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Abstract—The minimum variance distortionless response
(MVDR) beamformer, also known as Capon’s beamformer, is
widely studied in the area of speech enhancement. The MVDR
beamformer can be used for both speech dereverberation and
noise reduction. This paper provides new insights into the MVDR
beamformer. Specifically, the local and global behavior of the
MVDR beamformer is analyzed and novel forms of the MVDR
filter are derived and discussed. In earlier works it was observed
that there is a tradeoff between the amount of speech derever-
beration and noise reduction when the MVDR beamformer is
used. Here, the tradeoff between speech dereverberation and noise
reduction is analyzed thoroughly. The local and global behavior,
as well as the tradeoff, is analyzed for different noise fields such
as, for example, a mixture of coherent and non-coherent noise
fields, entirely non-coherent noise fields and diffuse noise fields.
It is shown that maximum noise reduction is achieved when the
MVDR beamformer is used for noise reduction only. The amount
of noise reduction that is sacrificed when complete dereverber-
ation is required depends on the direct-to-reverberation ratio
of the acoustic impulse response between the source and the
reference microphone. The performance evaluation supports the
theoretical analysis and demonstrates the tradeoff between speech
dereverberation and noise reduction. When desiring both speech
dereverberation and noise reduction, the results also demonstrate
that the amount of noise reduction that is sacrificed decreases
when the number of microphones increases.

Index Terms—Beamforming, microphone arrays, minimum
variance distortionless response (MVDR) filter, noise reduction,
Pearson correlation coefficient, speech dereverberation, speech
enhancement.

I. INTRODUCTION

D
ISTANT or hands-free audio acquisition is required in

many applications such as audio-bridging and teleconfer-

encing. Microphone arrays are often used for the acquisition and

consist of sets of microphone sensors that are arranged in spe-

cific patterns. The received sensor signals usually consist of a
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desired sound signal, coherent and non-coherent interferences.

The received signals are processed in order to extract the desired

sound, or in other words to suppress the interferences. In the last

four decades, many algorithms have been proposed to process

the received sensor signals [1], [2].

The minimum variance distortionless response (MVDR)

beamformer, also known as Capon beamformer [3], minimizes

the output power of the beamformer under a single linear

constraint on the response of the array towards the desired

signal. The idea of combining multiple inputs in a statistically

optimum manner under the constraint of no signal distortion

can be attributed to Darlington [4]. Several researchers de-

veloped beamformers in which additional linear constraints

were imposed (e.g., Er and Cantoni [5]). These beamformers

are known as linearly constrained minimum variance (LCMV)

beamformers, of which the MVDR beamformer is a special

case. In [6], Frost proposed an adaptive scheme of the MVDR

beamformer, which is based on a constrained least-mean-square

(LMS) type adaptation. Kaneda et al. [7] proposed a noise re-

duction system for speech signals, termed AMNOR, which

adopts a soft-constraint that controls the tradeoff between

speech distortion and noise reduction. To avoid the constrained

adaptation of the MVDR beamformer, Griffiths and Jim [8]

proposed the generalized sidelobe canceller (GSC) struc-

ture, which separates the output power minimization and the

application of the constraint. While Griffiths and Jim only

considered one constraint (i.e., MVDR beamformer), it was

later shown in [9] that the GSC structure can also be used in

the case of multiple constraints (i.e., LCMV beamformer). The

original GSC structure is based on the assumption that the

different sensors receive a delayed version of the desired signal.

The GSC structure was re-derived in the frequency-domain,

and extended to deal with general acoustic transfer functions

(ATFs) by Affes and Grenier [10] and later by Gannot et al.

[11]. The frequency-domain version in [11], which takes into

account the reverberant nature of the enclosure, was termed the

transfer-function generalized sidelobe canceller (TF-GSC).

