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Abstract

The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS)
proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their
functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS
genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome
wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were
identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed
that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic
distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor
bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in
Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic
combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the
recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A
higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by
genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS
genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in
hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for
improvement of bread-making quality in wheat breeding.
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Introduction

Bread wheat (Triticum aestivum L., AABBDD, 2n= 6x =42)

provides basic staple food for a large proportion of the world

population. A wide range of daily food products, such as bread,

cakes, noodles and pastas, is prepared using dough that is generated

by mixing wheat flour with water. The viscoelastic properties of

dough, which are mainly affected by the strength and quantity of

gluten, determine its suitability for being processed into different

types of food products [1]. Through many decades of genetic and

breeding studies, researchers have found that the prolamin seed

storage proteins play important roles in determining gluten strength

and quantity (and hence the viscoelastic properties of dough and

end use qualities) of commercial wheat varieties [2]. The prolamins

have been classified into two groups (gliadins and glutenins)

according to their solubility in aqueous/alcohol solutions [3]. The

gliadins are monomeric proteins, and contribute mainly to dough

extensibility [4–6]. By contrast, the glutenins are polymeric

proteins, and play a major role in dough elasticity [1]. The

glutenins are further divided into high molecular weight subunits

(HMW-GS) and low molecular weight subunits (LMW-GS) based

on differences in molecular mass [7,8]. In bread wheat, the genes

encoding HMW-GS proteins are located at the orthologous loci

Glu-A1, Glu-B1 and Glu-D1, each containing two paralogous genes

encoding one x- and one y-type subunit [1]. Through genetic,

breeding and transgenic studies, it has been found that the

expression of certain subunits (i.e., 1Dx5, 1Ax1, 1Bx7OE) is

correlated with superior bread-making quality [9–12]. Specific

selections of these subunits in conventional and molecular breeding

programs have contributed to the genetic improvement of bread-

making quality in worldwide wheat production [7,13–15].

Compared to HMW-GS proteins, substantially more LMW-

GSs are expressed in the grains of bread wheat. The primary

structure of a typical LMW-GS is generally composed of a signal

peptide (removed from mature protein), a relatively short N-

terminal domain, a central repetitive domain, and a C-terminal
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domain. Based on the first amino acid residue in the mature

protein, LMW-GSs have been grouped into three types, LMW-m,

LMW-s and LMW-i, which have methionine, serine and

isoleucine at the beginning of their mature subunit proteins,

respectively [16–18]. The three types of subunits also differ

significantly in other important aspects. The molecular mass of

LMW-m subunits (30,40 kD) is generally smaller than that of

LMW-s proteins (35,45 kD). The primary structure of LMW-i

subunits differ from that of LMW-s and LMW-m proteins in

lacking the short N-terminal domain [19]. Central to the structure

and function of typical LMW-GSs is the presence of a number of

conserved cysteine residues in their proteins, but the relative

positions of these cysteine residues may vary among different types

of subunits [20,21].

The multiplicity of LMW-GSs and the difficulty in distinguishing

LMW-GSs from gliadins in SDS-PAGE have complicated efforts to

understand the physical and genetic organization of the chromo-

somal loci containing LMW-GS genes. It is now generally accepted

that the great majority of typical LMW-GSs is encoded by the

genes situated at the orthologous Glu-3 loci (Glu-A3, Glu-B3, Glu-D3)

on the short arms of group 1 chromosomes (1AS, 1BS and 1DS)

[21,22]. Glu-A3, Glu-B3 and Glu-D3 are closely linked with the Gli-

A1, Gli-B1 and Gli-D1 loci, respectively, which encode gliadins

[22,23–25]. Through sequencing bacterial artificial chromosome

(BAC) clones derived from the short arms of 1A and 1B of the

tetraploid wheat cultivar (cv.) Langdon, Gao et al. [26] provided the

first insight into the physical relationships of Glu-3 and Gli-1 genes.

In a 265 kb BAC contig derived from the short arm of 1AS, there

were five gliadin and gliadin-like genes and two typical LMW-GS

genes, and in a 140 kb genomic DNA fragment derived from 1BS,

there were eight gliadin genes and one typical LMW-GS gene [26].

The gliadin genes appeared to be closely spaced, whereas the two

LMW-GS genes in the sequenced 1AS region were separated from

each other by about 100 kb [26]. While studying the Glu-3 locus of

Triticum monococcum, which is diploid and possesses a genome

homoeologous to the A genome of common wheat, Wicker et al.

[27] also found a large intergenic distance between two neighboring

LMW-GS genes (approximately 150 kb). Moreover, non-prolamin

genes (such as Pm3 analog, LrK10) and non-coding genetic markers

(i.e., SFR159, WHS179) occurred in close proximities to LMW-GS

genes [26–29]. Together, these observations indicate that the Glu-

A3 and B3 loci may be highly complex and their size may be quite

large. To date, no sequencing data have been reported for any BAC

clones containing genomic DNA from the Glu-D3 locus of wheat (or

related Triticeae species). In addition, the numbers of BAC clones

sequenced in the reported studies are generally small (less than

three [26,27]), making it difficult to examine the detailed

organizational characteristics of LMW-GS genes at the Glu-3 loci.

The genetic organization of LMW-GS genes at the othologous Glu-

3 loci and their recombination characteristics are also not well

understood. Although many investigators have placed Glu-3

markers in linkage maps of group 1 chromosomes constructed

using specific genetic populations [30-38], generally no information

is available on the number and molecular structure of the LMW-

GS genes represented by such Glu-3 markers. One study mapped

three LMW-GS genes on the short arm of chromosome 1D (1DS)

of Aegilops tauschii, the D genome donor of hexaploid wheat [39,40],

and suggested the occurrence of high recombination in the

chromosomal region harboring Glu-D3 loci [28]. However, no

detailed information is currently available on the recombination

characteristics of LMW-GS genes at the Glu-A3 or B3 loci.

Because of the importance of LMW-GS genes in bread-making

quality (see below), considerable effort has been devoted to

investigate the numbers and characteristics of the LMW-GS genes

in different bread wheat varieties. For example, Ikeda et al. [41]

found 12 LMW-GS genes (three at Glu-A3, two at Glu-B3, and

seven at Glu-D3) in cv. Norin 61 by analyzing PCR products

amplified with oligonucleotide primers specific for this group of

genes. By analyzing selected BAC clones, Huang and Cloutier [42]

identified 12 active and seven inactive LMW-GS genes in cv.

Glenlea. Among the 12 active members, nine were assigned to Glu-

D3 (GenBank accessions EU189090-EU189098), two to Glu-B3

(EU189088-EU189089), and one to Glu-A3 (EU189087). Consis-

tent with the previous findings [26,27], a large intergenic distance

(about 81 kb) was found between any two neighboring LMW-GS

genes in Glenlea. Both studies revealed that Glu-D3 contained

more LMW-GS genes than Glu-A3 or Glu-B3. In line with these

findings, seven distinct genes encoding LMW-GS proteins were

found in an Aegilops tauschii accession [43]. Concomitant to the

attempts to find the total number of LMW-GS genes in particular

genotypes, another line of research was to identify distinct LMW-

GS genes and their haplotypes in large groups of wheat varieties.

Using this approach, a total of six active Glu-D3 LMW-GS genes

with 12 haplotypes were isolated [44,45]. The six Glu-D3 LMW-

GS genes encode five m- and one s-type subunits. Four active Glu-

B3 LMW-GS genes with 17 haplotypes were reported [46]. The

four Glu-B3 LMW-GS genes specify one m- and three s-type

subunits. One early study identified seven active Glu-A3 LMW-GS

alleles (all coding for i-type subunits) [47], but it is still unclear as to

how many distinct LMW-GS genes were originally involved.

Collectively, the above data indicate that each Glu-3 locus may

contain multiple LMW-GS genes with rich allelic variations, but

do not provide a complete elucidation of the LMW-GS genes at

individual Glu-3 loci in particular wheat genotypes, and do not

establish specific correspondence between LMW-GS genes and

their protein products accumulated in the seeds.

The function of LMW-GS proteins in controlling end use

qualities of wheat grains has been studied in both tetraploid and

hexaploid varieties. Pioneering investigations in durum wheat

identified a superior LMW-GS allele (LMW-2) conferring improved

pasta-making quality [48,49]. The functional superiority of LMW-2

was mainly associated with the expression of more LMW-GS

species from its locus than the contrasting allele [18,21,50,51]. In

bread wheat, multiple protein alleles were discovered for each of the

three Glu-3 loci based on their differences in electrophoretic

mobility in SDS-PAGE [52], and these alleles differed in their

effects on certain aspects of bread-making quality [53–55].

However, it is still not clear if the particular allele per se, or the

locus in which the examined allele is located, is responsible for

observed functional differences. More recent breeding, quantitative

genetic, and modeling studies generally found positive contributions

of Glu-3 loci to parameters related to dough strength, extensibility

and bread-making quality [13,30,32–36,38,56,57]. But the molec-

ular genetic mechanisms underlying the functional differences of

orthologous or allelic Glu-3 loci are still not well investigated.

