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Abstract—The problem of noise reduction has attracted a
considerable amount of research attention over the past several
decades. Among the numerous techniques that were developed,
the optimal Wiener filter can be considered as one of the most
fundamental noise reduction approaches, which has been de-
lineated in different forms and adopted in various applications.
Although it is not a secret that the Wiener filter may cause some
detrimental effects to the speech signal (appreciable or even sig-
nificant degradation in quality or intelligibility), few efforts have
been reported to show the inherent relationship between noise
reduction and speech distortion. By defining a speech-distortion
index to measure the degree to which the speech signal is deformed
and two noise-reduction factors to quantify the amount of noise
being attenuated, this paper studies the quantitative performance
behavior of the Wiener filter in the context of noise reduction. We
show that in the single-channel case the a posteriori signal-to-noise
ratio (SNR) (defined after the Wiener filter) is greater than or
equal to the a priori SNR (defined before the Wiener filter),
indicating that the Wiener filter is always able to achieve noise
reduction. However, the amount of noise reduction is in general
proportional to the amount of speech degradation. This may seem
discouraging as we always expect an algorithm to have maximal
noise reduction without much speech distortion. Fortunately,
we show that speech distortion can be better managed in three
different ways. If we have some a priori knowledge (such as the
linear prediction coefficients) of the clean speech signal, this a
priori knowledge can be exploited to achieve noise reduction while
maintaining a low level of speech distortion. When no a priori
knowledge is available, we can still achieve a better control of noise
reduction and speech distortion by properly manipulating the
Wiener filter, resulting in a suboptimal Wiener filter. In case that
we have multiple microphone sensors, the multiple observations
of the speech signal can be used to reduce noise with less or even
no speech distortion.

Index Terms—Microphone arrays, noise reduction, speech dis-
tortion, Wiener filter.

I. INTRODUCTION

S
INCE we are living in a natural environment where noise

is inevitable and ubiquitous, speech signals are gener-

ally immersed in acoustic ambient noise and can seldom be

recorded in pure form. Therefore, it is essential for speech

processing and communication systems to apply effective noise
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reduction/speech enhancement techniques in order to extract

the desired speech signal from its corrupted observations.
Noise reduction techniques have a broad range of applica-

tions, from hearing aids to cellular phones, voice-controlled sys-
tems, multiparty teleconferencing, and automatic speech recog-
nition (ASR) systems. The choice between using and not using
a noise reduction technique may have a significant impact on
the functioning of these systems. In multiparty conferencing,
for example, the background noise picked up by the microphone
at each point of the conference combines additively at the net-
work bridge with the noise signals from all other points. The
loudspeaker at each location of the conference therefore repro-
duces the combined sum of the noise processes from all other
locations. Clearly, this problem can be extremely serious if the
number of conferees is large, and without noise reduction, com-
munication is almost impossible in this context.

Noise reduction is a very challenging and complex problem
due to several reasons. First of all, the nature and the character-
istics of the noise signal change significantly from application
to application, and moreover vary in time. It is therefore very
difficult—if not impossible—to develop a versatile algorithm
that works in diversified environments. Secondly, the objective
of a noise reduction system is heavily dependent on the spe-
cific context and application. In some scenarios, for example, we
want to increase the intelligibility or improve the overall speech
perception quality, while in other scenarios, we expect to ame-
liorate the accuracy of an ASR system, or simply reduce the
listeners’ fatigue. It is very hard to satisfy all objectives at the
same time. In addition, the complex characteristics of speech
and the broad spectrum of constraints make the problem even
more complicated.

Research on noise reduction/speech enhancement can be
traced back to 40 years ago with 2 patents by Schroeder [1],
[2] where an analog implementation of the spectral magnitude
subtraction method was described. Since then it has become
an area of active research. Over the past several decades,
researchers and engineers have approached this challenging
problem by exploiting different facets of the properties of the
speech and noise signals. Some good reviews of such efforts
can be found in [3]–[7]. Principally, the solutions to the problem
can be classified from the following points of view.

• The number of channels available for enhancement; i.e.,
single-channel and multichannel techniques.

• How the noise is mixed to the speech; i.e., additive noise,
multiplicative noise, and convolutional noise.

• Statistical relationship between the noise and speech; i.e.,
uncorrelated or even independent noise, and correlated
noise (such as echo and reverberation).

• How the processing is carried out; i.e., in the time domain
or in the frequency domain.
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In general, the more microphones are available, the easier the

task of noise reduction. For example, when multiple realizations

of the signal can be accessed, beamforming, source separation, or

spatio-temporal filtering techniques can be applied to extract the

desired speech signal or to attenuate the unwanted noise [8]–[13].

If we have two microphones, where the first microphone

picks up the noisy signal, and the second microphone is able

to measure the noise field, we can use the second microphone

signal as a noise reference and eliminate the noise in the first

microphone by means of adaptive noise cancellation. However,

in most situations, such as mobile communications, only one

microphone is available. In this case, noise reduction techniques

need to rely on assumptions about the speech and noise signals,

or need to exploit aspects of speech perception, speech produc-

tion, or a speech model. A common assumption is that the noise

is additive and slowly varying, so that the noise characteristics

estimated in the absence of speech can be used subsequently in

the presence of speech. If in reality this premise does not hold,

or only partially holds, the system will either have less noise

reduction, or introduce more speech distortion.

