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Abstract

Significance: Heme oxygenase-1 (HMOX1) plays a critical role in the protection of cells, and the inducible
enzyme is implicated in a spectrum of human diseases. The increasing prevalence of cardiovascular and met-
abolic morbidities, for which current treatment approaches are not optimal, emphasizes the necessity to better
understand key players such as HMOX1 that may be therapeutic targets. Recent Advances: HMOX1 is a
dynamic protein that can undergo post-translational and structural modifications which modulate HMOX1
function. Moreover, trafficking from the endoplasmic reticulum to other cellular compartments, including the
nucleus, highlights that HMOX1 may play roles other than the catabolism of heme. Critical Issues: The ability of
HMOX1 to be induced by a variety of stressors, in an equally wide variety of tissues and cell types, represents an
obstacle for the therapeutic exploitation of the enzyme. Any capacity to modulate HMOX1 in cardiovascular and
metabolic diseases should be tempered with an appreciation that HMOX1 may have an impact on cancer.
Moreover, the potential for heme catabolism end products, such as carbon monoxide, to amplify the HMOX1
stress response should be considered. Future Directions: A more complete understanding of HMOX1 modifi-
cations and the properties that they impart is necessary. Delineating these parameters will provide a clearer
picture of the opportunities to modulate HMOX1 in human disease. Antioxid. Redox Signal. 20: 1723–1742.

Introduction

Heme oxygenases (HMOX) are rate-limiting enzymes that
degrade heme (iron protoporphyrin IX) to carbon mon-

oxide (CO), ferrous iron (Fe2 + ), and biliverdin IXa. Biliverdin
IXa is, subsequently, converted to bilirubin IXa by biliverdin
reductase (BVR). HMOX enzymatic activity consumes three
moles of molecular oxygen (O2) per mole heme oxidized with
electrons originating from NADPH and supplied by cyto-
chrome P450 reductase (CPR) (164). The catabolism of heme is
schematically represented in Figure 1. Notably, HMOX use
heme as both a substrate and a prosthetic group (195). As
HMOX degrade heme, the major source of iron in our body,
they play a key role in whole body iron recycling/homeostasis.
In addition, HMOX are implicated in vascular biology and
cellular protection against stress (155). More recently, HMOX

has been reported to activate the transcriptional machinery
that drives the induction of antioxidant genes (27, 101), likely
in part, independent of its enzymatic activity (27, 65). The
convergence of these different properties stresses the impor-
tance of HMOX as a key agent that protects the cell.

The HMOX family is represented by two distinct enzymes:
heme oxygenase-1 (HMOX1) and heme oxygenase-2
(HMOX2). Human HMOX1 and HMOX2 are paralogs, shar-
ing *42% similarity in their amino-acid sequences (29). Both
proteins possess a common 24-amino-acid sequence known as
the ‘‘heme-binding pocket’’ or ‘‘HMOX signature’’ that facil-
itates the catabolism of heme (110). While both proteins utilize
the same substrate and cofactor, they are different in their
physiological properties and regulation. For example,
HMOX1 is induced in response to a variety of external stimuli,
while HMOX2 is ubiquitously expressed.
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HMOX1 is a 32 kDa protein that is anchored to the endo-
plasmic reticulum (ER) by a single hydrophobic transmem-
brane segment (TMS) in the C-terminus (146, 196). HMOX1
colocalizes with CPR, and their interaction is required for
maximal HMOX enzymatic activity (69, 103). In addition,
HMOX1 has been demonstrated to localize to other organ-
elles, including caveolae, mitochondria, and the nucleus (53,
83, 152), raising the possibility that HMOX1 may play a role in
addition to heme degradation.

HMOX1 is typically expressed in mononuclear phagocytes of
the spleen, liver, and bone marrow (164), although its expression
and activity has been detected across almost all tissues assessed
to date. HMOX1 is strongly induced by a number of chemical
and physical stresses, including heat shock, heme and hemin,
cytokines, lipopolysaccharide (LPS), growth factors, oxidative
stress and hydrogen peroxide (H2O2), hypoxia, CO, and Fe
starvation [reviewed in ref. (135)].

HMOX2 has a molecular mass of 36 kDa and is expressed
ubiquitously, with particularly high levels in the brain (156).
Unlike HMOX1, HMOX2 contains heme regulatory motifs
that act as a thiol/disulfide redox switch regulating the Kd for
heme (193). To date, only corticoids are known to induce
HMOX2 (110). HMOX2 is implicated in oxygen sensing and
the regulation of the vascular tone of at least some vascular
beds (183). CO acts as a vasodilator in peripheral vessels,
whereas CO derived from HMOX2 acts as a vasoconstric-
tor in the cerebral circulation by preventing cystathionine
b-synthase and forming the vasodilator hydrogen sulfide (117).

This review will focus on HMOX1, elaborating on the protein
chemistry, subcellular localization, and therapeutic utility of this
enzyme in cardiovascular diseases and diabetes mellitus.

Post-Translational and Structural Modifications
of HMOX1

Little is known about the potential regulation of HMOX1
by post-translational modifications, although there is in-

creasing appreciation that structural modifications, for ex-
ample, truncation, underpin non-canonical functions of
HMOX1 (27, 101). An in silico analysis of the human HMOX1
protein predicts a number of potential sites for post-translational
modifications. These and those determined by the mining of
mass spectrometry data and/or experimentally confirmed
by in vitro or in vivo experiments are listed in Figure 2. Care
needs to be taken, however, when interpreting data solely
based on in silico analyses until these observations are con-
firmed. In the next section, we discuss the current knowl-
edge of post-translational and structural modifications of
HMOX1.

Phosphorylation

Phosphorylation, the addition of a phosphate group onto
highly conserved, specific tyrosine, serine, or threonine resi-
dues, is a well-recognized post-translational modification.
HMOX1 contains a strong consensus sequence for serine/
threonine phosphorylation by the protein kinase, Akt. Akt
phosphorylates recombinant human HMOX1 at serine 188 as
determined by studies in the human embryonic kidney cell
line, HEK293T (137). Phosphorylation at S188 leads to a
modest increase in HMOX activity when compared with the
non-phosphorylated HMOX1 protein. Fluorescence reso-
nance energy transfer experiments demonstrated that a serine
to asparagine point mutation at residue 188 in HMOX1 re-
sulted in a lower Kd for the interaction between CPR and BVR
than that observed for wild-type HMOX1. This suggests that
the negative charge produced by phosphorylation at S188
increases the affinity of HMOX1 for these proteins. Therefore,
any increase in Akt activity, as is observed in response to a
range of stimuli (135), could conceivably lead to an increase in
HMOX activity.

More recently, HMOX1 phosphorylation at serine/threo-
nine residues was detected in human brain samples (8, 19). It
was reported that basal HMOX activity was significantly in-
hibited by brief treatment of neuron/glia cell cultures with
inhibitors of the MEK and ERK signaling pathways (19).
While there are several potential ERK phosphorylation sites
on HMOX1, many of these are not conserved among diver-
gent species (Fig. 2). Furthermore, there is no evidence that
ERK directly phosphorylates HMOX1. Interestingly, and
similar to BVR, HMOX1 has a conserved docking site/motif
for ERK FXF (DEF motif ) that is important for BVR to form a
complex with MEK/ERK (95). On activation, MEK is released
from ERK and the BVR/ERK complex enters the nucleus.
Thus, it appears possible that the DEF motif in HMOX1 may
act in a manner similar to that reported for BVR and be used as
one mechanism to shuttle HMOX1 into the nucleus.

