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ABSTRACT: In recent years, the area of developing visible-light-
active photocatalysts based on titanium dioxide has been
enormously investigated due to its wide range of applications in
energy and environment related fields. Various strategies have
been designed to efficiently utilize the solar radiation and to
enhance the efficiency of photocatalytic processes. Building on
the fundamental strategies to improve the visible light activity of
TiO2-based photocatalysts, this Perspective aims to give an
insight into many contemporary developments in the field of
visible-light-active photocatalysis. Various examples of advanced
TiO2 composites have been discussed in relation to their visible
light induced photoconversion efficiency, dynamics of electron−
hole separation, and decomposition of organic and inorganic
pollutants, which suggest the critical need for further development of these types of materials for energy conversion and
environmental remediation purposes.

P hotocatalysis widely refers to the process of using light to
activate a substrate (photocatalyst), which modifies or

facilitates the kinetics of a chemical reaction but itself remains
unconsumed.1−4 During photocatalysis, a semiconductor metal
oxide such as titanium dioxide (TiO2) or zinc oxide (ZnO) is
irradiated with light (where, the energy of the excitation source
is higher than the band gap energy of the material), which
results in photon absorption and excitation of an electron (e−)
from valence band to the conduction band, thereby generating
a positive electron hole (h+) in the valence band (Figure 1).
The electron−hole charge carriers (h+VB + e−CB) can in turn
undergo recombination and dissipate the excess energy through
nonradiative mechanisms (eqs 1 and 2)

+ → +
+ −

vsemiconductor h h eVB CB (1)

+ →
− +e h energyCB VB (2)

This reduces the overall efficiency of the photoinduced
process. The charge carriers, which do not undergo charge
annihilation, can migrate to the surface of the catalyst and
initiate secondary reactions with the surface adsorbed materials.

For example, the photoexcited electron in the conduction band
can react with oxygen to form superoxide radicals or
hydroperoxide radicals and these reactive oxygen species
(ROS) can participate in the degradation of organic pollutants,
whereas positive holes (h+) in the valence band can oxidize
surface adsorbed water or OH− and generate hydroxyl radical
(•OH), which in turn oxidizes the organic pollutants (Figure 1;
eqs 3 and 4).

+ → +
+ • +h H O OH HVB 2 (3)

+ →
− • −e O OCB 2 2 (4)

Titanium dioxide (TiO2)-based materials have received
enormous attention in the area of semiconductor photo-
catalysis. The major breakthrough came in the year 1972, when
Fujishima and Honda demonstrated for the first time the
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photoelectrochemical decomposition of water using TiO2 as an
anode and platinum as a counter electrode.5 TiO2-based
photocatalysts also offer the advantages of high physical and
chemical stability, low cost, easy availability, low toxicity, and
excellent photoactivity. Titanium dioxide exists in three
naturally occurring polymorphic forms such as anatase, rutile,
and brookite, where rutile represents the thermodynamically
stable form and anatase shows higher kinetic stability. The
anatase form of TiO2 is reported to show higher photocatalytic
activity compared to rutile or brookite.1,3 The major drawbacks

of TiO2-based photocatalysts arise from the rapid charge
recombination of the electron−hole pairs, thereby suppressing
the quantum efficiency, and the wide band gap (3.0 eV for
rutile and 3.2 eV for anatase) of the material, which restricts
light absorption to only ultraviolet region (wavelength <390
nm) and thus limits the practical applications of TiO2-based
photocatalysts for solar light harvesting. Various strategies
including dye sensitization,6−9 metal,10−14 or nonmetal
doping15−17 have been developed to improve the visible light
activity (VLA) of TiO2 in order to use the solar irradiation or
interior lighting efficiently.
Chemical modifications of TiO2 lattice using nonmetals such

as C,18−23 N,24−26 and S27−29 appeared as promising strategies
to improve visible light responsive photocatalytic activity. In
1986, Sato reported that the incorporation of ammonium
hydroxide in a titania precursor sol, followed by a calcination

process, resulted in a nitrogen-doped photocatalyst that
demonstrated visible light activity.30 Asahi and co-workers
further showed that nitrogen-doped TiO2 exhibit a substantial
enhancement in visible light assisted photocatalytic degradation
of methylene blue and acetaldehyde compared to undoped
TiO2.

