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Tumor cells demonstrate substantial plasticity in their genotypic and phenotypic
characteristics. Epithelial-mesenchymal plasticity (EMP) can be characterized into
dynamic intermediate states and can be orchestrated by many factors, either
intercellularly via epigenetic reprograming, or extracellularly via growth factors,
inflammation and/or hypoxia generated by the tumor stromal microenvironment. EMP
has the capability to alter phenotype and produce heterogeneity, and thus by changing
the whole cancer landscape can attenuate oncogenic signaling networks, invoke anti-
apoptotic features, defend against chemotherapeutics and reprogram angiogenic and
immune recognition functions. We discuss here the role of phenotypic plasticity in tumor
initiation, progression and metastasis and provide an update of the modalities utilized
for the molecular characterization of the EMT states and attributes of cellular behavior,
including cellular metabolism, in the context of EMP. We also summarize recent findings
in dynamic EMP studies that provide new insights into the phenotypic plasticity of EMP
flux in cancer and propose therapeutic strategies to impede the metastatic outgrowth
of phenotypically heterogeneous tumors.
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INTRODUCTION (EMT-MET)

Epithelial–mesenchymal transition (EMT), in which epithelial cells undergo dynamic cellular
transition from a sessile epithelial state to a motile mesenchymal state allowing the formation of
new tissues, is considered one of the pivotal processes during embryogenesis and organogenesis
(Chaffer et al., 2007; Yang and Weinberg, 2008). The process of EMT (classified as three different
subtypes) has been implicated in a broad range of normal and pathophysiological processes from
development, wound healing and tissue regeneration (type I), to organ fibrosis (type 2), and cancer
progression (type 3) (Kalluri and Weinberg, 2009). During cancer progression, it is postulated that
epithelial-derived carcinoma cells undergo a reversible, trans-differentiation process with changes
in cell–cell adhesion and polarity, cytoskeletal remodeling, migratory and invasive enhancement,
and dissemination into secondary organs via local invasion, intravasation and transfer through
the blood stream and lymphatics (Polyak and Weinberg, 2009). In addition to cellular migration
during metastasis, EMT also influences resistance to anoikis and apoptosis, blocks senescence,
enhances survival, facilitates genomic instability, causes cancer stem cell (CSC) activity, alters
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metabolism, and induces drug resistance and immune
suppression (Przybylo and Radisky, 2007; Ansieau et al., 2008;
Gal et al., 2008; Kumar et al., 2011; Huang et al., 2013; Dongre
et al., 2017; Lee et al., 2018; Redfern et al., 2018).

After invasion and spread, cancer recurrence at the
metastatic site is thought to require the reverse process,
termed mesenchymal to epithelial transition (MET) (Chaffer
et al., 2007; Hugo et al., 2007; Brabletz, 2012). The reversal of
EMT, referred to as MET, has received less attention than EMT
in the establishment of metastasis. Microenvironmental cues
are considered a major deterministic factor for the reversion of
the migratory mesenchymal neoplastic cells and the subsequent
development of macrometastases. However, the re-expression
of E-cadherin, inhibition of SNAIL, and β-catenin sequestration
have provided evidence of MET in liver metastasis from
MDA-MB-231 (Chao et al., 2010; Brabletz, 2012), as has the
anti-metastatic effects of sustained pro-mesenchymal signals
(Ocana et al., 2012; Tsai et al., 2012). The concept of MET in
metastasis is refuted in some of the cancer recurrence studies
as no definitive proof of a MET requirement was obtained
in the MMTV-PyMT genetically engineered mouse model
(GEMMs) of metastatic breast cancer or in the KPC GEMM
for metastatic pancreatic cancer (Fischer et al., 2015; Zheng
et al., 2015). Nevertheless, recent data on EMP phenomena
during metastatic cancer colonization is emerging (Chao et al.,
2010; Rhim et al., 2012; Nieto, 2013; Beerling et al., 2016;
Pastushenko et al., 2018) and could be of particular interest
in breast and pancreatic carcinomas where EMT is considered
an early event in tumorigenesis (Hüsemann et al., 2008; Rhim
et al., 2012). Moreover, other studies have reported at least
partial involvement of EMP in the breast model (Ye et al., 2015)
and Zeb1 has been shown to contribute to metastasis in the
pancreatic model (Krebs et al., 2017).

Considerably less information is available on the key intrinsic
factors that drive MET in vivo and in vitro, while the drivers
and transcriptional mediators of EMT are quite comprehensively
documented (Stemmler et al., 2019). Bone morphogenetic
protein 7 (BMP7) is reported to trigger MET in renal fibroblasts
during kidney development (Zeisberg et al., 2005), and also
in breast cancer cells, reducing their capability to form bone
metastases (Buijs et al., 2007). Protein Kinase A was recently
identified as an inducer of MET in human mammary epithelial
cells (Pattabiraman et al., 2016). The role of Notch4 in melanoma
cells to induce MET and suppress malignancy in mice has
also been reported (Bonyadi Rad et al., 2016). The course
of epigenetic reprograming is also supporting EMT and MET
acquisition (Tamura et al., 2000). Reversible epigenetic changes
acquired during EMT underpin the emergence of self-renewal
and chemo-refractory stem cell-like features, which can revert
to the MET phenotype for establishing metastasis (Voulgari and
Pintzas, 2009; Sharma et al., 2010). Here, we discuss the role
and the regulatory mechanisms of EMP, with the focus on recent
emerging concepts that highlights the bidirectional dynamics
of this phenomenon and the hybrid intermediate states. We
also provide a brief overview of various techniques/modalities
employed to analyze EMP in cancer. Understanding the
phenotypic plasticity will provide insights for various therapeutic

strategies that can be implemented to prevent/restrict spread of
cancer by metastasis.

SIGNIFICANCE OF EMP AND HYBRID
EMT STATES

Epithelial–mesenchymal transition, however, is not a two-step
event through which cancer cells lose epithelial markers and
acquire mesenchymal traits between two rigid phenotypes.
Rather, studies performed within the last decade increasingly
show that cancer cells sequentially acquire mesenchymal traits,
but don’t automatically dissipate all of their previously expressed
epithelial features (Tam and Weinberg, 2013; Aiello and Kang,
2019). The term “epithelial–mesenchymal plasticity” (EMP) is
more favored recently as compared to EMT-MET (Bhatia et al.,
2017; Williams et al., 2019). The multiple signal transduction
cascade for EMT-MET programing results in dynamic and
intermediate transitional states wherein, the cancer cells can
reside in all three EMP phenotypes (epithelial, mesenchymal
and hybrid phenotype). EMP reflects the bidirectional flux often
in a continuum across the full spectrum (Lee et al., 2006;
Oltean et al., 2006). Thus, a full spectrum of EMP endows
the formation of a new carcinomatous tumor at distant organ
sites with similar histopathology as observed in primary tumor
(Gunasinghe et al., 2012).

Hybrid epithelial-mesenchymal features of carcinoma cells
have indeed been observed in various invasive carcinoma model
systems (Lee et al., 2006; Klymkowsky and Savagner, 2009),
in which individual cells co-express markers of both epithelial
and mesenchymal lineages, and circulating tumor cells (CTCs)
in particular have been shown to exhibit a spectrum of EMP
states (Armstrong et al., 2011; Yu et al., 2014; Khoo et al.,
2015; Bourcy et al., 2016); reviewed in McInnes et al. (2015);
Hassan et al. (2020). The hybrid EMP state seen in carcinomas
and CTCs, in which individual cells co-express markers of both
epithelial and mesenchymal lineages, is predicted to have the
highest tumourigenicity and metastatic potential (Lee et al., 2006;
Klymkowsky and Savagner, 2009; Jolly et al., 2016; Kroger et al.,
2019; Pastushenko and Blanpain, 2019). An emerging challenge
is also to decipher correctly the contribution that intermediate
states of the EMT spectrum make to tumor evolution for
therapeutic interventions.

