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New insights into microstructure 
of neutron‑irradiated tungsten
M. Dürrschnabel1, M. Klimenkov1*, U. Jäntsch1, M. Rieth1, H. C. Schneider2 & D. Terentyev3 

The development of appropriate materials for fusion reactors that can sustain high neutron fluence 
at elevated temperatures remains a great challenge. Tungsten is one of the promising candidate 
materials for plasma‑facing components of future fusion reactors, due to several favorable properties 
as for example a high melting point, a high sputtering resistivity, and a low coefficient of thermal 
expansion. The microstructural details of a tungsten sample with a 1.25 dpa (displacements per atom) 
damage dose after neutron irradiation at 800 °C were examined by transmission electron microscopy. 
Three types of radiation‑induced defects were observed, analyzed and characterized: (1) voids with 
sizes ranging from 10 to 65 nm, (2) dislocation loops with a size of up to 10 nm and (3) W–Re–Os 
containing σ‑ and χ‑type precipitates. The distribution of voids as well as the nature of the occurring 
dislocation loops were studied in detail. In addition, nano‑chemical analyses revealed that the σ‑ 
and χ‑type precipitates, which are sometimes attached to voids, are surrounded by a solid solution 
cloud enriched with Re. For the first time the crystallographic orientation relationship of the σ‑ and 
χ‑phases to the W‑matrix was specified. Furthermore, electron energy‑loss spectroscopy could not 
unambiguously verify the presence of He within individual voids.

Tungsten (W) is the most cited material candidate for high-temperature vacuum or inert gas applications in 
power technology. Due to its favorable properties, such as the highest melting point in combination with high 
creep resistance, very high sputter resistance, a low coe�cient of thermal expansion and a rather high thermal 
conductivity, it theoretically allows the raising of process temperatures into previously unknown temperature 
ranges. Besides renewable power generation methods, such as for example concentrated solar power, future fusion 
reactors will greatly bene�t in particular by the use of W in plasma-facing structural parts. In the latter case, the 
material has to withstand very high operation temperatures as well as it has to tolerate a signi�cant amount of 
radiation-induced  damage1–3. A detailed experimental understanding of the neutron damage processes on the 
nanoscale, which is still limited at present time, is of utmost importance in the material quali�cation process.

Extensive microstructural characterizations of W have already been carried out to understand the micro-
structural response to neutron  irradiation3–8. However, the covered irradiation doses and temperature range in 
these investigations are limited. Increasing both parameters to the conditions expected in a future fusion reactor 
will address still unsolved problems regarding the microstructure.

Basically, there are three mechanisms that may degrade the bene�cial material properties of W during neutron 
irradiation: (1) Firstly, this includes the formation of lattice defects such as Frenkel pairs, interstitial and vacancy 
clusters and dislocation loops. (2) In addition, the formation of voids leads to swelling and radiation hardening 
that would restrict the lifetime of components beyond certain design limits. (3) �e transmutation processes also 
lead to the formation of rhenium- (Re) or osmium-(Os) rich phases, while helium transmutation could stabilize 
voids. Both e�ects can lead to further signi�cant embrittlement of W materials.

An additional issue arises with the experimental determination of the occurrence and dynamics of irradiation 
defects in material (�ssion) test reactors. �ey do not only depend on the neutron dose and temperature, but also 
on the transmutation rates, which themselves strongly hinge on the reactor type and the exact capsule position 
within the active reactor zone. As a consequence, each irradiation experiment has to be considered as a unique 
result, which paves the way for a more complete systematization and prediction of neutron radiation damage.

In contrast to technologically relevant neutron doses, irradiation in the sub-dpa range does not lead to a 
signi�cant accumulation of Re or Os. In former studies, W–Re and W–Re–Os alloys were neutron-irradiated 
in order to simulate the in�uence of transmutation-induced elements on the microstructure and mechanical 
 properties9–11. As was shown, the presence of Re in�uences the formation of voids and, thus, may contribute 
further to the hardening of the material. However, the obvious di�erent behavior of Re and Os as solid solution 
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in W opposed to their occurrence in form of transmuted elements is not yet fully understood. �erefore, in this 
work we focus not only on the comprehensive characterization of radiation induced loops and voids but also 
on the precipitation of Re- and Os-containing σ- and χ-phases. Moreover, as far as possible we examine and 
analyze the in�uence of grain boundaries (GBs) on formation of these defects. Finally, to maximize the output 
of the investigation on a set of unique irradiation samples, we make use of the recent progress in nanoanalytical 
methods implemented in transmission electron microscopy (TEM) such as for example the ChemiSTEM technol-
ogy, high-speed DualEELS, and high-performance CCD cameras in order to understand the above mentioned 
neutron irradiation e�ects on technological W grade in more detail.

Experimental
�e investigated polycrystalline tungsten is of technical purity i.e. 99.7 wt%. �is is technological material which 
is targeted for the application in ITER as armour for the divertor plasma facing components. �e bulk material 
was supplied in a form of bar with dimensions 36 × 36 × 480  mm3, manufactured and stress-relieved by PLANSEE 
SE, Austria. �e manufacturer provides the following list of impurities C, O, N, Fe, Ni, Si, and respectively the 
upper limit concentration of 30 (6), 20 (2), 5 (1), 30 (8), 20 (2) and 20 (1) µg/g, where the values in parentheses 
indicate typical values. �is material has already been extensively studied in terms of mechanical properties, 
interaction with plasma and high heat �ux loadings (see e.g.12–14).

�e samples were irradiated by neutrons up to a damage dose of 1.25 dpa at 800 °C in the BR2 reactor located 
in Mol (Belgium). �e irradiation was performed directly inside the fuel channel. �e irradiation rig was made 
of a tick-wall pressurized tube which had a dual function: pressure-barrier and shielding to screen thermal neu-
trons. �e temperature on the samples was actively controlled by the adjustment of helium pressure inside the 
rig. Helium environment also prevented oxidation under high temperature exposure. �e total irradiation time 
was 143 days and the neutron �ux was 5  1014 (E > 0.1 meV), 2  1014 (E > 1 meV) and 4.2  1014 (E < 0.1 meV) n/cm2/
s15. �e neutron �ux was calculated using MCNPX 2.7.016 code as well as con�rmed by dosimetry measurements 
using Fe and Nb dosimeters, applied to measure the fast neutron �uence (> 1 meV). �e dpa cross sections for 
W have been prepared from the JENDL4 �le (MT444) for the threshold displacement energy of 55 eV.