31 Following this work, various research groups have
designed visible-light-active N-doped TiO2 photocatalysts.
Incorporation of nitrogen into TiO2 lattice is favored due to
comparable atomic sizes of nitrogen and oxygen, low ionization
potential, and high stability of nitrogen.25,26,32 Although
nonmetal doping (e.g., N, C, F, S, etc.) is found to shift the
absorption band of TiO2 towards the visible region, the
chemical nature of the doped species accountable for the visible
light activity and the electronic structure of the doped material
still remain controversial. In their pioneering work, Asahi and
co-workers proposed that substitutional N doping results in
band gap narrowing due to efficient mixing of 2p orbitals of N
and O. Contrary to this, Serpone and co-workers argued that
observations of band gap narrowing through modifications in
the energy levels of valence and conduction bands requires high
concentrations of dopants and strong interactions among
impurity energy states, valence, and conduction bands.32

Serpone et al., also suggested that the presence of defects
(color centers) associated with oxygen vacancies in doped TiO2

are responsible for their visible light activity.32 Di Valentin and
co-workers showed the electronic nature of the N-dopant in
TiO2 synthesized through various chemical routes.33−36

Density functional theory (DFT) predicted that the doped N
atoms could occupy substitutional or interstitial sites in the
TiO2 lattice and generate localized energy levels in the band
gap. For dopants occupying substitutional positions, a
continuum of slightly higher energy levels essentially extends
the valence band, whereas an interstitial dopant results in
discrete energy levels above the valence band, often referred to
as a midgap state (Figure 2A).35,36 The visible light response in
the doped materials arises from the electron transition from the
localized N orbitals to the conduction band or to the surface
adsorbed O2.

36 Doping TiO2 with carbon or sulfur also is found
to enhance visible light activated photocatalytic activity.15,22

The visible light response in these doped materials is thought to
arise from the presence of localized energy levels of the dopant
lying above the valence band or oxygen vacancies as
demonstrated in Figure 2.23 It was also reported that in case
of substitutional doping of TiO2 by lighter elements such as N,
C, and B, the dopant with lower atomic number will appear at
higher energy in the band gap due to smaller effective nuclear
charge.33 Visible-light-active, oxygen-rich TiO2 that exhibits
anatase phase stability up to 900 °C, suitable for high
temperature applications, has also been developed.37 The
visible light response in the oxygen rich TiO2 arises from the
band gap narrowing of TiO2 containing oxygen excess defects,
which can interact with the lattice oxygen atoms, thereby
increasing lattice parameters and consequently decrease the
band gap.37

In order to improve the visible-light-active photocatalytic
efficiency and inhibit charge recombination, several research
groups have developed TiO2 composites codoped with two or
more nonmetals such as S−N,38 B−N,39 C−N,40,41 N−F,42−47

in TiO2. Hamilton et al. recently reported using photo-
electrochemistry in N and F codoped TiO2 that electrons could
be promoted from nitrogen centers (which are located just
above the valence band) directly to the conduction band by
visible light.48 It was also showed that the vacant N states thus

Figure 1. Schematic of semiconductor photocatalysis (adapted from
ref 4). Copyright 2013, reprinted with permission from Elsevier.

The major drawbacks of TiO2-
based photocatalysts arise from
the rapid charge recombination
of the electron−hole pairs, there-
by suppressing the quantum

efficiency, and the wide band gap
(3.0 eV for rutile and 3.2 eV for
anatase) of the material, which
restricts light absorption to only
ultraviolet region (wavelength
<390 nm) and thus limits the
practical applications of TiO2-
based photocatalysts for solar

light harvesting.
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produced could be refilled by electron transfer from Ti3+ states,
which could further accept conduction band electrons. Oxygen
vacancies (Ovac) situated just above the nitrogen midgap state
could also transfer electrons to refill the empty N states. The
conduction band electrons can then donate electrons to the
oxygen vacancy sites. Therefore, a cycle of events of excited
electrons occurs from the N midgap state, to the conduction
band, and then to Ti3+ or Ovac with eventual repopulation of the
excited empty nitrogen states as demonstrated in (Figure 3).48

