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Reelin, a multifunctional extracellular protein that is important for mammalian brain

development and function, is secreted by different cell types in the prenatal or

postnatal brain. The spatiotemporal regulation of Reelin expression and distribution

during development relates to its multifaceted function in the brain. Prenatally Reelin

controls neuronal radial migration and proper positioning in cortical layers, whereas

postnatally Reelin promotes neuronal maturation, synaptic formation and plasticity. The

molecular mechanisms underlying the distinct biological functions of Reelin during

and after brain development involve unique and overlapping signaling pathways that

are activated following Reelin binding to its cell surface receptors. Distinct Reelin

ligand isoforms, such as the full-length protein or fragments generated by proteolytic

cleavage differentially affect the activity of downstream signaling pathways. In this

review, we discuss recent advances in our understanding of the signaling transduction

pathways activated by Reelin that regulate different aspects of brain development

and function. A core signaling machinery, including ApoER2/VLDLR receptors, Src/Fyn

kinases, and the adaptor protein Dab1, participates in all known aspects of Reelin

biology. However, distinct downstream mechanisms, such as the Crk/Rap1 pathway

and cell adhesion molecules, play crucial roles in the control of neuronal migration,

whereas the PI3K/Akt/mTOR pathway appears to be more important for dendrite and

spine development. Finally, the NMDA receptor (NMDAR) and an unidentified receptor

contribute to the activation of the MEK/Erk1/2 pathway leading to the upregulation of

genes involved in synaptic plasticity and learning. This knowledge may provide new

insight into neurodevelopmental or neurodegenerative disorders that are associated with

Reelin dysfunction.
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INTRODUCTION

Reelin is an extracellular glycoprotein that controls diverse aspects of mammalian brain

development and function (D’Arcangelo, 2014). The most prominent activity of Reelin is the

control of neuronal migration and cellular layer formation in the developing brain. This is

evident from anatomical studies of reeler mutant mice that lack Reelin expression (Lambert de

Rouvroit and Goffinet, 1998). These mutants exhibit a neurological phenotype characterized

by ataxia and a typical ‘‘reeling’’ gate. Anatomically, their brains exhibit widespread neuronal

lamination defects due to the failure of radially-migrating neurons to reach their destination in

the developing forebrain, and cerebellar hypoplasia, which is likely due to the failure of Purkinje
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cells to form a cellular layer (Goffinet, 1983; Miyata et al., 1997).

Similar phenotypes are observed in human patients carrying

REELIN homozygous mutations, resulting in lissencephaly with

cerebellar hypoplasia (Hong et al., 2000).

In addition to controlling neuronal migration in the prenatal

brain, Reelin plays important roles in the postnatal and adult

brain, promoting the maturation of dendrites, synaptogenesis,

synaptic transmission and plasticity, thus modulating the

formation and function of synaptic circuits. This view is

supported not only by animal studies involving heterozygous

reeler mice, which model some behavioral dysfunction similar

to schizophrenia (Costa et al., 2002), but also by recent human

genetic studies identifying heterozygous REELIN mutations in

lateral temporal epilepsy (Dazzo et al., 2015), and pointing

to REELIN as a risk factor in autism (De Rubeis et al.,

2014). Furthermore, accumulating evidence that Reelin signaling

antagonizes the toxic effects of β-amyloid at the synapse,

underscores the potential relevance of this ‘‘developmental’’

factor for neurodegenerative disorders (Durakoglugil et al., 2009;

Krstic et al., 2012; Pujadas et al., 2014).

To foster a better understanding of the mechanisms of

development and disease, in this review we focus on recent

advances in our knowledge of the signaling transduction

pathways that regulate the different biological activities of Reelin

in the brain.