In theory, the LCMV beamformer can achieve perfect dere-

verberation and noise cancellation when the ATFs between

all sources (including interferences) and the microphones are

known [12]. Using the MVDR beamformer, we can achieve

perfect reverberation cancellation when the ATFs between the

desired source and the microphones are known. In the last

three decades, various methods have been developed to blindly

identify the ATFs, more details can be found in [13] and the

references therein and in [14]. Blind estimation of the ATFs is

however beyond the scope of this paper in which we assume

that the ATFs between the source and the sensors are known.
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In earlier works [12], it was observed that there is a tradeoff

between the amount of speech dereverberation and noise re-

duction. However, this tradeoff was never rigorously analyzed.

Although the MVDR has attracted the attention of many re-

searchers in the acoustics field [1], [2], [10]–[12], [15], [16] and

has proven to be beneficial, a proper insight into its behavior

in respect to its ability to reduce noise and to dereverberate the

speech signal, is still lacking. A rigors analysis of this behavior

is necessary to provide more insight. In addition, the results can

be used to predict its performance in such an environment. In

this paper, we study the MVDR beamformer in room acous-

tics. Specifically, the objectives of this paper are threefold: 1) we

analyze the local and global behavior [1] of the MVDR beam-

former, 2) we derive novel forms of the MVDR filter, and 3) we

analyze the tradeoff between noise and reverberation reduction.

The local and global behavior, as well as the tradeoff, is ana-

lyzed for different noise fields such as, for example, a mixture

of coherent and non-coherent noise fields, entirely non-coherent

noise fields and diffuse noise fields.

The paper is organized as follows. In Section II, the array

model is formulated and the notation used in this paper is in-

troduced. In Section III, we review the MVDR beamformer in

the frequency domain and analyze the noise reduction perfor-

mance. In Section IV, we define different performance measures

that will be used in our analysis. In Section V, we analyze the

performance of the MVDR beamformer. The performance eval-

uation that demonstrate the tradeoff between reverberation and

noise reduction is presented in Section VI. Finally, conclusions

are provided in Section VII.

II. ARRAY MODEL

Consider the conventional signal model in which an -ele-

ment sensor array captures a convolved desired signal (speech

source) in some noise field. The received signals are expressed

as [1], [17]

(1)

where is the impulse response from the unknown (desired)

source to the th microphone, * stands for convolution, and

is the noise at microphone . We assume that the signals

and are uncorrelated and zero mean. All signals

considered in this work are broadband. Without loss of gener-

ality, we consider the first microphone as the reference

microphone. Our main objective in this paper is then to study

the recovering of any one of the signals (noise reduction

only), (total dereverberation and noise reduction), or a fil-

tered version of with the MVDR beamformer. Obviously,

we can recover the reverberant component at one of the other

microphones . When we desire noise reduc-

tion, only the largest amount of noise reduction is attained by

using the reference microphone with the highest signal to noise

ratio.

In the frequency domain, (1) can be rewritten as

(2)

where ,

and are the discrete-time Fourier transforms (DTFTs) of

, and , respectively, at angular fre-

quency and is the imaginary unit .

The microphone signals in the frequency domain are better

summarized in a vector notation as

(3)

where

and superscript denotes transpose of a vector or a matrix.

Using the power spectral density (PSD) of the received signal

and the fact that and are uncorrelated, we get

(4)

where , and are the PSDs

of the th sensor input signal, the th sensor reverberant speech

signal, the desired signal, and the th sensor noise signal, re-

spectively.

The array processing, or beamforming, is then performed by

applying a complex weight to each sensor and summing across

the aperture

(5)

where is the beamformer output

is the beamforming weight vector which is suitable for per-

forming spatial filtering at frequency , and superscript de-

notes transpose conjugation of a vector or a matrix.

The PSD of the beamformer output is given by

(6)

where

(7)
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is the rank-one PSD matrix of the convolved speech signals with

denoting mathematical expectation, and

(8)

is the PSD matrix of the noise field. In the rest of this paper, we

assume that the noise is not fully coherent at the microphones

so that is a full-rank matrix.