Even with the limitations outlined above, single-channel

noise reduction has attracted a tremendous amount of re-

search attention because of its wide range of applications

and relatively low cost. A variety of approaches have been

developed, including Wiener filter [3], [14]–[19], spectral

or cepstral restoration [17], [20]–[27], signal subspace

[28]–[35], parametric-model-based method [36]–[38], and

statistical-model-based method [5], [39]–[46].

Most of these algorithms were developed independently of

each other and generally their noise reduction performance was

evaluated by assessing the improvement of signal-to-noise ratio

(SNR), subjective speech quality, or ASR performance (when

the ASR system is trained in clean conditions and additive noise

is the only distortion source). Almost with no exception, these

algorithms achieve noise reduction by introducing some distor-

tion to the speech signal. Some algorithms, such as the subspace

method, are even explicitly formulated based on the tradeoff be-

tween noise reduction and speech distortion. However, so far,

few efforts have been devoted to analyzing such a tradeoff be-

havior even though it is a very important issue. In this paper, we

attempt to provide an analysis about the compromise between

noise reduction and speech distortion. On one hand, such a study

may offer us some insight into the range of existing algorithms

that can be employed in practical noisy environments. On the

other hand, a good understanding may help us to find new algo-

rithms that can work more effectively than the existing ones.

Since there are so many algorithms in the literature, it is ex-

tremely difficult—if not impossible—to find a universal ana-

lytical tool that can be applied to any algorithm. In this paper,

we choose the Wiener filter as the basis since it is one of the

most fundamental approaches, and many algorithms are closely

connected to this technique. For example, the minimum-mean-

square-error (MMSE) estimator presented in [21], which be-

longs to the category of spectral restoration, converges to the

Wiener filter at a high SNR. In addition, it is widely known that

the Kalman filter is tightly related to the Wiener filter.

Starting from optimal Wiener filtering theory, we introduce

a speech-distortion index to measure the degree to which the

speech signal is deformed and two noise-reduction factors to

quantify the amount of noise being attenuated. We then show

that for the single-channel Wiener filter, the amount of noise re-

duction is in general proportional to the amount of speech degra-

dation, implying that when the noise reduction is maximized,

the speech distortion is maximized as well.

Depending on the nature of the application, some practical

noise-reduction systems require very high-quality speech, but

can tolerate a certain amount of residual noise, whereas other

systems require the speech signal to be as clean as possible,

but may allow some degree of speech distortion. Therefore, it

is necessary that we have some management scheme to control

the compromise between noise reduction and speech distortion

in the context of Wiener filtering. To this end, we discuss three

approaches. The first approach leads to a suboptimal filter where

a parameter is introduced to control the tradeoff between speech

distortion and noise reduction. The second approach leads to the

well-known parametric-model-based noise reduction technique,

where an AR model is exploited to achieve noise reduction,

while maintaining a low level of speech distortion. The third

approach pertains to a multichannel approach where spatio-tem-

poral filtering techniques are employed to obtain noise reduction

with less or even no speech distortion.

II. ESTIMATION OF THE CLEAN SPEECH SAMPLES

We consider a zero-mean clean speech signal contami-

nated by a zero-mean noise process [white or colored but

uncorrelated with ], so that the noisy speech signal at the

discrete time sample is

(1)

Define the error signal between the clean speech sample at time

and its estimate

(2)

where superscript denotes transpose of a vector or a matrix,

is an FIR filter of length , and

is a vector containing the most recent samples of the observa-

tion signal .

We now can write the mean-square error (MSE) criterion

(3)

where denotes mathematical expectation. The optimal es-

timate of the clean speech sample tends to contain

less noise than the observation sample , and the optimal

filter that forms is the Wiener filter which is obtained as

follows:

(4)

Consider the particular filter
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This means that the observed signal will pass this filter

unaltered (no noise reduction), thus the corresponding MSE is

(5)

In principle, for the optimal filter , we should have

(6)

In other words, the Wiener filter will be able to reduce the level

of noise in the noisy speech signal .

From (4), we easily find the Wiener–Hopf equation

(7)

where

(8)

is the correlation matrix of the observed signal and

(9)

is the cross-correlation vector between the noisy and clean

speech signals. However, is unobservable; as a result, an

estimation of may seem difficult to obtain. But

(10)

Now depends on the correlation vectors and . The vector

(which is also the first column of ) can be easily esti-

mated during speech and noise periods while can be esti-

mated during noise-only intervals assuming that the statistics of

the noise do not change much with time.

Using (10) and the fact that , we obtain the

optimal filter

(11)

where

(12)

is the signal-to-noise ratio, is the identity matrix, and

We have

(13)

(14)

where has the same size as and consists of all zeros. The

minimum MSE (MMSE) is

(15)

We see clearly from the previous expression that

; therefore, noise reduction is possible.

The normalized MMSE is

(16)

and .