EXTRINSIC AND INTRINSIC
MECHANISMS AND REGULATORS
INVOLVED IN PLASTICITY

The crosstalk mediated by autocrine and/or paracrine factors
secreted by cancer cells and tumor stroma has been widely
proven to occur via extracellular mediators of EMT (Scheel
et al., 2011). A host of extracellular mediators secreted by
tumor stromal cells are already proven to elicit EMT induction.
Examples of validated extracellular mediators as EMT inducers
include TGF-β (Buonato et al., 2015), EGF (Hugo et al., 2009),
FGF (Kurimoto et al., 2016), PDGF (Devarajan et al., 2012),
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HGF (Suarez-Causado et al., 2015), IGF (Wang et al., 2016),
Interleukin-6 (IL-6) (Miao et al., 2014), WNT (Ochoa-Hernandez
et al., 2012), Hedgehog (Yoo et al., 2011), and Notch (Yuan
et al., 2014). Other inducers of EMT include collagen types I
and III, matrix metalloproteinases-2 (MMP-2), MMP-3, MMP-9,
and MMP14/MT1-MMP (Thiery et al., 2009). YAP and TAZ are
also emerging as key modulators in inducing plasticity and skin
cancer initiation (Moroishi et al., 2015; Debaugnies et al., 2018).
EMT of tumor cells can also be induced by various stimuli from
the tumor microenvironment (Marcucci et al., 2014); Fabrizio
Marcucci and his colleagues proposed five major classes of these
stimuli in 2016 (Marcucci et al., 2016): hypoxia and low pH,
innate and adaptive immune responses, mechanical stress, altered
ECM and treatment with chemotherapeutics (Figure 1).

Interestingly, hypoxic features in the tumor
microenvironment can stimulate EMT as a downstream
consequence of upregulated hypoxia-inducible factor 1α (HIF1α)
(Wong et al., 2012). Apart from tumor microenvironment stimuli
for EMT induction, stimulus-independent activation of signaling
pathways, caused by mutations or epigenetic modifications
leading to overexpression of certain pathway components,
can also trigger EMT (Wallin et al., 2012; Serrano-Gomez
et al., 2016). Gain-of-function mutations in P53 has been
reported to induce EMT via modulation of miR-130b-Zeb1 axis
(Dong P. et al., 2013).

Epigenetic modifications can also cause a shift of epithelial
to mesenchymal state; for example, aberrant DNA CpG island
methylation correlated with the repression of the miR-200 cluster,
which promotes EMT and contributes to tumor progression
(Vrba et al., 2010). LSD1-dependent genome-scale epigenetic
reprograming was also observed during EMT (McDonald et al.,
2011; Tang et al., 2013; Boulding et al., 2019). Various other
chromatin regulators (e.g., DNMT1, KDM6B, PHF8, EZH2, and
HDAC) are also reported to regulate EMT, genomic stability
and metastasis (Suvà et al., 2013; Lu and Kang, 2019). Apart

from epigenetics and mutations, EMT can also be modulated
at transcriptional, post-transcriptional, translational and post-
translational levels. The intrinsic gene network regulators, via
alternate splice isoforms of ESRP1/2, microRNAs and long non-
coding RNAs, also acts as other distinctive mechanisms to induce
EMT (Aiello et al., 2018; Aiello and Kang, 2019). It has been
postulated that during chemotherapy regimens, undifferentiated
cancer cells also commence EMT, causing therapy resistance,
CSC-like behavior, and a high propensity for metastasize. Tumor
relapse after drug treatment cessation is due to persistence of
disseminated CSC with mesenchymal features (Witta et al., 2006).
Redfern et al. (2018) have also recently shown shorter overall
survival times in patients treated with EMT-inducing agents
compared to agents known to inhibit EMT.

The expression changes of various key molecular markers
during EMT, are represented in Figure 1 (Christiansen and
Rajasekaran, 2006; Pastushenko and Blanpain, 2019). The
transition of epithelial cells to a more mesenchymal state is
also characterized by reduced intracellular adhesion through
the downregulation of E-cadherin (CDH1) and EpCAM, and
gain of mesenchymal markers such as N-cadherin (CDH2),
vimentin and FSP1/S100A4 (Francart et al., 2018). Repressors
of E-cadherin can be divided into groups that modulate either
directly or indirectly effects on gene transcription by binding
to promoter sites. ZEBs, SNAIL1 and KLF8 repress expression
by binding the E-cadherin promotor, thereby inactivating
transcription, while E2.2, FOXC2, GOOSECOID, and TWIST
repress E-cadherin transcription as indirect repressors (Peinado
et al., 2004, 2007; Xu et al., 2019). These factors also share an
elaborate interactome, in that SNAIL1 upregulates SNAIL2 and
TWIST (Thuault et al., 2008; Smit et al., 2009), SNAIL1 and
TWIST then induce ZEB1 and SNAIL2 (Casas et al., 2011; Dave
et al., 2011), and SNAIL2 induces ZEB2 (Thuault et al., 2008).
Although commonly serving as repressors of E-cadherin, these
broader mechanisms also selectively modulate other programs

FIGURE 1 | Major categories of EMP stimuli and markers involved in EMP. The dynamics of the epithelial – mesenchymal spectrum can be induced by five major
stimulii (hypoxia, immuno-modulators, mechanical stress, altered ECM, and chemotherapeutics), which involve changes in various functional and morphological
states and enlisted markers across the spectrum of epithelial–mesenchymal plasticity. ECM, extracellular matrix.
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involved in cell division, cell survival, and cell attachment,
thereby resulting in a motile, invasive and resistant cell phenotype
(Barrallo-Gimeno and Nieto, 2005).

ROLE OF EMT IN TUMOR INITIATION,
PROGRESSION AND METASTASIS

Although much less studied than later tumor stages, a number
of studies have made a connection between the linkage of EMT
to stemness and tumor-initiating capacity (Mani et al., 2008;
Morel et al., 2008). In some carcinoma cells, overexpression
of EMT transcription factors (EMT-TFs) has been observed to
drive and enhance tumorigenicity (Wellner et al., 2009), and in
particular, EMT has been shown to cause avoidance of oncogene-
induced senescence (Ansieau et al., 2008). In a mouse skin
SCC model, low levels of TWIST was explicitly responsible for
the tumor initiation process, whereas higher levels of TWIST
induced EMT and tumor progression (Beck et al., 2015). In
recent lineage tracing studies along with transcriptional and
epigenomic profiling, Latil et al found disparities in the tumors
generated from interfollicular epidermis (IFE) and hair follicle
(HF) stem cells (Lgr5CreER). While IFE tumors showed a well-
differentiated phenotype, tumors generated from HF stem cells
displayed an EMT spectrum and increased metastatic potential
(Latil et al., 2017).