Now, we define a parameterized desired signal, which we de-

note by , where refers to a complex scaling

factor that defines the nature of our desired signal. Let

denote the DTFT of the direct path response from the desired

source to the first microphone. By setting ,

we are stating that we desire both noise reduction and complete

dereverberation. By setting , we are stating

that we only desire noise reduction or in other words we desire to

recover the reference sensor signal . In

the following, we use the factor in the definitions of per-

formance measures and in the derivation of the MVDR beam-

former.

III. MINIMUM VARIANCE DISTORTIONLESS

RESPONSE BEAMFORMER

We now derive the celebrated MVDR beamformer proposed

by Capon [3] in the context of room acoustics.

Let us define the error signal between the output beamformer

and the parameterized desired signal at frequency

(9)

The mean-squared error (MSE) is given by

(10)

This form of the MSE is helpful to derive the MVDR filter which

is conceived by providing a fixed gain [in our case modeled by

] to the signal while utilizing the remaining degrees of

freedom to minimize the contribution of the noise and interfer-

ence [second term of the right-hand side of (10)] to the array

output1

subject to (11)

The solution to this constrained optimization problem is given

by

(12)

1The same MVDR filter can be found by minimizing� ����� ���������
subject to � ��������� � ����� [18].

where superscript denotes complex conjugation. In practice,

the PSD matrix can be estimated during noise-only pe-

riods.

We can get rid of the explicit dependence on the above filter

on the acoustic transfer functions by

multiplying and dividing (12) by and using the fact that

to ob-

tain the following form

(13)

where denotes the trace of a matrix, and

is a vector of length . Interestingly, we only need to

achieve dereverberation and noise reduction.

Using the Woodbury’s identity, another important form of the

MVDR filter is derived

(14)

where

(15)

and

(16)

is the PSD matrix of the microphone signals.

For the particular case, , where we only

want to reduce the level of the noise (no dereverberation at all),

we can get rid of the explicit dependence of the MVDR filter on

all acoustic transfer functions to obtain the following forms [1]:

(17)

where is the identity matrix. Hence, noise reduction can

be achieved without explicitly estimating the acoustic transfer

functions.

IV. PERFORMANCE MEASURES

In this section, we present some very useful measures that will

help us better understand how noise reduction and speech dere-

verberation work with the MVDR beamformer in a real room

acoustic environment.

To be consistent with prior works we define the local input

signal-to-noise ratio (SNR) with respect to the parameterized

desired signal [given by ] and the noise signal re-

ceived by the first microphone, i.e.,

iSNR (18)
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where is the PSD of the noise signal . The global

input SNR is given by

iSNR (19)

After the MVDR beamforming operation with the frequency-

domain model given in (6), the local output SNR is

(20)

By substituting (12) in (20) it can be easily shown that

(21)

It is extremely important to observe that the desired scaling pro-

vided by has no impact on the resulting local output SNR

(but has an impact on the local input SNR). The global output

SNR with the MVDR filter is

(22)

Contrary to the local output SNR, the global output SNR de-

pends strongly on the complex scaling factor .

Another important measure is the level of noise reduction

achieved through beamforming. Therefore, we define the local

noise-reduction factor as the ratio of the PSD of the original

noise at the reference microphone over the PSD of the residual

noise

(23)

iSNR

(24)

We see that is the product of two terms. The first one

is the ratio of the output SNR over the input SNR at frequency

while the second term represents the local distortion introduced

by the beamformer . For the MVDR beamformer we have

. Therefore, we can further

simplify (24)

iSNR

(25)

In this case, the local noise-reduction factor tells us exactly how

much the output SNR is improved (or not) compared to the input

SNR.