In a recent study, Zhao et al. showed that N−F codoped
TiO2 exhibited the best performance to destroy 6-hydrox-
ymethyl uracil (6-HOMU), a model compound for cyanotox-
ins.47 Mechanistic investigations carried out in the presence of
scavengers for •O2

−, 1O2,
•OH, and h+vb have shown that •O2

−

is the prime ROS leading to the photoassisted degradation of 6-
HOMU (Figure 4). This study has contributed to the better
basic understanding of different roles of ROS in doped and
codoped visible-light-active titanium dioxide photocatalysts.47

Pulgarin and co-workers suggested that for N,S codoped TiO2,
photogenerated holes formed under visible light irradiation do
not possess suitable reduction potential to generate •OH
radical by the oxidation of H2O.

49,50 It has also been reported
that under visible light irradiation, less oxidative superoxide
radical anion •O2

−, and singlet oxygen 1O2 species (Figure 1)
are predominantly responsible for the photocatalytic bacterial
inactivation.49,50 However, under UV light excitation, highly
oxidizing •OH radicals are produced, which play active roles
toward photocatalytic activity.49,50

Based on the first principle calculations (DFT), Huang and
co-workers demonstrated that the presence of doping agents
result in surface distortions in a {101} surface of TiO2, which
promotes transfer of photogenerated electrons from the bulk/
subsurface atomic layer to the outer surface region, thereby
facilitating the photocatalytic reactions and also improving
quantum efficiency of photocatalytic processes by increasing
the separation of photogenerated electrons and holes.51 A gel
combustion method has been recently developed to synthesize
nanostructured modified TiO2 (m-TiO2) that involved
calcination of a mixture of urea with an acidified solution of
titanium alkoxide at temperatures 350−500 °C.52 The hybrid
inorganic/organic materials show unique physicochemical
properties and remarkably high rate for visible light induced
photocatalytic decomposition of methylene blue dye compared
to the reference material Degussa (Evonik) P25. The
significantly high visible light assisted photocatalytic activity
of m-TiO2 materials with a core−shell morphology arises from

Figure 2. (A) Schematic illustration of localized impurity energy states
for the substitutionally doped TiO2 (adapted from ref 33). Copyright
2013, reprinted with permission from Elsevier. (B) Electronic structure
of Ti1−xSxO2−yNy showing the presence of localized impurity energy
states (adapted from ref 73). Copyright 2012, reprinted from with
permission from American Chemical Society.

The visible light response in the
doped materials arises from the
electron transition from the lo-
calized N orbitals to the con-
duction band or to the surface
adsorbed O2.

36 Doping TiO2 with
carbon or sulfur also is found to
enhance visible light activated
photocatalytic activity.15,22 The
visible light response in these
doped materials is thought to

arise from the presence of local-
ized energy levels of the dopant
lying above the valence band or

oxygen vacancies.

Figure 3. Visible light excitation of N−F codoped TiO2 and refilling of
empty N states by electron transfer from either Ti3+ or Ovac (adapted
from ref 48). Copyright 2014, reprinted with permission from
American Chemical Society.
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the sensitization of the TiO2 by a thin porous layer of
carbonaceous species, which also favors charge separation and
impede charge recombination at the inorganic/organic
heterojunction.52

Chemical modifications of TiO2 with 3d transition metal
ions,10,53 lanthanides,13,14 and noble metals54−56 have also been
found to improve the visible light response of TiO2. It was
shown that the addition of increased amounts of Ag up to 5
mol % facilitates visible light absorbance.57 Many different
explanations have been proposed to account for the enhanced
visible light activity of such doped TiO2, including band gap
narrowing, formation of impurity energy levels within the band
gap of TiO2, and formation of intrinsic defects (such as oxygen
vacancies, interstitial Ti). However, addition of metal ion
impurities can also induce recombination of charge carriers and
lower the overall efficiency of photocatalysis. TiO2 photo-
catalyst surface modified with Rh3+ has displayed very high
activity for mineralization of volatile organic compounds
(VOC) under visible light irradiation compared to conventional
metal doped TiO2.