The profound role of EMP in tumor progression and
metastasis in vivo has remained a topic with various controversies
(Brabletz et al., 2018; Williams et al., 2019). The number
of mesenchymal cells observed in primary cancers in many
xenograft studies had been observed to be less than 10%.
Although the specific dissemination process of these cells is not
yet well documented (Bhatia et al., 2019; Lourenco et al., 2020),
enrichment of EMT in circulating tumor cells has supported a
role for EMT in the initial steps of metastasis. Various studies
have highlighted the role of key EMT TFs, such as Slug and
Zeb1, in promoting metastasis of breast and colorectal cancer
to liver and lung, respectively (Spaderna et al., 2008; Guo et al.,
2012). Downregulation of TWIST expression in highly metastatic
mammary carcinoma cells was found to inhibit their metastatic
seeding ability in the lung (Yang et al., 2004). However, these
studies are nuanced by observations that enforced overexpression
or downregulation of EMT-TFs doesn’t recapitulate the dynamic
spectrum of transitional and/or partial EMT states discovered
in vivo (Pastushenko et al., 2018). Similarly, the studies from
the genetic abrogation of Twist or Snail in mouse models of
pancreatic adenocarcinoma and from EMT lineage tracing using
Fsp1 and β-actin promoter in breast cancer mouse model have
questioned the indispensability of full mesenchymal transition in
the metastasis process (Fischer et al., 2015; Zheng et al., 2015).
The conclusions of these studies have been subsequently refuted
by other studies where genetic depletion of Zeb1 in the same
pancreatic model resulted in strong suppression of metastasis.
Therefore, caution is required while interpreting such results
as the context of EMT and other compensatory mechanisms
may significantly influence their role in promoting metastasis
(Aiello et al., 2017; Ye et al., 2017). With the advent of cell

fate mapping studies using intra-vital imaging, plasticity was
revealed in mouse breast tumor cells from primary site to its
re-epithelisation upon metastasis (Beerling et al., 2016). Several
other studies have also reported the direct evidence of EMP
under physiological conditions (Rhim et al., 2012; Chaffer et al.,
2013; Ye et al., 2015). Multiple tumor subpopulations screened
from mammary and skin tumors suggested that tumor cells with
hybrid phenotypes were more efficient in dissemination and
metastasis (Pastushenko et al., 2018; Thompson and Nagaraj,
2018; Pastushenko and Blanpain, 2019; Rios et al., 2019).
Similar, other relevant studies are also emerging to suggest that
cancer cells mostly transition between epithelial/mesenchymal
and hybrid intermediate states, but rarely undergo complete EMT
during metastasis (Kroger et al., 2019).

EMP ANALYSIS OF CIRCULATING
TUMOR CELLS (CTCS)

Generation of CTCs is regarded as a consequential effect
of the multi-step processes that constitute the metastasic
cascade (Lambert et al., 2017), and have become a particularly
rich source of evidence and information regarding the role
of EMP in cancer progression. Understanding the biology
and characteristics of CTCs can provide important insights
into the molecular and cellular requirements of cancer cells
during metastatic spread. Observations of enriched levels of
mesenchymal genes (e.g., N-cadherin, vimentin and Twist) and
reduced expression of epithelial genes (e.g., E-cadherin, EpCAM
and CK8/18/19) has been reported in the CTCs relative to
cells in the tumors of origin in the breast cancer patients
(Yu et al., 2013; Wang et al., 2018). Although many CTCs
exhibit a mesenchymally enriched phenotype, some researchers
have revealed that a small population of CTCs co-expressed
both epithelial and mesenchymal (E/M) hybrid phenotype traits,
which likely promoted cell migration, cell invasion and cell
survival capabilities (Lecharpentier et al., 2011; Milano et al.,
2018). Hence hybrid CTCs may be more metastatic than
mesenchymal CTCs.

High numbers of CTCs in blood is significantly associated
with poor prognosis in several carcinoma types, such as prostate
cancer (Wang et al., 2011), breast cancer (Bulfoni et al.,
2016), pancreatic cancer (Han et al., 2014), lung cancer (Naito
et al., 2012), and increasingly these have taken account of
CTC phenotypes (Tachtsidis et al., 2016). Pan et al. (2019)
conducted a correlation study between CTC phenotypes and
clinicopathological features of early cervical cancer, finding lower
CTC counts in stage I patients than stage II patients with
pelvic lymph node metastasis, but also that mesenchymal CTCs
expressing vimentin and TWIST were more commonly found in
the latter. Consistently, Markiewicz et al. (2014) selectively found
of VIM, SNAI1, and UPAR expression in mesenchymal CTCs
derived from breast cancer patient with lymph nodes metastases.
Due to the low number of CTCs in blood, the greatest challenge
in studying CTCs is the detection and isolation of these cells
from patients’ blood (Kowalik et al., 2017). Molecular profiling of
EMT markers in CTCs has been used to establish tools to isolate
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and classify CTCs. RNA in situ hybridization (RNA-ISH) is a
detection method that employs specific probes targeting different
epithelial and mesenchymal genes to detect multiple transcripts
simultaneously (Lopez-Munoz and Mendez-Montes, 2013). An
enhanced RNA-ISH-based detection system, CTCscope, was
innovated to detect eight epithelial markers and three EMT
markers (Payne et al., 2012), and has been employed successfully
in the landmark breast cancer CTC study (Yu et al., 2013;
Wang et al., 2018). The FDA-approved CELLSEARCH R© system
(Menarini-Silicon Biosystems, Inc.), which immunocaptures
EpCAM-expressing CTCs for patient prognosis (Riethdorf et al.,
2007), is intrinsically biased toward predominantly epithelial
CTCs. However, recent CTC studies have employed microfluidic
devices to capture and isolate CTCs according to their size
and deformability, which allows for better coverage of different
phenotypic states (Lemaire et al., 2018; Ribeiro-Samy et al., 2019).

Although the devices used to isolate CTCs have improved
the quality and quantity assessment of CTCs, there are still
limitations when studying CTCs. Over the past few years,
use of the revolutionary single- cell RNA sequencing (scRNA-
seq) has emerged to assess genome-wide expression profiles of
isolated CTC populations and CTC clusters. Aceto et al. (2014)
conducted scRNA-seq on endogenous CTCs generated using
tumor xenografts of LM2 variant of MDA-MB-231 human breast
cancer cells, showing that CTC clusters are oligoclonal and
highly metastatic compared to single CTCs. It was found that
the cell junction protein plakoglobin (JUP) mediates cell cluster
formation, enhancing the metastatic potential of CTCs. Ting
et al. (2014) performed scRNA-seq analysis on CTCs in a mouse
pancreatic cancer model, and revealed a universal loss of the
epithelial markers E-cadherin (Cdh1) and Mucin-1 (Muc1) across
all CTCs compared with the primary xenograft tumors. Hugo
et al. (2017) showed that both in vitro and in vivo knockdown of
Cdh1 in MDA- MB-468 breast cancer cells reduced proliferation,
and this was also reported by Padmanaban et al. (2019), who
further indicated that the loss of Cdh1 increased invasion capacity
while reducing cell survival, CTC number and metastasis spread
in the breast cancer.