�e calculation of the transmutation product activities, as well as their evolution in time, was performed 
using the nuclide inventory code FISPACT-II17 with cross section data from both TENDL-201718 and EAF-2010 
 library19. Alternative calculations of the transmutation inventory was also performed using ALEPH  code20 by 
assessing the propagation of the neutron spectrum from the fuel channel through to the stainless steel wall and 
then inside the sample. Both of the approaches resulted in a very similar output. �e transmutation induced 
content of Re and Os was determined to be ~ 2 at.% and 0.2 at.%, respectively. Without the stainless steel shield-
ing, the rhenium transmutation was estimated to be ~ 4 at.% per dpa unit. More details about the irradiation 
device and results on mechanical tests could be found in Refs.15,21 Following the above described calculations, 
the generation of helium and hydrogen at 1 dpa is expected to be 6 *  10−3 appm and 1.8 *  10−3 appm, respectively.

Since the material is radioactive, it is advantageous to use a focused ion beam machine (FIB, FEI Scios) for 
specimen preparation to (1) limit the radiation exposure and (2) the specimen preparation in a prede�ned area. 
�in foils for TEM investigations were prepared using the FIB technique in Fusion Materials Laboratory (FML) 
at KIT. �e thin lamellae were attached to a molybdenum grid. A�er preparation the lamella was �ash polished 
in 1% NaOH water solution using method described in the ref.22.

TEM analysis was performed in a �ermo�sher Talos F200X scanning transmission electron microscope 
(STEM) equipped with four energy-dispersive X-ray (EDX) detectors. STEM-EDX maps were acquired in the 
Velox so�ware using 512 × 512 pixels and a spectral dispersion of 5 eV. �e EDX detector resolution is speci�ed 
by the manufacturer as ≤ 136 eV at Mn-Kα. At the W-Lα (E = 8.396 keV) the energy resolution has a value of about 
150–160 eV, which is su�cient to separate the W-Lα, Re-Lα and Os-Lα X-ray lines. Quanti�cation of STEM-EDX 
data was done using the Cli�-Lorimer k-factor method. �e TEM images and selected area di�raction pattern 
(SAED) were acquired by using a �ermo�sher Ceta 16 M CCD camera. �e STEM-EELS data was acquired 
using a convergence angle of 10.5 mrad and a collection angle of 14.1 mrad. Furthermore, the extraction voltage 
was reduced such that the �nal energy resolution was about 0.7 eV.

�e di�ractograms obtained from high-resolution phase contrast images were �tted using JEMS so�ware 
 package23. �e crystallographic structures of the individual phases that were used as input are summarized in 
Table 1. In case of the  WOs3 χ-phase no structural model was available, therefore, we used  WRe3 χ-phase and 
replaced Re by Os, which should be feasible since atomic radii of both atoms di�er only by a few  picometers24.

Data post processing was performed using the HyperSpy so�ware  package25 and Gatan Digital Micrograph. 
Independent component analysis (ICA) was performed via the FastICA algorithm on the results of a principal 
component analysis (PCA) as implemented in the Hyperspy package. �e data was normalized during PCA 

Table 1.  Summary of crystal structures used for JEMS modelling. *ICSD number belongs to the  WRe3 
structure.

Phase ICSD No Space group Lattice

W 43421 Im-3 m Cubic, bcc, a = 3.17 Å

σ-WOs2 150547 P42/mnm Tetragonal
a = b = 9.43 Å c = 4.99 Å

χ-WOs3 650196* I-43 m Cubic, a = 9.60 Å
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with respect to Poisson statistics. �e STEM-EDX data was binned by a factor of two in spectral direction prior 
to PCA analysis.

�e analysis of the Burgers vector of dislocation loops includes dark �eld imaging under de�ned orientation 
of the g-vector near the [110] zone axis. �e visibility criteria for dislocation loops with b½ < 111 > and < 100 > are 
given in the Table 2.

Results
�e microstructure of “as-delivered” material was detailed characterized and published in refs.15,26. �e inves-
tigated tungsten shows an average grain structure with a size of 88 µm. Detailed TEM analyses revealed the 
occurrence of three types of irradiation defects: (1) voids with a size ranging from 10 to 65 nm, (2) "black dots" 
and dislocation loops with a size of up to 10 nm and (3) W–Re–Os containing σ- and χ-type precipitates. A 
detailed TEM characterization of all three defect types is presented in the next subsections. From the previous 
studies of neutron irradiated W and beryllium it is well  known6,27 that the accumulation of irradiation defects 
near GB and in the grain interior di�ers, i.e. so-called denuded zone is formed close to the GB, which is depleted 
by or even completely free of any void. �erefore, it is important to examine the formation of radiation-induced 
defects in the two areas, i.e. grain interior and GB.

Distribution of voids. Figure 1 shows TEM bright-�eld images of a representative grain interior (Fig. 1a) 
and a depicts a representative GB region (Fig. 1b). �e images were acquired with orientation near [133] zone 
axis. �is GB is a twist boundary with a total misorientation of 9°. �e twist occurs around [011] axis which is 
perpendicular (with a misorientation of 3°) to the bounding plane. �e voids that were generated by neutron 
irradiation appear in bright contrast. �is was exploited to determine their size distribution as well as their num-
ber density. �e local sample thickness needed to determine the number density was estimated via quanti�cation 
of EDX spectra. In the grain interior (Fig. 1a) voids with a maximum size of 65 nm and a number density of 
(4.3 ± 1.2)  1020  m−3 were found. In addition, the voids located in the grain interior are more or less homogene-
ously distributed. �e inset in Fig. 1a proves that the voids are also faceted, i.e. the facets are of (110)-type. As 
can be seen in Fig. 1a, some voids are attached to W–Re–Os-rich precipitates having a darker contrast than the 

Table 2.  Visibility criterion for dislocation loops in di�raction contrast microscopy.

g \ b ½[111] ½[ 11] ½[1 1] ½[11 ] [001] [010] [100] 

[ 10] 0 1 -1 0 0 2 -2 

[002] 1 1 1 -1 2 0 0 

Figure 1.  Bright-�eld TEM images acquired from neutron-irradiated W. (a) A representative area of a grain 
interior with voids (bright spots) and Re–Os-rich precipitates (dark strips). �e inset shows a magni�ed view of 
a individual void attached to a W–Re–Os-rich precipitate. (b) A representative GB region. �e numbered areas 
are (1) the void denuded zone, (2) void-peak zone and (3) the second denuded zone.
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surrounding W matrix. A detailed analysis of these Re–Os-rich precipitates is carried out in “Segregation of 
transmutation products” section.