REELIN EXPRESSION AND CLEAVAGE

The spatiotemporal regulation of Reelin expression underlies its

multifaceted roles in brain development. During the embryonic

development of forebrain structures Cajal-Retzius cells secrete

high levels of Reelin in the marginal zone, thus regulating

neuronal migration and cellular layer formation (D’Arcangelo

et al., 1995; Ogawa et al., 1995). These cells begin to die shortly

after birth and disappear from the neocortex once neuronal

migration is completed. In the hippocampus, however, residual

Cajal-Retzius continue to secrete Reelin at early postnatal days,

affecting aspects of development such as axonal or dendrite

branching and maturation (Del Río et al., 1997; Niu et al., 2004;

Kupferman et al., 2014). As postnatal development continues,

the expression of Reelin becomes predominantly localized

to a subset of GABAergic interneurons that are positioned

throughout cortical and hippocampal cell layers (Alcántara

et al., 1998; Pesold et al., 1998). Albeit at reduced levels,

these interneurons continue to express Reelin in the juvenile

and adult forebrain. The significance of this late postnatal

and adult pattern of expression is likely related to the

modulation of synaptic activity and plasticity (Weeber et al.,

2002; Beffert et al., 2005; Pujadas et al., 2010; Trotter et al.,

2013).

The mouse full-length Reelin protein is approximately

385 kDa and is 95.2% identical to the human protein

(D’Arcangelo et al., 1995). The main body of the protein is

composed of eight unique repeats (R), each centered around

an epidermal growth factor (EGF)-like cysteine pattern that is

typical of extracellular proteins (Figure 1). At the N terminus

there is a signal peptide and a small region of similarity

with F-spondin, whereas at the C terminus there is a small

carboxy-terminal region (CTR) that is positively charged. The

presence of the signal peptide indicated that Reelin is an

extracellular protein. Indeed, it is readily detected in the

culture medium of Reelin-expressing cells (D’Arcangelo et al.,

1997). Secretion is essential for function, and mutations that

interfere with secretion cause a reeler phenotype identical

to that resulting from null mutations (D’Arcangelo et al.,

1997; de Bergeyck et al., 1997). After secretion, full-length

Reelin is cleaved by metalloproteases at two specific sites,

generating three large fragments, an N-terminal (Nt = N-R2),

a central (C = R3-R6), and a C-terminal (Ct = R6-CTR)

fragment (Figure 1). The C fragment alone is sufficient to

activate intracellular signaling and to induce layer formation

in cortical slice cultures (Jossin et al., 2004; Yasui et al.,

2007). However, the full-length protein is more potent than the

C fragment, presumably due to the presence of the Nt region,

which promotes aggregation, and the CTR, which promotes

proper folding (Utsunomiya-Tate et al., 2000; Kubo et al.,

2002; Nakano et al., 2007; Kohno et al., 2015). Recent studies

identified the cleavage sites that produce the three major Reelin

FIGURE 1 | Schematic structure of the Reelin protein and its cleavage fragments. Reelin contains a signal peptide (S), an F-spondin-like domain (SL), eight

consecutive Reelin repeats (R) each harboring an epidermal growth factor (EGF)-like motif that separates two subdomains (A and B), and a positively charged

carboxy-terminal region (CTR). The full-length protein is cleaved by extracellular metalloproteases at specific sites (arrows), an N-terminal (Nt) site within R3 and a

C-terminal site between R6 and R7. These two cleavage events generate three large fragments, an N-terminal (Nt), a central (C) and a C terminal (Ct) fragment. An

additional cleavage event (empty head arrow) occurs within the CTR (WC) and generates a small carboxy-terminal peptide.
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fragments (Koie et al., 2014; Sato et al., 2016) and demonstrated

that the Nt cleavage affects the duration and the range of

Reelin signaling activity in the developing cortex (Koie et al.,

2014). Further studies are needed to identify proteases that

carry out these processing events in vivo. In addition, recent

studies further identified another cleavage site within the CTR

(WC). Cleavage at this site releases a six amino acid carboxy-

terminal peptide, reducing signaling activity and hindering

dendrite development in the postnatal neocortex (Kohno et al.,

2015).

Taken together, the evidence so far indicates that Reelin

processing downregulates the activity of the full-length protein;

however cleavage events also produce diffusible fragments that

potentially stimulate signaling activity away from the site of

secretion (Jossin et al., 2007).

