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Abstract Ionotropic P2X and metabotropic P2Y purinergic
receptors are expressed in the central nervous system and
participate in the synaptic process particularly associated
with acetylcholine, GABA, and glutamate neurotransmis-
sion. As a result of activation, the P2 receptors promote the
elevation of free intracellular calcium concentration as the
main signaling pathway. Purinergic signaling is present in
early stages of embryogenesis and is involved in processes
of cell proliferation, migration, and differentiation. The use
of new techniques such as knockout animals, in vitro
models of neuronal differentiation, antisense oligonucleo-
tides to induce downregulation of purinergic receptor gene
expression, and the development of selective inhibitors for
purinergic receptor subtypes contribute to the comprehen-
sion of the role of purinergic signaling during neurogenesis.
In this review, we shall discuss the participation of
purinergic receptors in developmental processes and in
brain physiology, including neuron-glia interactions and
pathophysiology.
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Abbreviations
ACh acetylcholine
AD Alzheimer’s disease
AP alkaline phosphatase
ax-2 ataxin-2
cdks cyclin-dependent kinases
CNS central nervous system
DRG dorsal root ganglia
EC embryonal carcinoma
NTPDase2 ectonucleoside triphosphate

diphosphohydrolase 2
E-NPP ectonucleotide pyrophosphatase

phosphodiesterase
EGF epidermal growth factor
E-NTPDase ectonucleoside triphosphate

diphosphohydrolase
ES cells embryonic stem cells
E-5′-NT ecto-5′-nucleotidase
FGF-2 fibroblast growth factor 2
GABA γ-aminobutyric acid
GFAP glial fibrillary acidic protein
IFN-γ interferon-γ
LIF leukemia inhibitory factor
LTP long-term potentiation
MAP-2 microtubule-associated protein-2
MAPK mitogen-activated protein kinase
MRF microglial response factor
MRS 2179 2′-deoxy-N6-methyladenosine 3′,

5′-bisphosphate
NPC neural progenitor cells
NPC neural stem cells
NA noradrenaline
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NOS nitric oxide synthase
NTPDase ectonucleoside triphosphate

diphosphohydrolase
NGF nerve growth factor
OP oligodendrocyte
oxATP oxidized ATP
PPADS pyridoxalphosphate-6-azophenyl-2′,

4′-disulfonic acid
SVZ subventricular zone
TGF transforming growth factor
TNF-α tumor necrosis factor-α
GAP-43 growth-associated protein 43
TNAP tissue-nonspecific alkaline phosphatase
TNP-ATP 2′3′-O-(2,4,6-trinitrophenyl) adenosine

5′-triphosphate

Introduction

During the last two decades, evidence for the participation of
ATP as neurotransmitter in neuronal signaling was collected
by Drs. Surprenant [1] and Silinsky [2]. Purine-sensitive
receptors were first classified as P1 G-coupled receptors
which are activated by adenosine and P2 receptors,
responding to stimulation of ATP [3]. Based on receptor
cloning and studying of receptor-induced signal transduc-
tion, P2 receptors were divided into P2X receptors as ATP-
gated ion channels and P2Y G protein-coupled receptors [4].

The expression of purinergic receptors has been identi-
fied during development and differentiation processes [5–
10]. Nucleotides exert a synergic effect on cell proliferation
in association with growth factors, chemokines, or cyto-
kines in early stages of development [11–13] by parallel
activation of the MAP kinase pathway and/or by trans-
activation of growth factor receptors [14, 15].

The complete role of ATP action in developmental
processes still needs to be elucidated. It is known that
ATP activates purinergic receptors resulting in many cases
in increases of intracellular free calcium concentration
[Ca2+]i. Changes in [Ca2+]i are involved in several events
of differentiation and the embryogenesis process [16, 17].
Spitzer et al. [18] showed that naturally occurring patterns
of Ca2+ transients encoded neuronal differentiation. Distinct
frequency patterns of [Ca2+]i elevations were sufficient to
promote neuronal differentiation, including physiological
neurotransmitter receptors expression [19]. ATP and UTP
are the main purinergic agonists activating P2X or P2Y
receptors. These nucleotides can be rapidly degraded in the
extracellular space by ectoenzymes to ADP or UDP,
subsequently activating distinct P2Y receptors, or be finally
degraded to adenosine, which is known to induce physio-
logical responses via activation of P1 G protein-coupled
receptors [20] (Fig. 1).

In this review article, we shall discuss the roles of
purinergic signaling in neurogenesis such as cell cycle
control during neural progenitor proliferation and differen-
tiation as well as in maintaining physiology of neurons and

Fig. 1 Purine-induced signaling
pathway involves the activation
of P1 adenosine and P2 puri-
nergic receptors and purine hy-
drolysis by ectonucleotidases.
The scheme demonstrates puri-
nergic receptor activity present
in glia-glia, neuron-glia, and
neuron-neuron interaction dur-
ing neurogenesis as well as in
the metabolism of the adult
brain
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glial cells and the involvement of purinergic receptors in
pathophysiology. In addition, we shall outline state-of-the-
art approaches used in investigation of P2 receptor function
in physiological processes such as the use of antisense
oligonucleotides, generation of knockout animals, and
identification of new purinergic receptor subtype-selective
drugs.