III. ESTIMATION OF THE NOISE SAMPLES

In this section, we will estimate the noise samples from the

observations . Define the error signal between the noise

sample at time and its estimate

(17)

where

is an FIR filter of length . The MSE criterion associated with

(17) is

(18)

The estimation of in the MMSE sense will tend to attenuate

the clean speech.

The minimization of (18) leads to the Wiener–Hopf equation

(19)

We have

(20)

(21)

The MSE for the particular filter (no clean speech reduc-

tion) is

(22)

Therefore, the MMSE and the normalized MMSE are, respec-

tively,

(23)

(24)

Since , the Wiener filter will be able to reduce

the level of the clean speech in the signal . As a result,

.

In Section IV, we will see that while the normalized MMSE,

, of the clean speech estimation plays a key role in noise

reduction, the normalized MMSE, , of the noise process

estimation plays a key role in speech distortion.
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IV. IMPORTANT RELATIONSHIPS BETWEEN NOISE REDUCTION

AND SPEECH DISTORTION

Obviously, there are some important relationships between

the estimation of the clean speech and noise samples. From (11)

and (19), we get a relation between the two optimal filters

(25)

In fact, minimizing or with respect to is

equivalent. In the same manner, minimizing or

with respect to is the same thing. At the optimum, we have

(26)

From (15) and (23), we see that the two MMSEs are equal

(27)

However, the normalized MMSE’s are not, in general. Indeed,

we have a relation between the two

(28)

So the only situation where the two normalized MMSE’s are

equal is when the SNR is equal to 1. For ,

and for , . Also,

and .

It can easily be verified that

(29)

which implies that . We already know that

and .

The optimal estimation of the clean speech, in the Wiener

sense, is in fact what we call noise reduction

(30)

or equivalently, if the noise is estimated first

(31)

we can use this estimate to reduce the noise from the observed

signal

(32)

The power of the estimated clean speech signal with the optimal

Wiener filter is

(33)

which is the sum of two terms. The first one is the power of the

attenuated clean speech and the second one is the power of the

residual noise (always greater than zero). While noise reduction

is feasible with the Wiener filter, expression (33) shows that the

price to pay for this is also a reduction of the clean speech [by

a quantity equal to and this implies distor-

tion], since . In other words, the power of the at-

tenuated clean speech signal is, obviously, always smaller than

the power of the clean speech itself; this means that parts of the

clean speech are attenuated in the process and as a result, dis-

tortion is unavoidable with this approach.

We now define the speech-distortion index due to the optimal

filtering operation as

(34)

Clearly, this index is always between 0 and 1 for the optimal

filter. Also

(35)

(36)

So when is close to 1, the speech signal is highly dis-

torted and when is near 0, the speech signal is lowly

distorted. We deduce that for low SNRs, the Wiener filter can

have a disastrous effect on the speech signal.

Similarly, we define the noise-reduction factor due to the

Wiener filter as

(37)

and . The greater is , the more noise reduc-

tion we have. Also

(38)

(39)

Using (34) and (37), we obtain important relations between the

speech-distortion index and the noise-reduction factor

(40)

(41)

Therefore, for the optimum filter, when the SNR is very large,

there is little speech distortion and little noise reduction (which

is not really needed in this situation). On the other hand, when

the SNR is very small, speech distortion is large as well as noise

reduction.
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Fig. 1. Illustration of the areas where � (h ) and � (g ) take their values
as a function of the SNR. � (h ) can take any value above the solid line while
� (g ) can take any value under the dotted line.

Another way to examine the noise-reduction performance is

to inspect the SNR improvement. Let us define the a posteriori

SNR, after noise reduction with the Wiener filter as

(42)

It can be shown that the a posteriori SNR and the a priori

SNR satisfy (see Appendix), indicating that the

Wiener filter is always able to improve the SNR of the noisy

speech signal.

Knowing that , we can now give the lower

bound for . As a matter of fact, it follows from (42) that

(43)

Since , and , it can be easily

shown that

(44)

Similarly, we can derive the upper bound for , i.e.,

(45)

Fig. 1 illustrates expressions (44) and (45).

We now introduce another index for noise reduction

(46)

The closer is to 1, the more noise reduction we get. This

index will be helpful to use in Sections V–VII.

V. PARTICULAR CASE: WHITE GAUSSIAN NOISE

In this section, we assume that the additive noise is white, so

that,

(47)

From (16) and (24), we observe that the two normalized MMSEs

are

(48)

(49)

where and are the first components of the vectors

and , respectively. Clearly, and .

Hence, the normalized MMSE is completely governed

by the first element of the Wiener filter .

Now, the speech-distortion index and the noise-reduction

factor for the optimal filter can be simplified

(50)

(51)

We also deduce from (50) that and .

We know from linear prediction theory that [47]

(52)

where is the forward linear predictor and is the corre-

sponding error energy. Replacing the previous equation in (11),

we obtain

(53)

where

(54)

Equation (53) shows how the Wiener filter is related to the for-

ward predictor of the observed signal . This expression also

gives a hint on how to choose the length of the optimal filter :

it should be equal to the length of the predictor required to

have a good prediction of the observed signal . Equation

(54) contains some very interesting information. Indeed, if the

clean speech signal is completely predictable, this means that

and . On the other hand, if is not

predictable, we have and . This

implies that the Wiener filter is more efficient to reduce the level

of noise for predictable signals than for unpredictable ones.