REELIN RECEPTORS

The best-characterized Reelin receptors are the apolipoprotein

E receptor 2 (ApoER2, also called LRP8) and the very low-

density lipoprotein receptor (VLDLR). These proteins belong

to the low-density lipoprotein receptor (LDLR) family. They

have partial functional redundancy and play an essential

role in Reelin-mediated neuronal migration based on the

observation that double knockout mice display a reeler-like

phenotype (Trommsdorff et al., 1999). ApoER2 and VLDLR

bind Reelin with high affinity and internalize the ligand in

endocytic vesicles, leading to the activation of downstream

signaling molecules (D’Arcangelo et al., 1999; Hiesberger et al.,

1999; Strasser et al., 2004; Yasui et al., 2010). After the

signal is transduced, some receptor molecules recycle to the

membrane whereas others are targeted for lysosomal degradation

(Hong et al., 2010). A Reelin domain contained within the

C fragment and including the Lys2467 residue is essential for

ApoER2/VLDLR interaction, signal transduction and cortical

layer formation (Jossin et al., 2004; Yasui et al., 2007).

Despite functional overlap, ApoER2 and VLDLR play distinct

roles in neuronal migration due, in part, to their different

expression pattern. In the developing neocortex VLDLR is

expressed almost exclusively in apical processes of migrating

neurons at the top of the cortical plate where it mediates a

mode of migration known as somal or terminal translocation,

whereas ApoER2 is also expressed in the intermediate zone

where it likely promotes the transition from multipolar to

bipolar morphology and early stages of radial migration

(Hirota et al., 2015). Other reported differences between the

two receptors include their ability to internalize Reelin at

different rate and in distinct lipid compartments, thus likely

differentially affecting signal transduction machineries (Duit

et al., 2010).

Other transmembrane proteins that have been proposed to

function as Reelin receptors include β1-containing integrins,

which were first reported to bind Reelin in vitro (Dulabon

et al., 2000). However, genetic knock out studies later

demonstrated that β1 integrins are required for radial glia

scaffold formation rather than for neuronal migration per se

(Belvindrah et al., 2007). Even though their function is not

essential, possibly due to redundancy with other cell adhesion

molecules, in utero electroporation studies suggest that β1

integrins contribute to corticogenesis as downstream effectors.

Reelin signaling was shown to alter integrin-dependent cell

adhesion by downregulating α3 integrin levels in the cortical

plate (Sanada et al., 2004), and by activating integrin α5β1, thus

promoting the anchoring of leading processes to the fibronectin-

rich marginal zone (Sekine et al., 2012). It should be noted

that in this model integrins do not bind Reelin directly and

therefore do not function as receptors. Recently, another study

suggested a direct interaction between Reelin and EphB tyrosine

kinase receptors. The Nt region of Reelin was reported to

bind EphB and activate forward signaling in neurons (Bouché

et al., 2013). However, EphB-deficient mice display only a

very mild migration phenotype, suggesting that they do not

play a major role during prenatal brain development. Their

involvement in postnatal functions of Reelin remains to be

elucidated.

Taken together, genetic and biochemical data so far support

the notion that ApoER2 and VLDLR are the major Reelin

receptors in the developing brain.

REELIN SIGNAL TRANSDUCTION IN THE
CONTROL OF NEURONAL MIGRATION

Disabled-1 (Dab1) is an intracellular adaptor protein that is

essential for Reelin signal transduction. This protein binds the

cytoplasmic tail of lipoprotein receptors, including ApoER2

and VLDLR (Trommsdorff et al., 1999) and upon Reelin

binding, becomes phosphorylated on tyrosine residues by Src-

family kinases (SFKs) Fyn and Src (Howell et al., 1999a;

Figure 2A). These kinases are themselves upregulated in a Dab1-

dependent way via a positive feedback mechanism (Arnaud

et al., 2003; Bock and Herz, 2003). Dab1 phosphorylation

is required for neuronal migration, as demonstrated by the

observation that phospho-mutant Dab1 mice (Howell et al.,

2000), double Fyn/Src knockout mice (Kuo et al., 2005), as well

as spontaneous or genetically engineered Dab1 knockout mice

(Howell et al., 1997; Sheldon et al., 1997; Ware et al., 1997;

Yoneshima et al., 1997; Kojima et al., 2000) all show similar

reeler-like phenotypes. Dab1 signaling is rapidly downregulated

by a mechanism that involves the ubiquitination of phospho-

Dab1 by the E3 ubiquitin ligase component Cullin 5, and

its degradation by the proteasome system (Feng et al.,

2007).