Study of purinergic receptor function during in vitro
differentiation

During the development of the mammalian nervous system,
neural stem cells and their derivative progenitor cells
generate neurons by asymmetric and symmetric divisions
[21]. P2 receptors were shown to be one of the first
functionally active membrane receptors in chick embryo cells
during gastrulation, in which ATP caused rapid accumulation
of inositol triphosphate and Ca2+ mobilization in a similar
way as acetylcholine (Ach) did via activation of muscarinic
acetylcholine receptors, whereas other endocrine-acting
substances such as insulin and noradrenaline (NA) induced
much weaker effects in terms of intracellular calcium
signaling [22, 23]. The induction of transient fluctuation in
[Ca2+]i also denominated as calcium wave signaling allows
for a coupling of spatial and temporal information. Thus,
calcium waves have been proposed to play a role in mapping
of neuronal networks [24] and to modulate neurogenesis
during embryonic cortical development [25].

Neurotransmitters are prominent candidates for trans-
cellular signals that could influence the development of
embryonic neurons as they surround neural cells throughout
brain development [26–29]. In addition, functional ligand-
gated ionic channel receptors have been identified in neural
progenitor cells prior to establishing cortical and subcortical
synapses [30, 31]. In this context, the extracellular signaling
mechanisms controlling the various transition steps in-
volved in adult neurogenesis are still poorly understood.
One approach used to identify the function of P2 receptors
during development and differentiation is the use of in vitro
models for neuronal and glial differentiation such as
embryonic and adult neural progenitor cells (NPC), also
known as neural stem cells (NSC), embryonic stem (ES),
and embryonal carcinoma (EC) cells.

ES cells are obtained from the inner mass cell of the
blastocyst. The differentiation of these cells closely resem-
bles the in vivo process and, therefore, provides stable
models for embryonic growth and development [32, 33].
ATP promotes cell proliferation acting through P2X3, P2X4,
P2Y1, and P2Y2 receptors in murine ES cells [34]. Tissue-
nonspecific alkaline phosphatase (TNAP) was also detected
in these cells and used as a marker for their undifferentiated
stage [35].

The neuronal differentiation of EC cells, originated from
irradiated embryo cells [36], also resembles early neuronal
development in vivo. P19 mouse EC cells express stem
cell-specific marker proteins and their phenotypic changes
in specific differentiation stages are similar to those of stem
cells [37]. Recently, our laboratory [38] has determined
gene and protein expression of P2 receptor subtypes
throughout in vitro neuronal differentiation of P19 cells as
well as in the undifferentiated cell stage suggesting the
participation of purinergic signaling in initiating and
directing differentiation. Differential expression and activity
of P2Y1, P2Y2, P2Y4, P2X2 subtypes and P2X6 subunits
were reported during neuronal maturation of P19 cells [38,
39]. As direct evidence for participation of purinergic
receptors in neuronal differentiation, the presence of the
antagonists pyridoxalphosphate-6-azophenyl-2′,4′-disul-
fonic acid (PPADS), reactive blue 2, or suramin during
differentiation of P19 neural progenitor cells (NPC) to P19
neurons resulted in reduced activity of cholinergic and
glutamate NMDA receptors in differentiated P19 cells,
pointing at a participation of P2Y1, P2Y2, and P2X2

receptors.
Other in vitro neuronal and glial differentiation models

used to understand the purinergic signaling are neural stem
cells or progenitor cells which are isolated from the
subventricular region (SVZ) located in the lateral ventricles
(type B cells) or in the subgranular region of the gyrus
dentatus of the hippocampus (residual radial glia) or even
from the subcortical parenchyma of the cerebral cortex of
embryonic and adult brain [40–42]. These regions in the
adult brain act as neural stem cell reservoirs. These cells are
already advanced in their differentiation stage when com-
pared to ES or EC cells. Since NSC and NPC are capable of
differentiating in both functional neurons and glial cells, they
possess potential therapeutic applications such as ES cells in
regeneration therapy following neuronal loss.

These NPC differentiate into olfactory, cerebellar, and
retinal neurons [40] in the presence of growth factors,
neurotransmitters, vasoactive peptides in vivo [43], and
growth factors such as epidermal growth factor (EGF),
fibroblast growth factor 2 (FGF-2), and leukemia inhibitory
factor (LIF) in vitro. When exposed to a high concentration
of FGF-2 in suspension, proliferating NPC form tridimen-
sional cell aggregates denominated as neurospheres, which
following induction to differentiation express neuronal
marker proteins such as β-III-tubulin, microtubule-
associated protein-2 (MAP-2), and synaptophysin [44] and
express P2X3 and P2X7 receptors which may contribute to
early [Ca2+]i transients as prerequisites for further differen-
tiation [41]. Shukla et al. [45] identified functional P2
receptors in adult mouse hippocampal progenitors in situ
and the nucleoside triphosphate-hydrolyzing ectoenzyme
(NTPDase) in type B cells of the SVZ [46] and in
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hippocampal progenitor cells. In adult murine NPC of SVZ,
P2Y1 receptor activity mainly contributes to [Ca2+]i
transients with some participation of P2Y2 receptors. The
presence of the specific P2Y1 receptor antagonist MRS
2179 resulted in diminished cell proliferation in neuro-
spheres due to reductions of [Ca2+]i transients. Similar
results were obtained with NPC from SVZ of P2Y1 receptor
knockout mice [47]. P2Y1 receptor-deficient mice are
viable; however, they have deficits in platelet aggregation
[48]. It is suggested that the purine signaling underlies
autocrine or paracrine mechanisms and P2Y1 and P2Y2

receptors are important for NPC differentiation [47]. These
models are useful tools to study the roles of P2 receptor
signaling in early stages of development and differentiation.
The importance of ATP release and purinergic signaling has
not only been demonstrated in developmental progenitor
cell expansion and neurogenesis, but also in persistent
progenitor cells of the adult brain [49].