At the GB the spatial distribution of voids is markedly di�erent than in the grain interior as can be seen by 
comparing features on Fig. 1a,b. �ree di�erent well distinguishable zones are found: the (1) void denuded zone, 
(2) void-peak zone and (3) the second denuded zone. �e void denuded zone is directly attached to the GB in the 
present case, it has a width of about 200 nm being completely free of voids (see Table 3). �e “void peak zone” 
has a width of about 300 nm. �e notion “void peak zone” is due to the increased number density of voids, which 
is about twice as high as that determined in the grain interior as can be seen in Table 3. �is zone is followed by 
the second denuded zone, which is about 500 nm in width. Here the void number density considerably decreases 
to about half of the value measured in the grain interior (see Table 3). �e homogeneous distribution of voids, 
which is typical for the grain interior, is observed at 1 µm away from GB.

�e size distribution histograms for voids registered in the grain interior (blue bars) and in the void peak 
zone (red bars) are shown in Fig. 2. In the grain interior the voids have a log-normal-type size distribution as 
can be seen in Fig. 2a, whereas in the void peak zone voids have Gaussian-like distribution pro�le. In the grain 
interior the void sizes are ranging from 8 to 60 nm and have an average size of 31 nm. In the void peak zone, the 
void sizes are ranging from 14 to 39 nm with an average size of 24 nm.

Table 3.  Quantitative and statistical data of voids obtained near the GBs separately for di�erent zones.

Numbered in Fig. 1 Designation Location to GB /nm
Void number 
density/×  1020  m−3

Average void size 
/nm Void swelling /%

Average loop size/
nm

Loop number 
density/×  1023  m−3

1 Void and precipitates 
denuded zone From GB to 200 nm – – –

2 Void peak zone from 200 to 500 nm 8.0 ± 2.5 24  ~ 0.004

3 Second denuded 
zone

From 500 nm to 
1 µm 1.9 ± 0.5 22 –

– Grain interior  > 1 µm 4.3 ± 1.2 31  ~ 0.02 5.2 ± 1 4.1 ± 1.5

Figure 2.  Size distribution histograms of the voids registered in the (a) grain interior and (b) void peak zone.
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Dislocation loops. In addition to the voids, dislocation loops are also generated in considerable amount 
during neutron irradiation, which are visible mainly as small featureless black dots and circular loops. Figure 3 
visualizes typical neutron-irradiation defects by reverse contrast dark-�eld (DF) imaging with de�ned g-vectors. 
Figure 3a,b show a general view of dislocation loops, which were imaged with di�erent g-vectors near the [110] 
zone-axis. �e contrast in such images is uniform and less sensitive to local variations of sample thickness. �ese 
images are the basis for the loop size histogram shown in Fig. 3c. �e average size of all loops was measured to 
be 4.5 nm, with a signi�cant fraction of defects being featureless black dots less than 6 nm in size. �e calculation 
of the defect number density normalized to the local layer thickness leads to a value of about (4.0 ± 1.5)  1023  m−3. 
�e uncertainty in the determination of local sample thickness is the reason for the 30% error of this value. �e 
areas of about 10–20 nm around the precipitates, which are marked with blue arrows in Fig. 3a,b, are almost 
free of dislocation loops. As will be shown in the next sections, the areas around the precipitates also exhibit 
increased Re and Os local concentration, which presumably a�ect the formation of the  loops4,28.

�e high number density as well as the small size of the defects hamper the determination of the Burger’s 
vectors in Fig. 3a,b applying the visibility criteria or identi�cation habit plane as presented  in29. �e value given 
in Table 3 was taken as the average of the two methods.

�e N〈100〉/N1/2〈111〉 ratio was obtained by the method described in ref.30 using the visible number densities 
for g[−110] and g[002] vectors. �e result shows that (25 ± 20)% of the defects have a b〈100〉 and (75 ± 20)% a 
b1/2〈111〉 Burgers vector. To minimize the above-mentioned problems and to improve the statistics for the loops 
with a size of less than 3 nm, the large-magni�cation reverse contrast DF images were acquired from a 40 nm 
thick area near the [110] zone axis (Fig. 3d,e). �e Burgers vector of the defects was analyzed according to the 
visibility criteria and the possible habit plane (Table 2). �e results of this analysis are shown with geometric 
shapes of di�erent colors in Fig. 3f. �ese methods show that 15% of the defects have a b〈100〉 and 85% a b1/2〈111〉 
Burger’s vector. �is �nding is in good agreement with the results found on the basis of the number density. �e 
value given in Table 3 was taken as the average of the two methods.

Segregation of transmutation products. Figure 4 shows a STEM-EDX spectrum image of a represent-
ative region in a neutron-irradiated W specimen. �e STEM-HAADF image in Fig. 4 reveals that the precipitates 
are composed of atoms with Z number larger than the W matrix. It also shows that the sample has a surface 
topography due to selective etching during �ash polishing, which is con�rmed by the W-L map, see Fig. 4b. 
�e bright precipitates in the HAADF image are determined to be Os-rich particles as can be seen in the Os-L 
map, see Fig. 4c. In addition, Fig. 4c points out that two types of precipitates co-exist: (1) rod-shaped ones with a 

Figure 3.  Visualisation of dislocation loops and black dots using reverse contrast dark �eld (DF) imaging. 
DF images were  obtained with g[110] (a, d) and g[002] (b, e) g-vectors near the [110] zone-axis. �e size 
distribution histogram of the dislocation loops is shown in (c). �e loops with b½〈111〉 and b〈100〉 Burgers 
vectors are imaged in the part (f) with red circles and blue squares, respectively. �e loops with unde�ned 
Burgers vector are denoted by green triangles.
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size is 50–70 nm and (2) spherical or polyhedral-shaped ones with a size of 15–20 nm. Furthermore, it is found 
that a Re-rich “cloud-like” phase is present around the Os-rich precipitates (see Re map in Fig. 4d). �e STEM-
HAADF image in Fig. 4a exhibits no contrast change which indicates that the Re-enriched region has a coherent 
to matrix structure. �e size of these Re-rich “clouds” depends on the size of the Os-rich core as well as on the 
density of the precipitates (i.e. in case of closely spaced Os-rich particles the respective Re-clouds overlap) and 
typically it is about 100 nm. Furthermore, some voids with attached to the Os-rich precipitates were observed 
within the W matrix.