58 The enhanced activity of Rh3+modified
TiO2 has been attributed to the bifunctional role of Rh3+ as an
electron injector as well as a promoter for multielectron
reduction of O2 under visible light irradiation. Electron transfer
occurs from the d orbital of Rh3+ to the conduction band of
TiO2 under visible light irradiation, thereby forming Rh4+,
which in turn participates in degradation of organic substrate
and undergoes reduction to Rh3+ species (Figure 5). Electrons
in the conduction band of TiO2 can be transferred to O2 to

form •O2
− through one electron reduction mechanism.

Alternatively, Rh3+ can function as a conduction band electron
acceptor to yield unstable Rh2+, which rapidly forms Rh+, a
species capable of reducing O2 to H2O2 through two electron
transfer reduction and thus acts as a promoter for O2 reduction.
In recent years incorporation of plasmonic noble metal

nanostructures appear as an attractive approach to enhance the
visible light absorption due to direct excitation of the surface
plasmon resonance (SPR) band of the nanoparticles.59,60

Plasmonic nanostructures are being increasingly used to
enhance the light harvesting efficiency of photovoltaic
devices.61−64 For example, Kamat and co-workers demon-
strated that the photocurrent generation of nanostructured
TiO2 films increases several times in the presence of surface
deposited gold nanoparticles, which promote charge transfer
process in the composite systems.62,63 In the presence of
photoexcited plasmonic nanoforms, electron injection occurs
from the nanosurface to the conduction band of TiO2 in
femtosecond time scale (Figure 6).65 The positive hole formed

on the nanosurface oxidizes the substrate, whereas the electron
in the conduction band of TiO2 reacts further with O2.
However, the rapid back electron transfer and consequent
charge recombination limit the efficiency of the photocatalytic
processes. The size and shape of the metallic nanoparticles have
significant effect on the overall efficiency of the process. Kamat
and co-workers demonstrated that small sized nanoparticles
shift the energy of the Fermi level of the TiO2-nanocomposite
toward more negative value and affect the photocatalytic
process due to direct changes in the energetics of the composite
systems.64 Various mechanisms have been proposed to account

Figure 4. Production of different ROS during the visible-light-active photocatalytic processes for the destruction of 6-hydroxymethyl uracil (adapted
from ref 47). Copyright 2014, reprinted with permission from Elsevier.

Figure 5. Schematic representation showing the dual role of Rh3+ in
Rh modified TiO2 as an electron injector as well as a promoter for two
electron reduction of O2 (ref 58). Copyright 2013, reprinted with
permission from American Chemical Society.

Figure 6. Schematic presentation showing electron injection from
photoexcited Au to the conduction band of TiO2 in response to visible
light absorption (ref 65). Copyright 2007, reprinted with permission
from American Chemical Society.

The Journal of Physical Chemistry Letters Perspective
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for the improved photocatalytic efficiency of TiO2−SPR
nanostructures, including enhanced light absorption by the
surface plasmons, improved charge separation efficiency, and
changes in the energetics of the Fermi level in the composite
system arising from the electron storage effects.66 Alloying
noble metal Cu with Pt (Pt−Cu) supported on anatase TiO2

has resulted in a lower work function of metallic platinum,
which in turn facilitates the efficient electron injection from the
photoexcited platinum nanoparticles to the conduction band of
TiO2 due to lowering the height of Schottky barrier at the
interface.67 The Pt−Cu/TiO2 catalyst exhibited high rate of
alcohol oxidation under sunlight irradiation compared to Pt/
TiO2 composite.
Formation of TiO2 with oxygen vacancy along with

deposition of noble metal nanoparticle on such TiO2 has
been found to boost the photocatalytic performance.68 Degussa
(Evonik) P25 with oxygen vacancies was prepared through a
photocatalytic reaction utilizing the oxidation of benzyl alcohol
on TiO2 surface, which creates oxygen vacancies. This was
followed by the deposition of noble metal nanoparticles (Ag,
Pt, Pd) on Degussa (Evonik) P25 with oxygen vacancy. The
oxygen vacancy sites facilitate visible light absorption and
electron−hole pair formation, whereas the metal nanoparticles
can act as electron acceptors and promote interfacial charge
separation and increase the lifetime of the charge separated
species.