Expression of purinergic receptors during development
of the central nervous system

Purinergic signaling pathways are also involved in embry-
onic neurogenesis in much the same way as already
discussed for in vitro differentiation models. ATP mediates
elevation of [Ca2+]i and proliferation of immortalized human
stem cells from embryonic telencephalon and mouse
embryonic neurospheres [50, 51]. Ca2+ waves through radial
glial cells in slices of the embryonic rat ventricular zone are
mediated by P2Y1 receptors. Disrupting Ca

2+ waves between
embryonic NPC reduced ventricular zone cell proliferation
during the peak of embryonic neurogenesis [25].

ATP directly contributes to modulate network-driven
giant depolarizing potentials in the rat hippocampus during
early stages of postnatal development [52]. In the developing
hippocampal system a trophic role of ATP and the
involvement of P2 receptor subtypes in shaping interneuro-
nal connections during neuronal differentiation have been
suggested [53]. Alterations of the regulation of embryonic
growth by purinergic receptors might be involved in the
onset of morphological malformations [54]. During rat
postnatal development ectonucleotidase activity in the
cerebral cortex steadily increases, reaching maximum values
at 21 days of age [55]. Several P2Y and P2X receptors were
shown to be dynamically expressed in the pre- and postnatal
central and peripheral nervous system [56–59]. ATP
inhibited motor axon outgrowth during early embryonic
neurogenesis, most likely through the P2X3 receptor, and it
was speculated that P2X7 receptors might be involved in
programmed cell death during embryogenesis [58].

From all of the studied P2X receptors, homomeric P2X2

receptors were the first expressed in the rat central nervous
system (CNS) on embryonic day 14 (E14) [56]. On E14,

heteromeric receptors were formed by P2X2/3 receptor
subunits. P2X3 receptor immunoreactivity was detected in
cranial motor neurons as early as on E11, when neurons
exited the cell cycle and started axon outgrowth, as well as
postnatally on days 7 and 14 (P7 and P14) [56, 60].
Moreover, expression of P2X3-containing heteromeric
receptors and other subunits was developmentally regulated
in nucleus ambiguous motoneurons [61]. From E14
onwards P2X7 receptors were also expressed in the
embryonic brain. For instance, in primary cultures of
human fetal astrocytes basal levels of P2X7 receptor mRNA
transcription and protein expression were detected [62].
Sperlágh et al. [63] have demonstrated that ATP regulates
glutamate release via activation of P2X7 receptors. P2X7

receptor-induced excessive glutamate release alters Ca2+

homeostasis, subsequently resulting in activation of the
apoptosis-related caspase cascade [64].

P2X receptor expression was downregulated in Purkinje
cells and deep cerebellar nuclei at P21 and P66 rat
embryonic stages, with the exception of P2X5 receptors
whose immunoreactivity in granular cells was increased
[65]. Evidence for participation of P2X receptors in
different developmental processes such as neurite out-
growth (involving P2X3 receptors), postnatal neurogenesis
(related to P2X4 and P2X5 receptor expression), and cell
death (possibly involving P2X7 receptors) was collected.
However, P2X1 and P2X6 receptor subunits may not play a
role in neuronal development [58].

Neocortical neurons from 2-week-old rats possess a
quite elaborated purine-triggered signaling system which
includes both P2Y and P2X receptor activation [66].
Weissman et al. [25] showed that [Ca2+]i waves and
subsequent ATP release, with consequent P2Y1 receptor
activation, accompanied radial glial cell-derived neuro-
genesis in cultured slices of the developing rat forebrain,
as mentioned above. Moreover, the importance of calcium
signaling for differentiation of NPC has been studied [67,
68], and direct evidence for the participation of P2Y1

receptor-activated pathways in the early development has
been provided by Scemes et al. [69]. P2Y receptors
(particularly the P2Y1 subtype) were widely expressed in
the embryonic rat brain as early as on E11 [57]. There was
a marked decrease in the concentration of mRNA coding
for P2Y1 receptors and upregulation of mRNA transcription
coding for P2Y2 receptors in freshly isolated astrocytes of
developing rat hippocampus [57].

Functional interactions between neurons and glia:
a physiological overview

An increasing amount of evidence, initiated by the neuron-
glia unit idea proposed by Hyden [70], indicates that glial
cells, once referred to as a simple support portion in the
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CNS, are now considered indispensable functional partners
of neurons [71], both in physiological and pathological
conditions. However, many questions remain unanswered:
(1) how glia detects and interacts with neural function; (2)
does neuron-glia signaling play a significant role in
synaptic transmission and plasticity; and (3) how glial cells
can communicate with other glial cells.

Another important subject related to the interaction
between glia and neurons emerges in neurogenesis. There
is now a general agreement that the adult mammalian
nervous system possesses many characteristics of astro-
cytes. The importance of glia in neuronal development was
confirmed in a recent study showing that the number of
GFAP (glial fibrillary acidic protein)-containing cells was
reduced following transgenic targeting of adult mouse
subependymal and subgranular zones, resulting in an
almost complete loss of neurogenesis [72, 73]. In addition
to assisting migration of neurons to their correct position
and managing neurite outgrowth to their final communica-
tion targets [74, 75], glial cells have become an essential
key for understanding neuronal differentiation by promot-
ing initial stem cell proliferation and instructing undiffer-
entiated cells to adopt a neuronal fate [76, 77].

In the mature brain, the proximity of astrocytes to
neuronal synapses or to the blood-brain barrier makes these
cells appropriate to control water diffusion and ion
concentration in extracellular spaces [71, 78]. In particular,
astrocytes regulate homeostatic environment and neuro-
transmitter levels by functional syncytium, in which gap
junctions and specific membrane carriers play an important
role [79–81]. In addition, glial cells produce and release a
vast number of neurotrophins, including fibroblast growth
factor, nerve growth factor, and transforming growth factor,
which directly interfere in neuron physiology and coordi-
nate developmental processes [71, 82–85].