In order to understand the phases and their distribution in more detail, an ICA was performed on the 
STEM-EDX data presented in Fig. 4. �e results are shown Fig. 5. Figure 5a illustrates that the �rst 4 principal 
components have a signi�cantly larger variance than the remaining components. �e inset shows a schematic 
representation of the sample that was derived by analyzing the individual independent component spectra 
(Fig. 5b) and respective maps (Fig. 7c). IC#0 corresponds to the Os-rich precipitates that are surrounded by Re-
rich clouds (IC#2). Both are embedded in the W matrix (IC#1). No signi�cant elemental intermixture between 
the three elements was observed here. �e fourth independent component was a thin oxide surface layer that 
originated most probably from sample preparation and could not be avoided.

�e STEM HAADF image in the upper part of Fig. 6a shows a representative sample region containing a GB 
that was shown in Fig. 1b (marked as GB). In addition, it is evident from the image that in each W grain there 
is a denuded zone present that has a width of about 210 nm. Further into the grain interior the situation is as 
described in Fig. 6. Furthermore, it was found that in the center of the GB there is an enrichment of Re (3.6 wt%) 
and Os (0.7 wt%) that has a width of about 30 nm, which can be observed in the elemental maps (Fig. 6b–d) and 
in the line pro�les (Fig. 6e–f). �e Re and Os intensity pro�les were obtained by integrating of ~ 1 µm wide strips 

Figure 4.  STEM-EDX spectrum image of a representative region in a neutron-irradiated W specimen. (a) 
STEM-HAADF image. Elemental maps of (b) W, (c) Os, and (d) Re display the location of elements with respect 
to the sample morphology. �e tile-like structure in the HAADF image and the W map is surface topography 
due to �ash polishing.
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across GB. �e small di�erences in the parallel run of the GB reduce the displayed Re and Os concentration in 
the pro�les. Taking into account these facts, the speci�ed values were measured exactly in the middle of the GB.

HRTEM analysis of precipitates. High-resolution phase contrast images are acquired in order to further 
characterize the Os-rich precipitates as can be seen in Figs. 7, 8, and 9. In these three �gures, no structural dif-
ference between the pure W matrix and the Re-enriched cloud around the Os-rich precipitates are observed. 
�erefore, the region outside the Os-rich precipitates is labeled as W matrix in these �gures. Figure 7a shows 
a high-resolution phase contrast image of a spherically shaped Os-rich phase embedded in the W matrix. �e 
W matrix is positioned to have a [110] zone-axis orientation. Figure 7b presents a magni�ed view of the region 
delimited by the orange square in (a). It is evident that the precipitate has the di�erent crystalline structure com-
pared to the matrix. However, without knowing the exact sample thickness the assignment of atomic positions in 
the precipitate is ambiguous due to the contrast reversals occurring for this particular imaging mode. Neverthe-
less, the fast Fourier transform (FFT) in Fig. 7c calculated from Fig. 7a sheds some light on the crystallographic 
structure of the precipitate and its crystallographic relationship to the W host matrix. �e spots corresponding 
to the W matrix are indexed in red color and the ones originating from the precipitate are indexed in blue. For 
indexing the precipitate, we used the crystal structure of the  WOs2 σ-phase (ICSD No. 150547), which is tetrago-
nal. Furthermore, di�raction pattern calculations were carried out using the JEMS so�ware (Fig. 7d) in order to 
highlight the orientation relationship, i.e. (1–10)W || (1–12)σ, (002)W || (−441)σ and  [110]W ||  [110]σ.

Figure 8a shows a high-resolution phase contrast image of a rod-shaped Os-rich precipitate, which is attached 
to a void. Figure 8b is a magni�ed view of the region delimited by the orange square in (a). �e situation is less 
evident here than in Fig. 8c, because there is only a slight change of the contrast. However, the di�ractogram 
in Fig. 8c reveals the presence of two di�erent crystal lattices, i.e. the matrix oriented in [110] zone-axis (red 
indices) and the precipitate (blue indices). For indexing the precipitate, we used the crystalline structure of the 
 WRe3 χ-phase as model structure (ICSD No. 650196) since no structure of a W–Os χ-phase is reported in the 
ICSD database. �e  WRe3 χ-phase has a body-centered cubic structure just as W. We therefore just replaced Re 
by Os, which should not remarkably a�ect the structure since the atomic radii of these atoms di�er only by a few 
 picometers24 and carried out di�raction pattern simulations by the JEMS  so�ware23. However, to provide more 
accurate results, the structure needs to be relaxed e.g. by applying density functional methods. �e result of our 

Figure 5.  Results of a blind source separation (BSS) by PCA and ICA of the STEM-EDX data presented in 
Fig. 6. (a) Screen plot of the �rst 30 principal components (the dashed line indicates the number of independent 
components). �e inset shows a schematic cross-sectional view of the sample for illustration purposes. (b) 
Corresponding independent component spectra. (c) Independent component maps showing the presence of 
Os-rich cores (IC#0), a W matrix (IC#1), a Re-rich cloud around the Os-rich cores (IC#2), and an oxide surface 
layer (IC#3), which is most probably due to the sample preparation.
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simulation is shown in Fig. 8d. �e orientation relationship in this case was determined as (1–10)W || (2–40)χ, 
(002)W || (−5–32)χ and  [110]W ||  [214]χ.