Genetic studies demonstrated that Dab1, and thus Reelin

signaling, is specifically required for a specific mode of radial

migration termed somal or terminal translocation, but not for

glial-guided locomotion (Franco et al., 2011). The molecular

mechanism of translocation involves the recruitment of Crk

adaptor proteins, which bind phospho-Dab1 and cause the

activation of the GTP exchange factor (GEF) C3G, and the

subsequent activation of the Rap1 GTPase (Franco et al., 2011;

Jossin and Cooper, 2011; Figure 2A). Consistently, double

Crk/CrkL mutant mice display a reeler-like cortical phenotype

(Park and Curran, 2008). The Crk/C3G/Rap1 pathway ultimately

promotes the interaction between migrating neurons and Reelin-
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FIGURE 2 | Reelin signaling mechanisms in brain development and function. Reelin is secreted as a full-length protein that contains three large cleavable

domains, an Nt, a C, and a Ct domain. The central domain binds to ApoER2 and VLDLR receptors, which internalize the ligand and transduce the Reelin signal by

activating Src/Fyn kinases that phosphorylate the adaptor protein Dab1. Downstream of this canonical pathway, distinct signaling cascades regulate specific biologic

activities at different times during brain development. (A) Prenatally, Reelin controls neuronal migration and cortical layer formation through the Crk/C3G/Rap1

pathway. This signaling cascade regulates the function of cell adhesion molecules, including nectin3, N-Cadherin, and Integrin α5β1, which facilitate somal

translocation and cellular layer formation. (B) During early postnatal development, the Crk adaptor proteins and the PI3K-Akt-mTOR pathway contribute to Reelin

activity by promoting protein translation, dendrite outgrowth and spine development. (C) In the late postnatal and adult brain Reelin affects synaptic function and

plasticity. This activity is mediated in part by ApoER2, which interacts with the NMDAR through PSD-95, causing Ca2+ influx and the activation of CamKII. An

unknown receptor also mediates the activation of the MEK-Erk1/2 pathway by Src/Fyn kinases. Together these signaling pathways promote synaptic activity and

plasticity through the induction of immediate-early genes involved in learning and memory such as those containing LRN enhancers.

producing Cajal-Retzius cells through adhesion molecules such

as nectins 1/3 and N-Cadherin, enabling neuronal translocation

and inside-out layer formation (Gil-Sanz et al., 2013; Figure 2A).

Given the enrichment of ApoER2 and VLDLR in the apical

processes of migrating neurons near the marginal zone, both

these receptors are likely to mediate the signal transduction

that promotes translocation (Hirota et al., 2015). In addition,

Reelin-Dab1 signaling through Rap1 and N-Cadherin affects

the orientation of migrating neurons undergoing the transition

from multipolar to bipolar morphology in the intermediate

zone, before initiating radial migration into the cortical plate

(Jossin and Cooper, 2011). This migration step may be mediated

preferentially by ApoER2, since this is the only receptor

that is expressed in the intermediate zone (Hirota et al.,

2015).

In addition to Crks and Rap1, biochemical studies identified

several molecules that may be involved in Reelin-dependent

neuronal migration. These include proteins that regulate

cytoskeletal dynamics and cell motility, such as Lis1, Nckβ

and N-WASP (Assadi et al., 2003; Pramatarova et al., 2003;

Suetsugu et al., 2004), and proteins that downregulate Rap1 due

to their GTPase activating protein (GAP) activity. Among Dab1-

interacting proteins Lis1, the product of the PAFAH1b1 gene that

is responsible for human lissencephaly type I, may be particularly

relevant to cortical development. Lis1 binding to phospho-

Dab1 is Reelin-dependent, and genetic interaction between

Dab1 and PAFAH1b1 demonstrates a functional relationship

between these proteins (Assadi et al., 2003). Furthermore, Lis1-

interacting PAFAH1b alpha subunits bind specifically to VLDLR,

potentially promoting the interaction between Lis1 and Dab1

downstream of this receptor (Zhang et al., 2007). Lis1 then affects

cytoskeletal dynamics necessary for radial migration through the

dynein motor complex (Wynshaw-Boris and Gambello, 2001).