VI. BETTER WAYS TO MANAGE NOISE REDUCTION

AND SPEECH DISTORTION

For a noise-reduction/speech-enhancement system, we al-

ways expect that it can achieve maximal noise reduction without

much speech distortion. From the previous section, however,

it follows that while noise reduction is maximized with the
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optimal Wiener filter, speech distortion is also maximized.

One may ask the legitimate question: are there better ways

to control the tradeoff between the conflicting requirements

of noise reduction and speech distortion? Examining (34),

one can see that to control the speech distortion, we need to

minimize . This can be achieved in

different ways. For example, a speech signal can be modeled as

an AR process. If the AR coefficients are known a priori or can

be estimated from the noisy speech, these coefficients can be

exploited to minimize , while simulta-

neously achieving a reasonable level of noise attenuation. This

is often referred to as the parametric-model-based technique

[36], [37]. We will not discuss the details of this technique here.

Instead, in what follows we will discuss two other approaches

to manage noise reduction and speech distortion in a better way.

A. A Suboptimal Filter

Consider the suboptimal filter

(55)

where is a real number. The MSE of the clean speech estima-

tion corresponding to is

(56)

and, obviously, , ; we have equality for

. In order to have noise reduction, must be chosen in

such a way that , therefore

(57)

We can check that

(58)

Let

(59)

denote the estimation of the clean speech at time with respect

to . The power of is

(60)

The speech-distortion index corresponding to the filter is

(61)

The previous expression shows that the ratio of the speech-

distortion indices corresponding to the two filters and

depends on only.

In order to have less distortion with the suboptimal filter

than with the Wiener filter , we must find in such a way that

(62)

hence, the condition on should be

(63)

Finally, the suboptimal filter can reduce the level of noise of

the observed signal but with less distortion than the Wiener

filter if is taken such as

(64)

For the extreme cases and we obtain respectively

, no noise reduction at all but no additional distortion

added, and , maximum noise reduction with maximum

speech distortion.

Since

(65)

it follows immediately that the speech-distortion index and the

noise-reduction factor due to are

(66)

(67)

From (61), one can see that , which is

a function of only. Unlike ,

does not only depend on , but on the characteristics of both the

speech and noise signal as well.

However, using (56) and (15), we find that

(68)

Fig. 2 plots and , both as a

function of . We can see that when , the suboptimal

filter achieves of the noise reduction with the Wiener filter,

while the speech distortion is only 49% of that of the Wiener

filter. In real applications, we may want the system to achieve

maximal noise reduction, while keeping the speech distortion

as low as possible. If we define a cost function to measure the

compromise between the noise reduction and the speech distor-

tion as

(69)

It is trivial to see that the that maximizes is

(70)

In this case, the suboptimal filter achieves 75% of the noise

reduction with the Wiener filter, while the speech-distortion is
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Fig. 2. � (g )=� (g ) (dashed line) and � (h )=� (h ) (solid line),
both as a function of �.

Fig. 3. Illustration of J (�) in different SNR conditions, where both the
signal and the noise are assumed to be Gaussian random processes, and � =
0:7. The “ ” symbol in each curve represents the maximum of J (�) in the
corresponding condition.

only 25% of that of the Wiener filter. The parameter , which

is optimal in terms of the tradeoff between noise reduction and

speech distortion, can be used as a guidance in designing a prac-

tical noise reduction system for applications like ASR.

Another way to obtain an optimal is to define a dis-

criminative cost function between and

, i.e.,

(71)

where is an application-dependent constant and determines

the relative importance between the improvement in speech dis-

tortion and degradation in noise reduction (e.g., in hearing aid

applications we may tune this parameter using subjective intel-

ligibility tests).

In contrast to , which is a function of only, the cost

function does not only depend on , but on the char-

acteristics of the speech and noise signal as well. Fig. 3 plots

as a function of in different SNR conditions, where

both the signal and the noise are assumed to be Gaussian random

processes and . This figure shows that for the same ,

decreases with SNR, indicating that the higher the SNR,

the better the suboptimal filter is able to control the compromise

between noise reduction and speech distortion.

In order for the suboptimal filter to be able to control the

tradeoff between noise reduction and speech distortion,

should be chosen in such a way that

. Therefore, should satisfy .

From Fig. 3, we notice that is always positive if the

SNR is above 1 (0 dB). When the SNR drops below 1 (0 dB),

however, may become negative, indicating that the

suboptimal filter cannot work reliably in very noisy conditions

[when dB ].

Fig. 3 also shows the that maximizes in different

SNR situations. It is interesting to see that the approaches to

1 when dB , which means that the suboptimal

filter converges to the Wiener filter in very low SNR condi-

tions. As we increase the SNR, the begins to decrease. It

goes to 0 when SNR is increased to 1000 (30 dB). This is un-

derstandable. When the SNR is very high, the speech signal is

already very clean, so filtering is not really needed. By searching

the that maximizes (71), the system can adaptively achieve

the best tradeoff between noise reduction and speech distortion

according to the characteristics of both the speech and noise

signals.