Figure 9a shows a rod-shaped Os-rich precipitate attached to a void of about 75 nm in size. �e void sur-
face is facetted, i.e. {110}, {002}, and {112}-type facets can be observed. �e Os-rich precipitate is attached to a 
{110}-type facet and seems to grow along a 〈112〉W-type direction. However, as can be seen in Fig. 9b, there is 
Moiré contrast present that indicates that the lattice of the precipitate is shi�ed, rotated or both with respect to 
the matrix lattice. �e Moiré fringes have a distance of about 1.9 nm, which is also re�ected in the di�ractogram 
(see inset). Furthermore, the di�ractogram suggests that the precipitate is a χ-type because the {111}-type planes 
seem to be aligned, since the distance of (111)χ is about 1/3 of (111)W. Careful analyses of Fig. 9a points out 
that the precipitate is inclined with respect to the image plane, i.e. clear Moiré contrast in the upper part vs. no 
Moiré contrast in the lower part (close to the void) of the precipitate. Figure 9d presents a composite image that 
shows the elemental distribution of Os in red, the Re distribution in green and the W distribution in blue colours.

Figure 6.  STEM-EDX mapping near GB. (a) STEM-HAADF image with marked position of GB. Elemental 
maps of (b) W, (c) Os, and (d) Re display the location of elements with respect to the sample morphology. �e 
pro�les in parts (e) and (f) indicate the distribution of the Os and Re concentration near the GB.
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EELS analysis of voids. Figure  10 presents a combined STEM-EDX/STEM-EELS measurements per-
formed for of a individual void. �e STEM-EDX in the upper part shows that the void is attached to a Re–Os-
rich precipitate and is also surrounded by a Re-rich cloud. In addition, oxygen was fund to be present within 
the void. �e STEM-EELS measurements presented in the lower part are performed to determine whether He is 
present in the void or not. An analysis of the acquired low-loss EELS data (shown on the right side in the low-
est row) revealed that the bulk W spectrum is similar to a spectrum acquired from an unirradiated W sheet. 
Furthermore, it shows that the plasmon peak of the precipitate is shi�ed to higher energy-losses by 1.48 eV with 
respect to the W matrix one. An additional peak (indicated by the orange dashed line) is present at an energy loss 
of about 20–21 eV in the void area, the energy corresponding to the position of the He edge.

Discussion
�e radiation-induced dislocation loops or defects, which are visible as structureless black dots a few nanometers 
in size, have an average size of 5 nm and a number density of 4  1023  m−3 (Fig. 3, Table 3). Detailed information 
about the quantitative parameters of these defects and an understanding of the nature of these defects are neces-
sary to explain e.g. radiation-induced embrittlement. As has been shown in several studies, the size and number 
density of dislocation loops do not vary signi�cantly over a wide range of irradiation temperatures and damage 
 doses8,31,32. �e average size of 5 nm is consistent with previously reported data for neutron-irradiated tungsten, 

Figure 7.  (a) High-resolution phase contrast image of a spherical-shaped Os-rich precipitate, which is 
identi�ed as the  WOs2 σ-phase. Magni�ed view (b) and di�ractogram (FFT) (c) of the region delimited by the 
orange square in (a). (d) Simulated model of the di�ractogram.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7572  | https://doi.org/10.1038/s41598-021-86746-6

www.nature.com/scientificreports/

where it typically ranges from 1.2 nm to 8.0  nm8. �e formation of larger loops has rarely been reported in the 
scienti�c literature, e.g. Williams et.28 showed the formation of 150 nm loops in a W–Re alloy a�er neutron 
irradiation at 1500 °C. �e measured number density is considerably higher compared to the literature, where 
its value varies between 1  1022  m−3 and 1  1023  m−3. �is could re�ect successful �ash polishing procedure, which 
allows one an accurate detection of ~ 1–2 nm loops.

�e dislocation loops were observed in neutron irradiated W at an irradiation dose of 0.03 dpa/ 90°C8 and 
usually appear up to 600 °C irradiation  temperatures11,32–34. However, two works, which are consistent with 
our results, showed its presence up to 800°C8,34. �e recent temperature-damage diagrams covers the irradia-
tion temperature range from 100 to 900 °C and damage doses of up to 2.0  dpa35. �e damage structures were 
classi�ed into three types: “loops”, “loops and voids” and “precipitates and voids”. It shows that at temperatures 
exceeding 500 °C dislocation loops occur in combination with voids for doses below 0.6–0.7 dpa, whereas for 
doses larger than 1.0 dpa the formation of loops was not reported. �e critical aspect is that the diagram is 
based on a limited number of measurements, suggesting that the areas of the sections are not well de�ned and 
the occurrence of damage may deviate. In particular, this explains the deviation from our results concerning 
dislocation loops which show their existence at 1.25 dpa/800 °C. �is indicates that the areas for the formation 
of dislocation loops should be modi�ed.

In general, the observation of dislocation loops with TEM is a challenging task. By far not all publications 
contain the micrographs on which the loops could be identi�ed. Due to the radioactive nature and small dimen-
sions, most of TEM specimens have to be prepared by FIB, which itself causes severe surface damage hindering a 
doubtless identi�cation of the loops. To remove the damaged layer, a low-energy ion cleaning or �ash polishing 

Figure 8.  (a) High-resolution phase contrast image of a rod-shaped Os-rich precipitate, which is identi�ed as 
the  WOs3 χ-Phase. Magni�ed view (b) and di�ractogram (FFT) (c) of the region delimited by the orange square 
in (a). Simulated model of the di�ractogram (d).
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have to be used. �is procedure, however, is not successful in all cases so that the detection of small-sized dislo-
cation loops (< 5 nm) remains a challenge for an accurate quanti�cation.

Burgers vector analysis of dislocation loops have only been reported for ion irradiated materials. In most 
cases the formation the loops in W show b½ < 111 > Burgers  vector36–38, however, the presence of a small amount 
(4%—6%) of b < 100 > loops was  reported39. �ese results are consistent with our analysis, which shows that 85% 
of the loops have a b½ < 111 > Burgers vector and only a small fraction of b < 100 > loops was observed. In the 
few publications where the nature of dislocation loops has been investigated experimentally, it has been shown 
that the loops in W have mostly interstitial  nature34,40. �e observed formation of vacancy loops of < 100 > type 
was reported only in the few cases and only  with34. �is suggests that interstitial loops are mostly present in our 
sample as well. �e results of extensive dislocation loop analyses are summarized  in41 and showed a marked 
di�erence between ion and neutron irradiation results regarding average size and number density. In addition, 
di�erent irradiation conditions and di�erent W to Re transmutation rates hamper a direct comparison of micro-
structure from di�erent irradiation campaign.