From the information presented above, the main objectives of

this work were to gain new information on the organization and

recombination characteristics of LMW-GS genes at Glu-3 loci, and

on the molecular genetic mechanism underlying their function in

bread-making quality. To achieve these goals, complementary

approaches (gene identification through sequencing selected BAC

clones and PCR amplification, transcript profiling, and proteomic

analysis) were used to study the LMW-GS genes and their

expression in the seeds of bread wheat cultivars Xiaoyan 54 and

Jing 411, with superior and poor bread-making qualities,

respectively [58–60]. The relative genetic positions and recombi-

nation characteristics of LMW-GS genes at orthologous Glu-3 loci

were studied in Xiaoyan 54. The differential contributions of

LMW-GS Genes in Wheat
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allelic Glu-3 loci to Zeleny sedimentation value (an indicator of

gluten strength and bread volume) were investigated by association

analysis using recombinant inbred lines (RILs) developed from a

cross between Xiaoyan 54 and Jing 411.

Results

Identification and analysis of BAC clones containing
LMW-GS genes
A BAC library of Xiaoyan 54 was constructed and subjected to

several rounds of PCR screening using primers (Table S1) specific

for LMW-GS genes, resulting in the identification of 27 positive

BAC clones (Table 1). Pulse field gel electrophoresis (PFGE)

analysis revealed that the insert size of these clones ranged from 25

to 140 kb. Southern hybridization on BAC DNA digested with

NotI showed that the majority of the analyzed clones yielded one

hybridizing band, except for clone D1862-8-2 that showed two

positive bands (Figure S1). Similar results were obtained when the

hybridization was performed with DNA samples digested with two

restriction enzymes (NotI, SalI), although in this case two

hybridizing bands were observed for BAC clone B57-6-5 (Figure

S1). Collectively, the data indicated that there may be one to two

LMW-GS genes in each of the selected BAC clones. This finding is

consistent with previous observations on LMW-GS genes in the

BAC clones derived from Ae. tauschii [43], the tetraploid wheat cv.

Langdon [26], and the bread wheat cv. Glenlea [42].

The LMW-GS gene sequences in the positive BACs were

amplified by high fidelity PCR with the same primers used in BAC

library screening. The resultant PCR products were cloned and

sequenced. Based on similarity analysis of the nucleotide

sequences, 12 different LMW-GS gene sequences, representing

12 unique LMW-GS genes, were identified from 27 BACs. The

suggested names of the 12 genes are given in Table 1. The 27 BAC

clones were then assigned to individual group 1 chromosomes (1A,

1B, and 1D) by PCR mapping using genomic DNA samples

extracted from the nulli-tetrasomic (NT) lines of group 1

chromosomes of Chinese Spring (CS) and the markers derived

from LMW-GS genes or BAC end sequence information (Table

S2). The numbers of BAC clones assigned to 1A, 1B and 1D

chromosomes were five, six, and 16, respectively (Table 1).

Thirteen BAC clones, likely representing the maximum

coverage of Glu-A3 (four clones), Glu-B3 (two clones), and Glu-D3

(seven clones) loci (Table 1), were chosen for DNA sequencing

analysis. Twelve BAC clones were completely sequenced. The

insert in B57-6-5 was only partially sequenced due to the presence

of too many repeat sequences. Examination of BAC sequence data

verified the nucleotide sequences of 12 LMW-GS genes (A3-1, A3-

2, A3-3, B3-1, B3-2, D3-1, D3-2, D3-3, D3-4, D3-5, D3-6 and D3-

7, Table 1) determined initially using PCR amplified fragments

(Accession numbers FJ755302, FJ755303, FJ755304, FJ755306,

FJ755309, FJ755310, FJ755311, FJ755312, FJ75513, FJ755314,

FJ755315, FJ755316 ). In addition, another LMW-GS gene

sequence (B3-3, accession number FJ755307) with its coding

region interrupted by transposon insertion was found in B57-6-5.

Analysis of LMW-GS genes and their associations with
known markers and genes
Sequence analysis revealed that A708-12-2, A1380-8-2 and

A1154-1-1 from chromosome 1A were overlapping BACs, which

formed a contig (Ctg708, Figure 1A) of ,210 kb and contained

Table 1. The 14 LMW-GS genes of Xiaoyan 54 isolated by BAC sequencing and PCR amplification, and the main characteristics of
subunits deduced from active LMW-GS gene members.

Gene BAC clone a
Chromosomal

location

Subunit

(type/aa) Repeat unit

Deduced mass

(Da)

A3-1 A1056-11-5 (30) 1AS m/304 13 34277.8

A3-2 A708-12-2 (113), A1380-8-2 (116) i/358 20 41248.3

A3-3 A1154-1-1 (43), A1154-1-2 (35) – c – –

A3-4 NI b i/390 23 45054.7

B3-1 B229-8-7 (125), B498-5-8 (65),
B1354-3-6 (80), B1354-4-8 (80), B1777-3-8 (60)

1BS m/350 19 39828.4

B3-2 B57-6-5 (80) s/392 26 44529.7

B3-3 B57-6-5 (80) – d – –

D3-1 D78-6-8 (64), D357-11-6 (83),
D570-9-3 (75)

1DS m/365 21 41689.2

D3-2 D1862-8-4 (62) m/304 15 34609.6

D3-3 D1862-8-4 (62) s/354 21 40024.3

D3-4 D43-2-5 (25), D510-5-7 (80),
D528-3-6 (50), D603-1-8 (85),
D722-12-7 (45), D769-8-7 (65),
D774-5-8 (100), D1083-4-6 (30)

m/298 13 33853.8

D3-5 D479-7-6 (53), D948-5-8 (140) – e – –

D3-6 D1126-1-3 (106) m/350 18 39805.2

D3-7 D1220-5-2 (70) m/299 13 33655.2

aThe BAC clones in bold were selected for DNA sequencing analysis. The insert sizes (kb) are in brackets.
bA3-4 was isolated by PCR amplification, and assigned to 1AS through genetic mapping.
cAn i-type subunit pseudogene caused by the presence of a premature stop codon in the coding region.
dA s-type subunit pseudogene due to transposon insertion in the coding region.
eA m-type subunit pseudogene due to the presence of frame shift mutation in the coding region.
doi:10.1371/journal.pone.0013548.t001
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Figure 1. The organizations of LMW-GS genes of Xiaoyan 54 in 13 representative BAC clones. Diagrams illustrating the organizations of
the LMW-GS genes (including both active and inactive members) of Xiaoyan 54 in 13 representative BAC clones, in relation to the markers (SFR159
and WHS179) and genes (LrK10, Pm3 analog, TdLRR-1B disease resistance gene, and the gene encoding GPI-anchored protein) found in the vicinities
of LMW-GS genes in previous studies. Sequence gaps exist in the BAC clone B57-6-5 (drawn as a dashed line). The remaining 12 BAC clones were fully
sequenced. If available, the physical distances (kb) between two neighboring genes or between a marker and its adjacent gene are given (in purple).
The arrows indicate the predicted transcriptional directions of the genes. (A) The organization patterns of three Glu-A3 LMW-GS gene members. A
WHS179 marker was present in BAC clone A1056-11-5, and its physical distance to A3-1 was 1.5 kb. A3-2 and A3-3 occur in the BAC contig Ctg708
formed by three BAC clones (A708-12-2, A1380-8-2, A1154-1-1). (B) The organization patterns of three Glu-B3 LMW-GS gene members (B3-1, B3-2, B3-
3). The physical distances between neighboring genes or the adjacent gene and marker were not determined in B57-6-5 because of the presence of
sequence gaps. (C) Organization patterns of seven Glu-D3 LMW-GS gene members (D3-1, D3-2, D3-3, D3-4, D3-5, D3-6, D3-7). D3-1 was found in the
contig Ctg357 composed of two BAC clones (D357-11-6, D78-6-8).
doi:10.1371/journal.pone.0013548.g001

LMW-GS Genes in Wheat

PLoS ONE | www.plosone.org 4 October 2010 | Volume 5 | Issue 10 | e13548



A3-2 and A3-3 (Figure 1A). The distance between A3-2 and A3-3

was 67.6 kb. By contrast, BAC clone A1056-11-5, containing A3-1

(Figure 1A), was a singleton. Within Ctg708, A3-2 and A3-3 were

each closely associated with marker SFR159 (less than 4 kb

between marker and gene). There were two Pm3 disease resistance

gene analogs upstream of A3-2 and A3-3 (Figure 1A). WHS179

was present in A1056-11-5, but not found in Ctg708 (Figure 1A).

Conceptual translation showed that A3-1 and A3-2 encoded m-

and i-type subunits, respectively (Table 1). A3-3 represented an i-

type subunit pseudogene because its coding region was disrupted

by a premature stop codon (Table 1). The close relationship of

SFR159 and the LMW-GS gene in Ctg708 resembled that at the

Glu-Am3 locus of T. monococcum [27]. However, there were three

LMW-GS genes at Glu-Am3 (TmGlu-A3-1, 2, 3), compared to the

two LMW-GS genes in Ctg708. To test if there was another

LMW-GS gene located adjacent to Ctg708, a genomic PCR

experiment was conducted using primers specific for i-type LMW-

GS gene sequences (Table S1). After cloning and sequencing the

amplified fragments, a third i-type LMW-GS gene sequence,

sharing more than 88% nucleotide identity to A3-2 and A3-3, was

identified. This newly identified LMW-GS gene (A3-4, accession

number FJ755305) contained an intact ORF, giving rise to an i-

type subunit upon conceptual translation (Table 1).