Integrating across the entire frequency range in the numerator

and denominator of (23) yields the global noise-reduction factor

iSNR

(26)

The global noise-reduction factor is also the product of two

terms. While the first one is the ratio of the global output SNR

over the global input SNR, the second term is the global speech

distortion due the beamformer. For the MVDR beamformer the

global noise-reduction factor further simplifies to

iSNR
(27)

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the MVDR

beamformer and the tradeoff between the amount of speech

dereverberation and noise reduction. When comparing the

noise-reduction factor of different MVDR beamformers (with

different objectives) it is of great importance that the com-

parison is conducted in a fair way. In Section V-A we will

discuss this issue and propose a viable comparison method. In

Sections V-B and V-C, we analyze the local and global behavior

of the output SNR and the noise-reduction factor obtained by

the MVDR beamformer, respectively. In addition, we analyze

the tradeoff between dereverberation and noise reduction. In

Sections V-D, V-E and V-F, we analyze the MVDR perfor-

mance in three different noise fields, viz., 1) non-coherent noise

fields, 2) mixed coherent and non-coherent noise fields, and 3)

diffuse noise fields.

Before we proceed we define the local squared Pearson corre-

lation coefficient (SPCC) or magnitude squared coherence func-

tion (MSCF), which is the frequency-domain counterpart of the

SPCC. In [19], the SPCC was used to analyze the noise reduc-

tion performance of the single-channel Wiener filter. Let

and be the DTFTs of the two zero-mean real-valued

random sequences and . Then the local SPCC between

and at frequency is defined as

(28)
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Fig. 1. Magnitude of the transfer functions ����� � �� ����� � �����
(reverberation time � � ��� s, source-receiver distance � � ��� m).

It is clear that the local SPCC always takes its values between 0

and 1.

A. On the Comparison of Different MVDR Beamformers

One of the main objectives of this work is to compare

MVDR beamformers with different constraints. When we

desire noise-reduction only, the constraint of the MVDR beam-

former is given by . When we desire

complete dereverberation and noise reduction we can use the

constraint , where denotes

the transfer function of the direct path response from the

source to the first microphone. In Fig. 1, the magnitude of the

transfer functions and are shown. The transfer

function was generated using the image-method [20],

the distance between the source and the microphone was 2.5 m

and the reverberation time was 500 ms. The transfer function

was obtained by considering only the direct path. As

expected from a physical point of view, we can see that the

energy of is larger than the energy of . In

addition we observe that for some frequencies is

smaller than . Evidently, the power of the desired

signal is always smaller than the power of the

desired signal .

Now let us first look at an illustrative example. Obviously, by

choosing any constraint

we desire both noise reduction and complete dere-

verberation. Now the MVDR filters are equal to

, i.e., by scaling the desired signal we scale the

MVDR filter. Consequently, we have also scaled the noise signal

at the output. When we would directly calculate the noise-reduc-

tion factor of the beamformers using (25) we obtain different

results since

for (29)

This can also be explained by the fact that the local output

SNRs of all MVDR beamformers are equal be-

cause the local output SNR [as defined in (20)] is independent

of while the local input SNR [as defined in (18)] is depen-

dent on . A similar problem occurs when we like to com-

pare the noise-reduction factor of MVDR beamformers with

completely different constraints because the power of the rever-

berant signal is much larger than the power of the direct sound

signal. This abnormality can be corrected by normalizing the

power of the output signal. Fundamentally, the definition of the

MVDR beamformer depends on . Therefore, the choice

of different desired signals [given by ] reflects the

definition of the iSNR. Basically we can apply any normaliza-

tion provided that the power of the desired signals at the output

is equal. However, to obtain a meaningful noise-reduction factor

and to be consistent with earlier works we propose to make the

power of the desired signal at the output of the beamformer

equal to the power of the signal that would be obtained when

using the constraint . The global nor-

malization factor is therefore given by

(30)

B. Local Analyses

Let us first investigate the local behavior of the input and

output SNRs via the SPCCs. Indeed, the local SPCC between

the parameterized desired signal and the reference

microphone signal is

(31)

Expression (31) tells us how much the signals and

are coherent at frequency , i.e., how noisy the reference

microphone signal is. In addition, we note that the local SPCC

(31) does not depend on the complex scaling factor .