The interconnection between CTC, EMT and CSC has been
actively studied and reported to harbor important mechanisms
underlying tumourigenicity (Agnoletto et al., 2019). EMT
generates stem-like cells (Mani et al., 2008) and tumor cells that
features both EMT and stem-like characters are better equipped
to induce metastasis (May et al., 2011; Barriere et al., 2014), while
some CTCs have dynamic cellular plasticity expressing EMT
traits and stemnicity (Alonso-Alconada et al., 2014). A minor
fraction of EMT hybrid phenotype CTCs have been shown to
exhibit stem-like features, and these cells have been shown to
promote collective migration Kaigorodova et al. (2017); Quan
et al. (2020), as well as enhanced survivability and chemoresistant
(Papadaki et al., 2019). Papadaki et al. (2019) modeled four CTC
subpopulations based on the co-expression of three different
markers; cytokeratin (epithelial marker), ALDH1 (stemness
marker) and TWIST1 (partial EMT marker), and revealed
that CTCs co-expressing cytokeratin, high levels of ALDH1,
and nuclear TWIST1 (CSC+/partial-EMT+) were enriched after
the first-line chemotherapy, implying that they were the most

chemoresistant subpopulation, and had a favored prognostic
value in patients with metastatic breast cancer. Another study
has showed that EpCAMhigh CTCs were significantly associated
with poor prognosis compared to EpCAMlow CTCs in patients
with breast and prostate cancer (de Wit et al., 2018), however the
level of mesenchymal co-expression was not measured. Ting et al.
(2014) showed that the stem cell markers Aldh1a1 and Aldh1a2
were enriched in pancreatic CTCs, and they also demonstrated
that Igfbp5 (a transport protein of epithelial stroma) and SPARC
(a collagen-binding glycoprotein related to ECM reorganization)
were highly expressed in the CTCs. Although they stated that
there was no intrinsic correlation between EMP state and
stemness in their CTCs, other reports have shown expression
of these genes were associated with Cdh1 reduction (Bradshaw,
2009; Sureshbabu et al., 2012). There still remains a lack of
evidence to fully elucidate the mechanistic relationship between
CTCs, EMT and CSCs through the association of their existing
markers with functional features, although it seems clear that they
represent only a small fraction of CTCs.

UNDERSTANDING DYNAMICS OF EMT

In the last two decades, many new concepts and findings
have flourished around the dynamics of EMP. The dynamics
of the stochastic state transitions, which allows cancer cells
to switch between phenotypic states, is not yet explicitly
described. However, novel concepts of dynamic equilibrium,
asymmetrical dynamics of EMT-MET conversions, bet hedging,
and hysteresis/cellular memory of cancer cells have heralded
a deeper understanding of the phenotypic heterogeneity that
cancer cells endow/possess (Jolly and Celià-Terrassa, 2019).
This intrinsic mechanism of bi-directional transitions between
epithelial (differentiated) and mesenchymal (stem-like) states is
reported in different kinds of cancer (Polyak and Weinberg,
2009; Chaffer et al., 2011; Gupta et al., 2011; Yang et al.,
2012; Ruscetti et al., 2016; Bhatia et al., 2019). Sequencing of
breast cancer stem cell populations also indicates a dynamic
conversion between differentiation states in vivo (Klevebring
et al., 2014). A phenotypically stable equilibrium was observed
in breast cancer cell lines, differentially segregated across cell
state proportions (Gupta et al., 2011; Bhatia et al., 2019).
DNA barcoding and subsequently high-throughput sequencing
of breast cancer cell clones had also been employed to quantify
the extent of intrinsic phenotypic plasticity exhibiting epithelial
or mesenchymal phenotypes (Mathis et al., 2017; Rios et al.,
2019). Various mechanism-based mathematical modeling and
data-based statistical modeling approaches have been developed
in an attempt to uncover the presence of these metastable states
(Lu et al., 2013; Jolly et al., 2016; Jolly and Celià-Terrassa, 2019).

The presence of “multiple attractor states” based on
Waddington landscape and intrinsic cellular variability also
contributes to phenotypic plasticity (Huang et al., 2009; Ferrell,
2012; Li et al., 2016). The studies pertaining to EMT and MET
reversion have also explained explicitly that the dynamics
achieved for its reversion back may not follow the same path.
For example, studies with a Snail-inducible expression system
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in prostate cancer cells has identified metabolic plasticity and
asymmetrical dynamics during their EMT-MET cycle (Stylianou
et al., 2019). Other studies, where re-expression of significant
epithelial markers such as E-cadherin, OVOL2 and GRHL2
after their knockout may not obtain the same spectrum of
reversion also suggests asymmetrical dynamics (Qi et al.,
2018; Chung et al., 2019; Jolly et al., 2019). The concept of
bet hedging had been observed in bacterial persistence under
different environmental stimulations by generating mutation-
independent phenotypic heterogeneity (Veening et al., 2008).
This pre-existing phenotypic heterogeneity is thought to be
exploited by cancer cells in generating drug-persistence cells
via non-genetic mechanism, which might lead to anti-drug
resilience in clinical scenarios (Jolly et al., 2018). The property
of hysteresis and “cellular memory” allows cells from the same
clonal population to respond differently to the same strength
and duration of a signal. The differential response again can be
attributed to the cellular placement across different “attractor
states” or the possibility of history of input stimuli (Chang et al.,
2006; Jolly and Celià-Terrassa, 2019). The possibility of EMT
occurring via non-linear hysteretic mode had been recently
observed to result in different dynamics and increased metastasis
in a breast cancer model (Celià-Terrassa et al., 2018). Thus, these
dynamics impart a further layer of intricacies in understanding
the causes and reasons of non-genetic heterogeneity in cancer
in regard to phenotypic plasticity. An integrative understanding
of the approaches to block this phenotypic plasticity and EMP
dynamics could further aid in combating cancer resistance.

IMPLICATIONS OF METABOLIC
PLASTICITY AND EMP

During the processes of EMP, there are numerous adaptations,
not only in cell morphology and epigenetic changes, but also
in metabolism (Cha et al., 2015). Among them, glucose and
lipid metabolism alterations are crucial for the EMT induction
(Kondaveeti et al., 2015; Sánchez-Martínez et al., 2015; Morandi
et al., 2017; Kang et al., 2019). In terms of carbohydrate
metabolism, it is well known that cancer cells prefer to
reply on the glycolysis to generate ATP instead of oxidative
phosphoruylation (OXPHOS), even under the well-oxygenated
conditions, according to the Warburg effect (Warburg, 1956).
However, apart from the Warburg effect, other glucose metabolic
pathway adaptations have been observed during the last decade.
When cancer cells undergo an EMP process, their metabolism
will reprogram from aerobic glycolysis for proliferation to EMT-
like metabolism to meet the increased energy needs. Both
enhanced glucose and lipid uptake and increased glycolytic
mediated biosynthesis and lipid synthesis are the characteristics
of EMT-like metabolism. The correlation between metabolism
and EMP is dynamic. EMP-associated genetic changes can
stimulate metabolic adaptations, while the higher metabolic rate
can support and facilitate the EMP process.

A number of studies illustrate the EMT-associated metabolic
changes and their implications. According to the research of
Dong et al., up-regulation of the EMT-driving transcription

factor Snail-1 in basal-like breast cancer cells leads to the
formation of a Snail-G9a-Dnmt1 complex to silence the
expression of fructose-1,6-bisphosphatase (FBP1), which is an
important enzyme of gluconeogenesis (Dong C. et al., 2013).
The loss of the FBP1 caused an increase in glucose uptake
for ATP production and glycolytic mediated biosynthesis, like
the pentose phosphate pathway (PPP), serine and glycerol-3-
phosphate. The reprogramed metabolism offers enough energy
to fuel the invasion and metastasis processes.