Palmitoylation

Palmitate is a 16-carbon saturated fatty acid that can be
covalently attached to a number of eukaryotic proteins. There
is no clear consensus sequence motif for palmitoylation, with
the modification occurring at any one or more cysteine resi-
dues through a thioester linkage. The thioester bond is
cleaved readily, enabling palmitoylation to play a significant
role in cell signaling, subcellular trafficking, and protein–
protein interactions. With regard to palmitoylation of
HMOX1, only the murine and chicken proteins contain a
cysteine residue (Fig. 2), suggesting that HMOX1 in these

FIG. 1. Pathway of heme catabolism. HMOX enzymes
catalyze the initial step in heme catabolism. HMOX oxidizes
heme (Fe protoporphyrin IX) to biliverdin IXa. This reaction
consumes three molecules of molecular oxygen (O2) and
seven electrons donated from NADPH by CPR, and it pro-
duces ferrous iron (Fe2 + ), CO, and biliverdin IXa as the
products. Biliverdin IXa is then reduced to bilirubin IXa by
BVR. BVR, biliverdin reductase; CO, carbon monoxide; CPR,
cytochrome P450 reductase; HMOX, heme oxygenase.
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species could be palmitoylated. Indeed, murine HMOX1 was
found to be palmitoylated in the murine B16 melanoma cell
line (107). It is not clear under what circumstances murine
HMOX1 may be palmitoylated in vivo, and there is no indi-
cation as to whether palmitoylation affects HMOX activity.
Surprisingly, despite a lack of cysteine residues, human
HMOX1 has been reported to be palmitoylated in platelets
(39), although to date, the effect of such palmitoylation on
HMOX1 function remains unknown.

Acetylation

Acetylation of lysine residues is a reversible modification
that plays an essential role in regulating gene expression.
Lysine acetylation has also been shown to be important for
cell cycle, nuclear transport, and chromatin remodeling.
When assessing the residues that are important for the inter-
action between rat HMOX1 and CPR, nine (i.e., K18, K22, K39,
K48, K69, K149, K153, K179, and K196) out of a total of 15
lysine residues were identified by mass spectrometry (MAL-
DI-TOF) as acetylated (61). Interestingly, K149 and K153 were
protected from acetylation in the presence of CPR. However,
in the absence of CPR, rat HMOX1 was acetylated at all nine
lysine residues, and this led to a reduction in HMOX activity.
These data suggest that at least in rats, CPR may modulate
HMOX activity via inhibition of K149 and K153 acetylation.
HMOX1 was also acetylated at K39 in human cancer cell lines
(24) and at K18 in human liver tissue (199). The significance of
acetylation of human HMOX1 at these residues remains un-
clear. In the instance of the K18 or K39, acetylation may confer
nuclear localization to HMOX1, which may be associated
with changes in gene transcription (27, 101). Indeed, acetyla-

tion of other transcription factors has been shown to promote
gene transcription; for example, acetylation of Nrf2 at K588
and K591 facilitates binding to the HMOX1 promoter and
induces gene transcription in vitro (81).

Ubiquitination

Degradation of proteins by the ubiquitin-proteasome
pathway enables cells to respond to a changing environment.
Signal-dependent ubiquitination frequently results in the
complete degradation of the targeted protein. HMOX1 pro-
tein turnover occurs via the ubiquitin proteasome system in
the ER-associated membrane and has been shown for vascu-
lar smooth muscle cells (SMCs), HEK293 cells (100), and rat
adrenal pheochromocytoma PC12 cells (189). In HEK293T
cells, ER-resident E3 ubiquitin ligase is responsible for
HMOX1 degradation via an interaction with the TMS region
(100). However, it remains unclear how truncated HMOX1
protein in which the TMS sequence has been lost is turned
over. Interestingly, treatment of the human colon adenocar-
cinoma cell line, HCT116, with the proteasome inhibitor
bortezomib resulted in K39, K69, K86, K148, K153, and K243
residues of HMOX1 becoming ubiquitinated; while treatment
with the proteasome inhibitor epoxomicin led to ubiquitina-
tion of K179 and K256 (85). These data suggest that not all
ubiquitination events are regulated identically.

Dimerization and oligomerization

A lack of cysteine residues in HMOX1 led to the assump-
tion that HMOX1 acts as a monomer. However, Hwang et al.
demonstrated that in the ER of HEK293 cells, HMOX1 gives

FIG. 2. Potential post-translational modifications of HMOX1. Human, mouse, rat, and chicken HMOX1 protein sequences
were aligned using COBALT:Multiple Alignment Tool (http://ncbi.nlm.nih.gov/tools/cobalt). Modifications reported in the
literature and/or elucidated from mass spectrometry data mining are indicated as follows: green shading = acetylation, red
box = ubiquitination, orange shading = palmitoylation, blue shading = phosphorylation, and gray shading = orthologous res-
idues. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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rise to dimers and oligomers, the formation of which were
essential for HMOX activity (70). Using mutant HMOX1
constructs in fluorescence resonance energy transfer and co-
immunoprecipitation experiments, the TMS region was
shown to be the interface for protein–protein interaction.
HMOX1 dimers have also been observed in preparations of
lipid vesicles (112). The TMS region is also responsible for
binding CPR, which maximizes the catalytic activity of
HMOX1 (69). Moreover, in HEK293 cells, CPR promotes
HMOX1 oligomerization, which can prevent hypoxia-
induced translocation of HMOX1 to the nucleus (103).

Truncation

Microsomal full-length HMOX1 (32 kDa) is trypsinized
easily, resulting in a water-soluble truncated protein that
typically lacks a 23–55-amino-acid hydrophobic C-terminal
TMS (194). Purified recombinant full-length HMOX1 can also

be cleaved by thrombin (69). In these and other studies, pro-
tein cleavage has given rise to at least three types of truncated
HMOX1, including 27, 28, and 30 kDa isoforms. The 23-
amino-acid truncated HMOX1 (HMOX1D23) has been crys-
tallized, and this led to the identification of histidine 25 within
the proximal alpha helix as the ligand for heme Fe (144).
Truncated forms of HMOX1 have been reported to localize to
the nucleus (see next), with cysteine proteases having been
implicated in proteolytic cleavage (101). While the TMS of
HMOX1 enhances its interaction with CPR and BVR (see
earlier), there is convincing evidence that HMOX1 lacking the
C-terminus retains catalytic activity. Thus, earlier studies es-
tablished unambiguously that isolated purified human
HMOX1 with approximately 67 of its C-terminus amino-acid
residues deleted retains *50% of the enzymatic activity of
full-length HMOX1 when purified CPR is supplied as the
source of electrons [see, e.g., refs. (143, 144, 181)]. In addition
to CPR, ascorbate is an established alternative source of

FIG. 3. Subcellular localization of HMOX1. HMOX1 localizes to different subcellular compartments. HMOX1 is tethered
to the ER membrane by a trans-membrane sequence (TMS). CPR colocalizes with HMOX1 on the ER to facilitate heme
degradation to CO, Fe2 + , and biliverdin. Biliverdin is then converted to bilirubin by BVR. HMOX1 may traverse the ER and
MAM compartments to the mitochondria. In the mitochondria, HMOX1 is anchored to the inner mitochondrial membrane,
where it may detoxify mitochondrial heme. HMOX1 may be transported to caveolae and the plasma membrane through the
ER and Golgi apparatus, where it similarly detoxifies heme. The activity of HMOX1 in caveolae may be modulated by CAV1
that binds to and decreases HMOX activity. CPR can promote oligomerization of HMOX1 to increase its stability and
enzymatic activity and to prevent nuclear translocation. Cleavage of the TMS enables truncated HMOX1 to enter the nucleus,
where it can induce the transcription of antioxidant response genes. CAV1, caveolin-1; ER, endoplasmic reticulum; MAM,
mitochondrial membrane associated; TMS, transmembrane segment.
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electrons for truncated HMOX1, yielding biliverdin IXa as the
stereospecific product (168, 177).