At the same time, the local SPCC between the parameter-

ized desired signal, , and the beamformer output

is maximized by and does not

depend on [the same way the local output SNR does not

depend on ]

(32)

Indeed, (32) is equal to one when approaches zero and

is equal to zero when equals zero.

The most important goal of a beamforming algorithm is to

improve the local SNR after filtering. Therefore, we must design

the beamforming weight vectors, , in such

a way that iSNR . We next give an
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interesting property that will give more insights into the local

SNR behavior of the MVDR beamformer.

Property 5.1: With the MVDR filter given in (12), the local

output SNR times is always greater than or equal to

the local input SNR times , i.e.,

iSNR (33)

which can also be expressed using (18) as

(34)

Proof: See Appendix A.

The normalized local noise-reduction factor is defined as

iSNR

(35)

where . Indeed, for

different MVDR beamformers the noise-reduction factor

varies due to , since the local output

SNR and do not depend on . Since

the

normalized local noise-reduction factor is independent of the

global scaling factor .

To gain more insight into the local behavior of

we analyzed several acoustic transfer

functions. To simplify the following discussion we assume

that the power spectral density for all . Let us

decompose the transfer function into two parts. The

first part is the DTFT the direct path, while the second

part is the DTFT of the reverberant part. Now let us

define the desired response as

(36)

where the parameter controls the direct-to-re-

verberation ratio (DRR) of the desired response. In Fig. 2(a),

we plotted for . Due to

the normalization the energy of (and

therefore its mean value) does not depend on . Locally,

we can see that the deviation with respect to in-

creases when increases (i.e., when the DRR decreases). In

Fig. 2(b), we plotted the histogram of

for . First, we observe that the probability that

is smaller than its mean value decreases

when decreases (i.e., when the DRR increases). Second, we

observe that the distribution is stretched out towards negative

values on the decibel’s logarithmic scale when increases.

Fig. 2. (a) Normalized transfer functions ������� ��� � ����� with
������� � � ���� � �� ���� for � � ��� ���� 	�. (b) Histograms of
	� 
�� ����������� � ������.

Hence, when the desired speech signal contains less reverbera-

tion it is more likely that will increase and

that the local noise-reduction factor will decrease. Therefore, it

is likely that the highest local noise reduction is achieved when

we desire only noise reduction, i.e., for .

Using Property 5.1, we deduce a lower bound for the normal-

ized local noise-reduction factor

(37)

For we obtain

(38)

Expression (38) proves that there is always noise-reduction

when we desire only noise reduction. However, in other situa-

tions we cannot guarantee that there is noise reduction.
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C. Global Analyses

Using (27), (22), and (19), we deduce the normalized global

noise-reduction factor

iSNR

(39)

This normalized global noise-reduction factor behaves, with re-

spect to , similarly to its local counterpart. It can easily

be verified that the normalized global noise-reduction factor for

is independent of . Due to the complexity of (39) it

is difficult to predict the exact behavior of the normalized global

noise-reduction factor. From the analyses in the previous sub-

section we do know that the distribution of is

stretched out towards zero when the DRR decreases. Hence, for

each frequency it is likely that will decrease

when the DRR decreases. Consequently, we expect that the nor-

malized global noise-reduction factor will always increase when

the DRR decreases. The expected behavior of the normalized

global noise-reduction factor is consistent with the results pre-

sented in Section VI.

D. Non-Coherent Noise Field

Let us assume that the noise field is homogeneous and spa-

tially white. In case the noise variance at each microphone is

equal to the noise covariance matrix simplifies

to . In the latter case, the MVDR beamformer simpli-

fies to

(40)

where . For this

is the well-known matched beamformer [21], which generalizes

the delay-and-sum beamformer. The local output SNR and nor-

malized local noise-reduction factor can be deduced by substi-

tuting in (21) and (35), and results in

(41)

and

(42)

respectively. When the normalization factor

equals 1, the normalized noise-reduction factor then

becomes

(43)

As we expected from (38), the normalized noise-reduction

factor is always larger than 1 when . How-

ever, in other situations we cannot guarantee that there is noise

reduction.

