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Abstract: This present paper has a complete and homoge-

neous presentation of plane stress and plane strain prob-

lems using the Strong Formulation Finite Element Method

(SFEM). In particular, a greater emphasis is given to the

numerical implementation of the governing and bound-

ary conditions of the partial di�erential system of equa-

tions. The paper’s focus is on numerical stability and accu-

racy related to elastostatic and elastodynamic problems.

In the engineering literature, results are mainly reported

for isotropic and homogeneous structures. In this paper, a

composite structure is investigated. The SFEM solution is

compared to the ones obtained using commercial �nite el-

ement codes. Generally, the SFEM observes fast accuracy

and all the results are in very good agreement with the

ones presented in literature.

Keywords: Elastostatic Problem; Elastodynamic Problem;

Composite Structure; Strong Formulation Finite Element

Method; Di�erential Quadrature Method.

DOI 10.2478/cls-2014-0005

Received September 24, 2014 ; accepted October 30, 2014

1 Introduction

The elastostatic and elastodynamic problems [1–3] for

engineering applications constitute a widely known ap-

proach for the study of structural components, laboratory

tests, composite materials, composite structures, and so

on. Some of themost studied problems of the present class

are two-dimensional (2D) models, which �nd application

in several engineering �elds, such as solid mechanics, dy-

namics of structures, fracture mechanics, wave propaga-

tion, seismic stability and rock mechanics. It should be
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cited that the mechanics of static and dynamic compos-

ite systems has been studied by several researches. Thus,

several books have been hitherto published [4–10].

Problems involving the theory of elasticity can be

solved analytically only when simple geometries occur.

Thus, the most common way of treating these problems is

to make numerical models. Generally the elastic behavior

of homogeneous and composite solids is studied using the

co-called Boundary Value Problems (BVPs). These prob-

lems are governed by partial di�erential equations where

the displacement parameters (the unknowns of themodel)

are the physical displacements in the three-dimensional

(3D) space.

Mathematically speaking, all the quantities involved

in the formulation must be smooth all over the de�nition

domain. However, discontinuities can occur in practical

applications. The most common discontinuations are re-

lated to the material and/or the geometry. The former is

connected to compositematerials such as reinforced �bers

immersed into amatrix and the latter is directly connected

to cracks and slits. When these cases come out, some

mathematical tricks have to be introduced.

The present approach has its roots in the Di�eren-

tial Quadrature (DQ) method [11, 12], which have the pe-

culiarity of being very accurate using a small number of

degrees of freedom when compared to classic numerical

approaches, such as the Finite Element Method (FEM). It

should be mentioned that DQ method belongs to the big

family of the Methods of Weighted Residuals (MWRs) [13],

since the functional approximation using weighting coef-

�cients must minimize the error between the given func-

tion and its approximation. Furthermore, DQ method can

be seen as a general form of the so-called collocation

methods or spectral collocation [14, 15]. The original pseu-

dospectral collocation (DQmethod) presented by Bellman

has been improved by the approach proposed byQuan [16]

and by Quan and Chang [17, 18]. All the advancements in

the DQ method has been reviewed by Bert and Malik [19].

The DQmethod in its original version had some numerical

instabilities, when the number of grid points is large, since
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the weighting coe�cient matrix becomes ill-conditioned

due to the chosen basis functions (power basis). Follow-

ing the ideas by Quan and Chang [17, 18] a generalized

version of the DQ method, known as Generalized Di�er-

ential Quadrature (GDQ) method, had been developed by

Shu [20] and by Shu and Richards [21, 22]. Nowadays, the

GDQmethod is themost widely used in literature due to its

stability and reliabilitywhen applied to di�erent engineer-

ing problems. The DQ method had demonstrated to be a

useful tool for solving structural components [23–32]. Sub-

sequently, the GDQ method showed the same properties,

in fact several numerical applications related to structural

mechanics and solid mechanics can be found in [33–84].