Subcellular Localization of HMOX1

Since its discovery on microsomes (163), the location of
HMOX1 has been assigned traditionally to the ER. More re-
cently, however, HMOX1 has been reported to be present in
other cellular compartments, including caveolae, mitochon-
dria, and the nucleus (Fig. 3). In the ER, caveolae and mito-
chondria HMOX1 appear to be anchored by the TMS and to
co-localize with CPR and BVR, suggesting heme degradation
as its primary role. However, we are unaware of evidence for
the presence of CPR in the nucleus, where truncated HMOX1
likely regulates gene transcription. In this section, we will
review the localization of full-length and truncated HMOX1
within different cellular compartments.

Endoplasmic reticulum

The ER is the site of protein, lipid, and carbohydrate syn-
thesis, and for the packaging of these molecules into vesicles
for delivery-to-end organelles. The ER is also important for
the regulation of cellular calcium, glycosylation, insertion of
integral membrane proteins, disulfide bond formation and
protein folding, and drug metabolism. Disturbances in redox
regulation, glucose deprivation, cellular calcium, and viral
infections can lead to ER stress and the unfolded protein re-
sponse. Interestingly, HMOX1 and CO play integral roles in
many disease processes in which ER stress is implicated.
These include cardiovascular and metabolic diseases (84, 104).
As previously discussed, HMOX1 is anchored to the ER via a
hydrophobic C-terminus TMS (146). It has also been ascer-
tained that the orientation of ER-bound HMOX1 is toward the
cytosol (56). Within the ER or in response to stress such as
hypoxia, the TMS may be cleaved, resulting in truncated
HMOX1 that may then translocate to the cytoplasm and the
nucleus (70, 101).

Caveolae

At the plasma membrane, there are specialized micro-
domains that are enriched in cholesterol and glyco-
sphingolipids, and these are known as lipid rafts and
caveloae. Cell signaling proteins localize to these lipid-rich
areas for vesicular transport and rapid induction of signaling
cascades in response to external stimuli. Caveolins (CAVs) are
membrane proteins that are predominantly found in caveolae.
CAVs form scaffolds on which signaling molecules can as-
semble, thereby facilitating rapid cell signaling responses.

One of the first reports of non-ER compartmentalization of
HMOX1 was in the caveolae of rat pulmonary artery endo-
thelial cells (ECs) (83). When treated with LPS, heme, or
hypoxia, a proportion (25–40%) of HMOX1 protein was found
to localize to a detergent resistant fraction that contained
CAV-1. Co-immunoprecipitation studies confirmed that
HMOX1 directly interacted with CAV1 to reduce HMOX ac-
tivity (83), as was previously seen with endothelial nitric ox-
ide synthase (48). When cells were depleted of cholesterol,
HMOX1 disappeared from the detergent-resistant fraction.
Moreover, as CAV1 was decreased, HMOX activity increased.
Similarly, LPS treatment of isolated murine peritoneal mac-
rophages resulted in HMOX1 translocation to caveolae, while

exogenous CO enhanced the binding of CAV1 to toll-like re-
ceptor 4 and inhibited pro-inflammatory signaling (179).
Cadmium has also been shown to cause HMOX1 and CAV1
association in mouse mesangial cells (78), and it is now ap-
preciated that CAV1 is involved in the regulation of HMOX
activity (159).

Mitochondria

Mitochondria are the energy powerhouses of the cell,
producing energy in the form of ATP. In addition, mito-
chondria play key roles in signaling, apoptosis, cell survival,
cellular growth, and heme synthesis. As such, ‘‘mitochondrial
dysfunction’’ is implicated in many aspects of cardiovascular
diseases, diabetes complications, and aging.

Mitochondrial HMOX activity was initially reported in the
southern multimammate mouse (Mastomys coucha) (152), al-
though that study did not discriminate between HMOX1 and
HMOX2 activity. More recently, treatment of rat pulmonary
EC with heme or LPS has been reported to result in a pro-
portion of HMOX1 protein becoming associated with cell
fractions containing cytochrome c (83). In fact, HMOX1 ap-
pears to be constitutively expressed in mitochondria of rat
liver, where it colocalizes with BVR in the inner mitochondrial
membrane (28). This suggests that mitochondrial HMOX1
may play a role in the detoxification of mitochondrial heme
(see next).

Nucleus

Critical functions that occur within the nucleus include
regulation of gene transcription and cell cycle progression.
HMOX1 has been detected in the nucleus of various cell types,
including brown adipose tissue (53), prostate cancer cells
(136), astroglial cells (97), EC (83), squamous cell carcinoma,
(51), Hepa, NIH3T3 cell lines (101), dendritic cells (52), and
cerebral cortex tissue (117). Our laboratory has shown that the
yeast homolog Hmx1 may translocate to the nucleus and
regulate gene transcription, although the possibility of ER-
associated Hmx1 contamination has not yet been ruled out
(27). However, we have shown that hemin treatment leads to
nuclear translocation in two mammalian cell types, namely
human Jurkat T-cell lymphoma cells (Fig. 4) and rat aortic
SMC (unpublished data).

Heme and hypoxia have also been shown to cause trans-
location of truncated HMOX1 to the nuclei (101). In that
study, it was demonstrated that loss of the TMS was required
for nuclear translocation. As noted earlier, truncation de-
creases (but does not eliminate) CPR-dependent activity of
HMOX1. Indeed, overexpression of human HMOX1D24 in
HEK293T cells was reported to significantly lower HMOX
activity compared with cells transfected with full-length
HMOX1 (1.2-fold increase in HMOX activity for HMOX1D24

truncated protein compared with 6.0-fold increase for full-
length HMOX1) (70). As mentioned earlier, this could be due
to truncated HMOX1 being located primarily in the nucleus
where CPR was absent (101, 103, 182).

Proposed Modes of Action of HMOX1 at Different
Cellular Locations

The primary role of HMOX1 across all species is undoubt-
edly the degradation of heme, which has led to the retention of
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the HMOX genes throughout evolution. However, variations
in the HMOX1 protein, post-translational modifications, and
subcellular localization indicate an expanded repertoire of
function (Fig. 3). Recent studies also indicate that HMOX1
shuttles between subcellular compartments, as summarized in
Table 1. Therefore, it may be appropriate to consider HMOX1
as a ‘‘dynamic’’ protein.