�e areas of about 10–20 nm around the precipitates are almost free of dislocation loops or black dots (Fig. 3). 
�eir formation can be a�ected by the vicinity of precipitates, which can serve as sinks for vacancies and intersti-
tials, and by increased local Re and Os concentrations. Previous experimental work showed that the occurrence of 
loops and voids depends on the Re content of the examined  alloy42–44. Both voids and loops show a lower number 
density in the W-3%Re alloy compared to the pure  W42 and were not detected in the W-25%Re alloy irradiated 
at temperatures ranging from 373 to 760 °C43. Several studies have shown that this is related to a higher binding 
energy of solute atoms (Re and Os) at vacancies and self-interstitial atoms (SIA) in W. �e formation of Re–W 

Figure 9.  (a) TEM bright-�eld image of a faceted void attached to a W–Os rod. (b) High-resolution phase 
contrast image of the W–Os phase exhibiting Moiré fringes in the Os-rich part. (c) Di�ractogram (FFT) of (b). 
(d) Composite STEM-EDX elemental map of the same sample region.
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or W–Os dumbbells signi�cantly slows down their di�usion and thus increases the probability of recombination 
within the  cascade45–47. �e change from the one-dimensional motion of the SIAs in pure W to the signi�cantly 
slower three-dimensional motion of the interstitial atoms associated with Re or Os is proposed as the decisive 
factor for this e�ect. �is three-dimensional movement was made possible by the low rotational energy barrier 
of the mixed dumbbell compare to the pure  W45. SIAs with one-dimensional motion can encounter vacancies 
only along their one-dimensional migration line, and herewith they have a greater probability of escaping from 
a cascade displacement in�uenced region without recombination compared with those with 3D motion. �ese 
SIAs can further form interstitial clusters and loops. It can be suggested that the Re concentration in the layer of 
10–20 nm around the precipitates is high enough to e�ectively prevent the local formation of the loops.

Figure 10.  Combined STEM-EDX and low-loss STEM-EELS measurement of a individual void. �e intensities 
of the STEM-EELS maps was obtained by NLLS �tting of the peaks located in the W plasmon peak area.
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�e radiation induced migration of Re and Os atoms leads consequently to the formation of precipitates 
containing of σ- and χ-phases. �e mechanism of association of solute atoms with defects and their di�usion is 
considered the most appropriate to explain radiation-induced precipitation in  tungsten45–47. Both the vacancies 
and the SIA are able to drag the solute atom, but the contribution of the SIAs to the aggregation of the solute 
atoms is much greater than the  vacancies45. It was shown that such solutes as Re or OS are much more strongly 
bound to interstitial sites than to voids. Interstitial solute complexes were found to be very e�ective in enriching 
solutes at sinks, such as voids or already formed precipitates. �e enrichment of Re and Os around voids and 
the formation of precipitates is experimentally validated in the present work.

Neutron irradiation induced void formation is the main damage process in W. �e presence of voids was 
reported in every specimen irradiated at temperatures exceeding 500°C35,42. �e formation starts at slightly higher 
irradiation doses as the dislocation loop formation, i.e. 0.15  dpa42. Increasing the dose increases the average void 
size and decreases their number density. Despite the fact that the voids were formed under irradiation conditions 
that varied over a wide range, their morphology is remarkably similar. �e average size typically varies from 2 to 
8 nm and number density is mostly in ~ n  1021  m−3 range. �e average void size of 31 nm and the number density 
4  1020  m−3 reported in the present work for the grain interior (Table 3) are signi�cantly di�erent from those 
previously  reported4,6,42,48,49. �e microstructure of the material examined is in some degree unique. �is means 
that such a large average size of voids and such low number density has not been observed before. However, the 
total void swelling was estimated to be ~ 0.04%, a value comparable to other results on neutron irradiated tung-
sten. �e voids found at the temperatures ranging from 700 to 900 °C and doses exceeding 1.0 dpa are always 
smaller than 10 nm, with an average size ranging from 3 to 7 nm. �e corresponding number density of voids 
in the same temperature and dose range lies between 2  1021–1  1022  m−3. Larger number densities, i.e. larger than 
1  1023  m−3, only occur for irradiation temperatures below 760 °C at low  doses34. �e results summarized from 
di�erent publications exhibit the tendency that the average void size increases from 4 to 7 nm and decrease in 
number density for doses exceeding 1.0 dpa, while the temperature in�uence on both parameters is statistically 
 insigni�cant50. �e voids formed at similar conditions  (Tirr = 900 °C, 1.54 dpa) are considerably smaller in size 
and have an order of magnitude higher number density than the voids reported in current  work6. �us, our 
results are not in line with previously published data and the di�erence is larger than that being expected if only 
damage and temperature are being considered.

We suggest that such di�erences in void morphologies could be explained by microstructural responses to 
neutron irradiation in di�erent reactors. It was reported previously that the damage dose in�uences the void 
morphology to a signi�cantly higher degree than the irradiation temperature. For example the presence of Re 
had a strong in�uence on the size and distribution of  voids4,42. �e accumulation of Re in W during neutron 
irradiation restrains their nucleation and growth. Moreover, the presence of Re and Os inside irradiated W can 
inhibit the growth of radiation-induced defects, whereas Os plays even more signi�cant role than  Re4,51. �us, 
the concentration of transmutation products depends not only on irradiation temperature and dose, but also on 
the transmutation rates, which themselves depend on the actual neutron spectrum.

When analyzing the results of W irradiation in di�erent reactors, signi�cant di�erences in the size and 
distribution of the voids can be found. For example, voids in pure W irradiated in the JOYO fast reactor show 
a number density in the  1023  m−3 range. Fukuda et al.31 shows for example that their number density in pure W 
irradiated at 537 °C comprises 1.9  1023  m−3. A similar values of 1.2  1023  m−3 (750 °C/1.54dpa) and 5  1023  m−3 
(538/0.9dpa) was reported by Tanno et al.11,52. �e formation of void lattice with 20 nm spacing in the dam-
age dose from 0.40 to 1.54 dpa at 538 °C and 750 °C W in pure W was reported by ref.43,51. In contrast to these 
works, the formation of void lattice was not observed in the present study. �e neutron spectrum in the JOYO 
reactor has a low cross-section for the transmutation of W and thus the changes in the chemical composition 
a�er irradiation are negligible..