ATP release and degradation, connecting adenosinergic
and purinergic systems

As already mentioned, it is well documented that glial cells
may directly alter neuronal activity by releasing neuro-
trophins and consequently modulating neurotransmitter
release in the synapse [86, 87]. One of the main
mechanisms connecting the neuron-glia system is believed
to be mediated by the release of glutamate from glial cells
[88, 89]. In this context, growing evidence indicates that
purinergic receptor ligands are widely involved in the cell-
cell signaling mechanism by acting as neurotransmitters or
neuromodulators released by glial cells to control synaptic
transmission in the CNS, as part of multiple functions of
astrocytes [22, 90, 91] (Fig. 1).

ATP is an ideal molecule for cell signaling due to its
intrinsic properties such as its small size, diffusing molecule

rate, instability and low concentration in the extracellular
environment, and impossibility to cross the plasma mem-
brane [92, 93]. These properties imply the presence of
particular pathways for ATP release that could be associated
with cellular excitation/response and cell-cell signaling [94,
95]. First, ATP may be stored in synaptic vesicles alone or
with other neurotransmitters and then released, as a classic
synaptic mechanism in the peripheral or central nervous
system [96, 97]. Second, a nonvesicular mechanism of ATP
release could be observed through gap junction hemi-
channels, ATP-binding cassette proteins, P2X7 receptor
pores in glial cells, and via chloride channels [98–101].
Third, ATP could be released due to cytolysis or cell
damage. While this is not a physiological mechanism, it
takes place following biological trauma and contributes to
pathological conditions [102].

Subsequent to these mechanisms, the metabolism of the
released ATP is regulated by a vast number of different
families of ectonucleotidases in the synaptic cleft, including
the ectonucleoside triphosphate diphosphohydrolase
(E-NTPDase) and the ectonucleotide pyrophosphatase
phosphodiesterase (E-NPP) which catalyze the degradation
of ATP to ADP or AMP. The degradation to adenosine is
mediated by ecto-5′-nucleotidase (E-5′-NT) and alkaline
phosphatase [91, 103] (Fig. 1). Consequently, the reaction
products resulting from the ATP hydrolysis may bind to P2
receptors, in the case of ADP, or to P1 receptors in the case
of adenosine [104].

The adenosinergic receptor ligand adenosine is recog-
nized as an important regulator of cellular homeostasis in
the CNS and may be involved in the prevention or
induction of apoptosis [105]. The reduction of ectonucleo-
tidase activity in certain pathological conditions provided
additional evidence for the accumulation of ATP in the
extracellular environment [20]. Therefore, the complexity
of the communication of neural and nonneural cells
expands the functional significance by the interaction of
the purinergic receptors in association with a variety of
neurotransmitter systems.

ATP-mediated neuron-glia signaling

Novel studies in the purinergic field began to converge with
glial research as it became more widely accepted that ATP
is released through synaptic vesicles and thus accessible to
perisynaptic glial cells, allowing them to detect neuronal
activity. In particular, glial cells are responsive to ATP, as
all types of glia, such as astrocytes, oligodendrocytes,
microglia, and Schwann cells, express purinergic receptors
[91]. In Schwann cells and oligodendrocytes, ATP-mediated
signaling predominantly occurs through P2Y receptors,
which in turn trigger intracellular Ca2+ release [106, 107].
However, the function of P2X1–6 receptors in astrocytes
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remains unclear, although P2X-mediated currents could be
detected in astrocyte cells in culture, and P2X7 receptors are
widespread in these cells with possible contribution to
pathological conditions [108, 109].

Glial cells express many types of neurotransmitter
receptors and conventionally are considered to be non-
excitable [110, 111]. However, a surprising observation was
reported by Dani et al. [112] that synaptic transmission may
propagate to glial cells as calcium waves, inducing
membrane depolarization and regulating neurotransmitter
release. These properties of glial cells suggest possible
rapid communications between neurons and glia during
synaptic transmission. This glial communication mecha-
nism allows the released ATP to act onto adjacent
astrocytes and neurons, thus supporting the propagation of
Ca2+ waves in glial syncytium [113]. For example, in
neuronal-glial cocultures prepared from hippocampus, ATP
secreted by astrocytes was shown to inhibit glutamatergic
synapses through activation of P2Y receptors [114].

The glial communication mechanism based on Ca2+

wave propagation could be inhibited by P2 receptor
blockers or enzymes that rapidly hydrolyze extracellular
ATP [115]. A stimulation applied to a single astrocyte in
cocultures of rat forebrain astrocytes and associated
neurons caused an elevation of [Ca2+]i and induced Ca2+

wave propagation in dorsal spinal cord through P2Y1

receptor activation [116] and glutamate release [117]. This
new finding provided a parallel mechanism of intercellular
communication that could allow astrocytes to detect
synaptic function, propagate the information through
neighboring glial cells, and then influence synaptic function
in a distant part of the nervous system.

Purinergic receptor-calcium signaling in glial cells plays
important roles during CNS development. P2X1, P2X4, and
P2X7 receptors were expressed in microglia at rat embry-
onic stage (E16) [59]. Moreover, changes in P2X4 receptor
expression in microglial cells during postnatal development
of the rat cerebellum have been reported. P2X5 receptor
immunoreactivity was also upregulated in microglia and
granular cells. Both P1 and P2 receptors contribute to the
modulation of oligodendrocyte (OP) development, since
they have been shown to exert similar effects on OP
proliferation and differentiation [118].

