK Smad2/3 Akt 

Smad4 p38 
MAPK 

Axin 
APC 

GSK-3β 

CK1 
GSK-3β 

Figure 2. Simplified schematic shows major intracellular signaling networks and media-
tors involved in the regulation of EMT in the fibrotic kidney. Although EMT can be induced
by a wide variety of stimuli and potentially involves a diverse array of intracellular media-
tors, three major signaling pathways (i.e., TGF�/Smad, integrin/ILK, and Wnt/�-catenin
signaling) are essential for conferring tubular and podocyte EMT. These pathways are
intricately connected and integrated at different levels. See text for details.
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dependent on functional �1-integrin,
and p38 MAPK activity is required but is
not sufficient to induce EMT.113 Recent
studies identify a novel pathway in which
p38 MAPK can inactivate glycogen syn-
thase kinase-3� (GSK-3�) by direct
phosphorylation at its C-terminus, lead-
ing to an accumulation of �-catenin
(Figure 2).114 Evidence indicates that
the phopshatidylinositol-3-kinase/Akt
pathway is also implicated in tubular
EMT.65,115 Although the underlying
mechanism remains elusive, Akt-medi-
ated cell survival and �-catenin accumu-
lation through inhibition of GSK-3�
could play an important role.

ILK Signaling

ILK is an intracellular serine/threonine
protein kinase that interacts with the
cytoplasmic domains of the �-inte-
grins and mediates the integrin signal-
ing in diverse types of cells. ILK elicits
its biologic activities through two prin-
cipal properties: as a scaffolding pro-
tein and as a protein kinase.116,117 As
a scaffolding protein, ILK interacts
with integrins and numerous intracel-
lular proteins, such as �-parvin and
PINCH.116,118 We recently discovered
that ILK also interacts with nephrin in
normal glomerular podocytes, thereby
building a molecular bridge that con-
nects the cell-matrix integrin signaling
with the cell-cell slit diaphragm signal-
ing.119 Not surprisingly, conditional
knockout of ILK in a podocyte-specific
manner results in massive proteinuria,
glomerulosclerosis, and premature
death in mice.119,120 As a protein ki-
nase, the catalytic activity of ILK ren-
ders it to directly phosphorylate several
physiologically important downstream
effector kinases including Akt and
GSK-3�, leading to the stabilization of
�-catenin (Figure 2).117 This in turn
controls the expression of an array of
genes that are required for the EMT
program.

The involvement of ILK in tubular
EMT has been established by several lines
of evidence.97 Intriguingly, many com-
ponents of ILK signaling, including ILK,
PINCH-1, and �1-integrin are induced

simultaneously by TGF� in a Smad-de-
pendent manner.97,98 ILK expression is
also upregulated in a wide variety of
CKDs in experimental and clinical set-
tings.84,97,121,122 Furthermore, ILK is in-
dependently identified as a key mediator
of podocyte dysfunction and proteinuria
in many forms of proteinuric kidney dis-
eases84 in which podocyte EMT is a pre-
dominant pathologic feature.80 The ac-
tion of ILK in regulating EMT is
mediated primarily by its protein kinase
activity, because a kinase-dead mutant
and small molecule inhibitor of ILK
blocks TGF�-mediated EMT in vitro,
prevents podocyte dysfunction and albu-
minuria after adriamycin administra-
tion, and inhibits renal interstitial fibro-
sis in obstructive nephropathy.88,97,123 In
this context, it is plausible that hyperac-
tive ILK, a downstream signaling of
TGF�, plays a crucial role in mediating
tubular and podocyte EMT and targeting
its signaling could be a rational strategy
for the treatment of fibrotic kidney dis-
orders.

Wnt/�-Catenin Signaling

The role of Wnt/�-catenin signaling in
regulating EMT during organ develop-
ment and tumor metastasis is well es-
tablished.3,124 However, its implication
in tubular and podocyte EMT in the
setting of CKD has remained uncertain
until recently.87,125–127 Wnt proteins
belong to a highly conserved family of
secreted growth factors that play an es-
sential role in organogenesis, tissue ho-
meostasis, and tumor formation.128,129

Wnt proteins transmit their signal
across the plasma membrane through
interacting with the Frizzled receptors
and co-receptors LDL receptor-related
protein-5/6. Upon binding to their re-
ceptors, Wnt proteins induce a series of
downstream signaling events involving
Disheveled, axin, adenomatosis polyp-
osis coli, casein kinase-1, and GSK-3�,
resulting in dephosphorylation of
�-catenin. This leads to stabilization of
�-catenin by escaping from ubiquitin-me-
diated degradation, allowing it to accumu-
late in the cytoplasm and to translocate
into the nuclei, where it binds to T cell fac-

tor/lymphoid enhancer-binding factor-1
(LEF1) to stimulate the transcription of
Wnt target genes.129–131 In addition to this
canonical pathway, Wnt proteins may also
exert their activities through numerous
�-catenin-independent, noncanonical in-
tracellular signaling routes.