Both the HFIR and JMTR reactors provide a mixed neutron spectrum, which leads to an increased produc-
tion of transmutation elements and consequently to a decrease of number density of voids by a factor of 10–150. 
Typically, the number density of voids in W irradiated in the range of 724 °C to 764 °C varied from 7  1020  m−3 to 
1  1022  m−334. �e number density of voids in W–Re-alloys irradiated under similar conditions does not depend 
on the reactor type and is in the identical range from 3  1020  m−3 to 6  1021  m−352. According to Herschitz and 
 Seidman53 the growth of voids in W–Re alloys is a�ected by the recombination of point defects, i.e. vacancies 
and interstitials at a biased sink, e.g. dislocations. A similar argumentation is also valid for the generation of 
precipitates. �ey also claim that coherent precipitates in W–Re alloys are only generated if they are located close 
to damage cascades by primary knock-on atoms.

Precipitates containing Re and Os are also formed in pure W irradiated in HFIR since the nuclear transmu-
tation rate in HFIR is higher than in sodium-cooled reactors (JOYO) due to the high �ux of thermal neutrons. 
Material analysed in our work shows the presence of 2% Re and 0.2% Os a�er irradiation to 1.25 dpa. �e 
transmutation rate of ~ 1.6%Re/dpa is similar to that calculated for HFIR reactors by Greenwood and  Garner54. 
�e formation of precipitates with de�ned stoichiometric composition and crystalline structure starts when 
the irradiation temperatures exceed 500 °C and leads to the formation of σ-WRe2 and χ-WRe3  phases7,52. In 
particular, it was reported that the χ-phase has a needle-like shape and the σ-phase has a spherical  shape11,33.

Our investigations show the formation of Os-based σ- and χ-phases located in the center of the Re- and 
Os-rich clouds (see Figs. 4 and 5). �e similar clouds also form around all voids, are not clearly recognizable 
in standard TEM or STEM images and can only be visualized in STEM-EDX element maps (see e.g. Figure 4). 
Recently formation of clouds with a diameter of about ~ 30 nm has been reported in several  publications3,5,6,50,55. 
�e value is twice as small as the average diameter of 60–80 nm measured in our work. �e clouds occur probably 
in early irradiation stages and serve as precursors for the later formation of σ-WOs2 and the χ-WOs3 precipitates 
when the local concentration of Os has reached a certain value through the further transmutation of Re. �e 
existence of the σ-WOs2 phase in the neutron irradiated W–Os alloy was reported by Tanno, T. et al.43, whereas 
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the existence of χ-WOs3 phases was not reported up to now. Here, we present the �rst experimental evidence 
of this phase. However, for an enhanced understanding of the precipitation behavior more experimental data 
would be desirable.

�e binary phase diagrams of W–Re and W–Os indicate the presence of a σ-type phase at elevated tempera-
tures. In case of W–Os this phase extends from about 65 at% to about 80 at% W for temperatures ranging from 
1000 to 3000 °C. �e existence of χ-WOs3 phase was not reported since the phase diagram was not explored for 
all concentration ranges and temperatures. In case of σ-WRe2 the situation is more complicated: above 2000 °C 
the σ-phase is present in the range of 30 at% to 56 at% W, whereas below the range of existence shi�s from 30 
at% to about 35 at% at 1600 °C. In addition, the χ-WOs3 phase exists up to about 2100 °C in the W concentra-
tion range of 26–28 at%. In neutron-irradiated material, however, due to the irradiation-enhanced di�usion of 
impurities, secondary phases are not necessarily formed in accordance with the phase equilibrium rules.

Figures 7 and 8 clearly illustrate that there is a textural (epitaxial) relationship between the W-matrix and 
both types of precipitates. However, as can be seen in Fig. 9, the structure of the precipitation is not always well 
extinct. (Semi-)coherent precipitates were also observed by atom-probe measurements in W–Re  alloys53. In 
this case, W–Re alloys with similar precipitation behavior as in the present case were already studied by several 
 groups11,33,43,44,56, who reported circular-shaped σ-type and platelet-shaped χ-type precipitates. �is agrees also 
with the binary W–Re phase diagram. However, in our case pure W was subjected to neutron irradiation. �e 
available literature is more limited than for the W–Re  alloys8,10,50. However, recently published results of neu-
tron irradiated pure W show a similar microstructure as our sample for similar neutron irradiation conditions, 
 respectively50,55. �e crystallographic structure of the intragranular precipitates is still under debate at present 
time. On one hand, Katoh et al.50 claim that the platelet-shaped precipitates found in samples irradiated at 
elevated temperatures and doses around one dpa are inconsistent with the σ- and the χ-type phase. Edmondson 
et al.55 on the other hand come to the conclusion that the needle-like precipitates are of the σ-type. Moreover, they 
found a clear relationship of the W matrix with the precipitates, i.e. the precipitates lie along the (011) planes. 
�ey attributed this behavior to the dislocation loops originating from collision cascades, which act as trap for 
di�using Os and Re atoms thereby seeding the precipitates. In contrast to Katoh et al.50 we found that both types 
of precipitates (σ- and the χ-type) are present within our sample. We found that out-of-plane the σ-phase [110] 
axis is oriented along the [110] of W, whereas in-plane the orientation relation is (1–10)W || (1–12)σ and (002)W 
|| (−441)σ. Whether the precipitate has a rod or needle shape or another one is not evident from Fig. 7. In case 
of the χ-type precipitates the orientation relationship is more complicated than for the σ-type precipitates: Out-
of-plane the W [110] direction is parallel to the [214] direction of the χ-phase, whereas in-plane it is (1–10)W || 
(2–40)χ, (002)W || (−5–32)χ. To our knowledge, such orientation relationships have not been reported before 
for this metallic system. However, in case of the χ-type phase the orientation relation is not the same for all as 
discussed in the following paragraph.

Katoh et al.50 found that some precipitates are associated with a void and some are not, which is in accordance 
with our observations. Furthermore, we found that the voids are o�en facetted with the majority of the facets 
having a {110}-type orientation. �is can be explained by considering the surface energies of W, which are low-
est for {110}-type  surfaces57. If voids are facetted and have a precipitate attached, the precipitate grows out of a 
{110}-type surface. �is might be attributed to the origin of both which is related to damage cascades. Some of 
the W–Os precipitates were found to be inclined with respect to the matrix lattice (see for example Fig. 9). �is 
behavior was also observed by Edmondson et al.55. Since the statistics of analyzed precipitates is limited using 
high-resolution phase contrast images, tKD or EBSD-like orientation mapping in the TEM can improve the 
statistics signi�cantly regarding the textural relationship between matrix and precipitates.