In recent years, formation of photocatalytic heterostructures
based on TiO2 with other semiconductor/noble metal has
emerged as an important strategy to increase the separation of
charge carriers and suppress the recombination rate of
photoinduced electron−hole pair, resulting in improved
photocatalytic efficiency (Figure 7).69−74 Additionally, the
synergistic effects induced by the components in the
heterostructure also result in an increased photostability and
photocatalytic efficiency. Over the past decade, heterojunctions
based on ZnO/TiO2 nanocomposites,69 anatase−rutile TiO2

heterojunctions,70−73 and Ag/TiO2 nanofibers74 have been
developed for the degradation of organic pollutants and water
splitting under UV−vis irradiation. Metallic oxides with oxygen
vacancies such as W18O49 are gaining huge interest in the field
of visible light driven photocatalysis as they exhibit wide
absorption tail in Near-Infrared (NIR) region arising from
oxygen defects. Therefore, combination of TiO2 with W18O49

can result in a hybrid photocatalyst covering both UV and
visible region.75 Additionally such hybrid structures also favor
enhanced photoinduced charge separation and inhibit charge
recombination. It was found that simultaneous modification of
TiO2 with a nonmetal boron and nickel oxide (Ni2O3)

significantly enhanced the photocatalytic activity of TiO2 in
the visible region and resulted in an efficient degradation of
organic pollutants such as sodium benzoate, trichlorophenol,
and 2,4-dichlorophenol.76 Visible light irradiation of the
modified photocatalyst using a Nd:YAG laser (λ = 532 nm),
generated long-lived charge carriers that can react with surface
adsorbed O2/H2O to produce •OH and •O2

− radicals, and
promote mineralization of organic pollutants.76 It has been
proposed that Ni2O3 loaded on the surface of B-doped TiO2

acts as an electron trap and promotes charge separation.
Near-infrared light active core−shell TiO2 nanoparticles were

synthesized, where upconverting luminescent material (YF3
codoped with Yb3+/Tm3+ codoped) is used as the core and
TiO2 as the shell.

77,78 During the photoexcitation process, Yb3+

absorbs NIR radiation and transfer the energy to Tm3+, which
emits UV radiation and in turn excites TiO2 to generate
photoexcited electrons and holes. To further enhance the
photocatalytic efficiency of these systems, nanocrystals of TiO2

and a narrow-band semiconductor such as CdS were linked
with NaYF4 codoped with Yb3+ and Tm3+.78 Upon NIR
excitation, Yb3+ acts as a sensitizer and transfers the energy to
Tm3+, which in turn activates CdS or TiO2 by Förster
resonance energy transfer or photon reabsorption mechanism
and generates photoinduced electron and hole required for
mineralization of organic chemicals. The presence of CdS/TiO2

heterojunction further enhances the photocatalytic efficiency by
facilitating the separation and migration of charge carriers at the
interface.
Advanced nanostructured photocatalytic materials have been

synthesized by combining TiO2 nanoparticles with reduced
graphene oxide (r-GO)79−83 and carbon nanotube (CNT)80

using liquid phase deposition method followed by thermal
reduction at different temperatures. VLA nanocatalysts and
composite materials were immobilized onto hybrid ultra/
nanofiltration membranes (with improved permeability and low
energy consumption) and incorporated into state of the art
photocatalytic reactors, where the nanocomposites were
systematically evaluated for their ability to degrade a number
of pollutants under both UV and visible light irradiation.81−83

Dye sensitization is also considered to be a promising
strategy to induce visible light activated photocatalysis by
TiO2.