TheGDQmethod turnedout to be really useful for studying

structural components and the mechanics of composite

structures, due to the easy implementation of the govern-

ing system of equations for one-dimensional (1D) and two-

dimensional (2D) systems. As it is well-known the GDQ

method solves the strong formulation of the di�erential

problem. This implies that the boundary conditions must

be enforced a posteriori. On the contrary using a weak

(variational) formulation they are a priori satis�ed. The

GDQ solving system contains algebraic equations, which

come from the governing equations (domain equations)

and from the boundary equations (boundary conditions).

Despite what someone might think, strong formu-

lation approaches can be used when irregularities are

present. In literature two di�erent approaches were pre-

sented. The �rst one is related to the so-called mesh-less

methods in which scattered points are chosen in the phys-

ical domain [85–109]. The second one is based on the do-

main decomposition, such as the one used in the classic

FEM. Contrarily to the FEM, domain decomposition meth-

ods solve the strong formulation inside each element in-

stead of the weak one. Furthermore, the continuity con-

ditions between two elements must be enforced in order

to satisfy the connectivity among them. Hence, the accu-

racy of this approach depends on the prede�ned mesh

used for the discretization other than the approximation

inside each element. Historically speaking, researchers

divided a regular domain using regular elements, this

approach was termed multi-domain di�erential quadra-

ture [110–115]. Inserting themapping technique in the pre-

vious works the di�erential quadrature element method

(DQEM) or SFEM can be de�ned [116–125]. The author pre-

sented a preliminary development of the present work in

his PhD Thesis [126]. Some other papers followed about

the vibration of arbitrary shaped laminated composite

plates [127], some comparisons between SFEM and the

cell method [128–130]. Moreover, the stress and strain re-

covery has been published on the static analysis of arbi-

trary shaped plates [131, 132]. A review article about the

vibration problem of composite membranes has been pre-

sented also [133]. A comparison between the SFEM based

on GDQ and RBF methods was presented in [134]. The free

vibration behavior of arbitrary shaped functionally graded

plates was presented in [135]. A �rst review about the sta-

bility and accuracy for the static and free vibration anal-

ysis of SFEM was illustrated in [136]. Nevertheless, a com-

plete survey about SFEMand relatedmethodswas recently

published in [137].

At a �rst instance mesh-less methods are better since

they do not depend on the mesh used. Mesh-less methods

generally use local basis functions, which depend on the

distance between the points. In fact they are also called

radial basis functions. These local functions depend on a

parameter (shape parameter) which in�uences the accu-

racy of the solution. On the contrary SFEM, based on DQ

method, uses global higher-order basis functions in each

element, which have a high accuracy, fast convergence

and do not depend on any shape parameter.

The present manuscript presents the SFEM for 2D

plane stress and strain problems. After a brief introduction

on the 2D elasticity, the algebraic equations in extended

and inmatrix forms are presented. In particular, a wide fo-

cus is given to the application of themapping technique to

a single element. Furthermore, somenewdetails about the

boundary conditions and inter-element connectivity con-

ditions are given. For the sake of clarity, it is given to the

reader a graphical representation of the boundary condi-

tions for a general SFEMmesh. This helps the reader to bet-

ter understand all the di�erent boundary conditions that

should be implemented. Subsequently, a section is dedi-

cated to the assemblage of the solving system in discrete

form for both the static and free vibration case. Some nu-

merical tests areperformedusing some reference solutions

in literature and new numerical applications are proposed

for further studies on the subject.

2 Preliminary remarks

A wide number of applications have been presented

throughout several years about structures which are in de-

formation or tension state. As it is well-known these states

are better known as plane strain and plane stress. For in-

stance, if a thin plate is loaded by forces applied on its

boundaries, parallel to the plane of the plate, this state is

called plane stress, whereas when the dimensions of the

samebody is very largewhen compared to the other twodi-

mensions, this is termed plane strain. The plane states are
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particular cases of the 3D theory of elasticity, when some

assumptions are made. Thus, the three equilibrium equa-

tions for the 3D solid are the starting point of the present

formulation

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ fx = 0

∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ fy = 0

∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ fz = 0

(1)