The association of HMOX1 with the ER and its orientation
toward the cytosol (56) is not random. Rather, it is an efficient
way to deal with the redox-active Fe2 + generated as a result of
heme degradation. Free iron derived from heme commonly
induces expression of the heavy chain of ferritin (43) and the

Fe2 + exporter ferroportin (33). Together, ferritin and ferro-
portin efficiently sequester and remove redox-active Fe2 + ,
thereby minimizing Fenton chemistry-induced oxidative
damage. Moreover, colocalization of BVR and CPR with
HMOX1 ensures efficient conversion of biliverdin to bilirubin.
In caveolae, the proximity of HMOX1, BVR, and CPR (83) as
well as ferroportin would be expected to increase the effi-
ciency of heme degradation and Fe export.

It has been shown that in isolated murine peritoneal mac-
rophages, the LPS-induced translocation of HMOX1 from the
ER to the caveolae proceeds by a p38 MAPK-dependent
mechanism (179). In addition, this translocation was blocked

FIG. 4. Nuclear localization of HMOX1. Human Jurkat T-cell lymphoma cells were treated with 30 lM hemin for 24 h; the
nuclei were isolated by fractionation and stained for HMOX1 (SPA-895, Stressgen and AlexaFluor 488; Life Technologies) and
DAPI. Fluorescent photomicrographs were taken using a Leica SPEII confocal microscope. HMOX1 staining is shown in
green. DAPI images were pseudo colored from blue to red, and HMOX1 and pseudo-colored DAPI images were merged
using Leica LAS AF Lite software. Yellow arrows indicate nuclei. Magnification = 100 · . DAPI, 4¢,6-diamidino-2-phenylindole.
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

Table 1. Translocation of Heme Oxygenase-1 to Non-Endoplasmic Reticulum Compartments

Treatment Cell type Compartments References

15-deoxy-D12,14-
prostaglandin J2

Murine cortical neurons Cytoplasm, microsomes (86)

Cigarette smoke extract A549 aveolar cell line Mitochondria, cytoplasm (147)
Beas-2b bronchial epithelial cell line Mitochondria, cytoplasm (147)

Co-PP IX Rat renal cells Mitochondria (172)

Heme NIH3T3 fibroblast cell line Nucleus (101)

Hemin Head and neck squamous cell carcinomas Nucleus (51)
A549 alveolar cell line Mitochondria, cytoplasm (147)
Beas-2b bronchial epithelial cell line Mitochondria, cytoplasm (147)
PC3 prostate cancer cell line Nucleus, cytoplasm (136)
LnCAP prostate cancer cell line Nucleus, cytoplasm (136)
Rat liver Mitochondria, microsomes (28)

Hypoxia NIH3T3 fibroblast cell line Nuclear (101)
HEK293T embryonic kidney cell line Nuclear (103)
Rat pulmonary artery endothelial cells Caveolae (83)

Indomethacin Rat gastric mucosa Mitochondria (10)

LPS Murine bone marrow derived macrophages Cytoplasm (34)
Murine peritoneal macrophages Caveolae (179)
A549 alveolar cell line Mitochondria, cytoplasm (147)
Beas-2b bronchial epithelial cells Mitochondria, cytoplasm (147)
Rat liver Mitochondria, microsomes (28)

Palmitoylation Murine B16 melanoma cell line Mitochondria associated membrane (107)

LPS, lipopolysaccharide.
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by brefeldin-A that disrupts Golgi complexes, suggesting that
Golgi processing is also involved (Fig. 3). As mentioned ear-
lier, CAV1 is enriched in caveolae, where it has been shown to
bind to and inhibit the activity of HMOX (78, 83, 159). Indeed,
deletion of CAV1 increases, while CAV1 overexpression in-
hibits LPS-induced HMOX activity in EC (83). CAV1 inter-
feres with the binding of hemin to HMOX1 (159). Thus, CAV1
may be considered a cellular regulator of HMOX activity.

Electron microscopy studies indicate that mitochondrial
HMOX1 is localized to the inner mitochondrial membrane
(28), although HMOX1 lacks a typical mitochondria-targeting
sequence as assessed by in silico analysis. Mitochondria are
linked to the ER via mitochondrial-associated membranes
(MAM) (54) that represent a likely route for HMOX1 traf-
ficking between the two organelles. In the mouse melanoma
cell line B16, inhibition of palmitoylation has been reported to
result in translocation of HMOX1 from the MAM to the ER
(107). Whether palmitoylation is a requisite for HMOX1
shuttling, however, is questionable, given that this modifica-
tion does not occur in all species. Nevertheless, these data
suggest that HMOX1 may shuttle between these organelles.

As mentioned earlier, mitochondrial HMOX1 colocalizes
with BVR and CPR (28). Thus, one function of mitochondrial
HMOX1 appears to be the regulation of mitochondrial heme
content, in concert with heme synthesis that also occurs in
mitochondria (129). Mitochondrial HMOX1 also plays a role
in apoptosis. Treatment of rat renal cells with the HMOX1
inducer cobalt protoporphyrin IX results in translocation of
HMOX1 to mitochondria and attenuation of the release of
cytochrome c (172). HMOX1 induction was further associated
with increased transcription and phosphorylation of the an-
tiapoptotic protein Bcl2. Hemin and cigarette smoke extract
also increase mitochondrial HMOX1 expression in A549 al-
veolar and Beas-2b bronchial epithelial cell lines (147) that
was associated with preservation of ATP production.

The mode of action of nuclear HMOX1 appears to depart
somewhat from the membrane-associated forms of HMOX1
discussed so far. Known inducers of HMOX1, such as hypoxia
and hemin, are associated with nuclear translocation of
HMOX1 (Table 1). While it remains uncertain whether
protease-mediated cleavage of the TMS region of HMOX1 is
essential for nuclear translocation, nonspecific inhibition of
cysteine proteases blocked nuclear translocation of HMOX1
in one study (101). Studies of truncated rat HMOX1 indicate
that a highly conserved leucine-rich nuclear shuttling
sequence enables nuclear translocation (101) (Fig. 2). This
leucine-rich sequence is partially conserved between human
and mouse, and, to a lesser extent, chicken.

Once in the nucleus, truncated HMOX1 may protect
against stress by different mechanisms, including the activa-
tion of transcription factors (52, 101). Consistent with this, we
reported that yeast cells transfected with human HMOX1 and
treated with oxidants showed nuclear translocation of
HMOX1 and increased expression of antioxidant genes such
as c-glutamylcysteine synthetase, glutathione peroxidase,
catalase, and methionine sulfoxide reductase (27). Whether
the biological functions of nuclear HMOX1 require enzymatic
activity is a matter of debate. As previously mentioned,
truncated human HMOX1 retains enzymatic activity (143,
144, 181). Evidence against nuclear HMOX1 being enzymat-
ically active comes from studies performed by Dennery and
coworkers. These authors reported HMOX activity in 3T3 fi-

broblasts transfected with human EGFP-HMOX1D23 to be
similar to that in non-transfected control cells, whereas trans-
fection with full-length EGFP-HMOX1 increased enzymatic
activity*10 fold (101). In addition, transfection of cells with an
enzymatically inactive HMOX1 mutant significantly altered
the expression of various transcription factors (101). Thus, en-
zymatic activity does not appear to be required for HMOX1 to
affect gene transcription in model systems, although the bio-
logical relevance of this remains to be established.