The normalized global noise-reduction factor is given by

(44)

In an anechoic environment where the source is positioned

in the far-field of the array, are steering vectors and

. In this case the normalized

global noise-reduction factor simplifies to

(45)

The latter results in consistent with earlier works and shows that

the noise-reduction factor only depends on the number of micro-

phones. When the PSD matrices of the noise and microphone

signals are known we can compute the MVDR filter using (17),

i.e., we do not require any a prior knowledge of the direction of

arrival.

E. Coherent Plus Non-Coherent Noise Field

Let denote the

ATFs between a noise source and the array. The noise covari-

ance matrix can be written as

(46)

Using Woodbury’s identity we have

(47)
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Now, the MVDR beamformer becomes

(48)

The local output SNR and normalized local noise-reduction

factor are given by

(49)

and

(50)

The noise reduction depends on the ratio between the variance

of the non-coherent and coherent, and on the inner product of

and [22].

Obviously, the noise covariance matrix needs to be

full-rank. However, from a theoretical point of view we can

analyze the coherent noise at the output of the MVDR beam-

former [given by ] when the ratio

approaches zero, i.e., the noise field be-

comes more and more coherent. Provided that

the coherent noise at the output of the beamformer is given by

For there is a contradiction, since the desired

signal and the noise come from the same point.

F. Diffuse Noise Field

In highly reverberant acoustical environment, such as a car

enclosure, the noise field tends to be diffused (see for instance

[23], [24]). A diffused noise field consists of infinite indepen-

dent noise sources that are equi-distributed on a sphere around

the array. The local PCC between signals received by two sen-

sors with distance can be found in [23], and is given

in the following expression:

(51)

where denotes the sound velocity. As can be seen from (51),

the coherence between the sensors decreases rapidly when the

frequency increases. The coherence matrix is given by

...
...

. . .
...

(52)

If denotes the variance of the diffuse noise, then the

noise covariance matrix is given by

(53)

The local output SNR is given by2

(54)

The normalized local noise-reduction factor is given by

(55)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the MVDR

beamformer in room acoustics. We will demonstrate the

tradeoff between speech dereverberation and noise reduction

by computing the normalized noise-reduction factor in various

2For � � � the diffuse noise field is entirely coherent, i.e., the rank of
� ���� equals one. Consequently, the MVDR filter does not exist. However,
in practice there is always an additional non-coherent noise term which makes
the covariance matrix full-rank.
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Fig. 3. Normalized global noise-reduction factor obtained using � �
��� �� �� (� � ���� � � � m, non-coherent noise iSNR � � dB).

scenarios. A linear microphone array was used with two to eight

microphones and an inter-microphone distance of 5 cm. The

room size is 5 4 6 m (length width height), the rever-

beration time of the enclosure varies between 0.2 to 0.4 s. All

room impulse responses are generated using the image-method

proposed by Allen and Berkley [20] with some necessary

modifications that ensure proper inter-microphone phase delays

as proposed by Peterson [25]. The distance between the desired

source and the first microphone varies from 1 to 3 m. The

desired source consists of speech like noise (USASI). The noise

consists of a simple AR(1) process (autoregressive process of

order one) that was created by filtering a stationary zero-mean

Gaussian sequences with a linear time-invariant filter. We used

non-coherent noise, a mixture of non-coherent noise and a

coherent noise source, and diffuse noise.

In order to study the tradeoff more carefully, we need

to control the amount of reverberation reduction. Here we

propose to control the amount of reverberation reduction

by changing the DRR of the desired response . As

proposed in Section V-A, we control the DRR using the pa-

rameter . The complex scaling factor

is calculated using (36). When the desired response equals

, we desire both noise reduction and

complete dereverberation. However, when the desired response

equals we desire only noise reduction.