For the plane case, it can be assumed that the stress com-

ponents do not depend on z (∂/∂z = 0). For this reason,

the remaining components do not vary through the thick-

ness and they are functions of the in-plane Cartesian coor-

dinates only σx (x, y), σy (x, y), τxy (x, y). Considering all

the previous assumptions the equilibrium equations (1)

become
∂σx
∂x

+
∂τxy
∂y

+ fx = 0

∂τxy
∂x

+
∂σy
∂y

+ fy = 0
(2)

2.1 Plane strain state

Consider a prismatic solid in which the plane state oc-

curs in a plane parallel to the x-y one. Hence, according

to the state plane hypotheses, the not zero strain compo-

nents are εx (x, y), εy (x, y), γxy (x, y), since by de�nition

w = 0, ∂u/∂z = 0 and ∂v/∂z = 0, where u, v, w are the

displacements along the three Cartesian axes respectively.

The well-known kinematic relations are

εx =
∂ux
∂x

, εy =
∂uy
∂y

, γxy =
∂ux
∂y

+
∂uy
∂x

(3)

The stress components can be found by introducing the

inverse Hooke’s laws

σx = (2G + λ) εx + λεy , σy = λεx + (2G + λ) εy ,

τxy = Gγxy , σz = λεx + λεy
(4)

It should be pointed out that in equation (4) the normal

stress σz is not negligible. Thus, a plane strain is not also a

plane stress. The elastic constantsG, λ in equation ((4)) are

the shear modulus and Lamé constant. These constants

are related to the better known elastic (Young’s) modulus

and Poisson’s ratio with the following relations

E =
G (3λ + 2G)

λ + G
, ν =

λ

2 (λ + G)
(5)

Introducing the kinematic expressions (3) into the inverse

Hooke’s laws (4), it is obtained (excluding the de�nition

for the normal stress)

σx = (2G + λ)
∂ux
∂x

+ λ
∂uy
∂y

,

σy = λ
∂ux
∂x

+ (2G + λ)
∂uy
∂y

,

τxy = G

(
∂ux
∂y

+
∂uy
∂x

)
(6)

Finally, the governing equations in terms of displacements

can be found using (6) into (2) as follows

(2G + λ)
∂2u

∂x2
+ G

∂2u

∂y2
+ (λ + G)

∂2v

∂x∂y
+ fx = 0

(λ + G)
∂2u

∂x∂y
+ G

∂2v

∂x2
+ (2G + λ)

∂2v

∂y2
+ fy = 0

(7)

Equations (7) correspond to the elastostatic case for the

plane strain case. However, if the elastodynamic problem

has to be solved, the inertia forces should be added to the

governing equations as

(2G + λ)
∂2u

∂x2
+ G

∂2u

∂y2
+ (λ + G)

∂2v

∂x∂y
+ fx = ρ

∂2u

∂t2

(λ + G)
∂2u

∂x∂y
+ G

∂2v

∂x2
+ (2G + λ)

∂2v

∂y2
+ fy = ρ

∂2v

∂t2

(8)

where ρ represents the material density. If the free vi-

bration problem is wanted to be studied, the body forces

should be set zero fx = fy = 0. In the present paper the free

vibration problem is investigated, thus the dynamic solu-

tion is found in the form

u (x, y, t) = Φx (x, y) e
iωt

v (x, y, t) = Φy (x, y) e
iωt (9)

Substituting equation (9) into equation (8) one yields

(2G + λ)
∂2Φx

∂x2
+ G

∂2Φx

∂y2
+ (λ + G)

∂2Φy

∂x∂y
+

+ρω2Φxu = 0

(λ + G)
∂2Φx

∂x∂y
+ G

∂2Φy

∂x2
+ (2G + λ)

∂2Φy

∂y2
+

+ρω2Φyv = 0

(10)

where Φx, Φy are the mode shapes related to the in-plane

displacements u, v and ω represents the natural circular

frequencies of the structure under study.