6−8 The process involves light absorption (mainly visible
light) by a transition metal complex or an organic dye (or a
colored pollutant) known as sensitizer followed by electron

Formation of photocatalytic het-
erostructures based on TiO2 with
other semiconductor/noble metal
has emerged as an important
strategy to increase the separa-
tion of charge carriers and sup-
press the recombination rate of
photoinduced electron−hole pair,
resulting in improved photocata-

lytic efficiency.

Figure 7. Electron transfer mechanism of anatase−rutile hetero-
junctions in visible light photocatalysts (ref 73). Copyright 2012,
reprinted with permission from American Chemical Society.
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injection from the excited sensitizer molecule into the
conduction band of semiconductor material. The resulting
radical cations can lead to a number of oxidative processes and
the formation of ROS leading to the degradation of target
compounds such as various organic pollutants.84−86 Zhao and
co-workers developed a dye-sensitized TiO2 composite
incorporating alizarin red as the visible light absorbing dye
and the nitrosyl radical TEMPO.87 The combination of dye
sensitized TiO2 and TEMPO produced an efficient photo-
catalytic system for selective oxidation of alcohol under visible
light irradiation at ambient condition. Visible light irradiation of
the dye anchored on TiO2 surface produces excited dye
molecules, which in turn injects electrons to the conduction
band of TiO2 and generates dye radical cation. The dye radical
cation can in turn oxidize TEMPO to regenerate the dye and
TEMPO+. The oxidized TEMPO+ can further oxidize various
alcohols to the corresponding aldehydes and regenerates the
nitroxyl radical TEMPO.87 The sensitization principle also finds
important applications in the development of dye-sensitized
solar cells (DSSC), which are third generation photovoltaics
based on nanocrystalline large band gap semiconductors and
highly efficient light harvesting molecular antennas.85 In fact,
metal-porphyrins7 and Ru(II) polypyridyl9 complexes have
gained considerable attention in this context due to the
presence of extensive delocalized π-electron system and strong
absorption band in the visible region. Recently, Lin and co-
workers have reported the development of a series of
porphyrins for the application in DSSC containing anthracene
in combination with pyrene or 4-dimethylaminophenyl group
that show absorption in the NIR region.88,89 The rapid electron
injection and regeneration steps are crucial for the optimal
activity of the system. Thus, the use of a porphyrin sensitizer
(SM315) with the cobalt (II/III) redox couple led to the
current 13% power conversion efficiency record.89

In a recent investigation, Chen et al. developed an alternative
approach to enhance the visible light response of TiO2 by
introducing disorders using hydrogenation in the surface layers
of nanophase TiO2, resulting in TiO2 particles absorbing in the
visible and NIR wavelength region (Figure 8).90 The unique
photophysics of these “black TiO2” presumably results from the
presence of energy states corresponding to the disorder above
valence band as well as fast exchange of hydrogens.90 It has also
been suggested that hydrogenation of TiO2 nanowires

generates a high degree of oxygen vacancies that act as electron
donor states lying about 0.75 and 1.18 eV below the
conduction band of hydrogenated rutile TiO2.

91 The visible
and NIR absorption of “black TiO2” can be assigned to the
transitions from TiO2 valence band to the oxygen vacancy
levels or from the oxygen vacancy states to the TiO2

conduction band (as shown in Figure 8B).
Core−shell structured “black TiO2” nanoparticles with a

rutile core and sulfide shell have been developed that showed
significantly enhanced photocatalytic activity and efficient
photochemical water splitting compared to pristine rutile
TiO2.