For the two 1B BAC clones (Table 1), B229-8-7 (containing B3-

1) was 124 kb in length, and contained one WHS179 marker but

not SFR159 (Figure 1B). Although not fully assembled, B57-6-5

(containing B3-2 and B3-3) carried several non prolamin genes,

including one Pm3 analog, two similar TdLRR-1B sequences [26],

one ORF for a putative GPI-anchored protein, and one SFR159

marker (Figure 1B). The co-presence of LMW-GS gene, Pm3

analog, TdLRR-1B, SFR159 and GPI-anchored protein ORF in

B57-6-5 resembled the structural organization in BAC clone

BAC419P13 derived from the Glu-B3 locus of durum wheat [26],

except that B57-6-5 possessed two LMW-GS genes and two

TdLRR-1B sequences. Based on this similarity, the gene and

marker order in B57-6-5 was tentatively arranged as shown in

Figure 1B. B3-1 and B3-2 encoded m- and s-type subunits,

respectively, whereas B3-3 represented a s-type subunit pseudo-

gene due to transposon insertion in its coding region (Table 1).

For the seven 1D clones subjected to DNA sequencing analysis

(Table 1), D78-6-8 and D357-11-6 formed a contig (Ctg357),

which was about 128.7 kb and contained D3-1 (Figure 1C). D3-2

and D3-3 were found in D1862-8-4 with a distance of 15.9 kb,

whereas D3-4, D3-5, D3-6 and D3-7 were in D510-5-7, D479-7-6,

D1126-1-3 and D1220-5-2, respectively (Figure 1C). WHS179 was

found in Ctg357, D510-5-7, D479-7-6 and D1220-5-2, whereas

SFR159 was present only in D1862-8-4 (Figure 1C). Pm3 analogs

were detected in D1862-8-4 and D1126-1-3 (Figure 1C). Among

the six Glu-D3 LMW-GS genes with intact ORF, five (D3-1, D3-2,

D3-4, D3-6, D3-7) encoded m-type subunits, one (D3-3) specified a

s-type subunit, and the remaining one (D3-5) was a m-type subunit

pseudogene because of the presence of a premature stop codon in

the coding region (Table 1).

Genetic mapping and recombination of LMW-GS genes
at Glu-3 loci
A mapping strategy, utilizing the 182 RILs from the Xiaoyan

546 Jing 411 cross, was undertaken to map the 14 LMW-GS

genes at Glu-3 loci in Xiaoyan 54. This was facilitated by the

development of specific and polymorphic markers for A3-1, A3-2/

A3-3/A3-4, B3-1, B3-2/B3-3, D3-1, D3-2/D3-3, D3-4, D3-5, D3-6

or D3-7 (Table S2). A preliminary investigation showed that A3-2,

A3-3 and A3-4 were inherited as a single genetic cluster in the 182

RILs (data not shown). A polymorphic marker developed from the

A3-2 sequence was therefore used for mapping the location of this

cluster. A similar situation occurred for B3-2/B3-3 and D3-2/D3-

3. Consequently, the markers derived from the B3-2 and D3-2

sequences were used for investigating the locations of the B3-2/

B3-3 and D3-2/D3-3 clusters, respectively. To facilitate the

comparisons of our mapping data with those published previously,

the positional relationships between the LMW-GS genes isolated

in this work and the microsatellite markers previously mapped to

the 1AS, 1BS or 1DS chromosome arms were also investigated. A

total of 23 markers (seven on 1AS, 11 on 1BS, and five on 1DS),

exhibiting polymorphisms between Xiaoyan 54 and Jing 411, was

mapped along with the different LMW-GS genes (see below).

Among the four LMW-GS genes at Glu-A3, A3-1 was proximal,

whereas A3-2/A3-3/A3-4 was distal, to the centromere (Figure 2A).

Recombination occurred between A3-1 and the A3-2/A3-3/A3-4

cluster, with an estimated genetic distance of 1.7 cM (Figure 2A).

Seven previously reported microsatellite markers were proximal to

A3-1 (Figure 2A). The cumulative genetic distance from A3-2/A3-

3/A3-4 to Xcfa2158.1 was 38.3 cM.

Among the three LMW-GS genes at Glu-B3, B3-1 was more

proximal to the centromere than the B3-2/B3-3 cluster (Figure 2B).

The estimated genetic distance between B3-1 and B3-2/B3-3 was

0.6 cM. Three previously described Xswes markers were more

distal to the centromere than B3-2/B3-3 (Figure 2B). Another set

of eight published microsatellite markers were assigned to locations

proximal to B3-1 (Figure 2B). The total genetic distance covered

from B3-2/B3-3 to Xgwm273.3 was 64.9 cM (Figure 2B).

For the seven LMW-GS genes at Glu-D3, D3-1 was proximal to

other six members. No recombination was detected between D3-6

and D3-7 (Figure 2C). By contrast, recombinations occurred

between D3-1 and D3-2/D3-3, D3-2/D3-3 and D3-4, D3-4 and

D3-5, or D3-5 and D3-6, with the calculated genetic distances

ranging from 0.3 to 2.7 cM (Figure 2C). In total, the seven LMW-

GS genes at Glu-D3 covered 4.9 cM. Five previously reported

microsatellite markers were mapped to locations proximal to D3-1,

and covering a total genetic distance of 42.8 cM extending from

D3-6/D3-7 to Xcfd61.1 (Figure 2C).

A comparison of the data displayed in Figures 1 and 2 reveal

that the WHS179 marker is present in all three genes (A3-1, B3-1,

D3-1) located closest to the centromere. This is consistent with the

previous finding showing that, on the short arm of group 1

chromosomes, WHS179 is proximal to SFR159 [29]. The D3-4

and D3-5 genes, which were accompanied by WHS179 but not

LrK10 (Figure 1C), were mapped to a location more distal than

D3-1 which is associated with both WHS179 and LrK10

(Figure 2C). This agrees with the observation made by Spielmeyer

et al. [28], indicating that there are at least two WHS179 markers

on the short arm of chromosome 1D in Ae. tauschii, with the one

proximal to the centromere being associated with LrK10 [28].

Primary structure analysis and comparisons with
published LMW-GS genes
Our results showed that the LMW-GS gene family in Xiaoyan

54 was composed of at least 14 distinct members. Except for A3-3,

B3-3 and D3-5, 11 members possessed intact ORF, coding for two

i-type, seven m-type, and two s-type subunits, respectively

(Table 1). The molecular mass of the deduced subunits varied

from 33,655.2 to 45,054.7 Da (Table 1). Amino acid sequence

comparisons showed that the primary structure of the deduced

subunits generally resembled that described previously for typical

i-, m- or s-type LMW-GS proteins (Figure S2). All 11 deduced

subunits had intact repetitive and C-terminal domains (Figure S2),

although the number of repeat units differed among the members

(Table 1). Furthermore, eight cysteine residues were present in
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each of the 11 deduced proteins (Figure S2). A3-1, predicted to

encode a m-type subunit with a putative N-terminal domain

sequence MDTSCIPGLERPW, was located at Glu-A3 (Table 1,

Figures 2A and S2).

The 14 LMW-GS genes of Xiaoyan 54 were compared mainly

to the seven Glu-A3 alleles (Glu-A3a to Glu-A3g) reported by Zhang

et al. [47], the four Glu-B3 genes (GluB3-1 to GluB3-4) defined by

Wang et al. [46], or the six Glu-D3 genes (GluD3-1 to GluD3-6)

identified by Zhao et al. [44,45]. This was done because the three

groups of genes (alleles) were all isolated from wheat genotypes

with diverse genetic backgrounds, and were more likely to capture

the molecular diversity of LMW-GS genes in the overall wheat

gene pool. Among the four Glu-A3 genes of Xiaoyan 54, nucleotide

sequence comparisons showed that A3-2 and A3-3 both exhibited

the highest identity (.99%) to Glu-A3d, whereas A3-4 displayed

the highest identity (94.3%) to Glu-A3b (Table S3). However, the

identities of A3-1 to the seven Glu-A3 alleles were generally less

than 60% (Table S3). Actually, A3-1 was more than 97% identical

to the two Glu-A3 LMW-GS sequences represented by GenBank

accessions AB062868 (from the Glu-A3 locus of the bread wheat

cv. Norin 61 [20]) and AJ293099 (from the Glu-A3 locus of the

durum wheat cv. Langdon), respectively.

Similar nucleotide sequence comparisons suggested that, among

the three Glu-B3 genes of Xiaoyan 54, B3-1 was most similar to

GluB3-4 (94.3% identity), whereas both B3-2 and B3-3 were most

similar to GluB3-3 (.99% identities) (Table S3). Among the seven

Glu-D3 genes of Xiaoyan 54, D3-1, D3-2, D3-3, D3-6 and D3-7

displayed the highest nucleotide sequence identities to GluD3-5

Figure 2. Relative genetic positions of the LMW-GS genes of Xiaoyan 54 in homoeologous group 1 chromosomes. The names of the
LMW-GS genes and previously published markers are on the right side, whilst the genetic distance values (cM) between neighboring genes (gene and
marker, or markers) are on the left. The hatched areas in the three maps, representing chromosomal regions with large map distances (.10 cM), are
not drawn in scale. (A) The map positions of four Glu-A3 LMW-GS genes in relation to seven published markers on 1AS. (B) The map positions of three
Glu-B3 LMW-GS genes in relation to 11 published markers on 1BS. (C) The map positions of seven Glu-D3 LMW-GS genes in relation to five published
markers on 1DS.
doi:10.1371/journal.pone.0013548.g002
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(99.9%), GluD3-2 (99.4%), GluD3-3 (99.8%), GluD3-1 (99.7%) and

GluD3-4 (99.1%), respectively (Table S3). D3-4 and D3-5 both

showed the highest nucleotide sequence identities (.97%) to

GluD3-6 (Table S3).