2.2 Plane stress state

In order to solve the plane stress problem, it is possible to

follow the same mathematical developments of the strain

case above. Thus the same systems of equations (7) and (8)

can be found substituting λ → λ* where λ* = 2Gλ
2G+λ or λ

* =
Eν
1−ν2

. In the following all the equations are reported using

G, λ for the strain case, taking into account that the stress

case can be found using G, λ*.
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2.3 Boundary conditions

In order to solve any partial di�erential system of equa-

tions, boundary conditionsmust be introduced. According

to the theory of elasticity [1–3] the boundary conditions for

a 3D solid considering the state plane assumptions are

σxnx + τxyny + px = 0

τxynx + σyny + py = 0
(11)

where nx, ny are the direction cosines of the outward unit

normal of the current edge, written with respect to the

outer Cartesian reference system.However, it happens that

the edge is generally oriented, so that a transformationma-

trix should be applied to the stress components in order to

evaluate the normal and tangential stresses of that edge.

Furthermore, the same occurs for the in-plane displace-

ment parameters. For these reasons the following relations

can be written according to the literature [1–3]

un = u nx + v ny

ut = v nx − u ny

σn = σxn
2
x + σyn

2
y + 2τxynxny

τnt = (σy − σx) nxny + τxy
(
n2x − n

2
y

)

(12)

where un, ut are the normal and tangential displacements

and σn, τnt are the normal and shear stresses at the edge.

For the application of the SFEM all the equations should

be written as functions of the displacement parameters as

in the following

un = u nx + v ny , ut = v nx − u ny

σn =
(

(2G + λ) n2x + λn
2
y

)
∂u
∂x + 2Gnxny

∂u
∂y+

+2Gnxny
∂v
∂x +

(

(2G + λ) n2y + λn
2
x

)
∂v
∂y

τnt = −2Gnxny
∂u
∂x + G

(
n2x − n

2
y

)
∂u
∂y+

+G
(
n2x − n

2
y

)
∂v
∂x + 2Gnxny

∂v
∂y

(13)

3 Discretized forms

It is recalled that the SFEM is based on the DQ method

which discretizes the derivative of a function as aweighted

linear sum of some functional values. Themain advantage

of the DQ method is the possibility of having extremely

high accuracy. However, its principal drawback is that it

cannot deal with arbitrarily shaped domains and cannot

have discontinuities. In order to overcome these di�cul-

ties a domain decomposition approach is followed. Thus,

the whole problem is numerically solved in several do-

mains or elements, which compose the global geometry.

Subsequently, all these elements are connected among

them in order to achieve the global solution. Hence, the

governing equations are discretized inside each element,

whereas continuity conditions are used in order to con-

nect all of them. In the present section the discrete form

of all these equations are presented in order to give a

general overview on the problem. The 2D DQ implemen-

tation has been already presented by several authors in

literature [33–84]. Summarizing, the DQ method can ap-

proximate a derivative along a direction using several grid

points located along twodirections in the reference coordi-

nate system.However, the present approach is general and

the DQmethod is applied at the master element level as in

the standard FEM where the Gauss quadrature is applied

in themaster element. For this reason all the following for-

mulae are referred to the local master element reference

system ξ -η. At the end it will be shown how to solve the

di�erential problems in Cartesian coordinates (7) and (8)

using the following notation.

3.1 Derivative approximation and mapping

As any other collocationmethod, in order to accurately ap-

proximate the derivative, two grid locations have to be set,

one along ξ and the other along η. It is recalled that the

reference element ormaster element or parent element be-

longs to the unit space as already presented in the pre-

vious works [126–135]. The number of points, which de-

�nes these collocations, is indicated by N and M respec-

tively. The weighting coe�cients can be evaluated after-

wards using the classic formulae provided by the DQ and

the GDQ approaches. In this way two matrices, containing

the weighting coe�cients of all the points of themaster el-

ement, are carried out. So that, the following derivatives

can be approximated

∂(n) f (ξ ,η)
∂ξ (n)