If enzymatically active, the resulting CO itself may modu-
late antioxidant gene transcription via the activation of the
Nrf2 transcription factor that is a key initiator of HMOX1 gene
transcription (91). Thus, the HMOX1 response can be ampli-
fied. This amplification may be kept in check by CPR, which
promotes oligomerization of HMOX1 and prevents cleavage
and nuclear translocation of the truncated protein. In addi-
tion, HMOX1 protein has been shown to auto-regulate itself,
independent of enzymatic activity (102). HMOX1 and CO can
induce the transcription factor Yin Yang 1 (YY1) (9) that
suppresses SMC proliferation without affecting EC prolifer-
ation (138). Up-regulation of YY1 by the HMOX1 inducer
probucol was necessary for the inhibition of intimal hyper-
plasia in a rat model (9). Moreover, overexpression of YY1 can
up-regulate HMOX1 expression (9). Similarly, both vascular
endothelial growth factor (VEGF) and the pro-angiogenic
chemokine stromal cell-derived factor-1 (SDF-1) can induce
HMOX1 or, in turn, be induced by HMOX1 (37, 99). Exo-
genous administration of CO has also been shown to activate
DNA repair signaling in HEK293 cells (126). This coordinate
response to stress involving HMOX1, its associated machin-
ery, and metabolites underlies the importance of heme deg-
radation in cellular homeostasis.

The possibility of enzymatically active HMOX1 being lo-
cated in the nucleus raises a number of intriguing questions,
including the source of the substrate heme and how it is
transported into the nucleus; the source and mode of transfer
of reducing equivalents required for enzymatic activity; the
fate of the Fe2 + released as a consequence of heme catabolism;
and whether biliverdin IXa is converted to bilirubin IXa
within the nucleus. There are some data to address these
questions. Of note, Fe2 + -sequestering ferritin has been ob-
served in the nucleus in a number of cell types, including
astrocytes, where it was shown to protect DNA from Fe2 + -
induced oxidative damage (165). Maines and coworkers also
reported the presence of BVR in the nucleus, and they pro-
posed that BVR might act as a transporter for heme into the
nucleus (95). While CPR is not expected to be present in the
nucleus, ascorbate could conceivably donate electrons to
truncated HMOX1 in the nucleus. These data and our own
that demonstrate the presence of bilirubin IXa in the nucleus
of hypoxia-treated rat SMC as assessed by immunohistology
( J Ni, pers. comm.) would seem to indicate that in addition to
the activation of transcription factors, nuclear HMOX1 may
retain some heme detoxification activity.

The effect of hypoxia on the regulation of HMOX1 is
complex. For example, hypoxia increases HMOX1 expression
in human dermal fibroblasts (127), while hypoxia is associated
with decreased HMOX1 expression in human coronary artery
EC, human umbilical vein EC, and immortalized human mi-
crovascular EC (88, 106, 119). The findings in human tissues
are reminiscent of the tissue-specific effects of HMOX1 in-
duction on cell proliferation, for example, inhibition in SMC
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(9, 42) and stimulation in EC growth (36). By contrast, in ro-
dents, hypoxia increases HMOX1 expression in rat pulmo-
nary aortic EC (83), immortalized mouse EC (55), and rat
aortic SMC (92). These species-specific differences in hypoxia-
mediated HMOX1 induction may be explained, in part, by the
presence or absence of Bach1 (hypoxia-induced repressor of
Nrf2 and HMOX1 gene transcription) (106) or other tran-
scription factors in human EC.

HMOX1 As a Therapeutic Target for the Treatment
of Human Disease

HMOX1 is recognized as a promising therapeutic target
for a broad range of conditions, including cardiovascular,
metabolic, neurodegenerative, and other inflammatory
diseases (Fig. 5A). The next section will focus on cardio-
vascular diseases. The catabolism of heme provides pro-

tection to cells via multiple avenues, including the induction
of ferritin to store redox-active Fe (43), the antioxidant
actions of biliverdin and bilirubin (154), and the anti-
inflammatory and anti-apoptotic effects of CO (151). Ave-
nues relevant to cardiovascular diseases are summarized in
Figure 5B. Potential treatment modalities include pharma-
cological induction, gene delivery of HMOX1, or direct
delivery of CO, biliverdin, and bilirubin. The ability of
progenitor cells to specifically home to sites of vascular in-
jury (187) also raises the possibility that HMOX1 or heme
degradation products could be delivered by autologous
stem cell therapy. In this section, we will discuss insights
amassed from the Hmox1 - / - mouse and the therapeutic
utility of HMOX1 and heme degradation products as de-
termined from animal models of human disease. Evidence
for the association of HMOX1 with cardiovascular disease
and diabetes is summarized in Table 2.

FIG. 5. Protective properties
of HMOX1 in cardiovascular
diseases. (A) HMOX1 is a
therapeutic target for a broad
range of human diseases. (B) In
cardiovascular diseases,
HMOX1 and heme catabolism
products have antioxidant,
anti-inflammatory, anti-
apoptotic, vasodilatory, and
anti-proliferative properties.
The antioxidant effects of
heme include the activation of
transcriptional machinery
that induces a range of anti-
oxidant genes.
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HMOX1 deficiency

To date, only two cases of human HMOX1 deficiency have
been reported (133, 188). In the first reported case, a 6-year-old
boy had severe retardation, Fe loading in the kidneys and
liver, vascular injury, and hyperlipidemia (188). Similarly, in
the second case, a 2-year-old girl presented with reduced
growth, Fe metabolism disorders, asplenia, hepatomegaly,
nephritis, leukocytosis, and vascular injury (133, 134).

The apparently low penetrance of this gene deficiency may
be explained by the fact that Hmox1 gene deletion in mouse
embryos is lethal in most instances (130). This embryonic le-
thality could be explained by defects in the placental vascu-
lature. Recent studies using Hmox1 + / - heterozygous mice
demonstrated that partial Hmox1 deficiency was associated
with malformed vasculature and impaired spiral artery re-
modeling in the placenta (198). In these investigations, the
maternal allele was identified to be responsible for the pla-
cental defects. These observations may account for the re-
duced numbers of Hmox1 - / - pups born. It is also possible
that partial HMOX1 deficiency in a mother may underpin
repeated failures at pregnancy or early miscarriage, and this
could be the reason that only two cases of human HMOX1
deficiency have been reported to date.

Many of the features of human HMOX1 deficiency are re-
flected in the Hmox1 - / - mouse. The latter displays a profound
inflammatory phenotype with features of human iron over-
load syndrome, including tissue iron deposition, spleno-
megaly, hepatomegaly, hepatic fibrosis, growth retardation,
and premature death (130). Moreover, Hmox1 - / - mice have

increased numbers of leukocytes, activated CD4 + T cells,
proinflammatory cytokines, and oxidized proteins and lipids
(80, 124).

HMOX1 promoter variation in cardiovascular diseases
and diabetes mellitus

There is some variation in the transcriptional activity of the
HMOX1 gene by virtue of a microsatellite of GT repeats
within the promoter. In vitro studies in human SMC have
shown that shorter GT repeats lead to increased HMOX1
transcriptional activity (18). In human EC, shorter GT repeats
lead to reduced oxidative stress and proinflammatory cyto-
kines, and increased responsiveness to VEGF-induced pro-
liferation (158). In humans, longer GT repeats have been
associated with increased inflammation after balloon angio-
plasty (46, 141) and increased in-stent restenosis (38). These
data are reflected in the seminal observation that low plasma
bilirubin levels are associated with an increased risk of coro-
nary artery disease (66, 145). Not all studies have shown an
association between the microsatellite and restenosis or cor-
onary disease (44, 166). However, in two of these studies,
shorter GT repeats were associated with higher bilirubin
levels and a healthy lipid profile (44), or reduced inflamma-
tion (141). The underlying reasons for this disparity could
include patient ethnicity and variations in the severity of the
diseases examined.