B. Noise Reduction With Multiple Microphones

In more and more applications, multiple microphone signals

are available. Therefore, it is interesting to investigate deeply the

multichannel case, where various techniques such beamforming

(nonadaptive and adaptive) and spatial-temporal filtering can be

used to achieve noise reduction [13], [50]–[52]. One of the first

papers to do so is a paper written by Doclo and Moonen [13],

where the optimal filter is derived as well as a general class

of estimators. The authors also show how the generalized sin-

gular value decomposition can be used in this spatio-temporal

technique. In this section, we take a slightly different approach.

We will see, in particular, that we can reduce the level of noise

without distorting the speech signal.

We suppose that we have a linear array consisting of

microphones whose outputs are denoted as ,

. Without loss of generality, we se-

lect microphone 0 as the reference point and to simplify the

analysis, we consider the following propagation model:

(72)

where is the attenuation factor (with ), is the prop-

agation time from the unknown speech source to micro-

phone 0, is an additive noise signal at the th micro-

phone, and is the relative delay between microphones 0 and

, with .

In the following, we assume that the relative delays ,

, are known or can easily be estimated. So our first

step is the design of a simple delay-and-sum beamformer, which

spatially aligns the microphone signals to the direction of the
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speech source. From now on, we will work on the time-aligned

signals

(73)

A straightforward approach for noise reduction is to average

the signals

(74)

where . If the noises are added incoherently,

the output SNR will, in principle, increase [48]. We can further

reduce the noise by passing the signal through a Wiener

filter as was shown in the previous sections. This approach has,

however, two drawbacks. The first one is that, since for ,

in general, the output SNR will

not improve that much; and the second one, as we know already,

is speech distortion introduced by the optimal filter.

Let us now define the error signal, for the th microphone,

between the clean speech sample and its estimate as

(75)

where are filters of length and

Since , (75) becomes

(76)

where

Expression (76) is the difference between two error signals;

represents signal distortion and represents the

residual noise. The MSE corresponding to the residual noise

with the th microphone as the reference signal is

(77)

Usually, in the single-channel case, the minimization of the

MSE corresponding to the residual noise is done while keeping

the signal distortion below a threshold [28]. With no distortion,

the optimal filter obtained from this optimization is , hence

there is not any noise reduction either. The advantage of mul-

tiple microphones is that, actually, we can minimize

with the constraint that (no speech distortion at

all). Therefore, our optimization problem is

(78)

By using a Lagrange multiplier, we easily find the optimal so-

lution

(79)

where we assumed that the noise signals are not perfectly

coherent so that is not singular. This result is very similar

to the linearly constrained minimum variance (LCMV) beam-

former [51], [52]; but in (79) additional attenuation factors

have been included. Note also that this formula has been derived

from a different point of view as a multichannel extension of a

single-channel MMSE noise-reduction algorithm.

Given the optimal filter , we can write the MMSE for

the th microphone as

(80)

Since we have microphones, we have MMSEs as well.

The best MMSE from a noise reduction point of view is the

smallest one, which is, according to (80), the microphone signal

with the smallest attenuation factor.

The attenuation factors can be easily determined, if the

power of the noise signals is known, by using the formula

(81)

For the particular case where the noise is spatio-temporally

white with a power equal to , the MMSE and the normalized

MMSE for the th microphone are, respectively,

(82)

(83)

As in the single-channel case, we can define for the th mi-

crophone the speech-distortion index as

(84)

and the noise-reduction factors as

(85)

(86)
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With the optimal filter given in (79), for the particular case

where the noise is spatio-temporally white with a power equal

to , it can be easily shown that

and

It can be seen that when the number of microphones goes to in-

finity, and approach, respectively, to in-

finity and 1, and meanwhile , which indicates

that the noise can be completely removed with no signal distor-

tion at all.

VII. SIMULATION EXPERIMENTS

By defining a speech-distortion index to measure the degree

to which the speech signal is deformed and two noise-reduction

factors to quantify the amount of noise being attenuated, we

have analytically examined the performance behavior of the

Wiener-filter-based noise reduction technique. It is shown that

the Wiener filter achieves noise reduction by distorting the

speech signal. The more the noise is reduced, the more the

speech is distorted. We also proposed several approaches to

better manage the tradeoff between noise reduction and speech

distortion. To further verify the analysis, and to assess the

noise-reduction-and-speech-distortion management schemes,

we implemented a time-domain Wiener-filter system. The

sampling rate is 8 kHz. The noise signal is estimated in the

time-frequency domain using a sequential algorithm presented

in [6], [7]. Briefly, this algorithm obtains an estimate of noise

using the overlap-add technique on a frame-by-frame basis. The

noisy speech signal is segmented into frames with a frame

width of 8 ms and an overlapping factor of 75%. Each frame

is then transformed via a DFT into a block of spectral samples.