Multiple distinct genes in mammals
encode Wnt proteins, creating a com-
plex network of signaling systems. In-
terestingly, the vast majority of 19
mouse Wnt genes are induced concur-
rently in the fibrotic kidney after ob-
structive injury.127 Induction of Wnts
leads to the stabilization of �-catenin,
resulting in its localization in the cyto-
plasm and nuclei of tubular epithelial cells,
indicating a prevailed Wnt/�-catenin sig-
naling in that model. Inhibition of Wnt sig-
naling by Dickkopf-1, an endogenous Wnt
antagonist that specifically inhibits the ca-
nonical Wnt/�-catenin signal pathway by
binding to the LDL receptor-related pro-
tein-5/6 component of the receptor com-
plex,132 blocks the expression of Wnt target
genes such as Twist, LEF1, c-myc, and fi-
bronectin and ameliorates renal fibrosis af-
ter obstructive injury in vivo.127 Likewise,
activation of Wnt/�-catenin signaling is
apparently involved in mediating podo-
cyte EMT by inducing Snail and suppres-
sion of nephrin, and mice with conditional
ablation of �-catenin in glomerular podo-
cytes are protected from proteinuria and
podocyte dysfunction after administration
of adriamycin.87,89

TGF�, ILK, and Wnt signals are in-
terconnected and converge at the acti-
vation of �-catenin (Figure 2), which
leads to the activation of EMT tran-
scriptional programs. In this context, it
is of interest to note that many �-cate-
nin target genes (e.g., Snail, Twist,
LEF1, and Jaggad1) are key EMT regu-
latory transcription factors and media-
tors. For instance, Snail is a zinc-finger
protein that acts as transcription re-
pressor by recognizing E-box elements
in its target gene promoters.133 Overex-
pression of Snail suppresses E-cad-
herin in tubular epithelial cells and in-
hibits nephrin and P-cadherin in
podocytes.75,80,89 In vivo, Snail activa-
tion is sufficient to induce EMT and
kidney fibrosis in adult transgenic
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mice.134 Twist is a basic helix-loop-he-
lix transcription factor that is impli-
cated in tubular EMT and kidney fibro-
sis.70,135 Ectopic expression of Twist
not only suppresses E-cadherin but in-
duces mesenchymal markers such as fi-
bronectin, vimentin, �-SMA, and N-
cadherin.136 Therefore, to some extent,
�-catenin could function as a master
switch that can integrate signal inputs
from multiple pathways and control
the EMT-related transcriptome.

CONCLUSIONS AND
PERSPECTIVE

EMT has become one of the most fas-
cinating topics in the studies of embry-
onic development, tumor metastasis,
and organ fibrosis in recent years. The
idea that epithelial cells after stress/in-
jury can undergo conversion to give
rise to fibroblasts, and thereby contrib-
ute to the pathogenesis of kidney fibro-
sis, is quite attractive and is receiving
increasing attention. Undoubtedly,
EMT prompts one to appreciate the
role of epithelia and endothelia in the
evolution of kidney fibrosis, thereby
representing a paradigm shift in the
field. A growing list of the extracellular
factors and intracellular mediators that
control EMT has been identified and
could be exploited in developing future
antifibrotic therapeutics.

Despite these progresses, many open
questions remain. One fundamental is-
sue is to what extent EMT contributes to
renal fibrosis in vivo. A definitive answer
has to rely on the cell lineage tracing
technique in vivo by using a genetic mod-
el.14,86 Because many cell types other
than epithelial and endothelial cells (in-
cluding interstitial fibroblasts, circulat-
ing fibrocytes, and vascular pericytes)
also participate in matrix production in
the fibrotic kidney,14,15,37,137,138 dissec-
tion of the relative contribution of EMT
to kidney fibrosis remains extremely dif-
ficult, if possible at all. Another challenge
is to completely elucidate the key molec-
ular mechanism controlling EMT. Given
the diversity of known EMT regulatory
factors, the underlying signal pathways

could be immensely complex, with al-
most immeasurable cross-talks and feed-
backs. What one needs may be to identify
a converging “master switch” that inte-
grates various signal inputs and controls
the EMT transcriptional program. Fi-
nally, perhaps the most difficult chal-
lenge ahead is to develop a plan to trans-
late many experimental innovations into
clinically effective regimes. Several strat-
egies targeting key EMT signaling appear
to work in animal models.5,110,123 It is
hoped that well designed clinical trials
will be carried out in the years to come.
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