There is continued debate regarding the association of
longer GT repeats with an increased risk of developing Type 2
diabetes mellitus (5, 6, 23). Similar to cardiovascular diseases,
the overall inconsistent results may be explained by differ-
ences in ethnicity and disease severity. HMOX1 expression is
reduced in peripheral blood mononuclear cells of diabetes
patients (150). In contrast, high serum levels of HMOX1 in
early pregnancy may reduce the risk of developing gesta-
tional diabetes mellitus (131).

HMOX1 in vascular health and disease

As mentioned earlier, Hmox1 - / - mice are not born in
Mendelian ratios and partial Hmox1 deficiency is associated
with malformed placental vasculature (198), implicating
HMOX1 in angiogenic processes. Hmox1 - / - mice produce
higher levels of the angiogenic inhibitors soluble VEGF and
soluble endoglin (30). They also have impaired wound heal-
ing and wound neovascularization compared with wild-type
littermates (57). Hmox1 deficiency is associated with more
damage from myocardial ischemia-reperfusion injury (77,
197). Conversely, cardiac-specific overexpression of the hu-
man HMOX1 transgene in the mouse led to improved cardiac
function and increased numbers of newly formed blood ves-
sels (104). Similarly, adenoviral overexpression of rat Hmox1
resulted in improved blood flow recovery and limb function
in a rat hind limb ischemia model (157). In ex vivo aortic ring
sprouting angiogenesis assays, Hmox1 deficiency impairs
VEGF- and SDF-1-induced angiogenesis (37). This impair-
ment in angiogenesis could be attenuated by administration
of exogenous CO.

HMOX1 is strongly implicated in vascular diseases such as
atherosclerosis. HMOX1 protein is expressed in atheroscle-
rotic lesions in both apolipoprotein E (Apoe) and low-density
lipoprotein receptor-deficient mice, where it is thought to protect
from disease (72, 178). This interpretation is supported by

Table 2. Evidence for the Protective Effect of Heme

Oxygenase-1 in Cardiovascular Disease and Diabetes

Evidence References

Cardiovascular disease
Longer GT repeats associated with increased

risk of coronary artery disease and coronary
events

(38, 79)

Longer GT repeats associated with increased
atherosclerosis burden and plaque rupture

(20)

Longer GT repeats associated with increased
restenosis

(38)

Longer GT repeats associated with increased
inflammation

(141)

Longer GT repeats or low bilirubin associated
with increased risk of cerebral ischemia

(87)

Low bilirubin concentrations associated with
increased coronary artery disease

(145)

Low bilirubin concentrations associated with
endothelial dysfunction, increased carotid
intima-media thickness, or arterial stiffness

(45, 200)

High bilirubin concentrations associated with
coronary collateral growth

(200)

Diabetes mellitus
Long GT repeats and low serum bilirubin

concentrations in diabetes mellitus
associated with increased risk of coronary
artery disease

(150)

High levels of HMOX1 reduce the risk of
gestational diabetes mellitus

(131)

High bilirubin concentrations are associated
with reduced HbA1c or lower incidence of
diabetes

(21)
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studies demonstrating that adenoviral overexpression of hu-
man HMOX1 is associated with decreased atherosclerosis in
Apoe - / - mice (76). Moreover, mice deficient in Hmox1 and
Apoe have increased atherosclerosis and vein graft stenosis
compared with Apoe - / - mice (191).

HMOX1 is also associated with vascular remodeling and
endothelial function. In a pig model of arterial injury, ade-
noviral overexpression of Hmox1 led to a decrease in SMC
proliferation and improved vascular reactivity (42). In rats,
Hmox1 gene delivery or HMOX1 induction via hemin treat-
ment attenuates vascular remodeling and neointimal hy-
perplasia after balloon injury (169, 170). Adenoviral
overexpression of HMOX1 has also been demonstrated to
attenuate the development of graft arteriosclerosis in a rat
aortic transplant model (40), and to improve graft survival in
a rat aorta chronic rejection model (12). Further, HMOX1
induction by heme arginate leads to decreases in proin-
flammatory cytokines and improved endothelial function in
low-density lipoprotein receptor-deficient mice (82). Outside the
systemic circulation, HMOX1 is implicated in diseases of the
pulmonary circuit such as pulmonary hypertension. Re-
duced expression of HMOX1 was found in lung tissues of
newborns suffering from congenital diaphragmatic hernia
and pulmonary hypertension (149). Compared with wild-
type littermates, Hmox1 - / - mice exposed to chronic hypoxia
have features that are consistent with pulmonary hyper-
tension, including exaggerated right heart hypertrophy,
ventricular infarcts, and thrombi (192). Conversely, tissue-
specific overexpression of human HMOX1 in the lungs of
transgenic FVB/N mice decreases pulmonary hypertension
in response to chronic hypoxia (115). In rats, the adminis-
tration of CO (41) or the induction of HMOX1 by hemin or
nickel chloride (25) inhibits the development of pulmonary
hypertension. Data in humans are lacking at this point in time
but are important to obtain, particularly as sufferers of pul-
monary hypertension have a poor diagnosis. Inhalation of
CO is currently undergoing clinical trials in idiopathic
pulmonary hypertension (e.g., http://clinicaltrials.gov/ct2/
show/NCT01214187) and severe pulmonary arterial
hypertension (e.g., http://clinicaltrials.gov/ct2/show/
NCT01523548).

HMOX1 in diabetes

There is increasing evidence for a role of HMOX1 in ex-
perimental diabetes and associated complications. In diabetic
mice, vascular injuries are exacerbated compared with non-
diabetic controls; HMOX1 up-regulation is beneficial, al-
though the impact of diabetes on the expression and activity
of HMOX1 is inconsistent between different tissues (47, 132).
Hmox1 - / - mice treated with streptozotocin have increased
oxidative stress and infarct size after myocardial ischemia
reperfusion compared with nondiabetic Hmox1 - / - mice
(104). In addition, in the db/db mouse model, impaired wound
healing and wound neovascularization is ameliorated by
adenoviral overexpression of rat Hmox1 (57). Similarly,
overexpression of murine Hmox1 attenuates the immune re-
sponse in NOD mice and slows the progression to diabetes via
a mechanism that involves CO (67). Furthermore, selective
overexpression of murine Hmox1 in the pancreas of NOD mice
was associated with a decrease in proinflammatory media-
tors, and these mice were less likely to develop diabetes and

had improved graft survival after islet transplantation com-
pared with control animals (68).

The induction of HMOX1 by cobalt protoporphyrin IX has
been reported to improve insulin sensitivity and adipose re-
modeling in the Zucker diabetic rat (123). Cobalt protopor-
phyrin IX has also been shown to regulate adiposity in male
mice (15). In both female and male mice, HMOX1 induction
was further associated with lower blood pressure and
proinflammatory cytokines, with increased serum adipo-
nectin and expansion of insulin-sensitive adipocytes (15). Si-
milarly, hemin-mediated induction of HMOX1 has been
shown to increase insulin sensitivity and glucose metabolism
in a range of models of diabetes, including the obese Zucker
rat, Goto-Kakizaki rat, and streptozotocin-treated rats
(120–122).