Successive blocks of spectral samples form a two-dimensional

time-frequency matrix denoted by , where subscript

is the frame index, denoting the time dimension, and is the

angular frequency. Then an estimate of the magnitude of the

noise spectrum is formulated as shown in (87) at the bottom

of the page, where and are the “attack” and “decay”

coefficients respectively. Meanwhile, to reduce its temporal

fluctuation, the magnitude of the noisy speech spectrum is

smoothed according to the following recursion (see (88), shown

Fig. 4. Noise and its estimate. The first trace (from the top) shows the
waveform of a speech signal corrupted by a car noise where SNR = 10 (10 dB).
The second and third traces plot the waveform and spectrogram of the noise
signal. The fourth and fifth traces display the waveform and spectrogram of the
noise estimate.

at the bottom of the page), where again is the “attack”

coefficient and the “decay” coefficient. To further reduce the

spectral fluctuation, both and are averaged across

the neighboring frequency bins around . Finally, an estimate

of the noise spectrum is obtained by multiplying

with , and the time-domain noise signal is obtained

through IDFT and the overlap-add technique. See [6], [7] for a

more detailed description of this noise-estimation scheme.

Fig. 4 shows a speech signal corrupted by a car noise

dB , the waveform and the spectrogram of the car noise

that is added to the speech, and the waveform and spectrogram

of the noise estimate. It can be seen that during the absence of

speech, the estimate is a good approximation of the noise signal.

It is also noticed from its spectrogram that the noise estimate

consists of some minor speech components during the presence

of speech. Our listening test, however, shows that the residual

speech in the noise estimate is almost inaudible. An apparent

advantage of this noise-estimation technique is that it does not

require an explicit voice activity detector. In addition, our exper-

imental investigation reveals that such a scheme is able to cap-

ture the noise characteristics in both the presence and absence

of speech, therefore it does not rely on the assumption that the

noise characteristics in the presence of speech stay the same as

in the absence of speech.

if

if
(87)

if

if
(88)
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Fig. 5. Noise-reduction factor and signal-distortion index, both as a function of the filter length: (a) noise reduction and (b) signal distortion. The source is a
signal recorded in a NYSE room; the background noise is a computer-generated white Gaussian random process; and SNR = 10 (10 dB).

Fig. 6. Noise-reduction factor and signal-distortion index, both as a function of the filter length: (a) noise reduction and (b) speech distortion. The source signal
is an /i:/ sound from a female speaker; the background noise is a computer-generated white Gaussian process; and SNR = 10 (10 dB).

Based on the implemented system, we evaluate the Wiener

filter for noise reduction. The first experiment investigates the

influence of the filter length on the noise reduction perfor-

mance. Instead of using the estimated noise, here we assume

that the noise signal is known a priori. Therefore, this ex-

periment demonstrates the upper limit of the performance

of the Wiener filter. We consider two cases. In the first one,

both the source signal and the background noise are random

processes in which the current value of the signal cannot be

predicted from its past samples. The source signal is a noise

signal recorded from a New York Stock Exchange (NYSE)

room. This signal consists of sound from various sources such

as speakers, telephone rings, electric fans, etc. The background

noise is a computer-generated Gaussian random process. The

results for this case are graphically portrayed in Fig. 5. It can

be seen that both the noise-reduction factor and the

speech-distortion index increase linearly with the filter length.

Therefore, a longer filter should be applied for more noise

reduction. However, the more the noise is attenuated, the more

the source signal is deformed, as shown in Fig. 5.

In the second case, we test the Wiener filter for noise reduction

in the context of speech signals. It is known that a speech signal

can be modeled as an AR process, where its current value can

be predicted from its past samples. To simplify the situation for

the ease of analysis, the source signal used here is an /i:/ sound

recorded from a female speaker. Similarly as in the previous case,

the background noise is a computer-generated white Gaussian

random process. The results are plotted in Fig. 6. Again, the

noise-reduction factor, which quantifies the amount of noise

being attenuated, increases monotonically with the filter length;

but unlike the previous case, the relationship between the noise

reduction and the filter length is not linear. Instead, the curve

at first grows quickly as the filter length is increased up to 10,

and then continues to grow but with a slower rate. Unlike ,

the speech-distortion index, i.e., , exhibits a nonmonotonic

relationship with the filter length. It first decreases to its min-

imum, and then increases again as the filter length is increased.

The reason, as we have explained in Section V, is that a speech

signal can be modeled as an AR process. Particular to this ex-

periment, the /i:/ sound used here can be well modeled with a

sixth-order LPC (linear prediction coding) analysis. Therefore,

when the filter length is increased to 6, the numerator of (34)

is minimized, as a result, the speech-distortion index reaches

its minimum. Continuing to increase the filter length leads to a
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Fig. 7. Noise reduction in a car noise condition where SNR = 10 (10 dB):
(a) clean speech and its spectrogram; (b) noisy speech and its spectrogram; and
(c) noise reduced speech and its spectrogram.

higher distortion due to more noise reduction. To further verify

this observation, we investigated several other vowels, and found

that the curve of versus filter length follows a similar shape,

except that the minimum may appear in a slightly different loca-

tion. Taking into account the sounds other than vowels in speech

that may be less predicable, we find that good performance with

the Wiener filter (in terms of the compromise between noise

reduction and speech distortion) can be achieved when the filter

length is chosen around 20. Figs. 7 and 8 plot, respectively,

the outputs of our Wiener filter system for dB

and dB , where the speech signal is from a female

speaker, the background noise is a car noise signal, and .