∣
∣
∣ξ=ξi
η=ηj

=
N∑

k=1

ς
ξ (n)
i,k

fk,j =

= ς
ξ (n)
i,1 f1,j + ς

ξ (n)
i,2 f2,j + · · · + ς

ξ (n)
iN fN ,j

∂(m) f (ξ ,η)
∂η(m)

∣
∣
∣ξ=ξi
η=ηj

=
M∑

l=1

ς
η(m)
j,l

fi,l =

= ς
η(m)
j,1 fi,1 + ς

η(m)
j,2 fi,2 + · · · + ς

η(m)
j,M fi,M

∂(n+m) f (ξ ,η)
∂ξ (n)∂η(m)

∣
∣
∣ξ=ξi
η=ηj

=
N∑

k=1

ς
ξ (n)
i,k

(
M∑

l=1

ς
η(m)
j,l

fk,l

)

=

= ς
ξ (n)
i,1

(

ς
η(m)
j,1 f1,1 + ς

η(m)
j,2 f1,2 + · · · + ς

η(m)
j,M f1,M

)

+

+ς
ξ (n)
i,2

(

ς
η(m)
j,1 f2,1 + ς

η(m)
j,2 f2,2 + · · · + ς

η(m)
j,M f2,M

)

+

+ · · ·+

, +ς
ξ (n)
i,N

(

ς
η(m)
j,1 fN,1 + ς

η(m)
j,2 fN,2 + · · · + ς

η(m)
j,M fN,M

)

(14)

where for the sake of conciseness f
(
ξi , ηj

)
= fi,j. It must

be pointed out that i, j de�ne the location of the point at

which the derivative is evaluated and k, l are their respec-
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tively sum indices.Observing equation (14) the�rst expres-

sion takes all the points which have j �xed, whereas the

second one �xes i index. Finally, themixed derivative com-

prehends all the points of the element, since k, l appear

both in the third of equation (14). In order to be imple-

mented in a computer code the expressions (14) have to be

written in matrix form. The easiest andmore compact way

is to use the Kronecker product ⊗, which is an operation

on two matrices of arbitrary size resulting in a block ma-

trix. For instance A⊗B of size n ×m and p × q respectively,

the resulting product gives a blockmatrix of size n p×m q.

Hence, if ςξ (n) and ςη(n) indicate thematrices of theweight-

ing coe�cients along ξ and η, the resulting blockmatrices

for all the points presented in equation (14) are given by

Cξ (n)

NM×NM
= I

M×M
⊗ ςξ (n)

N×N

,

Cη(m)

NM×NM
= ςη(m)

M×M

⊗ I
N×N

,

Cξη(n+m)

NM×NM
= ςη(m)

M×M

⊗ ςξ (n)

N×N

(15)

where I is the identity matrix. At this point, the derivatives

of any order for themaster element can be evaluated using

expressions (15). In detail, each row of the matrices Cξ (n),

Cη(m), Cξη(n+m) represents the approximation of the deriva-

tive of the generic point ξi, ηj of the grid. The components

of thematrices (15) are indicated by C
ξ (n)
kl

, C
η(m)
kl

, C
ξη(n+m)
kl

for

k, l = i + (j − 1)N with i = 1, 2, . . . , N and j = 1, 2, . . . ,M.

It is important to understand the meaning of each row of

the matrices (15). With reference to Figure 1 it is clear that

the grid point order is taken “by columns” such as (ξ1, η1),

(ξ2, η1),. . . ,(ξN , η1),(ξ1, η2),. . . ,(ξN , η2),. . . . . . ,(ξ1, ηM),

. . . ,(ξN , ηM). In conclusion the whole vector can be seen

as M times a vector of length N. For the sake of simplicity

another sequence should be de�ned since the grid loca-

tion should be set in vector form for computational needs.

For this reason the arrow in Figure 1 has been drawn, so

that the point coordinates can be grouped in vector form

as

π = [ (ξ1, η1)1 (ξ2, η1)2 . . . (ξN , η1)N
︸ ︷︷ ︸

�rst column
(ξ1, η2)N+1 . . . (ξN , η2)2N
︸ ︷︷ ︸

second column

. . . . . .