For the LMW-GS genes that shared higher than 90%

nucleotide sequence identities in the above comparisons, their

deduced protein products were generally of the same type (Table

S3). Thus, A3-1 and the two sequences represented by AB062868

and AJ293099 all specified m-type subunits (with an identical N-

terminal domain sequence MDTSCIPGLERPW). A3-2 and Glu-

A3d, as well as A3-4 and Glu-A3b, encoded i-type subunits. B3-1

and GluB3-4 coded m-type subunits, whereas B3-2 and GluB3-3

yielded s-type subunits. D3-1, D3-2, D3-4/D3-5, D3-6 and D3-7,

like their respective closest counterparts GluD3-5, GluD3-2, GluD3-

6, GluD3-1 and GluD3-4, all encoded m-type subunits, whereas

D3-3 and GluD3-3 specified s-type subunits.

Transcriptional profiles of LMW-GS genes during grain
development
Further to the experiments described above, it was relevant and

important to study the transcription profiles of LMW-GS genes in

the developing seeds, and to compare the transcriptional patterns of

these genes in wheat varieties differing in bread making quality. To

achieve these goals, semiquantitative RT-PCR experiments were

performed using gene-specific oligonucleotide primers (Table S1)

designed for the 11 active LMW-GS genes of Xiaoyan 54. Figure 3

shows that the 11 members were all highly transcribed in the

developing grains of Xiaoyan 54. By contrast, in the developing

grains of Jing 411, the transcripts of A3-2, D3-6 and D3-7 were

undetectable, and the relative transcript levels of A3-1 andD3-4were

both substantially lower than those in Xiaoyan 54, especially at 21

days post anthesis (DPA) (Figure 3). The data displayed in Figure 3

are representative of four independent RT-PCR experiments.

Examination of LMW-GS gene sequences in Jing 411
The RT-PCR data described above indicated that there could

be substantial differences between Xiaoyan 54 and Jing 411 in

their LMW-GS genes. To investigate this possibility, genomic

PCR experiments were conducted to amplify the nucleotide

sequences of LMW-GS genes in Jing 411, using the primers

derived from the 14 LMW-GS genes of Xiaoyan 54 (Table S1).

Eleven LMW-GS gene sequences, which were alleles correspond-

ing to A3-1, A3-2, A3-4, B3-1, B3-2, B3-3, D3-1, D3-2, D3-3, D3-4

and D3-5, were amplified from Jing 411 (Accession numbers

FJ907547, FJ907548, FJ907549, FJ907550, FJ907551, FJ907552,

FJ755317, FJ755318, FJ755319, FJ755322, FJ755323). However,

no PCR products were obtained from Jing 411 using the primers

specific for A3-3, D3-6 or D3-7. More detailed bioinformatic

analysis of the LMW-GS gene sequences amplified from Jing 411

revealed that the A3-1, A3-2 and D3-4 alleles were pseudogenes

due to the presence of premature stop codon or frame shift

mutations in their coding regions. Like in Xiaoyan 54, D3-5 was

also a pseudogene in Jing 411, but B3-3, a pseudogene in Xiaoyan

54, possessed an intact ORF in Jing 411. Taken together, the

above analysis suggested that the total number of inactive LMW-

GS genes in Jing 411 was four (i.e., A3-1, A3-2, D3-4 and D3-5),

compared to three (i.e., A3-3, B3-3 and D3-5) in Xiaoyan 54. The

increased number of pseudogenes and the absence of A3-3, D3-6

and D3-7 alleles in Jing 411 were consistent with the findings of

fewer transcribed LMW-GS genes in the developing grains of this

variety in the foregoing RT-PCR assay (Figure 3). The amino acid

sequence identities for the proteins deduced from the active

LMW-GS genes of Xiaoyan 54 and Jing 411 were 91.51% for

A3-4 alleles, 93.94% for B3-1 alleles, 92.44% for B3-2 alleles,

99.71% for D3-1 alleles, 100% for D3-2 alleles, and 92.43% for

D3-3 alleles.

Matching LWM-GS genes to their subunit products
accumulated in the grains
The characterization of LMW-GS genes in the foregoing

experiments, especially the finding of the differences in the

spectrum of LMW-GS genes expressed in the two wheat varieties

with differing bread making quality, made it necessary to identify

the native protein products expressed from the active LMW-GS

gene members. Towards this end, the glutenin fractions of the seed

storage proteins of Xiaoyan 54 and Jing 411 were separated by

two dimensional gel electrophoresis (2-DE), followed by analysis of

the peptide mass fingerprints (PMFs) and mass spectra of excised

protein spots using matrix-assisted laser desorption ionization-time

of flight mass spectrometry (MALDI-TOF MS) and liquid

chromatography tandem mass spectrometry (LC-MS/MS). For

Xiaoyan 54, 60 major 2-DE spots in the region of LMW-GS

proteins were marked (Figure 4A), excised, and analyzed. After

bioinformatic analysis of PMFs and MS/MS spectra, 19 were

found to be LMW-GS proteins (red circles), 21 were gliadins (blue

circles), three were related to known proteins with other molecular

functions (black circles), and 17 were unknown proteins (green

circles) (Figure 4A and Table S4). More detailed comparisons were

made between the peptide sequences obtained from the protein

Figure 3. Transcriptional profiles of LMW-GS genes in devel-
oping grains of Jing 411 and Xiaoyan 54. Total RNA samples,
extracted from developing grains at 7, 14 and 21 days post anthesis
(DPA), were used for evaluating transcript levels of the LMW-GS gene
members. The 11 LMW-GS genes were all highly transcribed in the
developing grains of Xiaoyan 54 at 14 and 21 DPA. By contrast, in the
developing grains of Jing 411, only 6 members (A3-4, B3-1, B3-2, D3-1,
D3-2, D3-3) were highly transcribed at 14 and 21 DPA; two members
(A3-1, D3-4) were weakly transcribed, and the transcripts of 3 members
(A3-2, D3-6, D3-7) were undetectable by RT-PCR at the same time points.
The amplification of wheat tubulin gene transcripts served as an
internal control for normalizing the cDNA contents before PCR and
checking the kinetics of thermamplification during PCR.
doi:10.1371/journal.pone.0013548.g003
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spots and the deduced amino acid sequences of the 11 active

LMW-GS genes isolated in this work (Table S5). Based on these

comparisons, the relationships between the analyzed protein spots

and the proteins deduced from the cloned LMW-GS genes are

summarized in Table 2 and Figure 4B. The phenomenon that two

or three protein spots were matched to the deduced protein of a

single LMW-GS gene (e.g., protein spots 1, 2 and 3 to A3-4) was

observed previously, although the underlying reasons are still

Figure 4. Identification of protein spots resolved by 2-DE of the glutenin samples. Glutenin fractions were prepared from mature grains,
and used for 2-DE and subsequent MS analysis. For reason of space, the high molecular weight glutenin subunit protein spots are not shown. (A)
Identification of 60 protein spots derived from the glutenin fraction of Xiaoyan 54. The LMW-GS and gliadin protein spots are circled in red and blue,
respectively. Spots circled in black are known proteins with other molecular functions, whereas those in green are unknown proteins. The pI range in
the 2-DE gel is shown at the top. Also shown (on the right side) is the one dimensional separation of the glutenin fraction of Xiaoyan 54. The data
displayed are typical of four independent sets of 2-DE separation and MS analysis. (B, C) Comparisons of the LMW-GS protein species (circled in red)
accumulated in the mature grains of Xiaoyan 54 (B) and Jing 411 (C). The names of the LMW-GS genes encoding the circled proteins are provided. For
both varieties, the LMW-GS protein species were accompanied by some gliadin protein species and the proteins with other or unknown functions
(represented by numbered but uncircled protein spots, Tables S4 and S6). The pI ranges in the 2-DE gels are displayed at the top. The one
dimensional separation results of the glutenin fractions of the two varieties are also shown (labeled by Xiaoyan 54 and Jing 411, respectively). The
data provided are representative of four independent sets of 2-DE separation and MS analysis.
doi:10.1371/journal.pone.0013548.g004
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unclear [41,61]. Among the 60 spots analyzed, none corresponded

to the hypothetical polypeptides of A3-3, B3-3 or D3-5, deduced

by ignoring the premature stop codons (for A3-3 and D3-5) or the

partial coding sequence (for B3-3).