Additionally, Dab2IP, a Dab1-binding protein that functions as

a Rap GAP, as well as Rap1GAP, were shown to affect neuronal

migration in the neocortex (Franco et al., 2011; Jossin and

Cooper, 2011; Lee et al., 2012; Qiao et al., 2013). Even though a

direct involvement of Rap GAPs in Reelin signaling has not been

established, it is likely that this class of proteins regulates Rap1

activity, balancing the GEF activity of C3G and thus enabling

proper neuronal orientation and migration through the cortical

plate.

REELIN SIGNAL TRANSDUCTION IN THE
CONTROL OF DENDRITE AND SPINE
DEVELOPMENT

Dendrite outgrowth is disrupted in homozygous reeler mice.

Dendritic defects are also apparent in immature hippocampal or

cortical cultures isolated from mutant mice, but not in mature

cultures (Niu et al., 2004; Jossin and Goffinet, 2007; MacLaurin

et al., 2007). Since Reelin treatment rescued these defects, these

in vitro studies first demonstrated that Reelin directly promotes

dendrite development. Following studies further demonstrated
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that Reelin enables initial dendritic outgrowth by promoting the

extension of the Golgi apparatus into apical dendrites (Matsuki

et al., 2010), and then orienting and stabilizing the leading

processes in the marginal zone (Chai et al., 2015; Kohno et al.,

2015; O’Dell et al., 2015). The signal transduction machinery

that mediates the activity of Reelin on dendrite development

involves the canonical pathway that also controls neuronal

migration, including ApoER2/VLDLR, Dab1, SFKs and Crks

(Niu et al., 2004; Park and Curran, 2008). Downstream of Dab1,

the signaling mechanism that affects dendrite development

likely involves the Phosphoinositide 3-kinase (PI3K) and Akt

(Figure 2B). Earlier studies demonstrated that Reelin activates

PI3K and Akt in vitro in a manner that is dependent on SFK

activity and Dab1 phosphorylation (Beffert et al., 2002; Bock

et al., 2003). PI3K may be activated through direct interaction

between the regulatory subunit p85α and Dab1 (Bock et al.,

2003). Akt is likely activated, at least in part, by the classic

PI3K/PDK cascade, however, in vivo studies demonstrated that

the Crk adaptor proteins are required for Reelin-induced Akt

phosphorylation, placing the kinase functionally downstream

of these adaptors (Park and Curran, 2008). Downstream of

Akt, mTOR and further downstream proteins such as p70S6K

and ribosomal protein S6 are robustly induced by Reelin

treatment in neuronal cultures and likely contribute to dendrite

growth (Jossin and Goffinet, 2007; Ventruti et al., 2011;

Figure 2B).

Other molecules that have been implicated in Reelin-

dependent dendrite outgrowth include the amyloid precursor

protein (APP; Hoe et al., 2009), which binds Dab1 via its

cytoplasmic tail (Homayouni et al., 1999; Howell et al., 1999b),

and the Cdc42/Rac1 guanine nucleotide exchange factor αPIX,

which affects dendritic Golgi translocation (Meseke et al., 2013).