(ξ1, ηM)N·M−N+1 . . . (ξN , ηM)N·M
︸ ︷︷ ︸

last column

]
T

(16)

The de�nition (16) can be shortened as follows

πk =
(
ξi , ηj

)

k
for

i = 1, 2, . . . , N

j = 1, 2, . . . ,M

k = i + (j − 1)N

(17)

In conclusion πk de�nes the location of all the points in

the master element.

Figure 1: Grid point orders for DQ computation: the column order

(boxes) and the corresponding vector (arrow).

The approximate derivatives (15) are related to the

master element system ξ -η, nevertheless the governing

equations are referred to the outer Cartesian one. Thus,

the mapping technique should be introduced into equa-

tions (7) and (8) in order to investigate structures of arbi-

trary shape. A general presentation for a given set of order

m of shape functions is given by

x =

m∑

i=1

Pi (ξ , η) xi , y =

m∑

i=1

Pi (ξ , η) yi (18)

It has been already presented by previously published ar-

ticles that, the �rst and second order derivatives for a stan-

dard linear mapping are the following

∂

∂x
=
∂

∂ξ
ξx +

∂

∂η
ηx

∂2

∂x2
=ξ2x

∂2

∂ξ2
+ η2x

∂2

∂η2
+ 2ξxηx

∂2

∂ξ∂η
+ ξxx

∂

∂ξ
+ ηxx

∂

∂η

∂

∂y
=
∂

∂ξ
ξy +

∂

∂η
ηy

∂2

∂y2
=ξ2y

∂2

∂ξ2
+ η2y

∂2

∂η2
+ 2ξyηy

∂2

∂ξ∂η
+ ξyy

∂

∂ξ
+ ηyy

∂

∂η

∂2

∂x∂y
=ξxξy

∂2

∂ξ2
+ ηxηy

∂2

∂η2
+ (ξxηy + ξyηx)

∂2

∂ξ∂η
+

+ ξxy
∂

∂ξ
+ ηxy

∂

∂η
(19)
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where ξx = ∂ξ
∂x , ξy = ∂ξ

∂y , ηx = ∂η
∂x and ηy = ∂η

∂y . These

coordinate derivatives depend on the Jacobian matrix of

the transformation and on the shape functions (mapping

nodal coordinates) used, as follows

ξx =
yη
det J

, ξy = −
xη
det J

, ηx = −
yξ
det J

,

ηy =
xξ
det J

for det J = xξ yη − xηyξ
(20)

where xξ = ∂x
∂ξ
, xη = ∂x

∂η , yξ = ∂y
∂ξ
, yη = ∂y

∂η are the deriva-

tives of the Cartesian coordinates of eachmapped element

using a givenmapping of orderm (18). Hence, they are eas-

ily known. As far as the mapping technique is concerned,

4 node elements (linear), 8 node elements (quadratic),

12 node elements (cubic) have been presented in [126–

137], but the mapping could be general such as the one

presented by Zhong and He [138]. Expressions (20) repre-

sent the �rst order derivatives for themapping transforma-

tion. However, the second order must be computed, since

they appear in equation (19). So, evaluating the derivatives

of (20) accordingly, the following expressions appear

ξxx =
1

det J2

(

yηyξη −
y2η
det J

det Jξ − yξ yηη+
yξ yη

det J
det Jη

)

ξyy =
1

det J2

(

xηxξη −
x2η
det J

det Jξ − xξ xηη+
xξ xη

det J
det Jη

)

ξxy =
1

det J2

(

−yηxξη +
yηxη
det J

det Jξ + yξ xηη−
yξ xη

det J
det Jη

)

ηxx =
1

det J2

(

−yηyξξ +
yξ yη

det J
det Jξ + yξ yξη−

y2ξ
det J

det Jη

)

ηyy =
1

det J2

(

−xηxξξ +
xξ xη

det J
det Jξ + xξ xξη−

x2ξ
det J

det Jη

)