Fig. 8. Noise reduction in a car noise condition (same speech and noise signals
as in Fig. 7) where SNR = 1 (0 dB): (a) noisy speech and its spectrogram and
(b) noise reduced speech and its spectrogram.

The second experiment tests the noise reduction performance

in different SNR conditions. Here the speech signal is recorded

from a female speaker as shown in Fig. 7. The computer-gen-

erated random Gaussian noise is added to the speech signal to

control the SNR. The length of the Wiener filter is set to .

The results are presented in Fig. 9, where besides and ,

we also plotted the Itakura–Saito (IS) distance, a widely used

objective quality measure that performs a comparison of spec-

tral envelopes (AR parameters) between the clean and the pro-

cessed speech [53]. Studies have shown that the IS measure

is highly correlated (0.59) with subjective quality judgements

[54]. A recent report reveals that the difference in mean opinion

score (MOS) between two processed speech signals would be

less than 1.6 if their IS measure is less than 0.5 for various

codecs [55]. Many other reported experiments confirmed that

two spectra would be perceptually nearly identical if their IS dis-

tance is less than 0.1. All this evidence indicates that the IS dis-

tance is a reasonably good objective measure of speech quality.

As SNR decreases, the observation signal becomes more

noisy. Therefore, the Wiener filter is expected to have more

noise reduction for low SNRs. This is verified by Fig. 9(a),

where significant noise reduction is obtained for low SNR

conditions. However, more noise reduction would correspond

to more speech distortion. This is confirmed by Fig. 9(b) and

(d) where both the speech-distortion index and the IS distance

increase as speech becomes more noisy. Comparing the IS
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Fig. 9. Noise reduction performance as a function of SNR in white Gaussian noise: (a) noise-reduction factor; (b) speech-distortion index; (c) Itakura–Saito
distance between the clean and noisy speeches; and (d) Itakura–Saito distance between the clean and noise-reduced speeches.

TABLE I
NOISE REDUCTION PERFORMANCE WITH THE SUBOPTIMAL FILTER, WHERE ISD IS THE IS DISTANCE BETWEEN THE CLEAN SPEECH AND THE FILTERED

VERSION OF THE CLEAN SPEECH, WHICH PURELY MEASURES THE SPEECH DISTORTION DUE TO THE FILTERING EFFECT; ISD IS THE IS DISTANCE BETWEEN

THE CLEAN AND NOISE-REDUCED SPEECHES; ISD IS THE IS DISTANCE BETWEEN THE CLEAN AND NOISY SPEECH SIGNALS

distance before [Fig. 9(c)] and after [Fig. 9(d)] noise reduction,

one can see that significant gain in the IS distance has been

achieved, indicating that the Wiener filter is able to reduce

noise and improve speech quality (but not necessarily speech

intelligibility).

The third experiment is to verify the performance behavior of

the suboptimal filter derived in Section VI-A. The experimental

conditions are the same as outlined in the previous experiment.

The results are presented in Table I, where for the purpose of

comparison, besides the speech-distortion index and the noise-

reduction factor, we also show three IS distances (between the

clean and filtered speech signals denoted as

, between the clean and noise-reduced speech

signals marked as , and between the clean and noisy signals

denoted as , respectively).

One can see that the IS distance between the clean and noisy

speech signals increases as SNR drops. The reason for this is ap-

parent. When SNR decreases, the speech signal becomes more
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Fig. 10. Noise-reduction factor and signal-distortion index, both as a function of the number of microphone sensor: (a) noise reduction; (b) speech distortion. The
source signal is a speech from a female speaker as shown in Fig. 7; the background noise is a computer-generated white Gaussian process; and SNR = 10 (10 dB).

noisy. As a result, the difference between the spectral envelope

(or AR parameters) of the clean speech and that (or those) of

the noisy speech tends to be more significant, which leads to

a higher IS distance. It is noticed that is much smaller

than . This significant gain in IS distance indicates that

the use of noise reduction technique is able to mitigate noise

and improve speech quality. Comparing the results from both

the Wiener and the suboptimal Wiener filters, we can see that a

better compromise between noise reduction and speech distor-

tion is accomplished by using the suboptimal filter. For example,

when dB , the suboptimal filter with

has achieved a noise reduction of 2.0106, which is 82% of that

with the Wiener filter; but its speech-distortion index is 0.0006,

which is only 54% of that of the Wiener filter; the corresponding

IS distance between the clean and filtered speech is 0.0281,

which is only 17% of that of the Wiener filter. From the anal-

ysis shown in Section VI-A, we know that both

and are independent of SNR. This can be easily

verified from Table I. However, it is noted that

decreases with SNR, which may indicate that the suboptimal

filter works more efficiently for higher SNR than for lower SNR

conditions.