The majority of the studies of ATP action have been
concerned with the short-term P2 receptor signaling that
occurs in neurotransmission and in secretion [119]. Fur-
thermore, there is increasing evidence that purines and
pyrimidines can have trophic roles in neuritogenesis [120,
121], regeneration [122], and proliferation [123]. However,
some purines by themselves have limited trophic effects in
a few types of cells; they appear to be much more effective
as neuritogenic agents when they are combined with other
trophic factors, such as NGF. For instance, inosine and 5′

AMP alone do not elicit neurite extensions in PC12 cells
[124].

Heine et al. [53] demonstrated that P2 receptor activation
induced fiber outgrowth in organotypic cocultures in rat
hippocampus. Fiber outgrowth was inhibited in the pres-
ence of the purinergic antagonist PPADS, suggesting the
involvement of P2 receptors. In another study, the syner-
gistic interaction between bFGF and ATP was reported on
DNA synthesis in primary cultures of rat cortical astrocytes.
ATP and bFGF induced a twofold and tenfold incorporation
of [3H]thymidine into astrocytes, respectively, but when
ATP and bFGF were added at the same time a 50-fold
increase in [3H]thymidine incorporation was observed [12].

Neuroprotection

ATP can activate P2X7 receptors in astrocytes to release
glutamate, GABA, and also ATP which might regulate the
excitability of neurons in certain pathological conditions
[125]. It has been suggested that astrocytes can sense the
severity of damage in the CNS by the amount of ATP
released from damaged cells and that extracellular ATP
concentration and the corresponding subtype of activated
astrocytic P2 receptor modulate the tumor necrosis factor-α
(TNF-α)-mediated inflammatory response [126]. After
mechanical brain injury, the administration of PPADS
facilitated the recovery of pathologically changed elec-
troencephalograms [127]. These results suggest that
interference with the ATP-induced excitatory responses
could provide neuroprotection and possible therapeutic
consequences.

Evidence for a neuroprotective role was also found for
the adenosine A1 receptor in hippocampus. This cerebral
region is highly sensitive to hypoxia and ischemia. The
study of the action of hypoxia on synaptic transmission in
hippocampal slices has suggested that substances being
released during hypoxia, such as GABA, ACh, and even
glutamate, may also play neuroprotective roles. However,
the actions of these neurotransmitters become evident only
when activation of P1 receptors is impaired, suggesting a
critical role for this receptor during hypoxic events. These
substances can operate in a redundant or even overprotec-
tive manner, acting as a substitute for some adenosine
actions when the nucleoside is not operative [128].

Neuroimmune interactions

Microglia, the immune cells of the CNS, can be activated
by purines and pyrimidines to release inflammatory
cytokines such as IL-1, IL-6, and TNF-α. However,
hyperstimulation of the immune reaction in the brain may
accelerate neuronal damage. The P2X7 receptor is consid-
ered to have a potentially pivotal role in the regulation of
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various inflammatory conditions. ATP selectively sup-
presses the synthesis of the inflammatory protein microglial
response factor through calcium influx via P2X7 receptors
in microglia [129], which also leads to enhancement of
interferon-γ (IFN-γ)-induced type II nitric oxide synthase
(NOS) activity [130, 131]. P2X7 receptor activity also
participated in ATP-induced IL-1 release from macrophages
and microglia that had been primed with substances such as
bacterial endotoxin [132] and was shown to stimulate the
transcription of nuclear factor κB, TNF-α [133], the stress-
activated protein kinases (SAPK)/JNK pathway [134], and
the production of 2-arachidonoylglycerol, which is also
involved in inflammation induction by microglial cells.

P2Y rather than P2X7 receptors seem to have a major
role in the IL-6 production by microglial cells [135]. ATP
evoked the release of plasminogen [136] and IL-6 [135].
The stimulation of microglia by either ATP or BzATP
revealed neurotoxic properties and the involvement of the
P2X7 receptor has been reported in excitotoxic/necrotic and
apoptotic degeneration [109].

Neurological disorders

Epilepsy Several anti-epileptic agents reduce the ability of
astrocytes to transmit Ca2+ waves, raising the possibility
that blockade of ATP-induced [Ca2+]i transients in astro-
cytes by purinergic receptor antagonists could offer new
treatments for epileptic disorders. Antiepileptic effects of
adenosine are mostly due to the well-known inhibitory
actions of P1 receptors on synaptic transmission in the
hippocampus. However, as recently pointed out, adenosine
actions are not limited to presynaptic actions on glutamate
release [137]. The intraventricular injection of high doses of
ATP in rats evoked severe chronic-tonic convulsions,
whereas lower doses of ATP or adenosine elicited a kinetic
state with muscle weakness [138]. P2X2 and P2X4 receptor
expression in the hippocampus of seizure-prone gerbils was
significantly reduced compared with that of normal gerbils
[139]. GABAA receptors mediated modulation of expres-
sion of both P2X2 and P2X4 receptors, which may play an
important role in the regulation of seizure activity in the
gerbil hippocampus [139]. P2X7 receptors are thought to
play a definite, but not yet well defined role in epilepsy.
Treatment with the GABAB receptor agonist baclofen and
antagonist phaclofen resulted in increased and decreased
P2X7 receptor expression in hippocampus, respectively
[140]. These purinergic receptor responses were interpreted
as compensatory responses to the modulation of GABAB

receptor function [140]. It is noteworthy to mention that
this positive relationship between P2X and GABAA

receptors was also reported for the spinal cord [141] and
dorsal root ganglia (DRG) [142]. In these populations of
neurons, ATP-mediated P2X receptor function may partic-

ipate in neuronal transmission accompanied by GABA-
mediated actions [139].