Of the 27 protein spots investigated for Jing 411, 11 (Figure 4C,

circled in red) were characterized as LMW-GS proteins based on

bioinformatic analysis of their PMFs andMS/MS spectra (Tables S6

and S7). The 11 spots were matched to seven active LMW-GS genes

(Figure 4C, Tables 2, S6 and S7). Highly similar molecular mass and

pI values were found between the protein spots derived from each of

the five LMW-GS genes (B3-1, B3-2, D3-1, D3-2 and D3-3) shared

by Xiaoyan 54 and Jing 411 (Table 2, Figure 4B and 4C). The

product of A3-4 in Jing 411 (spots 26 and 27) had higher pI values

than that in Xiaoyan 54 (spots 1, 2 and 3). Spot 25 in Jing 411 was

matched to the deduced protein of B3-3 (Figure 4C and Table 2),

which was a pseudogene in Xiaoyan 54 (Table 1). Twelve spots (1, 2,

3, 4, 7, 8, 15, 16, 17, 18, 19 and 20) were gliadin proteins, three (21,

22 and 23) were known proteins with other molecular functions, and

one (9) represented an unknown protein (Figure 4C, Tables S6 and

S7). Among the 27 examined spots, none matched to the

hypothetical polypeptides for A3-1, A3-2, D3-4 or D3-5, translated

with the premature stop codon or frame shift mutations ignored.

Collectively, these protein analysis data were consistent with the

results of the foregoing RT-PCR assays, and showed that protein

products of five LMW-GS genes (A3-1, A3-2, D3-4, D3-6 and D3-

7) accumulated in Xiaoyan 54 grains, were not present in the

grains of Jing 411 (Figure 4 and Table 2). On the other hand, the

protein product of B3-3 was detected in the grains of Jing 411 but

not those of Xiaoyan 54 (Figure 4 and Table 2).

Analysis of LWM-GS genes and their products in Ae.

Tauschii
The above experiments indicated the existence of five (in Jing

411) to seven (in Xiaoyan 54) LMW-GS genes at the Glu-D3 locus

of hexaploid wheat varieties. It was therefore interesting and

necessary to investigate if the number of genes encoding typical

LMW-GS proteins may also vary in different genotypes of Ae.

tauschii. The LMW-GS genes and their native protein products in

different Ae. tauschii genotypes (As91 and Y207) were analyzed.

The genomic DNA samples of As91 and Y207 were each subject

to PCR amplifications using several types of primers (Table S1),

and the resultant products were cloned and sequenced. Based on

nucleotide and amino acid sequence comparisons, seven distinct

Glu-D3 LMW-GS genes were identified for each genotype (Table 2)

(Accession numbers from FJ755324 to FJ755337). The D3-4 and

D3-5 alleles in As91 and Y207 were pseudogenes owing to the lack

of intact ORF.

The LMW-GS fractions of As91 and Y207 were separated by 2-

DE, followed by analysis using mass spectrometry as described

above. Nineteen and 15 protein spots were detected in the region

of LMW-GS proteins for As91 and Y207, respectively (Figure S3).

For As91, 11 of the 19 analyzed spots were LMW-GS proteins,

which matched separately to the deduced proteins of five LMW-

GS genes (Figure S3A, Tables 2 and S8). Seven spots (4, 11, 14,

16, 17, 18 and 19) were gliadin proteins, whereas one (spot 15)

resembled an avenin-like b precursor protein (Figure S3A, data

not shown). For Y207, six of the 15 investigated spots were LMW-

GS proteins, which corresponded separately to the deduced

proteins of four LMW-GS genes (Figure S3B, Tables 2 and S9).

Four spots (8, 9, 13 and 15) were identified to be gliadin proteins,

one spot (14) was found to be an avenin-like b precursor protein,

and the remaining 4 spots (7, 10, 11 and 12) represented unknown

proteins (Figure S3B, data not shown). The product of D3-7 was

not detected in Y207 by 2-DE, probably due to its low expression

level in this genotype.

Effects of allelic Glu-3 loci on Zeleny sedimentation value
The clear differences in the LMW-GS genes between Xiaoyan

54 and Jing 411 (as described above) provided a suitable system to

investigate the effects of allelic Glu-3 loci on bread-making quality.

Our initial investigation detected major and consistent quantitative

trait loci (QTLs) for Zeleny sedimentation value (ZSV) in the

genomic regions containing the Glu-A3 or D3 loci (data not

shown). We therefore performed a more detailed association

analysis using 182 RILs derived from Xiaoyan 54 and Jing 411.

ZSV was again chosen as the evaluation parameter based on our

earlier QTL investigation. This choice was also supported by the

published literature showing that ZSV correlated positively with

gluten strength and bread volume [62-64], and that the genetic

composition of Glu-3 loci affected ZSV [65-68].

The ZSVs of the RILs and their parents were evaluated using

grains produced in two growing seasons (2005-2006 and 2007-

2008). The data from 2006 harvest were analyzed in more detail to

investigate the genetic effects of allelic Glu-3 loci on ZSV. The

averaged ZSV of Xiaoyan 54 (40.00 ml) was significantly higher

than that of Jing 411 (22.20 ml). The ZSVs of the 182 RILs varied

from 9.22 to 61.45 ml, with a mean value of 32.4 ml. The ZSV

means of the lines followed a normal distribution, and were thus

suitable for association analysis. Eight main genotypes (A3xB3xD3x,

A3jB3jD3j, A3xB3jD3x, A3jB3xD3x, A3xB3xD3j, A3jB3jD3x,

A3xB3jD3j and A3jB3xD3j, the subscripts x and j indicating allelic

Glu-3 loci from Xiaoyan 54 and Jing 411, respectively) were found

among a total of 158 RILs (Table 3). Two genotypes (A3xB3xD3x
and A3jB3jD3j) resembled the Xiaoyan 54 or Jing 411 parents in

their Glu-3 complements. The Glu-3 complements in the six

recombinant genotypes (A3xB3jD3x, A3jB3xD3x, A3xB3xD3j,

A3jB3jD3x, A3xB3jD3j and A3jB3xD3j) were formed by inter-locus

recombinations of the intact allelic Glu-3 loci of Xiaoyan 54 and

Table 2. Matching LMW-GS genes to the protein spots
resolved by 2-DE through mass spectrometry analysis.

Gene Bread wheat Aegilops tauschii

Xiaoyan 54 Jing 411 As91 Y207

A3-1 33, 42 – NA c NA

A3-2 15 – NA NA

A3-3 – a --- b NA NA

A3-4 1, 2, 3 26, 27 NA NA

B3-1 12, 13 12, 13 NA NA

B3-2 5, 6 5, 6 NA NA

B3-3 – 25 NA NA

D3-1 10, 11 10, 11 1, 5, 6 1, 2

D3-2 47 24 8, 9 ,10 6

D3-3 14 14 7 5

D3-4 48 – – –

D3-5 – – – –

D3-6 8, 9 --- 2, 3, 12 3, 4

D3-7 38, 41 --- 13 ND d

aNo protein spots were identified for the 3 inactive members.
bNo protein spots were found for the three members whose coding sequences
were not amplified by genomic PCR.

cNA, not applicable.
dND, not detected.
doi:10.1371/journal.pone.0013548.t002
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Jing 411. The number of active LMW-GS genes was calculated for

each of the eight genotypes (Table 3).

The ZSVs (means 6 SD) of the eight recombinant genotypes

showed continuous variation (Table 3), consistent with previous

findings showing that ZSV is controlled quantitatively by multiple

chromosomal loci located on different wheat chromosomes

[34,65,66]. Nevertheless, our statistical analysis showed that the

averaged ZSV of A3xB3xD3x was significantly higher than that of

A3jB3jD3j. This demonstrated that in the genetic system analyzed

here the differences in the composition of Glu-3 loci had a

significant effect on ZSV, which was in general agreement with the

positive contributions of Glu-3 loci to dough and bread-making

qualities in published studies [13,30,32-34,38,56,57,59,60,64].

A3jB3jD3x, A3xB3jD3j and A3jB3xD3j, each possessing a single

Glu-3 locus from Xiaoyan 54 (i.e., D3x, A3x or B3x) in their Glu-3

complements, did not differ from A3jB3jD3j in ZSV (Table 3). This

indicated that, at the single locus level, the Glu-3 loci of Xiaoyan

54 did not differ significantly from those of Jing 411 in their effects

on ZSV. By contrast, A3xB3jD3x, A3jB3xD3x and A3xB3xD3j, each

having two Glu-3 loci from Xiaoyan 54 (i.e., A3x and D3x, B3x and

D3x or A3x and B3x) in their Glu-3 complements, exhibited the

ZSVs significantly higher than that shown by A3jB3jD3j (P#0.05)

(Table 3). The ZSV of A3xB3jD3x remained significantly higher

than that of A3jB3jD3j at P#0.01 (Table 3). Clearly, the combined

effects of A3x and D3x, B3x and D3x or A3x and B3x were

significantly greater than those of A3j and D3j, B3j and D3j or A3j
and B3j in terms of generating relatively high ZSVs, with the A3x
and D3x combination giving the strongest performance. Com-

pared to the scenario described above, none of the six progeny

genotypes yielded a ZSV that was significantly higher than that of

A3xB3xD3x (Table 3). Instead, the ZSVs of A3xB3jD3j and

A3jB3xD3j were both significantly lower than that of A3xB3xD3x
(P#0.05), and the ZSV of A3jB3xD3j remained notably lower than

that of A3xB3xD3x at P#0.01 (Table 3). This confirmed that the

combined effects of B3j and D3j or A3j and D3j were inferior to

those of B3x and D3x or A3x and D3x in securing relatively high

ZSVs, with the A3j and D3j combination resulting in a poorer

performance.