The last experiment is to investigate the performance of the

multichannel optimal filter given in (79). Since the focus of

this paper is on reduction of additive noise, the reverberation

effect is not considered here. To simplify the analysis, we as-

sume that we have an equispaced linear array, which consists of

ten microphone sensors. The spacing between adjacent micro-

phones is cm. There is only a single speech source (a

speech signal from a female speaker) propagating from the far

field to the array with an incident angle (the angle between the

wavefront and the line joining the sensors in the linear array)

of . We further assume that all the microphone sen-

sors have the same signal and noise power. The sampling rate

is 16 kHz. For the experiment, we choose Microphone 0 as the

reference sensor, and synchronize the observation signals ac-

cording to the time-difference-of-arrival (TDOA) information

estimated using the algorithm presented in [56]. We then pass

the time-aligned observation signals through the optimal filter

given in (79) to extract the desired speech signal. The results

for this experiments are graphically portrayed in Fig. 10. It can

be seen that the noise-reduction index increases linearly with

the number of microphones, while the speech distortion is ap-

proximately 0. Comparing Fig. 10 with 9, one can see that in the

condition where dB , the multichannel optimal

filter with 4 sensors achieves a noise reduction similar to the op-

timal single-channel Wiener filter, but with no speech distortion,

which shows the advantage of using multiple microphones.

VIII. CONCLUSION

The problem of speech enhancement has attracted a consider-

able amount of research attention over the past several decades.

Among the numerous techniques that were developed, the op-

timal Wiener filter can be considered as one of the most funda-

mental noise-reduction approaches. It is widely known that the

Wiener filter achieves noise reduction by deforming the speech

signal. However, so far not much has been said on how the

Wiener filter really works. In this paper we analyzed the inherent

relationship between noise reduction and speech distortion with

the Wiener filter. Starting from the speech and noise estima-

tion using the Wiener theory, we introduced a speech-distortion

index and two noise-reduction factors, and showed that for the

single-channel Wiener filter, the amount of noise attenuation is

in general proportional to the amount of speech degradation, i.e.,

more noise reduction incurs more speech distortion.

Depending on the nature of the application, some practical

noise-reduction systems may require very high-quality speech,

but can tolerate a certain amount of noise. While other systems

may want speech as clean as possible even with some degree of

speech distortion. Therefore, it is necessary to have some man-

agement schemes to control the contradicting requirements be-

tween noise reduction and speech distortion. To do so, we have

discussed three approaches. If we know the linear prediction co-

efficients of the clean speech signal or they can be estimated

from the noisy speech, these coefficients can be employed to

achieve noise reduction while maintaining a low level of speech

distortion. When no a priori knowledge is available, we can

use a suboptimal filter in which a free parameter is introduced

to control the compromise between noise reduction and speech
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distortion. By setting the free parameter to 0.7, we showed that

the suboptimal filter can achieve 90% of the noise reduction

compared to the Wiener filter; but the resulting speech distor-

tion is less than half compared to the Wiener filter. In case that

we have multiple microphone sensors, the multiple observations

of the speech signal can be used to reduce noise with less or even

no speech distortion.

APPENDIX

RELATIONSHIP BETWEEN THE A PRIORI

AND THE A POSTERIORI SNR

Theorem: With the Wiener filter in the context of noise re-

duction, the a priori SNR given in (12) and the a posteriori SNR

defined in (42) satisfy

(89)

Proof: From their definitions, we know that all three ma-

trices, , , and are symmetric, and positive semi-defi-

nite. We further assume that is positive definite so its inverse

exists. In addition, based on the independence assumption be-

tween the speech signal and noise, we have .

In case that both and are diagonal matrices, or is a

scaled version of (i.e., ), it can be easily

seen that . Here, we consider more complicated

situations where at least one of the and matrices is not di-

agonal. In this case, according to [49], there exists a linear trans-

formation that can simultaneously diagonalize , , and .

The process is done as follows.

(90)

where again is the identity matrix

...
...

(91)

is the eigenvalue matrix of , with

, is the eigenvector matrix of , and

(92)

Note that is not necessarily orthogonal since is not

necessarily symmetric. Then from the definition of SNR and

, we immediately have

(93)

and

(94)

where

...
...

and

...
...

are two diagonal matrices. If for the ease of expression we de-

note as , then both SNR and can

be rewritten as

(95)

Since , ,

, and all are nonnegative numbers, as

long as we can show that the inequality

(96)

holds, then . Now we prove this inequality by

way of induction.

• Basic Step: If ,

Since , it is trivial to show that

where “ ” holds when . Therefore
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so the property is true for , where “ ” holds

when any one of and is equal to 0 (note that

and cannot be zero at the same time since is

invertible) or when .

• Inductive Step: Assume that the property is true for

, i.e.,

We must prove that it is also true for . As a

matter of fact

(97)

Using the induction hypothesis, and also the fact that

hence

(98)

where “ ” holds when all the ’s corresponding to nonzero

are equal, where . That completes the

proof. Even though it can improve the SNR, the Wiener filter

does not maximize the a posteriori SNR. As a matter of fact,

(42) is well known as the generalized Rayleigh quotient. So

the filter that maximizes the a posteriori SNR is the eigen-

vector corresponding to the maximum eigenvalue of the matrix

. However, this filter typically gives rise to large speech

distortion.
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