Pain The heteromeric channel comprised of P2X2 and
P2X3 subunits was expressed almost exclusively in a subset
of primary afferents implicated in nociception [143–145]. It
has been observed that mechanical allodynia is reduced in
mice with deleted P2X3 receptor genes [146, 147] in
agreement with data obtained in rats that have been treated
with intrathecal antisense oligonucleotides reducing expres-
sion of P2X3 receptors [148] or with the selective
antagonist for P2X3 and P2X2/3 receptors A-317491 [148,
149]. P2X3 receptor knockout mice showed additional
defects in afferent pathways.

The P2X4 receptor is also implicated in pain sensation.
Activation of dorsal horn microglia and tactile allodynia
developing several days after ligation of a spinal nerve were
greatly reduced when gene expression of P2X4 receptor in
the dorsal horn had been inhibited by the presence of
intrathecal antisense oligonucleotides [150]. Accordingly,
intraspinal administration of microglia following induction
of expression and activity of P2X4 receptors produced
tactile allodynia in naive rats. Intrathecal administration of
cultured brain microglia produced allodynia, but only when
the cells had been pretreated with ATP [150]. The inhibition
of P2X4 receptor activity in microglia might be a new
therapeutic strategy for pain induced by nerve injury.

Alzheimer’s disease Alzheimer’s disease (AD) is caused by
extracellular deposition of amyloid β-peptide, which can
damage neurons, leading to their dysfunction and death
[151]. ATP and, in particular, aluminum-ATP promoted the
formation of thioflavin T-reactive fibrils of β-amyloid and
an unrelated amyloidogenic peptide, which could be
blocked by suramin [152].

Microglial cells are believed to contribute to the
progression of AD and are known to release proinflamma-
tory neurotoxic substances. Extracellular ATP, acting
through the P2X7 receptor, can alter β-amyloid peptide-
induced cytokine secretion from human macrophages and
microglia and thus may be an important modulator of
neuroinflammation in AD [153]. P2X7 receptors mediate
superoxide production in primary microglia, and the
expression of this receptor subtype was specifically
upregulated around β-amyloid plaques in a transgenic
mouse model of AD [154].

In contrast to the control human brain, the P2Y1 receptor
was colocalized with a number of characteristic AD
structures such as neurofibrillary tangles, neuritic plaques,
and neuropil threads in the hippocampus and cortex [155].
In general, control brain tissue exhibited a greater and more
abundant level of P2Y1 receptor immunostaining than AD
tissue did, probably due to severe neuronal cell degenera-
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tion in most AD brains. The intense P2Y1 receptor staining
observed over pathological AD structures might imply that
this receptor is involved either directly or indirectly in
signaling events mediating neurodegeneration of pyramidal
cells. Alternatively, P2Y1 receptors might have other
diverse signaling roles, possibly involved in the production
of intracellular tau deposits or might even serve to stabilize
these tangle structures in some way [156].

Ischemia/hypoxia Under pathological conditions of hypox-
ia or ischemia, extracellular purine nucleotides leak from
damaged cells and thereby may reach high concentrations
in the extracellular space [157]. A direct participation of
extracellular ATP and P2 receptors in ischemic stress has
been reported in various cellular systems [157–160]. For
example, P2X2 and P2X4 receptor expression in neurons
and microglia, respectively, in the hippocampus of gerbils
was upregulated following transient global ischemia [161].
Increased P2X7 receptor expression in astrocytes, micro-
glia, and neurons appears to contribute to the mechanisms
of cell death caused by in vivo and in vitro ischemia [162,
163]. Following induction of ischemia P2X7 receptor
mRNA transcription and protein expression were elevated
in cultured cerebellar granule neurons and organotypic
hippocampal cultures [163]. Hence, the P2X7 receptor is
apparently an important element in the mechanisms of
cellular damage induced by hypoxia/ischemia. In many cell
types, the activation of the P2X7 receptor led to rapid
cytoskeletal rearrangements, such as membrane blebbing
and cell lysis [164]. P2Y1 receptors are intensely expressed
in Purkinje cells in deep layers of the cerebral cortex and in
ischemia-sensitive areas of the hippocampus [165]. In
conclusion, extensive evidence demonstrates a postische-
mic time- and region-dependent upregulation of P2X2,4,7

and P2Y1 receptor subtypes in neurons and glial cells and
suggests a direct role of P2 receptors in the pathophysiol-
ogy of cerebral ischemia in vitro and in vivo.

Trauma and axotomy P2 receptors are suggested to be
involved in neuronal reactions after axotomy. Colocaliza-
tion and temporal coactivation of purinergic and nitrergic
markers support this idea, indicating possible interactions
between these two systems [166]. Following peripheral
nerve lesions, P2X3 receptor expression in DRG neurons
was changed [167]. The increased expression of P2X3

receptor mRNA in intact neurons indicates a role of this
subtype in the post-injury pathomechanism in primary
sensory neurons [167]. After spinal cord injury, large
regions of the peritraumatic zone were characterized by a
sustained process of pathologically high ATP release [168].
Spinal cord neurons express P2X7 receptors, and exposure
to ATP led to high-frequency spiking, irreversible increases
in [Ca2+]i and cell death. The administration of P2 receptor

antagonists (PPADS, oxATP) after acute impact injury
significantly improved functional recovery and diminished
cell death in the peritraumatic zone [168]. The involvement
of P2X1 and P2X2 receptors in neuronal reactions after
hemicerebellectomy was also described [169]. Furthermore,
neuronal NOS and P2 receptors were colocalized and
showed temporal coactivation after cerebellar lesions,
indicating a close relationship between these two systems
[166]. In addition, in this mixed model of differentiation
and axotomy, the colocalization of ataxin-2 (ax-2, involved
in resistance to degeneration phenomena, which may be
lost after mutation)-immunopositive cells and P2X2 recep-
tors was demonstrated in neurons, and post-lesional
induction of P2X1 receptor and ax-2 immunoreactivity
was reported as well [170]. In vivo treatment of P2Y2

receptor-expressing sciatic nerves with ATP-γS increased
expression levels of the growth-associated protein 43 (GAP-
43) as a marker for axonal growth in wild-type but not in
P2Y2 −/− mice [171].