In addition to outgrowth, dendrite compartmentalization is an

important aspect of maturation that is affected by Reelin. In

the hippocampus, distal apical dendrites of pyramidal neurons

express specific ion channels. Recent studies demonstrated that

Dab1/SFK signaling is required for the molecular identity of

this dendritic compartment, which regulates the processing

of information in hippocampal circuits (Kupferman et al.,

2014). Reelin signaling also promotes dendritic spine formation

and growth in the cortex and hippocampus of juvenile

mice (Niu et al., 2008; Pujadas et al., 2010; Iafrati et al.,

2014). The signaling mechanism that underlies this function

involves the canonical pathway and possibly additional signaling

molecules such as RasGRF1/CamMKII (DiBattista et al.,

2015; Kim et al., 2015). Finally, the molecular composition

of the dendritic spines is affected by Reelin. Specifically,

Reelin promotes the maturation of spines by regulating

the NMDA receptor (NMDAR) subunit composition via an

unidentified mechanism (Groc et al., 2007; Ventruti et al.,

2011).

REELIN SIGNALING AND THE
MODULATION OF SYNAPTIC FUNCTION

Heterozygous reeler mice exhibit altered hippocampal synaptic

plasticity and multiple behavioral abnormalities, such as

defects in executive function and contextual fear conditioning

learning (Brigman et al., 2006; Krueger et al., 2006; Qiu

et al., 2006). Early culture studies demonstrated that Reelin

potently enhances hippocampal long-term potentiation (LTP),

a cellular mechanism underlying learning and memory, and

this effect is dependent on the presence of both, VLDLR

and ApoER2 (Weeber et al., 2002). A specific splicing

variant of ApoER2 was required for Reelin-induced LTP

enhancement and memory formation in vivo (Beffert et al.,

2005). Mechanistically, it was shown that this ApoER2 variant

interacts with the NMDAR through PSD-95, and this complex

mediates Reelin–induced Ca++ influx through the NMDAR

(Beffert et al., 2005; Chen et al., 2005; Figure 2C). Genetic

studies later demonstrated that Dab1 is also required for

Reelin-induced enhancement of hippocampal LTP and for

hippocampal-dependent behavioral tasks (Trotter et al., 2013).

This study also demonstrated that postnatal Dab1 loss affects

basal and plasticity-induced Erk1/2 signaling, suggesting a

cross-talk with canonical Reelin signaling. Indeed, Reelin

was shown to induce Erk1/2 signaling in a SFK-dependent

manner in cultured neurons (Lee et al., 2014). Surprisingly,

however, Reelin-induced Erk1/2 phosphorylation did not

require the activity of ApoER2 and VLDLR, and it was only

partially dependent on Dab1, suggesting the involvement of

an unidentified receptor triggering a non-canonical pathway

(Figure 2C). Erk1/2 activation leads to the expression of

synaptic immediate-early genes (IEGs), and thus potentially

affects synaptic function (Lee et al., 2014). Others further

showed that Reelin induces IEGs expression via a novel

enhancer element named LRN (LRP8-Reelin-Neuronal), and

that these events affect associative learning. In this model,

interaction between the ApoER2 (LRP8) and the NMDAR

triggers Ca++ influx, Erk1/2 signaling and CREB-dependent

IEGs transcription (Telese et al., 2015). In addition, they reported

that proteolytical cleavage of ApoER2 by γ-secretase is a crucial

component of the synapse-to-nuclear signaling triggered by

Reelin. Interestingly, Notch1, another γ-secretase substrate, was

also recently shown to contribute to Reelin-mediated synaptic

potentiation by interacting with ApoER2 and NMDAR, and

stimulating Erk1/2 activity and CREB-dependent transcription

(Brai et al., 2015).

In addition to its well-documented postsynaptic effects,

Reelin also acts presynaptically, causing a rapid enhancement

of spontaneous neurotransmitter release. This effect is due

to the mobilization of VAMP7-containing synaptic vesicles,

and requires canonical ApoER2/VLDLR receptors, PI3K and

Ca++ signaling (Hellwig et al., 2011; Bal et al., 2013).

Despite robust pre- and postsynaptic effects, acute deletion

of the Reelin gene in adult mice does not result in impaired

synaptic plasticity. However, it renders the adult brain strikingly

sensitive to amyloid-induced synaptic suppression, leading to

profound learning disabilities (Lane-Donovan et al., 2015).

Although specific molecular and physiological mechanisms

remain to be further elucidated, these findings indicate

that Reelin has the potential to modulate synaptic activity

and thus affect memory formation in the adult and aging

brain.
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