For lipid metabolism, higher expression levels of lipid
synthesis enzymes such as ATP-citrate lyase (ACLY), stearoyl-
CoA desaturase (SCD), fatty acid synthase (FASN) and HMG-
CoA reductase, have been detected in more aggressive tumor
cells (Sánchez-Martínez et al., 2015). Jing et al. reported
that overexpression of these proteins in association with
mutated p53 in mostly mesenchymal cancer cells, along with
aberrant expression of sterol regulatory element-binding proteins
(SREBPs) (Hu et al., 2013). In normal tissue, wild type p53
can inhibit the expression of SREBP-1c, a transcription factor
of FASN and ACLY (Horton et al., 2002), while the mutated
p53 loses this capacity. Moreover, the mutated p53 can bind
with SREBP-2 to enhance the cholesterol biosynthesis (Freed-
Pastor et al., 2012). Thus, mutated p53 significantly upregulates
both fatty acid (FA) and cholesterol levels in cancer cells, which
generate more membrane lipid rafts to support cell motility
during the EMT process. High levels of SREBP1 can also
induce EMT, via recruiting a SNAIL1/HDAC1/2 complex to stop
E-cadherin mRNA expression (Zhang et al., 2019). Chen et al.,
has proposed that drugs targeting SREBPs could suppress cancer
cell metastasis (Chen et al., 2018).

Growth factors from the tumor microenvironment can also
reprogram cancer cells from the Warburg-like metabolism to
EMT-like metabolism. Activated PI3K/AKT/mTOR signaling
due to growth factor stimulation can enhance the uptake of
glucose and lipid, as well as the synthesis of FA and protein (Chen
et al., 2018). The study of EMP relative metabolism changes can
offer a promising target for cancer therapy.

CURRENT MODALITIES TO
INVESTIGATE PLASTICITY

Many techniques recently employed in the field of cancer
cellular plasticity have corroborated not only the epithelial
and mesenchymal phenotypic states, but also the spectrum of
intermediate and hybrid E/M states (Pastushenko et al., 2018;
Karacosta et al., 2019). The molecular approaches widely used
in the cancer EMT field are broadly divided into two categories:
in vitro based molecular and functional assays and in vivo
based cancer models. The in vitro assays routinely performed
in EMP studies involve various molecular and functional
assays. Molecular assays, using FACS and immunocytochemistry
staining with microscopy analysis, relies on various validated
EMP markers that are used to delineate the phenotypic state of
cells (Celià-Terrassa et al., 2018; Pastushenko et al., 2018; Risom
et al., 2018; Bhatia et al., 2019). Microscopy based snap-shot and
real time analysis in conjunction with quantitative assessment
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is an imperative technique. These optic techniques are widely
employed to study the cellular localization of various molecular
markers, such as E-cadherin presence at the cell junctions, and
also the subtle dynamic changes of various markers in the absence
or presence of various stimuli or inducers can be studied (Hirata
et al., 2014; Labernadie et al., 2017; Liu et al., 2018). Microscopy
approaches are also well integrated in various functional assays,
such as in vitro wound closure, Transwell migration studies
performed in the presence or absence of ECM, quantification
of single cell migration and invasion studies in culture medium,
spheroid assessment and co-culture assays with cancer associated
fibroblasts or endothelial cells (Kramer et al., 2013; Tanner
and Gottesman, 2015; Mitchell and O’Neill, 2016; Klymenko
et al., 2017; Reynolds et al., 2017; Mason et al., 2019). Other
in vitro assessment also include “soft agar assay” for anchorage
independent growth studies, “ECM degradation assays” to
measure MMP and other protease activity, and “trans-epithelial
resistance” assays to study monolayer integrity and permeability
(Narai et al., 1997; Anderl et al., 2012; Borowicz et al., 2014). In
studies relevant to single cell colonization, plasticity generated
from single cell clonal culture is also examined for differences
in migration, invasion and chemoresistance assays, which can
be extrapolated to the metastatic cascade (Kramer et al., 2013;
Harner-Foreman et al., 2017; Bhatia et al., 2019). While in vitro
studies are important to study cellular behavior in context of
phenotypic plasticity and tumoural non-genetic heterogeneity,
these routinely performed assays have the drawback of not
presenting the whole landscape of cancer and the real EMP
spectrum, where cancer cells are infiltrated with stromal and
immune microenvironment.

Researchers in the field of EMP have employed various animal
models, including as C. elegans, Drosophila Melanogaster, chick
embryos, zebrafish and mice to study the in vivo dynamics of
phenotypic plasticity in developmental EMT and cancer EMP

(Jimenez et al., 2016; Gómez-Cuadrado et al., 2017; Nieto,
2018; Stuelten et al., 2018; Campbell et al., 2019). Genetically
engineered mouse models and patient-derived xenografts (PDXs)
have been observed to recapitulate metastatic and organ homing
properties similar to clinical specimens (Sikandar et al., 2017).
Orthotopic implantation strategies, such as inoculation into the
mammary fat pad, has also improved the recapitulation of the
breast cancer in mice (Proia et al., 2011). In conjunction with
intravital imaging and fluorophore chemistry, various Cre-Lox
lineage tracing approaches have been employed in cell lines, and
in injected mouse and zebrafish models, to delineate EMP status
of the cells at primary and metastatic sites, and also of encaptured
CTCs (Lourenco et al., 2020). These reporter tags are valuable in
identification of CTCs and in scenarios of low numbers of cells
seeding at secondary niches during metastasis (Zheng et al., 2015;
Sikandar et al., 2017). The inducible system utilized for Twist1
induction or deletion at different stages of skin carcinogenesis
allowed flexibility in spatio-temporal tuning (Tsai et al., 2012;
Beck et al., 2015). The use of confetti mouse models and lineage
tracing can also aid in the determination of intratumoural
heterogeneity owing to clonal variations, and in fate mapping
of the cancer evolution studies (Janiszewska and Polyak, 2018;
Marx, 2018; Rios et al., 2019). Technological advances in the fields
of single cell transcriptomic analysis (Patel et al., 2014; Ting et al.,
2014; Horning et al., 2018; Kim et al., 2018; Puram et al., 2018;
Cook and Vanderhyden, 2019), single-cell methylome profiling
or ChIP sequencing (Rotem et al., 2015; Angermueller et al., 2016;
Grosselin et al., 2019) and multiplex in situ imaging (Tsujikawa
et al., 2017; Schulz et al., 2018) has allowed researchers to gain
insightful information of cellular phenotypic status from clinical
specimens. Microfluidic modalities are also gaining attention
recently and are of great help not only in detection and capturing
of label-free CTCs from patients, but also to gauge the effects of
fluid pressures, cancer cell motility assessment associated with

FIGURE 2 | Potential avenues to target EMP. Three main strategies for targeting cancer progression and recurrence with relevance to EMP dynamics are to use
agents/compounds (i) that can target the inducers to prevent EMT; (ii) that can selectively kill mesenchymal phenotype and cells present within multiple transition
states; (iii) that can revert the cells via MET.
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TABLE 1 | List of the current active clinical trials targeting EGF and TGF-β signaling pathways in combination with chemotherapeutics.