Possible therapeutic manipulations to modulate astrocyt-
ic proliferation and to diminish glial scar formation in the
adult brain and during development include the use of
drugs known to interfere with nucleotide synthesis. Pekovic
et al. [172] showed that treatment with the purine
nucleoside analogue ribavirin (Virazole; 1-β-D-ribofurano-
syl-1,2,4-triazole-3-carboxamide) downregulates the pro-
cess of reactive gliosis after sensory motor cortex lesion of
the adult brain and facilitates re-establishing synaptic
connections with the denervated cells at the lesion site.
This may be a useful approach for improving neurological
recovery from brain damage. The antiproliferative effect of
ribavirin is due to the inhibition of de novo nucleic acid
synthesis after depletion of GTP and dGTP pools with
consequent impairment of specific transduction pathways.

ATP-induced effects on cell cycle progression

There is evidence showing that extracellular ATP enhances
the expression of cell cycle regulating proteins [173, 174].
Progression of the cell cycle is highly controlled. Cyclins
are synthesized and degraded in a synchronous way due to
changing transcription or proteolysis rates, thereby direct-
ing the periods of the cellular cycle. Cyclins interact with
cyclin-dependent kinases (cdks) resulting in activation of
their kinase activity, phosphorylating their targets and
themselves, and regulating the specific progression of the
cell cycle through checkpoints [175].

Proliferation rates in mammalians are largely determined
during the G1 phase of the cell cycle. The relevant proteins
include three D-type cyclins (D1, D2, and D3) that, in
different combinations, bind to and allosterically regulate one
of two cdk subunits, cdk4 and cdk6, as well as the E-type
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cyclins (E1 and E2), which govern the activity of a single
catalytic subunit, cdk2 [176]. Various combinations of D-
type cyclins are expressed in different cell types, whereas
cyclin E-cdk2 complexes are ubiquitously expressed [177].

Two families of cdk inhibitors regulate the activity of
G1-type cyclins-cdks complexes: the Ink4 family (p16,
p15, p18, and p19), which blocks the activity of cyclin D-
cdk4-6 complexes, and the Cip/Kip family (p21, p27, and
p57), which preferentially inhibits cyclin E-cdk2 complexes
and also acts as a scaffold for the catalytically active cyclin
D-cdk4-6 complexes. In addition to cyclins and cdks,
mitogen-activated protein kinase (MAPK) is also believed
to have a role in induction of cell proliferation. Therefore,
cyclin D-dependent kinases may play a role in controlling
the cell cycle of embryonic and maybe neural progenitor
cells. In addition MAPK is also believed to have a role in
induction of cell proliferation. Extracellular ATP induces
Ca2+-dependent MAPK activation via stimulation of P2
receptors in neonatal rat astrocytes [178]. On the other
hand, cell proliferation is associated with activation of
diverse proteins. Positive regulators include cyclins and
their partners with catalytic activity (cdks), which are
essential for progression of the cells through each phase
of the cell cycle and various cell cycle checkpoints [179,
180]. The regulation of cyclin D1 expression is also
mediated by the Ras/ERK signaling pathways [181, 182].
Raf/MEK/ERK and PI3-K/Akt signaling pathways can act
in synergy to promote the G1-S phase cell cycle progres-
sion in both normal and cancer cells [183, 184]. The
promoter for cyclin D1 contains an AP-1 site, and the
ectopic expression of either c-fos or c-jun induces cyclin D1
mRNA expression [185, 186]. In many cell types, phos-
phatidylinositol (PI)-3-kinase-dependent signaling path-
ways also regulate cyclin D1 expression [187]. It was also
reported that the control of the cell cycle regulatory proteins
was dependent on PI3-kinase and p44/42 MAPK pathways,
indicating that extracellular ATP alone is sufficient to
induce cell cycle progression beyond the G1 phase of the
cell cycle. These findings also suggest that, once P2
receptors are activated, protein kinase C (PKC) transmit
signals to the nucleus through one or more of the MAPK
cascades, which may include Raf-1, MEK, and ERK, and
stimulate transcription factors such as myc, max, fos, and
jun. Moreover, MAPKs are upstream regulators of cdk2
and cdk4 expression. It has been reported that p44/42
MAPK phosphorylation is essential and sufficient for the
increase in cdk2 [188, 189] and decrease in p27Kip1
expression [190, 191]. However, Delmas et al. [192]
provided evidence that p44/p42 MAPK activation triggers
p27Kip1 degradation independently from cdk2/cyclin E in
NIH 3T3 cells. As described above, ATP regulation of the
MAPK and cdk-cyclin complex has not been elucidated in
other types of cells [193].