Interestingly, the RILs having the A3xB3jD3x genotype in their

Glu-3 complements exhibited a considerably wider variation in

ZSVs compared to the RILs having other Glu-3 genotypes

(Table 3). Although the averaged ZSV determined for A3xB3jD3x

genotype did not differ significantly from that for A3xB3xD3x
(Table 3), there were four lines (among a total of 21 RILs) in the

A3xB3jD3x genotype that consistently displayed the highest ZSVs

(20-50% higher than the ZSV displayed by the superior parent

Xiaoyan 54) in the tests conducted in two growing seasons. These

data indicated that the B3 locus of Jing 411 might interact

positively with the A3 and D3 loci of Xiaoyan 54, leading to higher

ZSVs in certain genetic backgrounds.

We also investigated the relationship between the number of

active LMW-GS genes (i.e., the members possessing intact ORF)

and the averaged ZSV among the eight genotypes. Regression

analysis suggested a significant positive correlation between

changes in the number of active LMW-GS genes and variations

in ZSV among the eight genotypes (r=0.903, p#0.01, Figure S4).

This positive correlation was well illustrated by the finding that the

ZSVs of A3xB3jD3x and A3xB3xD3x (having 12 and 11 active

LMW-GS genes, respectively) were consistently and significantly

higher than those of A3jB3xD3j and A3jB3jD3j (possessing six and

seven active LMW-GS genes, respectively) (Table 3). However,

owing to the strong and continuous variation in ZSV, the

genotypes with smaller differences in the number of active LMW-

GS genes tended not to differ significantly from each other in this

parameter. For example, A3jB3xD3x, A3xB3xD3j, A3jB3jD3x and

A3xB3jD3j did not differ from each other in ZSV, although the

number of active LMW-GS genes in the four genotypes varied

from eight to ten (Table 3).

A highly significant correlation (r=0.907, p#0.01) was found

between the averaged ZSVs of the eight main recombinant

genotypes determined in 2005-2006 and those in 2007-2008,

suggesting that the genetic effects of the different Glu-3 genotypes

on ZSV were relatively stable between the two years.

Discussion

A number of studies have shown that the organization of ortho-

logous Glu-3 loci in wheat is highly complex [26,27,41,42,44-47].

Unlike previous investigations focused on single or a small number

of BACs from individual Glu-3 loci [26,27], we used a genome

wide approach, and identified and sequenced the BACs from all

three Glu-3 loci of a bread wheat variety. Fourteen unique LMW-

GS genes were found in Xiaoyan 54, representing the highest

number of LMW-GS genes characterized from a single bread

Table 3. Statistical analysis of the Zeleny sedimentation values (means 6 SD) of eight genotypes among 152 RIL lines derived
from a cross between Xiaoyan 54 and Jing 411.

Genotype a
Number

of RILs

Number of active LMW-GS

genes Zeleny sedimentation value (ml) c P # 0.05 b P # 0.01 b

A3xB3jD3x 21 12 39.73610.42 a a

A3xB3xD3x 12 11 37.4963.70 ab ab

A3jB3xD3x 19 9 34.4266.24 abc abc

A3xB3xD3j 9 8 33.5467.15 bcd abc

A3jB3jD3x 23 10 32.1866.37 bcde bc

A3xB3jD3j 15 9 31.3765.07 cde bc

A3jB3xD3j 24 6 28.1666.88 de c

A3jB3jD3j 35 7 27.6669.04 e c

aParental genotypes are written in bold.
bStatistical analysis of the Zeleny sedimentation values (ZSVs) of the eight genotypes with ANOVA and Duncan LSR at two different confidence levels (P#0.05 and 0.01).
The ZSVs are labeled by different letters or letter combinations based on multiple statistical comparisons. No statistical significance exists between the ZSVs labeled by
one or more identical letters.
doi:10.1371/journal.pone.0013548.t003
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wheat genotype so far. Furthermore, we carried out comparative

analyses of the transcriptional and protein accumulation patterns

of LMW-GS genes between Xiaoyan 54 and Jing 411, and

performed an association study using the RIL population derived

from a cross of the two varieties.

Organization of LMW-GS genes at orthologous Glu-3 loci
Firstly, we identified four and three LMW-GS genes for the Glu-

A3 (A3-1 to A3-4) and Glu-B3 (B3-1 to B3-3) loci of Xiaoyan 54,

respectively, by far the highest numbers of LMW-GS genes

reported for the two loci from a single wheat genotype.

Furthermore, we mapped A3-1 to a location proximal to the

centromere relative to A3-2 to A3-4, and for the first time provided

direct evidence for the presence, location and expression of a m-

type subunit gene (A3-1) at Glu-A3 in addition to those encoding i-

type subunits. Previous studies indicated the existence of m-type

subunit gene(s) at Glu-A3, and hypothesized the evolution of i-type

members from m-type genes [26] (see also GenBank accessions

AB062868 and AJ293099). The present work established a more

solid basis for further investigation of this hypothesis in the future.

Nucleotide sequence comparisons showed that the three i-type

subunit genes isolated here exhibited high identities to only two

(Glu-A3b, Glu-A3d) of the seven Glu-A3 alleles reported for bread

wheat varieties [47]. It is possible that the molecular diversity of

Glu-A3 LMW-GS genes is relatively high in the bread wheat gene

pool, and different varieties may differ in the composition of Glu-

A3 LMW-GS genes. This may also explain the finding of two i-

type subunit genes at the Glu-A3 locus of Norin 61, but one active

i-type subunit gene at the Glu-A3 locus of Glenlea [41,42].

Similarly, B3-1, B3-2 and B3-3 exhibited high nucleic sequence

identities to only two (GluB3-3, GluB3-4) of the four Glu-B3 LMW-

GS genes defined previously [46], indicating that the number of

Glu-B3 LMW-GS genes in the whole bread wheat gene pool could

be higher than that present in a given variety. A comparison of the

Glu-B3 LMW-GS genes between Xiaoyan 54 and Jing 411

(Table 2) indicated the presence of more s-type subunit than m-

type subunit genes at this locus, consistent with the identification of

three s-type, but only one m-type, subunit genes from a wide range

of varietal backgrounds [46]. Two Glu-B3 LMW-GS genes were

reported for both Norin 61 and Glenlea [41,42], but the total

numbers of Glu-B3 LMW-GS genes (including both active and

inactive members) are still unknown for the two varieties.

Secondly, we identified and determined the relative genetic

locations of seven LMW-GS genes (D3-1 to D3-7) at Glu-D3 in

Xiaoyan 54. This number is identical to that described for the Glu-

D3 locus of three Ae. tauschii accessions (AUS18913, As91 and

Y207, [43], this work) and Norin 61 [41]. Furthermore, the seven

Glu-D3 LMW-GS genes of Xiaoyan 54 each had one closely

related counterpart (based on a nucleotide sequence identity above

97%) among the six Glu-D3 LMW-GS genes isolated from diverse

bread wheat varieties [44,45]. In contrast, the number of

detectable Glu-D3 LMW-GS genes was five in Jing 411 (this

work), and nine in Glenlea [42]. Collectively, these data strongly

suggest that the number of Glu-D3 LMW-GS genes could vary

from five to nine, and that a large proportion of Ae. tauschii and

bread wheat genotypes may contain seven LMW-GS genes at

their Glu-D3 locus. Our data (Table 2), as well as those published

previously [41–45], all demonstrate that, within Glu-D3, the

number of genes coding for m-type subunits is much greater than

that encoding s-type subunits. Surprisingly, only m-type subunit

genes were found at the Glu-D3 locus in Ae. tauschii accession

AUS18913 [43], indicating that the s-type subunit gene in this

material might have been mutated.

Thirdly, the occurrence of one or more inactive LMW-GS gene

members is common to all three orthologous Glu-3 loci. For Glu-

A3, the inactive members could originally encode i-type [26,27,

this work] or m-type (i.e., the A3-1 pseudogene in Jing 411,

Table 2) subunits. For Glu-B3, the pseudogene members could

mainly code for s-type subunits originally [26, this work]. For Glu-

D3, pseudogenization appeared to affect mainly the members

originally specifying m-type subunits [43, this work]. The s-type

subunit gene at Glu-D3 appeared to be expressed in diverse Ae.

tauschii and bread wheat backgrounds [41,42,44,45, this work],

except in Ae. tauschii accession AUS18913 [43]. The numbers of

pseudogenes at allelic Glu-A3, B3 or D3 loci may vary substantially,

which affects the total LMW-GS subunit species expressed in

different bread wheat varieties. This is well illustrated by our

comparative analysis of Xiaoyan 54 and Jing 411 (Table 2). There

are more inactive LMW-GS gene members at the Glu-A3 and D3

loci of Jing 411 than in Xiaoyan 54, which is the main reason for

fewer i- and m-type subunit species expressed in Jing 411.