GBs play an important role in the formation and coarsening of radiation-induced defects (Figs. 1b, 6). �ey 
act as sinks for all kinds of point defects, i.e. vacancies and interstitials as well as in our case Re and Os atoms, 
resulting in the formation of a 200 nm wide void- and precipitate-free zone (called the denuded zone) adjacent 
to the GBs (see Fig. 1b, 6). Next to the denuded zone, a 300 nm wide void peak zone has formed, in which the 
voids have a reduced average size, while the number density of them is twice as high as in the grain interior (see 
Table 3). �e formation of larger χ- and σ-precipitates in the zone also indicates a higher concentration of Re 
and Os compared to the grain interior (Fig. 6). According to Fukuda et al.33, the higher di�usivity of SIA s in 
comparison to that of vacancies promotes the formation of a void-peak zone in the immediate vicinity of the 
denuded zone.

�e Re and Os concentrations show a typical "W-shaped" pro�le across the GB, which thickness corresponds 
to the denuded zone (Fig. 6e,f). �e thickness of the Re-rich layer at the GB is 30 nm, while Os is 22 nm. �e low 
thickness of the Os-rich layer compared to Re-rich layer leads to an increased local Os/Re ratio of ~ 0.2. �is is 
the precursor to the formation of Os-rich precipitates inside a much larger Re-rich  clouds49. �e Os/Re ratio at 
the GB was estimated to reach ~ 0.15, while this ratio in the sample average is calculated to be 0.1. It should be 
noted that the quanti�cation of EDX measurements shown here was performed near the sensitivity limit of the 
EDX method (0.1–0.25 wt%), where background subtraction plays an essential role for the results. On the other 
hand, the EDX lines of W, Re and Os are close to each other, so the background subtraction is possible with a rea-
sonable error. �ese two factors cause a measurement error of up to 50% in the Re and Os concentration values.

Next to the void peak zone we observed the formation of a second denuded zone of about ~ 500 nm wide 
with an obviously lower number density and size of voids and Os-rich precipitates if compared to the grain 
interior (Table 3). In this area especially Os- and Re-rich "clouds" are dominating structures. �is indicates that 
the formation of σ- and χ-phases occurs only in "clouds" with su�cient Re and Os concentration, obviously 
reached inside grains or void denuded zones. �e low local concentration of Re and Os suppresses their forma-
tion and growth. �e in�uence of the GB on the distribution of transmutation products and the formation of 
radiation-induced defects has already been reported in the  past3,6,33,49. However, the width of the denuded zone 
reported in these works is typically ~ 20 nm—a value that is 10 times lower than what is measured in this study.
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It is known that besides Re and Os also H and He are generated in the low appm amounts by transmutation of 
impurities in W and its  alloys58,59. From Be it is well-known that both elements are retained within the material 
in the form of gas-�lled  bubbles60. �e same e�ect might be also valid for W, however, in an attenuated form. 
In W, the bulk volume plasmon is located at 25.3 eV according to our measurements, which is close to the He 
edge at 22  eV61. �e additional peak located only in the void area (STEM-EELS in Fig. 10) lies in principle in the 
correct energy range of the He edge. However, since STEM-EDX also revealed the presence of oxygen within 
the void acting as dielectric medium another e�ect called plasmon resonance is also likely to be present. In case 
of nanometer-sized spherical voids this e�ect will generate additional intensity in the EEL spectrum located at 
√

2/3ωB , where ωB is the bulk plasmon  frequency62. In case of W this evaluates to 20.7 eV, which �ts better than 
the He edge to the observed void spectrum. If the voids contain pressurized He gas, a blue shi� of the He-K edge 
towards the W bulk plasmon can be expected hampering the He detection in this particular case. Atom-probe 
measurements by Herschitz and  Seidman53 did not reveal any He within voids, however, they found evidence of 
He associated with precipitates. �e question of the He presence in the voids remains still open.

In general, experimental data collected in recent years shows that the microstructure of neutron-irradiated 
W depends on the temperature and damage dose, as well as on the concentration of transmutation products. 
For the latter one the applied neutron spectrum is of great importance, which itself is di�erent for each reac-
tor type or shielding factor, e.g. position of the sample in the irradiation rig and of the rig itself in the reactor 
core. Our analyses form the basis for a detailed understanding of the microstructural development of W under 
neutron irradiation. However, considerably more research is needed to uncover the structural e�ects of a true 
fusion neutron spectrum.

Conclusions
�is paper presents the results of extensive microstructural analyses of W samples neutron irradiated at 800 °C 
to ~ 1.0 dpa. �e formation of dislocation loops, voids and precipitates consisting of Re–Os σ- and χ-phases was 
detected and characterized in detail. �e results of the study can be summarized as follows:

• �e dislocation loops have an average size of 5 nm and number density of 5  1023  m–3. About 95% of the loops 
have a b½ < 111 > Burgers vector. �ese data are comparable with the data of W irradiated in the HFIR.

• �e voids with an average size of 31 nm and number density of 4  1020  m−3 were signi�cantly di�erent from 
the data being published in the literature. �e average size is about 4–6 times larger and the number density 
is one order of magnitude lower than the published data for W irradiated at ~ 800 °C.

• Near GBs, we detected the formation of a ~ 200 nm wide void denuded zone and a ~ 300 nm wide void peak 
zone.

• �e Os induced by the transmutation has formed σ-WOs2 and χ-WOs3 precipitates with spherical and 
needle-like shape, respectively.

• �e χ-WOs3 phase is o�en associated with a void in contrast to the σ-WOs2.
• �e coherent precipitation of both σ and χ is phases was determined. �e [110] direction of σ-phase is 

oriented along that [110] of W, whereas in-plane the orientation relation is (1–10)W || (1–12)σ and (002)W || 
(−441)σ. �e out-of-plane the W [110] direction is parallel to the [214] direction of the χ-type precipitates, 
whereas in-plane it is (1–10)W || (2–40)χ, (002)W || (−5–32)χ.

• Formation of Re and Os rich clouds around voids and precipitates was observed and analyzed.
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