Pharmacological inducers of HMOX1 protein
expression

A number of pharmacological agents induce HMOX1 ex-
pression, and those in use or trialed for the treatment of car-
diovascular diseases or diabetes are listed in Table 3, along
with the proposed mode of action for inducing HMOX1. In-
terestingly, this list includes three classes of lipid-lowering
drugs, that is statins, probucol (and its analog succinobucol),
and fenofibrate.

Simvastatin, pravastatin, artovastatin, and fluvastatin were
demonstrated to increase HMOX1 in RAW264.7 murine
macrophages via protein kinase G, ERK, and p38 MAPK sig-
naling (17). Simvastatin and pravastatin also increase
HMOX1 in vascular EC (173) and renal epithelial cells (16). In
human EC (63) as well as in human and rat vascular SMC (93),
simvastatin increased HMOX1 via the PI3K-Akt pathway,
although potential phosphorylation of HMOX1 at S188 by
Akt (see above) was not explored. Similarly, fluvastatin in-
creased the PI3K-Akt pathway in coronary artery SMC, re-
sulting in enhanced HMOX1 expression via transcription
factor Nrf2 (111). However, it remains to be clearly estab-
lished whether this activity translates to pharmacologically
relevant concentrations of statins [see e.g., (105)].

Probucol increases HMOX1 expression in EC and vascular
SMC in vitro and in vivo, and these are associated with a *2-
fold increase in HMOX activity in the arterial wall of animal
models of atherosclerosis (15, 35, 160, 186). Increasing
HMOX1 by a systemic administration of probucol has the
dual benefit of inhibiting SMC proliferation while simulta-
neously increasing EC proliferation (9, 90, 186). This is asso-
ciated with the inhibition of intimal hyperplasia and the
promotion of re-endothelialization after arterial balloon in-
jury in rabbits and rats, and in-stent re-endothelialization after
femoral stenting in rabbits (160). Succinobucol, a more water-
soluble mono-succinate derivative of probucol, increases
HMOX1 in balloon-injured rabbit aortas and decreases
neointimal hyperplasia (187). Similar to probucol, succino-
bucol increases HMOX1 expression in SMC in vitro, and this is
associated with decreased cell proliferation. Unlike probucol,
however, the anti-proliferative effect of succinobucol appears
to be via the promotion of apoptosis rather than increased
HMOX activity (114). Both probucol and succinobucol en-
hance the mobilization of progenitor cells to sites of vascular
injury (167, 187). In clinical studies of atherosclerosis and
restenosis, probucol and succinobucol have yielded mixed

1732 DUNN ET AL.



Table 3. Heme Oxygenase-1 Inducers and Heme Degradation Products in Cardiovascular Diseases and Diabetes

Pharmacological agent Model or cell type Mode of HMOX1 induction References

Lipid modulating drugs
Fibrates

Fenofibrate Human umbilical vein EC, human vascu-
lar SMC

PPARa agonist (89)

Phenolics
Probucol Rabbit aorta after balloon injury Anti-inflammatory, antioxidant,

and beneficial lipid profile,
transcription factor Yin Yang 1

(9, 35, 186)

Succinobucol Rat vascular smooth muscle cells after
balloon injury

Apoptosis (114)

Human coronary events and new onset of
diabetes

Anti-inflammatory and antioxi-
dant mechanisms

(162)

Statins
Atorvastatin Murine RAW264.7 macrophages PKG, ERK, and p38 MAPK sig-

naling activation
(17)

Human umbilical vein EC, human aortic
EC

Induction of Krüppel-like factor 2 (3)

Rat aortic SMC Inhibition of NF-jB transloca-
tion/anti-inflammatory

(59)

Fluvastatin Murine RAW264.7 macrophages PKG, ERK, and p38 MAPK sig-
naling activation

(17)

Human coronary artery SMC Increased Nrf2 via PI3K-Akt sig-
naling

(111)

Pravastatin Murine RAW264.7 macrophages Protein kinase G, ERK, and p38
MAPK signaling activation

(17)

Rat renal tubular epithelial cells PPARa binds to peroxisome pro-
liferator response element in
the HMOX1 promoter

(16)

Simvastastin Murine RAW264.7 macrophages Protein kinase G, ERK, and p38
MAPK signaling activation

(17)

Human and rat aortic SMCs, mouse aorta p38 MAPK and PI3K/Akt sig-
naling

(93)

Human EC PI3K/Akt signaling (63)

Anti-proliferative drugs
Paclitaxel Drug-eluting stent inhibits rat vascular

SMC proliferation
JNK, ERK, and p38 MAPK sig-

naling activation
(22)

Sirolimus (Rapamycin) Drug-eluting stent, rabbit endothelializa-
tion, and human aortic EC

Prevents binding of PPARc to
HMOX1 promoter

(49)

Anti-inflammatory drugs

Aspirin Human umbilical vein EC NO-dependent pathway (58)

Anti-diabetic drugs
Rosiglitazone Rat cardiomyoblast cell line, rat model

of pre-eclampsia
PPARc agonist (89)

Agent Indication Status References

Clinical trials
Heme arginate Cardiac injury after myocardial ischemia Unclear http://clinicaltrials.gov/

ct2/show/NCT00483587
Adenosine-induced vasodilation in ath-

erosclerotic disease
Terminated http://clinicaltrials.gov/

ct2/show/NCT00856817
Ischemia-reperfusion injury in renal

transplants
Recruiting http://clinicaltrials.gov/

ct2/show/NCT01430156
Hemin Gastroparesis in diabetic patients Recruiting http://clinicaltrials.gov/

ct2/show/NCT01206582
Inhalants

Carbon monoxide Idiopathic pulmonary hypertension Recruiting http://clinicaltrials.gov/
ct2/show/NCT01214187

(continued)
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results [reviewed in ref. (153)]. For example, while probucol
failed to provide benefits in patients with femoral athero-
sclerosis (161, 162, 175), the drug was reported to decrease
atherosclerosis in carotid arteries and associated cardiac
events (140). Of potential importance, long-term treatment of
probucol in combination with other cholesterol-lowering
drugs prevents secondary cardiovascular events in patients
with heterozygous familial hypercholesterolemia (190). In
preclinical studies, fenofibrate, a PPARa agonist, was shown
to increase HMOX1 in human umbilical vein EC and vascular
SMC (89). Similarly, niacin increases HMOX1 and protects
against vascular inflammation (184), similar to the manner in
which apolipoprotein AI mimetic peptides have been shown
to increase HMOX1 and to attenuate adipocyte dysfunction
(174) and intimal hyperplasia, respectively (185).

Inducers of HMOX1 such as heme arginate and hemin are
also the subjects of several clinical trials that are relevant to
vascular disease (see Table 3). The indications include pre-
vention of cardiac injury after myocardial ischemia, adeno-
sine-induced vasodilation in atherosclerotic disease,
ischemia-reperfusion injury in renal transplants (all heme
arginate), and improvement of gastroparesis in diabetic pa-
tients (hemin).

Biliverdin, bilirubin, and CO

Biliverdin and bilirubin were originally considered waste
products; however, these products of heme catabolism have
antioxidant and cell-protective benefits in their own right
(154). Low bilirubin levels are associated with an increased
risk of coronary artery disease (66, 145) and an increased risk
of metabolic diseases such as diabetes mellitus (21). In con-
trast, exogenous bilirubin has been shown to protect from
ischemia-reperfusion injury (1) and to prevent neointimal
hyperplasia in rats (128). In Gilbert syndrome, congenital
hyperbilirubinemia is associated with a decrease in the de-
velopment of diabetic vascular complications compared with
non-Gilbert diabetic patients (71). The addition of bilirubin,
or its precursor biliverdin, to culture media also prevents
oxidant-induced cytotoxicity in vascular SMC (26) and the
adhesion of leukocytes to EC (60).