A. Influence of the Number of Microphones

In this section, we study the influence of the number of mi-

crophones used. The reverberation time was set to s

and the distance between the source and the first microphone

was m. The noise field is non-coherent and the global

input SNR [for ] was iSNR dB. In

this experiment two, four, or eight microphones were used. In

Fig. 3 the normalized global noise-reduction factor is shown for

. First, we observe that there is a tradeoff between

speech dereverberation and noise reduction. The largest amount

of noise reduction is achieved for , i.e., when no dere-

verberation is performed. While a smaller amount of noise re-

duction is achieved for , i.e., when complete dereverber-

ation is performed. In the case of two microphones ,

Fig. 4. (a) DRR of ����� 		 for � � ������������� s. (b) The normalized
global noise-reduction factor obtained using � � ������������� s (� � ��
� � � m, non-coherent noise iSNR � � dB).

we amplify the noise when we desire to complete dereverberate

the speech signal. Second, we observe that the amount of noise

reduction increases with approximately 3 dB if we double the

number of microphones. Finally, we observe that the tradeoff

becomes less evident when more microphones are used. When

more microphones are available the degrees of freedom of the

MVDR beamformer increases. In such a case the MVDR beam-

former is apparently able to perform speech dereverberation

without significantly sacrificing the amount of noise reduction.

B. Influence of the Reverberation Time

In this section, we study the influence of the reverberation

time. The distance between the source and the first microphone

was set to m. The noise field is non-coherent and the

global input SNR [for ] was iSNR dB.

In this experiment, four microphones were used, and the re-

verberation time was set to s. The DRR

ratio of the desired response is shown in Fig. 4(a). In

Fig. 4(b), the normalized global noise-reduction factor is shown

for . Again, we observe that there is a tradeoff be-

tween speech dereverberation and noise reduction. This exper-

iment also shows that almost no noise reduction is sacrificed

when we desire to increase the DRR to approximately dB
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Fig. 5. Normalized global noise-reduction factor obtained using non-coherent
noise iSNR � ���� � � � � ��� dB (� � ��� s, � � �� � � � m).

for s. In other words, as long as the reverberant part

of the signal is dominant (DRR dB) we can reduce rever-

beration and noise without sacrificing too much noise reduction.

However, when the DRR is increased further (DRR dB)

the noise-reduction decreases.

C. Influence of the Noise Field

In this section we evaluate the normalized noise-reduction

factor in various noise fields and study the tradeoff between

noise reduction and dereverberation.

1) Non-Coherent Noise Field: In this section, we study the

amount of noise reduction in a non-coherent noise field with

different input SNRs. The distance between the source and the

first microphone was set to m. In this experiment four

microphones were used, and the reverberation time was set to

s. In Fig. 5(a), the normalized global noise-reduc-

tion factor is shown for and different input SNRs

ranging from 5 dB to 30 dB. In Fig. 5(b), the normalized

global noise-reduction factor is shown for and input

SNRs of 5, 0, and 30 dB. We observe the tradeoff between

speech dereverberation and noise reduction as before. As ex-

pected from (44), for a non-coherent noise field the normalized

global noise-reduction factor is independent of the input SNR.

In Fig. 6, we depicted the normalized global noise-reduction

Fig. 6. Normalized global noise-reduction factor for one specific source tra-
jectory obtained using � � ����� ������ � � � � �� m (� � ��� s, � � �,
non-coherent noise iSNR � � dB).

Fig. 7. Normalized global noise-reduction factor obtained using a coherent
plus non-coherent noise iSNR � ���� � � � � ��� dB (iSNR � �� dB,� �

��� s, � � �� � � � m).

factor for (i.e., complete dereverberation and noise re-

duction) and (i.e., noise reduction only) for different dis-

tances. It should be noted that the DRR is not monotonically de-

creasing with the distance. Therefore, the noise-reduction factor

is not monotonically decreasing with the distance. Here four mi-

crophones were used and the reverberation time equals 0.3 s.

Authorized licensed use limited to: Bar Ilan University. Downloaded on November 15, 2009 at 05:07 from IEEE Xplore.  Restrictions apply. 