Target class Functional class Drug name chemotherapeutics
combination

Cancer type Clinical status (first posted,
recruitment status)

Intervention/treatment

TGF-β/TGF-β
Receptor inhibitors

Tyrosine kinase
inhibitor

LY-2152799
(Galunisertib)

Fluorouracil/Capecitabine + Tumor
specific mesorectal excision

Locally Advanced Rectal
Adenocarcinoma

NCT02688712 (2016,
Recruiting)

Drug: LY2157299Drug: Capecitabine
Drug: Fluorouracil Procedure: Tumor
specific mesorectal excision

Paclitaxel/Carboplatin Carcinosarcoma of the Uterus
or Ovary

NCT03206177 (2017,
Recruiting)

Drug: Galunisertib Drug: Paclitaxel
Drug: Carboplatin

Sorafenib Advanced Hepatocellular
Carcinoma

NCT02178358 (2014, Active,
not recruiting)

Drug: LY2157299 Drug: Sorafenib
Drug: Placebo

TGF-β receptor
inhibitor

TEW-7197 Pomalidomide Relapsed or Relapsed and
Refractory Multiple Myeloma

NCT03143985 (2017,
Recruiting)

Drug: TEW-7197 Drug: Pomalidomide

EGF/EGFR
inhibitors

EGFR tyrosine
kinase inhibitor

Gefitinib Pemetrexed Advanced Non-Small Cell Lung
Cancer

NCT01982955 (2013, Active,
not recruiting)

Drug: Tepotinib Drug: Gefitinib Drug:
Pemetrexed Drug: Cisplatin Drug:
Carboplatin

Icotinib Pemetrexed, Carboplatin III B/IV Non-Small Cell Lung
Cancer

NCT03151161 (2017, Not yet
recruiting)

Drug: Icotinib, Pemetrexed, Carboplatin
Drug: Icotinib

Cisplatin or Carboplatin metastatic non-squamous
non-small cell lung cancer who
did not progress after
pemetrexed combined with
platinum chemotherapy

NCT03992885 (2019,
Recruiting)

Drug: Icotinib Drug: Cisplatin Drug:
Carboplatin

Apatinib Pemetrexed, Gemcitabine,
Docetaxel

NSCLC Patients Without
T790M Mutation

NCT03758677 (2018, Not yet
recruiting)

Drug: Apatinib Drug: Chemotherapy
with platinum-based double drugs
(Pemetrexed, Gemcitabine, Docetaxel)

Pemetrexed Plus Carboplatin Advanced Non-small Cell Lung
Cancer

NCT03164694 (2018,
Recruiting)

Drug: Apatinib + Pemetrexed +
Carboplatin Drug: Pemetrexed +
Carboplatin

Osimertinib Cisplatin or Carboplatin Metastatic EGFR Mutant Lung
Cancers

NCT03567642 (2018,
Recruiting)

Drug: Osimertinib Drug: Platinum Drug:
Etoposide

Platinum-based
Doublet-Chemotherapy

Locally Advanced or Metastatic
Non-Small Cell Lung Cancer

NCT02151981 (2018, Active,
not recruiting)

Drug: Chemotherapy Drug: Cross-over
to Osimertinib

Pemetrexed + Cisplatin or
Pemetrexed + Carboplatin

Locally Advanced Non-Small
Cell Lung Cancer

NCT04035486 (2019,
Recruiting)

Drug: Osimertinib Drug: Osimertinib +
Pemetrexed + Cisplatin Drug:
Osimertinib + Pemetrexed +
Carboplatin

Monoclonal
antibody

Panitumumab Carboplatin and Paclitaxel Invasive Triple Negative Breast
Cancer

NCT02876107 (2016,
recruiting)

Drug: Carboplatin Other: Laboratory
Biomarker Analysis Drug: Paclitaxel
Biological: Panitumumab

HLX07 Gemcitabine + Cisplatin/Paclitaxel
+ Carboplatin/mFOLFOX6

Advanced Solid Tumors NCT03577704 (2018,
Recruiting)

Drug: HLX07 + Gemcitabine +
Cisplatin Drug: HLX07 + Paclitaxel +
Carboplatin Drug: HLX07 +
mFOLFOX6
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TABLE 2 | Different categories of inhibitors that target stimuli and signaling pathways associated with EMT and are targeted in current clinical trials.

Target class Functional class Drug Name Cancer type Clinical status (first
posted)

Inhibitors of extracellular mediators and their corresponding receptors

TGF-β–TGF-β
receptor inhibitors

TGF-β receptor inhibitor TEW-7197 Urothelial Carcinoma Recurrent, Advanced
Urothelial Carcinoma, Myelodysplastic
Syndromes

NCT04064190(2019);
NCT03074006(2017)

TGFβ receptor ectodomain-IgG Fc
fusion protein

AVID200 refractory advanced and metastatic malignancies,
Myelofibrosis (Myeloproliferative Neoplasms
Research Consortium [MPN-RC] 118)

NCT03834662(2019);
NCT03895112(2019)

a bifunctional fusion protein
targeting PD-L1 and TGF-β

MSB0011359C
(M7824)

Stage II-III HER2 Positive Breast Cancer, Locally
Advanced or Metastatic Second Line (2L) Biliary
Tract Cancer (Cholangiocarcinoma and
Gallbladder Cancer), Solid Tumors, Recurrent
Respiratory Papillomatosis, HPV Associated
Malignancies

NCT03620201(2018);
NCT03833661(2019);
NCT02699515(2016);
NCT02517398(2015);
NCT03707587(2018);
NCT03427411(2018)

CAR-T cells that target GPC3
(GPC3-CART cell) and/or soluble
TGFβ (GPC3/TGFβ-CART)

GPC3-T2-CAR-T Hepatocellular Carcinoma, Squamous Cell Lung
Cancer

NCT03198546(2017)

IL-6/IL-6R inhibitors Monoclonal antibody Siltuximab (CNTO-328,
Tocilizumab)

Metastatic Pancreatic Cancer; multiple myeloma
(MM) and systemic AL amyloidosis (AL)

NCT04191421(2019);
NCT03315026(2017)

EGF/EGFR
inhibitors

Tyrosine kinase inhibitor Afatinib (BIBW2992) Chordoma, NCT03083678(2018)

Dacomitinib
(PF00299804)

EGFR Mutant Lung Cancer NCT03755102(2018)

Osimertinib Stage I-IIIA EGFR-mutant Non-small Cell Lung
Cancer, stage IIIB-IV or Recurrent Non-small Cell
Lung Cancer

NCT03586453(2018);
NCT03434418(2018);
NCT03433469(2018);
NCT03191149(2018)

Brigatinib (AP26113) Advanced Non-small Cell Lung Cancer (NSCLC),
Anaplastic Large Cell Lymphoma, Advanced
Malignant Neoplasm

NCT02737501(2016);
NCT02706626(2017);
NCT03719898(2018);
NCT03868423(2019);
NCT03707938(2018);
NCT03596866(2019);

inhibitor for (EGFR, HER2, and
ErbB4)

Poziotinib
(HM781-36B)

EGFR Exon 20 Mutant Advanced NSCLC, Breast
Cancer, Stage IV Lung Adenocarcinoma with
HER2 Mutation

NCT03066206(2017);
NCT03066206(2017);
NCT03744715(2018);
NCT03318939(2017);
NCT02979821(2016)

Monoclonal antibody Panitumumab Anaplastic Lymphoma Kinase-Positive (ALK +),
Advanced Non-Small-Cell Lung Cancer (NSCLC)

NCT03535740(2019)

HLX07 Advanced Solid Cancers NCT02648490(2016)

PDGF/PDGFR
inhibitors

Tyrosine kinase inhibitor Axitinib Pheochromocytoma, Paraganglioma, Renal Cell
Carcinoma, Hepatobiliary Neoplasm, Liver
Neoplasm, Biliary Tract Neoplasms, Cervical
Cancer, Non-Small Cell Lung Cancer, Urothelial
Cancer

NCT03839498(2019);
NCT03494816(2018);
NCT04010071(2019);
NCT03826589(2019);
NCT03472560(2018);
NCT03341845(2017)

FGF/FGFR
inhibitors

Tyrosine kinase inhibitor Lenvatinib Advanced Biliary Tract Cancer, Thyroid
Neoplasms, Advanced Gastric Cancer, Non-small
Cell Lung Cancer, Solid Tumor, Thyroid Cancer