92 Synthesis of such “black TiO2” through reduction of
TiO2 using molten aluminum creates a disordered surface layer
with a large amount of Ti3+ and oxygen vacancies. These
defects create localized energy states in the band gap and
account for the visible and NIR light activity of these
nanoparticles. Furthermore, the S2− ions from the outer sulfide
shell can occupy the oxygen vacancy sites and contributes to
the further narrowing of the band gap.
In an attempt to enhance the visible and infrared light

activity, gray TiO2 consisting of a TiO2−x (core)/TiO2 (shell)
nanowires using metallic aluminum as the reducing agent has
also been synthesized.93 These nanowires of TiO2 showed
significantly higher solar-light driven photocatalytic efficiency
than the standard Degussa (Evonik) P25. The activity under
dark and visible light irradiated conditions enhanced strongly
with an increase in reaction temperature. Photoluminescence
studies revealed that annealing of TiO2 at elevated temper-
atures under reducing atmosphere generates oxygen vacancies,
which act as electron traps and lower the recombination of
photoinduced electrons and holes and result in a quenching of
luminescence intensity.
Important developments have recently been made in the field

of perovskite materials (XIIA2+VIB4+X2−
3), a class of compounds

that have the same type of crystal structure as calcium titanate
(CaTiO3).

94−96 In recent years, several perovskite related
materials have been developed that showed enhanced visible
light driven H2 production and decomposition of organic
pollutants.96−98 Both cationic and anionic dopants have been
introduced into the layered perovskite-based metal oxide
structure to tune the band gap positions required for visible-
light-active photocatalysts.99−102 The presence of anionic or
cationic monodopants in perovskite-structure-based photo-

Figure 8. (A) Schematic representation showing the density of states of black TiO2 and white TiO2 nanocrystals (ref 90). Copyright 2011, reprinted
with permission from Science. (B) Energy diagram of reduced TiO2 nanowires, where E1o and E2o shown in red dashed lines refer to the oxygen
vacancies located at 0.73 and 1.18 eV below the TiO2 conduction band. Arrows represent electronic transitions between different energy levels (ref
91). Copyright 2011, reprinted with permission from American Chemical Society.
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catalysts such as Sr2Ta2O7 and La2Ti2O7 creates additional
impurity energy levels in the band gap and reduces the effective
band gap.100,101 However, these energy states also act as
electron−hole recombination centers and decreases the photo-
catalytic efficiency, which can be overcome by systemically
designing cationic−anionic codoped systems.100,101 Chen and
co-workers reported the synthesis of Cr-doped SrTi1−xCrxO3

and Bi4Ti3−xCrxO12 that showed enhanced photocatalytic H2

production activity under visible light illumination (λ > 420
nm). DFT calculations suggested that doping with Cr generates

Cr 3d energy states in the band gap and the visible light
absorption arises from the charge transfer from Cr 3d orbitals
to Cr 3d + Ti 3d hybrid upon photoexcitation of the doped
material.102 Very recently, perovskite solar cells have emerged
as cost-effective, high-efficiency systems for solar energy
conversion to electricity. In fact, photovoltaic devices based
on organic−inorganic [e.g., CH3NH3PbI3]

94−96 or inorganic
[e.g., p-type CsSnI3]

94 perovskite structured semiconductors
achieved power conversion efficiencies higher than 16% and
were included in the “Science’s Top 10 Breakthroughs of

Figure 9. (A) The schematic illustration showing cascade of electron transfer in a nano/macro hierarchically structured TiO2 upon illumination (ref
105). Copyright 2013, reprinted with permission from Elsevier. (B) Proposed Z-scheme mechanisms of the photosynthesis system: in natural
photosynthesis system (top) and artificial CdS/Au/TiO1.96C0.04 photosynthesis system (bottom) (ref 107). Copyright 2011, reprinted with
permission from American Chemical Society.
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2013”.94 Moreover, current research on perovskites solar cells
has proved the possibility of fine-tuning the optoelectronic
properties (including energy gap and charge mobility) of
materials, leading to increased light absorption, low charge
recombination, and lasing ability,103 properties that could be
further optimized and exploited in the field of VLA photo-
catalysis.
There has been an exponential growth in research on