More recently, HMOX1 induction or administration of
heme degradation products has been found to have beneficial
vascular effects, in part, via regulation of free heme and
NADPH oxidases (116). NADPH oxidases generate super-
oxide and H2O2 derived from it that not only play impor-
tant roles in host defense and cell signaling but can also lead
to oxidative stress and inflammation. However, hemin-
mediated induction of HMOX1 decreases NADPH oxidase

activity in murine aorta in vivo, while bilirubin administra-
tion mimics the decrease of NADPH oxidase activity in vitro
in rat vascular SMC (31) and human EC (73). In Spontaneous
Hypertensive Rats, hemin treatment increased HMOX activ-
ity, improved endothelial function, and was associated with a
decrease in NADPH oxidase-2 (96). In contrast, HMOX1 in-
duction blocked vascular hypertrophy in NADPH oxidase-4
null mice (142). These data suggest that HMOX1 may mod-
ulate individual NADPH oxidases independently of each
other in different tissues or disease states.

CO is a signaling molecule with anti-inflammatory, anti-
apoptotic, and anti-proliferative properties (135). CO inhibits
LPS-induced increases in pro-inflammatory cytokines such as
tumor necrosis factor-a, interleukin-1b, and macrophage in-
hibitory protein-1b (125). Furthermore, CO can induce the
release of anti-inflammatory interleukin-10 via p38 MAPK
signaling (94). Finally, low doses of CO protect cells against
inflammation-induced oxidative stress (14). In addition to the
clinical trials of CO inhalation for pulmonary disease previ-
ously mentioned, CO inhalation has also been assessed with
regard to its effect on the pulmonary inflammatory response
to endotoxin (see e.g., http://clinicaltrials.gov/ct2/show/
NCT00094406).

The administration of non-toxic concentrations of CO has
been shown to be beneficial in a number of animal models. It
attenuates neointimal hyperplasia in balloon-injured rat ca-
rotid arteries (171) and, similar to increasing HMOX1, atten-
uates infarct size in a cerebral model of ischemia-reperfusion
injury (176). Similarly, CO administration induces HMOX1
and reduces ischemic lung injury in Hmox1 - / - mice (50). In
addition, in aortic tissues from Hmox1 - / - mice, CO has been
demonstrated to rescue impairment of angiogenesis that is
induced by SDF-1 (37).

There is also evidence that HMOX activity and its products
may be relevant for transplantation-related cardiovascular dis-
eases (148). Thus, inhibition of HMOX activity by tin protopor-
phyrin has been reported to enhance the rejection of mouse-to-rat
heart transplants (139); while human HMOX1 (13) or rat Hmox1
overexpression prolongs cardiac allograft survival (4). These
effects appear to be attributable to CO and/or biliverdin, as
their administration also leads to marked inhibition of ischemia-
reperfusion injury, with improved donor graft survival and re-
cipient animal survival (118, 139).

Of note, increasing HMOX1 or administration of heme
degradation products may augment HMOX1 expression via
a positive feedback loop. Thus, CO can activate the tran-
scription factor Nrf2, which binds to antioxidant response
elements and induces HMOX1 gene transcription, and this,
in turn, amplifies the HMOX1 response (91) (Fig. 6).

Table 3. Continued

Agent Indication Status References

Severe pulmonary arterial
hypertension

Recruiting not
commenced

http://clinicaltrials.gov/
ct2/show/NCT01523548

Pulmonary inflammatory response to
endotoxin

Local inflam-
matory re-
sponse not
altered by
inhaled CO

http://clinicaltrials.gov/
ct2/show/NCT00094406
(108)

CO, carbon monoxide; EC, endothelial cell; HMOX1, heme oxygenase-1; SMC, smooth muscle cell.
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Amplification benefits have also been attributed to the bili-
verdin/bilirubin redox cycling (7) by BVR, but this notion has
been questioned ever since (109, 113).

HMOX1 and cancer

While the potential benefits of inducing HMOX1 and heme
degradation products to alleviate cardiovascular diseases are
promising, due consideration to the multiple effects of HMOX1
is necessary. For example, HMOX1 expression is elevated in a
variety of tumors and neoplasms [reviewed in ref. (180)].
HMOX1 may alternatively be over-expressed in cells sup-
porting the immediate surroundings of the tumor, for example,
macrophages (32). Within the tumor, or its microenvironment,
HMOX1, CO, Fe, and bilirubin may encourage cell prolifera-
tion; while HMOX1 and CO have antiapoptotic effects that
may improve tumor survival (180). In contrast to these obser-
vations, HMOX1 overexpression has been shown to block
proliferation by increasing cell cycle arrest and apoptosis (62),
and to prevent invasion (98) of the human breast cancer cell line
MCF7 in vitro. Similar to the different effects of HMOX1 on EC
and SMC proliferation, these data suggest that the role of
HMOX1 in tumor growth may be complex. Nevertheless,
HMOX1 inhibitors such as zinc protoporphyrin have shown
promise in reducing tumor growth (64).

HMOX1 is a strong promoter of angiogenesis and neo-
vascularization (75, 180) via its association with SDF-1 (37), a
potent signal for progenitor mobilization and homing (2)
supporting tumor growth. The promotion of angiogenesis
may also facilitate metastasis. Furthermore, the rupture of
malformed neovessels could lead to the release of hemoglobin
(2), which, in turn, amplifies the HMOX1 response. Current
treatment approaches such as UV irradiation and chemo-
therapy themselves induce HMOX1 expression, amplifying a
pro-survival response that may reduce treatment efficacy
(180). Moreover, HMOX1 and CO may inhibit dendritic cell
effector responses that may impact T-regulatory cells and lead
to immunosuppression [reviewed in ref. (11)]. Collectively,
these data identify the potential obstacles to be overcome for

inducers of HMOX1 to be successful therapeutics against
cardiovascular disease.

Conclusions

In addition to degrading and detoxifying heme, HMOX1 is
increasingly recognized as a protein that protects cells via
multiple pathways. Increasing our understanding of the
functions and post-translational modifications of HMOX1 in
different subcellular localizations is paramount for our ability
to exploit HMOX1 for the treatment of human diseases. At
present, the application of HMOX1 inducers as treatment
modality for cardiovascular and metabolic diseases should be
carefully considered. This is due to the multiple activities of
the enzyme that includes the regulation of transcription via
an interplay with transcription factors such as YY1 (9) and
hypoxia-inducible factor-1 (92), or growth factors/chemokines
such as VEGF (74) and SDF-1 (37). Intriguingly, at least in the
cases of VEGF and YY1, HMOX1 has been reported to be both
downstream and upstream of key regulators of cellular me-
tabolism and action. This raises the possibility that this action
of HMOX1 may extend to other factors (Fig. 6). HMOX1 is
elevated in a variety of cancers, and it can be associated with
tumor angiogenesis and metastasis (64). Therefore, it will be
of utmost importance to pay due consideration to the rela-
tionship between HMOX1 and specific diseases, and/or
overlapping disease states.
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