NCT04211168(2019);
NCT03573960(2018);
NCT03609359(2018);
NCT03829332(2019);
NCT03009292(2017);
NCT03139747(2017)

Nintedanib (BIBF1120) Appendix Cancer, Lymphangioleiomyomatosis,
Adenocarcinoma of the Lung

NCT03287947(2017);
NCT03062943(2017);
NCT04046614(2019)

Pazopanib Refractory Solid Tumors, Metastatic Sarcoma,
Recurrent Sarcoma, Resectable Sarcoma,
Advanced Renal Cell Carcinoma Metastatic Renal
Cell Carcinoma

NCT02691767(2016);
NCT04199026(2019);
NCT03200717(2017)

(Continued)
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TABLE 2 | Continued

Target class Functional class Drug Name Cancer type Clinical status (first
posted)

Ponatinib Medullary Thyroid Cancer, Acute Myeloid
Leukemia, Accelerated Phase Chronic Myeloid
Leukemia, Blast Phase Chronic Myeloid
Leukemia, GIST, Malignant, Chronic Myeloid
Leukemia, Acute Lymphoblastic Leukemia,
Philadelphia Chromosome-positive Acute
Lymphoblastic Leukemia

NCT03838692(2019);
NCT03934372(2019);
NCT03171389(2017);
NCT04233346(2020);
NCT03709017(2018)

TNFα inhbitors Monoclonal antibody Infliximab Advanced Melanoma NCT03293784(2017)

Hedgehog/
Smoothened inhibitors

Smoothened antagonists
(small-molecule inhibitor)

Vismodegib Stomach Neoplasms, Basal Cell Carcinoma,
Metastatic Basal Cell Carcinoma, Locally
Advanced Basal Cell Carcinoma, Advanced
Solid Tumors

NCT03052478(2017);
NCT03035188(2017);
NCT03610022(2018);
NCT03297606(2017)

Sonidegib Clinical Stage III Cutaneous Melanoma AJCC
v8, Clinical Stage III Gastric Cancer AJCC v8,
Basal Cell Carcinoma

NCT04007744(2019);
NCT04066504(2019)

Notch/Notch ligand
(Delta-like and Jagged)
inhibitors

Small-molecule inhibitor γ-secretase inhibitor:
LY3039478

Advanced Solid Tumor NCT02836600(2016)

γ-secretase inhibitor:
PF-03084014

Desmoid Tumor, Aggressive Fibromatosis,
Desmoid-Type Fibromatosis, Recurrent
Desmoid-Type Fibromatosis, Unresectable
Desmoid-Type Fibromatosis

NCT03785964(2018);
NCT04195399(2019)

PAN-Notch inhibitor
BMS-906024

recurrent or metastatic Adenoid Cystic
Carcinoma

NCT03691207(2018)

WNT/Frizzled inhibitors Wnt5a mimetic Foxy-5 Colon Cancer NCT03883802(2019)

Peptidomimetics CWP232291 Acute Myeloid Leukemia NCT03055286(2017)

Inhibits the recruiting of β-catenin
with its co-activator CBP

PRI-724 Liver Cirrhosis NCT03620474(2018)

Inhibitors of intracellular signaling pathways

SRC inhibitors Tyrosine Kinase inhibitor Dasatinib (BMS-354825) Relapsed AML, Waldenstrom
Macroglobulinemia, Relapsed CML

NCT03560908(2018);
NCT04115059(2019);
NCT03573596(2018)

Bosutinib (SKI-606) Metastatic Breast Cancer, Chronic Myeloid
Leukemia, Advanced Solid Tumors

NCT03854903(2019);
NCT02810990(2016);
NCT03297606(2017)

FAK inhibitors Tyrosine Kinase inhibitor Defactinib (VS-6063) Malignant Pleural Mesothelioma, Advanced
Solid Tumors

NCT04201145(2019);
NCT02546531(2015)

PI3K/AKT/mTOR
inhibitors

PI3K inhibitor Idelalisib Follicular Non-Hodgkin’s Lymphoma Refractory,
Relapsed Diffuse Large B-cell Lymphoma,
B-cell Lymphoma Recurrent, B-cell Chronic
Lymphocytic Leukemia

NCT03568929(2018);
NCT03576443(2018);
NCT03757000(2018)

AKT inhibitor AZD5363 Advanced Solid Tumors, Advanced Breast
Cancer

NCT03310541(2017);
NCT03182634(2017)

Temsirolimus Non-muscle Invasive Bladder Cancer, NCT02753309(2016)

Tyrosine kinase inhibitor CX-4945 Recurrent Medulloblastoma NCT03904862(2019)

AURKA/SYK Tyrosine kinase inhibitor Midostaurin Acute Myeloid Leukemia, AML/MDS NCT03951961(2019);
NCT04097470(2019)

AXL inhibitors Tyrosine Kinase inhibitor BGB324 Recurrent Glioblastoma Undergoing Surgery,
Advanced NSCLC

NCT03965494(2019);
NCT03184571(2017)

RAS/RAF/MAPK
inhibitors

RAF inhibitor Sorafenib Recurrent or Metastatic Triple Negative Breast
Cancer, Advanced Liver Cancer, Advanced
Hepatic Carcinoma

NCT02624700(2015);
NCT04163237(2019);
NCT03164382(2017);
NCT03211416(2017)

MEK inhibitor Trametinib Advanced ALK-Positive NSCLC,
Advanced/Metastatic Colorectal Cancer

NCT03087448(2017);
NCT03714958(2018)

Inhibitors of transcription factors that indirectly induce EMP

JAK and STAT3
inhibitors

Small molecule inhibitor STAT3: BB1608
(Napabucasin)

Metastatic Colorectal Cancer, Metastatic
Pancreatic Cancer

NCT03522649(2018);
NCT03647839(2018);
NCT03721744(2018)

(Continued)
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TABLE 2 | Continued

Target class Functional class Drug Name Cancer type Clinical status (first
posted)

Compounds acting on epigenetic modulators

Histone deacetylase
inhibitor

Vorinostat Mutated Advanced Melanoma, Breast Cancer
Metastatic

NCT02836548(2016);
NCT03742245(2018)

Romidepsin Survey- Relapsed or Refractory Peripheral T-Cell
Lymphoma

NCT03742921(2018);
NCT03547700(2018)

Mocetinostat Advanced Lung Cancer, Unresectable Stage III or
Stage IV Melanoma

NCT03220477(2017);
NCT03565406(2018)

Panobinostat Multiple Myeloma NCT02722941(2016);
NCT04150289(2019);

Histone methyl
transferases inhibitor

EZH2 inhibitor E7438 (Tazemetostat,
EPZ-6438)

Relapsed or Refractory B-cell Non-Hodgkin’s
Lymphoma, Relapsed/Refractory Follicular
Lymphoma

NCT03009344(2017);
NCT03456726(2018);
NCT04224493(2020)

EZH1/2 inhibitor DS-3201b Relapsed or Refractory Adult T-cell
Leukemia/Lymphoma, Acute Leukemia Myeloid
Leukemia, Acute Lymphocytic, Recurrent Small Cell
Lung Cancer

NCT04102150(2019);
NCT03110354(2017);
NCT03879798(2019)

Inhibitors of stimuli from the tumor microenvironment

HIF-1α inhibitors Small molecule inhibitor PT2385 Von Hippel-Lindau Disease-Associated Clear Cell
Renal Cell Carcinoma, Recurrent Glioblastoma

NCT03108066(2017);
NCT03216499(2017)

Digoxin Breast Cancer, Circulating Tumor Cells (CTCs),
Advanced Pancreatic Cancer, Advanced Solid
Tumor

NCT03928210(2019);
NCT03889795(2019)

single cell or collective migration, and for co-culture studies
(Sarioglu et al., 2015; Ma et al., 2018; Shang et al., 2019;
Truong et al., 2019). Similarly, various mathematical approaches
and modeling have been helpful in deciphering the significant
genes and molecular networks associated with the spectrum of
epithelial and mesenchymal states, as well as phenotypic plasticity
(Jolly et al., 2017; Bocci et al., 2018; Jia et al., 2019; Yang et al.,
2019). However, it is crucial to acknowledge that the modalities
and analytical approaches utilized in the field of EMP present
context-specific studies, such that inferences derived will not
provide an overarching conclusion (Henkel et al., 2019). Inherent
limitations of the employed assays should always be taken into
consideration while extrapolating from the data.