development of visible-light-active TiO2 photocatalysis over the
last few decades after the discovery of VLA of N-doped TiO2.
The field of solar light driven photocatalysis of TiO2 is still
expanding due to its wide range of applications in various fields
including photoelectrochemical water splitting, reduction of
CO2, and environmental remediation. In addition to dye
sensitization, doping with metals and nonmetals, formation of
heterojunctions have been widely used to enhance the visible
light response of TiO2 materials. Recently, perovskite-based
layered metal oxides have also received tremendous attention
for their applications in photoinduced processes, including their
use in solar cells and as photocatalytic materials for removal of
environmental pollutants. In recent years, quantum dots are
appearing as excellent candidates for sensitization of TiO2 for
applications in photocatalysis and photovoltaics because of their
interesting photophysical properties (high extinction coeffi-
cient, and quantum yield of emission), ease of synthesis, and
the possibility to tune band gap.104 However, a key factor in
obtaining high efficiency of the photoconversion process is to
facilitate the migration and separation of the charge carriers and
increase the lifetime of the charge-separated species. Therefore,
it is of critical importance to understand the excited state
dynamics of the semiconductor material upon photoexcitation,
which can shed light on the mechanistic aspects of the process
as well as proves crucial in developing new materials with
enhanced process efficiency. The importance of structural
hierarchy in promoting charge migration and separation has
been recently elucidated using chrysanthemum-like (ornamen-
tal-flower-like structure) TiO2 structures with leafy branches.

105

The grain sizes in the branches increase gradually from
nanoscale to microscale range along the direction of tip of
the branches toward the center. The gradual size variation
resulted in a series of heterojunctions between grains of
different sizes, where the energy decreases gradually with
increasing grain size. Thus, irradiation of this structure results
excitation of electrons at the tip followed by a cascade of
electron transfer as demonstrated in Figure 9A toward the
central matrix leading to an efficient separation of charge
carriers and improved photocatalytic properties.
To replicate the structural hierarchy and light harvesting

ability of green leaves, morph-structured TiO2 composites have
been synthesized based on green leaves as templates.106 Green
leaves were initially treated with acid followed by TiCl3 solution
to substitute the Mg2+ in chloroplast by Ti3+ ions to generate
the Ti-substituted layered nanostructure of thylakoid mem-
brane. This was followed by reaction with Ti(OBu)4 to
generate the porous TiO2 network replicating the vascular
structure of green leaves. The morph structured TiO2 derived
from green leaf templates were doped with nitrogen from green
leaves, and the N content was shown to depend on the leaf
source. The high photocatalytic activity exhibited by the morph-
TiO2 composites has been assigned to the higher light
harvesting ability of the porous and layered nanostructure
and enhanced visible light absorption due to doping of nitrogen
atoms from green leaves.

Several research groups have developed heterojunction
structures derived from TiO2 to promote directional electron
transfer and facilitate charge carrier separation to mimic the so-
called Z-scheme of electron transport occurring in green leaves
during photosynthesis.107,108 Yun et al. reported the synthesis
of carbon-doped titania (TiO2−xCx) acting as photosystem II
(PSII) combined with a Au/CdS core−shell structure,
functioning as photosystem I (PSI).107 Upon visible light
irradiation, the photoexcited electrons from the conduction
band of TiO2−xCx move to CdS (PSI) through the Au core and
combine with the photogenerated holes at the valence band of
CdS (Figure 9B). These vectorial electron transports
consequently increase the lifetime of conduction band electrons
at the CdS (PSI) site, which can efficiently generate H2 via the
photocatalytic reduction of H2O. Tada and co-workers reported
development of a similar nanoheterojuntion consisting of
CdS(PSI)/Au/TiO2(PSII) that exhibited very high activity for
photocatalytic reduction of methyl viologen.108 The enhanced
photocatalytic activity has been attributed to the simultaneous
excitation of both CdS and TiO2 centers and vectorial electron
transfer from the conduction band of TiO2 to CdS via Au core.

The results obtained to date strongly indicate the critical
necessity for further development of these groups of photo-
catalytic materials driven by solar light by combining the visible
light activity with structural modification to achieve long-lived
charge carriers, for applications in energy conversion, and
environmental remediation purposes. Important developments
in the field are also expected for the use of VLA materials in
tandem PEC-DSC cells for self-driven solar water splitting and
CO2 photocatalytic conversion (reduction path) to hydro-
carbons.
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