Recombination of LMW-GS genes and genetic distances
of Glu-3 loci
An important prerequisite for investigating the functions of the

Glu-3 loci through genetic analysis is to understand the

recombination of LMW-GS genes and the relative genetic

distances within the individual Glu-3 loci. The identification of

multiple LMW-GS genes within individual Glu-3 loci allowed us to

investigate these two aspects in Xiaoyan 54. The following points,

summarized from the data of Xiaoyan 54, provide new insights

into the recombination features of LMW-GS genes and genetic

distances of the Glu-A3, B3 and D3 loci in bread wheat.

Firstly, for all three Glu-3 loci, recombinations may occur

unevenly between different LMW-GS genes. No recombination

was detected among the three i-type subunit genes (A3-2 to A3-4,

Figure 2) within Glu-A3, despite the fact that A3-2 and A3-3 were

separated by more than 70 kb and A3-4 was not located in the

BAC harboring A3-2 and A3-3 (Table 1). Within Glu-B3,

recombination was not found between B3-2 and B3-3 (Figure 2).

As the BAC clone containing B3-2 and B3-3 was not completely

sequenced, it is currently not possible to deduce if physical distance

between the two members plays a role in the lack of recombination

between them. Within Glu-D3, recombination was not found for

two pairs of LMW-GS genes (D3-2 and D3-3, D3-6 and D3-7)

(Figure 2). In the case of D3-2 and D3-3, the absence of

recombinations is likely to be related to the very close physical

distance (about 16 kb, Figure 1) between them.

Secondly, the genetic distance covered by LMW-GS genes

differs substantially among the Glu-A3, B3 and D3 loci. In Xiaoyan

54, this value varied from 0.6 (Glu-B3) to 1.7 (Glu-A3) to 4.9 (Glu-

D3) cM (Figure 2). The longest genetic distance was found for Glu-

D3, correlating with the finding of more LMW-GS genes in this

locus. Spielmeyer et al. [28] reported 2.7 cM for the three LMW-

GS genes located on 1DS of Ae. tauschii. This distance is

comparatively lower than the one obtained here, most likely due

to the fact that fewer LMW-GS genes were mapped in their

research.

Thirdly, based on the total genetic distance (4.9 cM) covered by

LMW-GS genes and the minimum physical space (i.e., around

500 kb estimated from the total insert size of six BAC clones,

Table 1) of Glu-D3 in Xiaoyan 54, the average ratio of physical to

genetic distance for this locus is probably higher than 100 kb per

cM. This local recombination rate is considerably lower than that

suggested for the Glu-D3 locus of Ae. tauschii, which was about 20–

50 kb/cM [28]. But our estimation is in line with recombination
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rates reported for some of the gene rich regions on wheat groups 1

and 5 chromosomes (118 kb/cM) [69,70].

Concomitant to investigating the genetic features of LMW-GS

genes, we also succeeded in placing polymorphic microsatellite

markers in the vicinities of Xiaoyan 54 Glu-3 loci. Because these

microsatellites are generally used for constructing wheat chromo-

some linkage maps, their incorporations may facilitate the

comparisons of the map positions of Glu-3 LMW-GS genes of

Xiaoyan 54 with those of other varieties. For example, in the

composite map of common wheat 1B chromosome (http://wheat.

pw.usda.gov/ggpages/map_summary.html), the genetic distance

from the first Glu-B3 marker to the microsatellite Xgwm273.3 is

55 cM, which is comparable to the genetic distance covered from

B3-2/B3-3 to the same microsatellite shown in Figure 2B (64.9 cM).

In the composite map of common wheat 1D chromosome (http://

wheat.pw.usda.gov/ggpages/map_summary.html), the genetic dis-

tance from the only Glu-D3 marker to the microsatellite Xcfd61.1 is

44 cM, which is highly similar to the genetic distance from D3-6/

D3-7 to the same microsatellite marker (42.8 cM, Figure 2C).

Importantly, we mapped and ordered six LMW-GS genes within

the Glu-D3 locus (compared to only one at the Glu-D3 of the 1D

composite map, see above), which provides a useful basis for

investigating potential functional differences among the different

Glu-D3 LMW-GS genes in the future.

Expression of LMW-GS genes in the grains
For more detailed understanding of the expression of LMW-GS

genes in a given genotype, two key challenges are to determine the

total numbers of active and inactive LMW-GS genes at individual

Glu-3 loci, and to match the active LMW-GS genes to their protein

products accumulated in the seeds. In this work, we demonstrated

that the combined use of gene cloning (through sequencing

selected BAC clones and PCR amplification), expression profiling

(via semiquantitative RT-PCR), and proteomics analysis (with 2-

DE/MS analysis) represented an efficient strategy for dealing with

the two challenges in bread wheat and for generating more

systematic information linking active LMW-GS genes to their

expressed products.

Among the 14 LMW-GS genes cloned from Xiaoyan 54, the 11

members with intact ORF were all highly transcribed in the

developing grains and their proteins were present in the harvested

seeds. Among the 11 LMW-GS genes isolated from Jing 411, the

proteins translated from the seven LMW-GS genes with complete

ORF were observed in the seeds, and evidence for high levels of

transcription in the developing grains was obtained for six of the

seven genes. Transcription of the B3-3 allele was not evaluated in

Jing 411 grains because it was originally found to be a pseudogene

in Xiaoyan 54. Together, these data suggest that the LMW-GS

genes with intact ORF are generally and highly expressed in

developing grains and their products accumulate in mature wheat

seeds, although exceptions do occur in certain Ae. tauschii

accessions (see below). For either Xiaoyan 54 or Jing 411, the

proteomics analysis did not find protein spots derived from the

LMW-GS genes with interrupted ORF. This is in accordance with

the very low transcript levels detected for the A3-1 and D3-4 alleles

in Jing 411, the two genes possessing ORFs disrupted by

premature stop codons. It is very likely that damaged ORF may

also be responsible for the lack of expression of A3-3 and D3-5 in

both Xiaoyan 54 and Jing 411, the absence of B3-3 expression in

Xiaoyan 54, and the lack of A3-2 expression in Jing 411. No D3-6

and D3-7 transcripts were detected in the grains of Jing 411, which

is in agreement with our failure to isolate the coding sequences of

these two genes from this variety by genomic PCR amplifications.

The two genes may not exist in Jing 411, or their coding regions

may be damaged by transposon insertion. The disruption of

LMW-GS ORF by transposon insertion was found previously for

the LMW.S4 gene in Ae. tauschii [43], and for the B3-3 allele of

Xiaoyan 54 in the present work.

The combination of gene cloning and proteomics analyses was

also used successfully for assessing the LMW-GSs expressed in two

different accessions of Ae. tauschii (As91, Y207). As in bread wheat,

protein products were generally found for the LMW-GS genes

with intact ORF, but not for those with disrupted ORF. One

notable exception was that no protein product was detected by 2-

DE/MS analysis for the D3-7 allele in Y207, despite that it had an

intact ORF. Further study is needed to investigate if the D3-7

allele of Y207 is transcribed during grain development, or whether

the protein translated from this allele is unstable in the endosperm

cells. Among the seven Glu-D3 LMW-GS genes in Ae. tauschii

accession AUS18913, four had intact ORF, and were predicted to

encode protein species with different molecular mass and pI values

[43]. However, only three protein spots with the molecular mass

and pI values of LMW-GSs were found in 2-DE analysis of

polymeric gluten proteins, indicating that one of the four LMW-

GS genes with intact ORF may not be expressed in the seeds.

Together, our analysis and the one by Johal et al. [43] have yielded

a more extensive understanding of the composition and expression

of Glu-D3 LMW-GS genes in Ae. tauschii, which is valuable for

studying the structure and function of the homologous Glu-D3

locus and gene members in bread wheat.

Protein spots representing gliadins were commonly found in our

proteomics analyses of the glutenin fractions from either bread

wheat or Ae. tauschii accessions. This is consistent with the

observations made by previous investigators [21,43]. There is

now evidence for the incorporation of certain gliadins into the

polymeric glutenin fraction although the potential effect of such

gliadins on bread-making quality is not understood [21,43].

Because of the existence of multiple genes coding for gliadins along

with those encoding LMW-GS proteins in the chromosomal

regions harboring Glu-3 loci [26], an important task for the future

will be to dissect the physical, genetic and functional relationships

of the two types of seed storage proteins.

Genetic mechanism involved in the function of Glu-3 loci
in bread-making quality
Although past breeding and QTL studies established that allelic

LMW-GS alleles can differ significantly in their effects on bread-

making quality, the molecular genetic mechanism responsible for

the difference is still not well understood. In this work, the

elucidation of the allelic variations of Glu-3 loci between Xiaoyan

54 and Jing 411 and an understanding of the recombination

characteristics of these genes enabled us to carry out an association

analysis using the RILs derived from the two varieties. The

knowledge gained provides new insights into the genetic

mechanism behind the function of Glu-3 loci, and may also have

practical implications on the improvement of ZSV and bread-

making quality.

Firstly, positive interactions between the orthologous Glu-3 loci

from the superior parent (Xiaoyan 54) may be important for the

recombinant progenies to achieve relatively high ZSVs. However,

the combinations of the strongest Glu-3 alleles from the superior

parent (for example, the A3 and D3 alleles of Xiaoyan 54) and

certain alleles from the inferior parent (i.e., the B3 allele of Jing

411) may yield the highest ZSV in certain genetic backgrounds.