THERAPEUTIC STRATEGIES FOR
TARGETING EMP

The presence of plasticity in tumor cells and resultant
heterogeneity is one of the utmost challenges in targeting
cancer on a whole (Bhatia et al., 2017; Redfern et al., 2018).
EMT and/or CSC have been reported to confer drug resistance
characteristics against a number of conventional therapeutics
like taxol, vincristine, oxaliplatin, gemcitabine, cisplatin and 5-
fluorouracil in human pancreatic cell lines, and against EGFR-
targeted therapies erlotinib, cetuximab and gefitinib in lung
cancer (Fuchs et al., 2008; Sabbah et al., 2008; Arumugam
et al., 2009). Similarly, studies have also reported that an
active EMT program in breast cancer cell lines makes them
unresponsive to tamoxifen, paclitaxel, and adriamycin treatment
(Kajita et al., 2004; Hiscox et al., 2006; Cheng et al., 2007;
Li Q. Q. et al., 2009). Breast cancer cells with EMT-associated

CSC features (CD44high, CD24low) have been reported to remain
after neoadjuvant chemotherapy and HER2 pharmacological
inhibition, suggesting that they encode resistance (Li et al.,
2008; Blick et al., 2010). Many reports have also shown basal,
mesenchymal-like neoplasms to be more resistant to neoadjuvant
chemotherapy than epithelial, luminal-like tumors (Yauch et al.,
2005; Carey et al., 2007; Liedtke et al., 2008), and reversal of
the EMT phenotype in resistant cell lines has re-established
drug sensitivity (Arumugam et al., 2009; Li Y. et al., 2009).
Therefore, three main strategies as combinatorial therapies that
are being widely acknowledged and/or proposed in the field
of combating plasticity are (i) Targeting EMP inducing stimuli
which can prevent mesenchymal transitioning, (ii) Targeting
the cells, specifically in mesenchymal or hybrid state which
can inhibit MET at secondary niche, and (iii) Reverting the
mesenchymal cells back to the epithelial state (Bhatia et al., 2017;
Williams et al., 2019; Figure 2).

In the first scenario to target EMP inducing stimuli, many
different approaches have been utilized to inhibit different
signaling pathways that contribute to the induction and
maintenance of EMT, such as TGFβ/TGFβR, EGF/EGFR,
FGF/FGFR, IGF/IGFR, IL-6/IL-6R, HGF/MET, PDGF/PDGFR,
TNFα, Wnt and Notch signaling (Marcucci et al., 2016; Bhatia
et al., 2017). Of all, TGFβ and EGF pathway inhibitors have been
most extensively studied and investigated, as these have been
found to be common inducers of EMT in different cancer types
(Li et al., 2015). Table 1 details the current active clinical trials
inhibiting these two EMT-inducing pathways in combination
with chemotherapeutics.

Secondly, for therapies specifically targeting mesenchymal
cells, different novel strategies such as EMP-targeting vaccines
against transcription factors such as TWIST1 and Brachyury;
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nutraceuticals; and the repurposing of drugs such as metformin,
salinomycin and resveratrol, have been extensively discussed
in our previous review (Bhatia et al., 2017). Table 2 details
current clinical trials (2015 onward) with the focus on targeting
EMP in cancer patients, as an update from our previous
review (Bhatia et al., 2017). New combinatorial approaches
combining EMT inhibitors alongside targeting immunotherapy
blockade are also being developed, as EMT is reported to
induce PDL1 expression in carcinoma cells (Chen et al., 2014;
Noman et al., 2017), and an EMT signature was seen in tumors
that responded to anti PD1/PD-L1- and CTLA4-associated
treatments (Lou et al., 2016).

For the third strategy, the detailed molecular knowledge
of MET regulation will provide opportunities to curtail this
event and prevent the development of metastasis, which is
of high clinical relevance. Depending on the clinical scenario,
MET-inducing/stabilizing factors may inhibit metastasis if they
block the initial EMT stages that allow the dissemination, or
promote the later stages of metastasis, which can cause some
conflicting considerations (van Denderen and Thompson, 2013;
Pattabiraman and Weinberg, 2016). An emerging challenge
is then to determine the correct timings for therapeutic
interventions, and also to decipher correctly the contribution
that intermediate states of the EMT spectrum make to
tumor evolution for therapeutic interventions (McGranahan
and Swanton, 2015). A high-throughput screening approach
is required to identify suitable drugs or “repurposable” small
molecular agents in context of specifically targeting hybrid
and/or partial EMP cells. The concept of intermittent dosing
(drug holidays) is also resurfacing to prevent the plasticity and
transitioning of cells in carcinoma. For example, resistance to
the BRAF inhibitor vemurafenib in melanoma is remodeled
to forestall drug resistance (Das Thakur et al., 2013). Thus,
the development of combinatorial therapeutic interventions
that can target dynamics and plasticity alongside proliferative
tendency of cancer cells may pave the way to more promising
treatment strategies.

CONCLUSION AND PERSPECTIVES

The crucial roles of EMT-MET during embryogenesis and
organogenesis is hijacked during tumor progression and
metastasis. The roles of various signaling cascades, intrinsic and

extrinsic mechanisms, and regulators that contributes to EMP
dynamics are reasonably well determined, but more refined
studies and techniques need to be employed to recapitulate
the MET behavior of cells while extravasating, seeding and
colonizing at secondary niches. The intricacies associated with
phenotypic plasticity, stemness and intratumoral heterogeneity
further sheds light on several unresolved queries. The reliable
features of cellular behavior relating to drug persistent states
through the spectrum of EMT need to be verified. Is there a
ubiquitous molecular feature of partial/hybrid EMT cells that
can be identified and targeted across all different cancer context
types? What actual mechanisms do cancer cells employ to
intravasate from the primary sites, and how do EMT - MET
programs cooperate to assist cancer cells through several stages
of cancer progression? We are still lagging in obtaining a wider
and more complete understanding of the contributions of EMP
in cancer. The sophisticated developments in lineage tracing
using confetti animal models and implementation of other novel
technologies such as high-resolution intravital imaging, live cell
imaging, inducible reporter systems and single-cell sequencing
techniques will provide great avenues in the fields of plasticity
and dynamics around EMP. Finally, it is imperative to determine
how phenotypic plasticity can be exploited, as therapeutic
interventions that push the conversion of cancer cells to fat cells
or apoptosis, for example, (David et al., 2016; Ishay-Ronen et al.,
2019) might be promising approaches in clinical settings.
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