It is documented in the literature that purinergic receptor
inhibitors interfere with the S phase of the cell cycle.
Neurospheres treated with the purinergic receptor antagonists
reactive blue 2 or suramin are mostly in S phase (5.7±0.3% or
8.4±2.3%) when compared to untreated control neurospheres
with 16.4±1.8% of the cells being in S phase. Moreover,
neurosphere cultures treated with suramin or reactive blue 2
showed an increase in the expression of the tumor suppressor
p27 as a strong regulator of cell division [49].

The discussed findings led to the suggestion that
extracellular ATP plays an important physiological role
during mammalian embryonic development by stimulating
proliferation of ES cells, and therefore P2 receptor agonists
and antagonists might provide novel and powerful tools for
modulating embryonic cell functions. In conclusion, P2X
and P2Y purinergic receptors can promote proliferation of
ES cells as well as of progenitor cell types by a mechanism
by that ATP induces increases in [Ca2+]i, leading to
activation of PKC, PI3-kinase/Akt, p38, and p44/42
MAPK, followed by an alteration in the cdk-cyclin
complex with p21 and p27, which are involved in
stimulation of cell proliferation.

Pharmacological approaches

Most purinergic receptors do not have specific inhibitors.
Therefore, P2 receptor agonists and antagonists acting on
most of the purinergic receptor subtypes are widely used in
experimental approaches to study biological functions of
these receptors. Such approaches are feasible, since these
compounds mostly have higher affinities to some P2
receptor subtypes than to other ones. As an example, we
have used suramin, PPADS, and reactive blue 2 to study the
participation of P2Y1, P2Y2, and P2X2 receptors in
neuronal differentiation of P19 EC cells [38].

One possible approach towards a subtype-specific
inhibitor would be based on results from P2 receptor
structure determination. Using site-directed mutagenesis it
has been possible to understand which amino acids are
involved in ATP binding and to identify allosteric sites in
purinergic receptors. The knowledge obtained on location
and structural features of ligand and inhibitor binding sites
is used in rational based drug design of selective purinergic
subtype antagonists. Alternatively, combinatorial libraries
formed by vast amounts of possible ligands can be
employed for discovery of subtype-specific inhibitors.

A-317491 was identified as a specific inhibitor for
P2X2/3 and P2X3 receptors. In the presence of A-317491
both thermal hyperalgesia and mechanical allodynia were
attenuated after chronic nerve constriction injury in which
P2X3 homomeric and P2X2/3 heteromeric receptor activi-
ties were involved. Although active in chronic pain models,
A-317491 was ineffective in reducing nociception in animal
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models of acute postoperative pain and visceral pain
indicating that P2X3 and P2X2/3 receptor activation may
not be a major mediator of acute postoperative or visceral
pain [149]. MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′
-bisphosphate) was discovered as a specific inhibitor of
P2Y1 receptor activity [194]. This compound has an
efficient antithrombotic action in which P2Y1 receptors
are involved [195].

Based on structure design or combinatorial library
approaches specific agonists or antagonists may be discov-
ered for other purinergic receptor subtypes. For instance,
the SELEX (systematic evolution of ligands by exponential
enrichment) technique provides a particularly promising
approach for the discovery of such compounds. This
technique is based on the reiterative presentation of a
partial random RNA or single-stranded DNA library to a
protein preparation containing a particular purinergic
receptor subtype. RNA or DNA molecules bound to a
target site on the receptor are displaced from the receptor
and eluted by addition of an excess concentration of an
unspecific purinergic receptor antagonist and amplified by
reverse transcription polymerase chain reaction (PCR) or
PCR to restore the library used for the next in vitro
selection cycle. Using this approach, it was possible to
identify inhibitors specific for isoforms of a target protein
[196]. Our group prepared membrane protein fractions of
1321N1 cells stably transfected with rat P2X2 receptors and
coupled them onto an immobilized artificial membrane
(IAM) as matrix for affinity chromatography. The equilib-
rium binding to the receptor and competition between ATP
and the purinergic antagonists suramin and 2′3′-O-(2,4,6-
trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP) were
analyzed by a chromatographic assay using [α-32P]-ATP as
a radioligand. Our data indicate that suramin does not
compete with ATP for the ligand binding site and TNP-ATP
is a competitive antagonist, as already shown by Trujillo et
al. [197]. Moreover, this chromatographic assay can be
used in in vitro selection procedures for RNA aptamers
binding to P2X2 receptors from a combinatorial SELEX
RNA library [198]. The development of a subtype-specific
P2X receptor antagonist by using the SELEX technique or
another combinatorial library-based approach shall serve as
proof of principle and encourage further works to obtain
such specific antagonists for all P2 receptor subtypes as
tools for elucidating their biological functions and for
possible therapeutic applications.

Conclusion

P2 receptor function is involved in most physiological
processes and participates in neurotransmission in the CNS.
Results obtained with mouse ES and P19 EC and neural

progenitor cells suggest an important role of purinergic
signaling in early embryogenesis, especially in cell prolif-
eration, migration, and differentiation, with different sub-
types of receptors participating in these processes. Our
understanding of the biological functions of specific P2
receptor subtypes during CNS development and in the adult
brain has increased due to the availability of knockout
animals and specific inhibition of gene expression or
activity of purinergic receptor subtypes. The importance
of P2 receptor signaling in neuroprotection, neuroimmunity,
and guiding neuronal differentiation, especially in glial and
microglial cells, has been related to purinergic receptor
expression. Most importantly, specific agonists and antag-
onists for individual P2 receptor subtypes are both needed
for studying their involvement in biological processes. The
discovery of such selective compounds will elucidate yet
unknown biological functions of P2 receptor subtypes as
well as open new avenues for therapeutic approaches to
disease states in which purinergic receptor activity is
involved.
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