Secondly, the beneficial effects on ZSV, brought about either by

the interaction among the Glu-3 loci from the superior parent or

via certain combinations of the Glu-3 loci from both parents, are

likely to be achieved through increasing the number of active
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LMW-GS genes contained in the Glu-3 complement. In general, a

higher number of active LMW-GS genes tends to lead to a higher

ZSV. This may explain the presence of a number of RILs with

very high ZSVs in the A3xB3jD3x genotype. It possessed the highest

number of active LMW-GS genes (i.e., 12) owing to the

combinations of the three Glu-3 loci each of which contained

more active LMW-GS genes than its allelic counterpart. However,

the potential of A3xB3jD3x to give more elevated ZSV may be

influenced by genetic backgrounds, which, in turn, may be

responsible for the more extensive variation of ZSVs observed for

the RILs with genotype A3xB3jD3x.

From the points discussed above, it appears that the total

number of active LMW-GS genes contained in, and expressed

from, Glu-3 complements may largely determine the effect of

LMW-GSs on ZSV and probably bread-making quality. Elite Glu-

3 alleles may generally be associated with the possession of higher

numbers of active LMW-GS genes, and the combinations of elite

alleles at all Glu-3 loci (A3, B3 and D3) may enhance the

contribution of LMW-GSs to bread-making quality. Interestingly,

the elite Glu-3 locus allele, LMW-2, in durum wheat also harbors

and expresses a higher number of active LMW-GS genes than the

alternative allele [18,21,48,50,51], indicating similarity in the

mechanism behind the function of LMW-GSs in end use quality in

tetraploid and hexaploid wheat varieties.

In practical bread wheat improvement programs, the selection

of recombinant progenies with the highest number of active

LMW-GS genes in the Glu-3 complement from breeding

populations, combined with direct evaluation of their ZSVs, may

increase the chance of obtaining lines with superior bread-making

quality. In line with this suggestion, previous studies demonstrated

that selection of higher sedimentation volume results in enrich-

ment of the elite LMW-2 locus in durum wheat breeding [71].

In summary, this work has substantially improved our

understanding of the genomic organization and recombination

of LMW-GS genes at orthologous Glu-3 loci, the expression of

LMW-GS genes in bread wheat and Ae. tauschii, and the genetic

mechanism involved in the function of Glu-3 loci in bread-making

quality. The system characterized here may provide a useful

model for further studies of the function and mechanism of LMW-

GS genes, the physical structure of orthologous Glu-3 loci, and the

potential functional interaction between LMW-GSs and gliadins.

The new insights and resources generated in this work may also

accelerate the efficient use of these genes in further improvement

of bread-making quality in wheat.

Materials and Methods

Plant materials and general molecular and bioinformatic
methods
Winter-type bread wheat varieties Xiaoyan 54 and Jing 411

were used in this study. Xiaoyan 54 exhibited relatively high flour

protein content (13.2%) and expressed five HMW-GS proteins

(1Ax1, 1Bx14+1By15, 1Dx2+1Dy12). Jing 411 also expressed five

HMW-GS proteins (1Ax2*, 1Bx7+1By8, 1Dx2+1Dy12) but

showed a comparatively lower flour protein content (11.7%)

[59,60]. In baking tests, the loaf volume of Xiaoyan 54 was

approximately 10% larger than that of Jing 411 [59,60]. A

recombinant inbred population containing 182 lines (F8 genera-

tion), developed from a cross between Xiaoyan 54 and Jing 411,

was utilized for mapping LMW-GS genes and the subsequent

association analysis (see below). Two Ae. tauschii accessions (As91

and Y207, obtained from the Triticeae Research Institute, Sichuan

Agricultural University, China) were also used. Chinese Spring

(CS) and the nulli-tetrasomic (NT) lines derived from CS (obtained

from the National Bioresource Project, Japan) were employed for

assigning positive BAC clones to individual group 1 chromosomes.

The general molecular and bioinformatic methods used in this

work are described in Methods S1.

BAC library construction and screening and BAC
sequencing
The main protocol for constructing the BAC library of Xiaoyan

54 was from Zhang et al. [72] and http://hbz.tamu.edu. The

resultant library was screened by PCR using several pairs of

primers specific for LMW-GS sequence (Table S1). Full details for

BAC library construction, library screening and analysis of positive

clones are given in Methods S1.

Development of molecular markers, chromosomal
location of BAC clones, and genetic mapping of LMW-GS
genes
The molecular markers (Table S2) were mainly derived from

LMW-GS genes or BAC end sequences. Specifically, the markers

for tagging A3-1, A3-2/A3-3/A3-4, B3-2/B3-3, D3-1, D3-4, D3-6,

or D3-7 were developed from LMW-GS gene sequences, whereas

those for B3-1 or D3-2/D3-3 were from microsatellite sequences

(located adjacent to B3-1 and D3-2, respectively). The marker for

D3-5 was developed from the reverse end sequence of the BAC

clone D479-7-6. Details for using these markers to assign the

positive BAC clones to group 1 chromosomes, or to map LMW-

GS genes, are summarized in Table S2.

For mapping the LMW-GS genes of Xiaoyan 54 to wheat

chromosomes, 182 recombinant inbred lines (RILs) derived from

Xiaoyan 546 Jing 411 cross and the polymorphic markers listed

Table S2 were used. Further details on mapping the LMW-GS

genes and 23 previously published microsatellite markers along

group 1 chromosomes are described in Methods S1.

Evaluation of LMW-GS gene transcript level by semi-
quantitative RT-PCR assay
The seedlings of Xiaoyan 54 and Jing 411 were vernalized at

4uC for four weeks, followed by growth in the greenhouse with a

16-h light/8-h dark photoperiod. Temperatures in the greenhouse

were set at 23uC (day) and 14uC (night) before anthesis, and at

27uC (day) and 16uC (night) after flowering. The developing grains

were harvested from the two varieties at 7, 14 and 21 days post

anthesis, respectively, and were immediately used for total RNA

extraction using Trizol reagent and the accompanying protocol

(Invitrogen, CA, USA). Full details on RNA transcription, cDNA

synthesis and semi-quantitative PCR are provided in Methods S1.

Isolation of the coding sequences of LMW-GS genes from
Jing 411 and Ae. tauschii accessions As91 and Y207
Primer pairs 1 to 17 (Table S1) were used to isolate LMW-GS

gene sequences from Jing 411 by genomic PCR amplification.

Primer pairs 2 to 7 and 13 to 17 (Table S1) were deployed for

cloning the LMW-GS genes in Ae. tauschii accessions As91 and

Y207. The resultant PCR products were sequenced commercially

(Sun Bio-chem Technology, Beijing, China). Construction of

LMW-GS gene nucleotide sequences was conducted as descried

above.

Glutenin extraction and 2-DE
Glutenin extraction was performed according to the method

described by Singh et al. [73] with some modifications. Full details

for preparing glutenin samples and their separation by 2-DE are

described in Methods S1.
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Mass spectrometry analysis
Selected protein spots were carefully excised from gels. After

destaining, the gel pieces were dehydrated with acetonitrile and

dried. Digestion was performed in chymotrypsin reaction buffer

containing 60 ng chymotrypsin (Sigma–Aldrich, MO, USA) at

30uC for 6 h. Finally, 8 mL trifluoroacetic acid extraction buffer

[5% (v/v)] was added to stop the digestion. The peptides in the

digested gel pieces were extracted, and the resulting supernatants

were concentrated by freeze-drying. Further details on the analysis

of peptide samples by MALDI-TOF-MS and LC-MS/MS are

given in Methods S1.

Evaluation of ZSV and association analysis
The RIL population and the two parents (Xiaoyan 54 and Jing

411) were grown for two crop seasons (2005–2006, 2007–2008) in

the experimental farm of the Institute of Genetics and Develop-

mental Biology, Chinese Academy of Sciences, Beijing. Standard

winter wheat cultivation practices, including three irrigations and

two applications of pesticides to control aphid infestation and

powdery mildew, were followed. No major abiotic stresses (drought,

hot and dry winds) were encountered. For each RIL and the parents,

a sample of 500 g of grains (15.5% moisture) was milled using a

Brabender Junior Mill (Brabender OHG, Duisburg, Germany) fitted

with a 70GG sieve. Zeleny sedimentation values were measured for

each line with three replicates according to Axford et al. [74].

The genetic compositions of Glu-3 loci in the 182 RILs were

determined using eight polymorphic markers (Table S2), leading to

identification of eight main recombinant genotypes (A3xB3xD3x,

A3jB3jD3j, A3xB3jD3x, A3jB3xD3x, A3xB3xD3j, A3jB3jD3x, A3xB3jD3j
and A3jB3xD3j) among the RILs. Several rare Glu-3 genotypes (in a

total of 24 RILs) resulting from intra-locus recombinations were also

found, but were not included in the association analysis owing to the

very low number of RILs per genotype. Based on the analysis of the

allelic Glu-3 loci of Xiaoyan 54 and Jing 411, the number of active

LMW-GS genes was summarized for each of the eight recombinant

progeny genotypes. The averaged ZSVs determined for the eight

main recombinant genotypes during the two seasons were

significantly correlated (r=0.907, p#0.01). For statistical analysis,

t-tests were performed using the T-TEST procedure of SAS 10.0

(SAS Institute Inc., North Carolina, USA).
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