168 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2010

Fig. 8. Normalized noise-reduction factor obtained using a diffuse plus non-
coherent noise field. (a) Global noise-reduction factor for � � � � �, and
(b) local noise-reduction factor for � � ��� �� (iSNR � � dB, iSNR �

�� dB, � � ��� s, � � �� � � � m).

When we desire only noise reduction, the noise reduction is in-

dependent of the distance between the source and the first mi-

crophone. However, when we desire both dereverberation and

noise reduction we see that the normalized global noise-reduc-

tion factor decreases rapidly. At a distance of 4 m we sacrificed

approximately 4-dB noise reduction.

2) Coherent and Non-Coherent Noise Field: In this section,

we study the amount of noise reduction in a coherent plus non-

coherent noise field with different input SNRs. The input SNR

iSNR of the non-coherent noise is 20 dB. The distance be-

tween the source and the first microphone was set to m.

In this experiment, four microphones were used, and the rever-

beration time was set to s. In Fig. 7(a), the normal-

ized global noise-reduction factor is shown for

and for input SNR iSNR of the coherent noise source that

ranges from 5 dB to 30 dB. In Fig. 7(b), the normalized global

noise-reduction factor is shown for and input SNRs

of 5, 0, and 30 dB. We observe the tradeoff between speech

dereverberation and noise reduction as before. In addition, we

see that the noise reduction in a coherent noise field is much

larger than the noise reduction in a non-coherent noise field.

3) Diffuse Noise Field: In this section, we study the amount

of noise reduction in a diffuse noise field. To ensure that the

noise covariance matrix is full-rank we added a non-coherent

noise field with an input SNR iSNR of 30 dB. The input

SNR of the diffuse noise field iSNR was 0 dB. The diffuse

noise signals were generated using the method described in [24].

The distance between the source and the first microphone was

set to m. In this experiment, four microphones were

used, and the reverberation time was set to s. In

Fig. 8, the normalized global noise-reduction factor is shown

for . In Fig. 8(b) the normalized local noise-reduc-

tion factor is shown for . We observe the tradeoff be-

tween speech dereverberation and noise reduction as before. For

this specific setup, the normalized local noise-reduction factor

at low frequencies is lower than the normalized local noise-re-

duction factor at high frequencies. Locally, we see that for most

frequencies we achieve higher noise-reduction when we desire

only noise-reduction. However, for some frequencies the local

noise-reduction factor is slightly higher when we desire com-

plete dereverberation and noise reduction. This clearly demon-

strates that we cannot guarantee the tradeoff between speech

dereverberation and noise reduction locally.

VII. CONCLUSION

In this paper, we studied the MVDR beamformer in room

acoustics. The tradeoff between speech dereverberation and

noise reduction was analyzed. The results of the theoretical

performance analysis are supported by the performance evalu-

ation. The results indicate that there is a tradeoff between the

achievable noise reduction and speech dereverberation. The

amount of noise reduction that is sacrificed when complete

dereverberation is required depends on the direct-to-reverbera-

tion ratio of the acoustic impulse response between the source

and the reference microphone, and the desired response. The

performance evaluation supports the theoretical analysis and

demonstrates the tradeoff between speech dereverberation and

noise reduction. When desiring both speech dereverberation

and noise reduction the results also demonstrate that the amount

of noise reduction that is sacrificed decreases when the number

of microphones increases.

APPENDIX A

PROOF OF PROPERTY 5.1

Proof: Let us first evaluate the local SPCC

[using (2) and (18)] and

[using (3)

and (20)]

iSNR

iSNR
(56)

(57)
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In addition, we evaluate the local SPCC or MSCF between

and

(58)

From (58) and the fact that we have

(59)

In addition, it can be shown that

(60)

From (59) and (60) we know that

(61)

Hence, by substituting (56) and (57) in (61) we obtain

iSNR

iSNR

(62)

As a result

iSNR (63)

which is equal to (33).
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