ηxy =
1

det J2

(

−yξ xξη −
xξ yη

det J
det Jξ + yηxξξ+

yξ xξ
det J

det Jη

)

(21)

where det Jξ = xξ yξη − yξ xξη + yηxξξ − xηyξξ and det Jη =

−xηyξη+yηxξη−yξ xηη+xξ yηη. As a consequence the deriva-

tives of the Cartesian coordinates take the form

xξξ =
∂2x

∂ξ2
, xηη =

∂2x

∂η2
, xξη =

∂2x

∂ξ∂η
,

yξξ =
∂2y

∂ξ2
, yηη =

∂2y

∂η2
, yξη =

∂2y

∂ξ∂η

(22)

Summarizing, by simple algebraic manipulations expres-

sions (20) and (21) can be evaluated ones the element

type is chosen (4 node, 8 node, 12 node, etc. . . ). Expres-

sions (19) can be evaluated afterwards. The �rst step is to

carry out the derivatives of the Cartesian coordinates with

respect to the local master element system. Each point

in Cartesian coordinates has its own mapping transfor-

mation.Hence, xξξ , xξ , xηη , xη , xξη, yξξ , yξ , yηη , yη , yξη are

vectors of dimension N ·M×1, since thewhole domain has

N · M points of coordinates. Following the nomenclature

de�ned by expressions (16) and (17) it is possible to de�ne

the following vectors

xξξ , xξ , xηη , xη , xξη

yξξ , yξ , yηη , yη , yξη
(23)

and their components
(
xξξ
)

k
,
(
xξ
)

k
, (xηη)k , (xη)k ,

(
xξη
)

k(
yξξ
)

k
,
(
yξ
)

k
, (yηη)k , (yη)k ,

(
yξη
)

k

for

k = i + (j − 1)N

i = 1, 2, . . . , N

j = 1, 2, . . . ,M

(24)

Now equations (20) and (21) can be evaluated. Thus, the

following vectors can be numerically de�ned

ξ xx , ξ x , ξ yy , ξ y , ξ xy
ηxx , ηx , ηyy , ηy , ηxy

for

det J = xξyη − xηyξ

det Jξ = xξyξη − yξxξη + yηxξξ − xηyξξ
det Jη = −xηyξη + yηxξη − yξxηη + xξyηη

(25)

or their components in their correspondent form

(ξxx)k , (ξx)k , (ξyy)k , (ξy)k , (ξxy)k ,

(ηxx)k , (ηx)k , (ηyy)k , (ηy)k , (ηxy)k
(det J)k =

(
xξ
)

k (yη)k − (xη)k
(
yξ
)

k(
det Jξ

)

k
=
(
xξ
)

k

(
yξη
)

k
−
(
yξ
)

k

(
xξη
)

k
+

+ (yη)k
(
xξξ
)

k
− (xη)k

(
yξξ
)

k

(det Jη)k = − (xη)k
(
yξη
)

k
+ (yη)k

(
xξη
)

k
+

−
(
yξ
)

k (xηη)k +
(
xξ
)

k (yηη)k
for k = i + (j − 1)N with i = 1, 2, . . . , N

and j = 1, 2, . . . ,M

(26)

Finally, using equations (25) and the block matrices (15)

the map of the Cartesian derivatives with respect to the lo-

cal reference system of the master element (19) can be car-

ried out. Thus, equations (19) become

Dx(1)
kl

= (ξx)k C
ξ (1)
kl

+ (ηx)k C
η(1)
kl

Dx(2)
kl

= (ξx)
2
k C

ξ (2)
kl

+ (ηx)
2
k C

η(2)
kl

+

+2 (ξx)k (ηx)k C
ξη(11)
kl

+ (ξxx)k C
ξ (1)
kl

+

+ (ηxx)k C
η(1)
kl

Dy(1)
kl

= (ξy)k C
ξ (1)
kl

+ (ηy)k C
η(1)
kl

Dy(2)
kl

= (ξy)
2
k C

ξ (2)
kl

+ (ηy)
2
k C

η(2)
kl

+

+2 (ξy)k (ηy)k C
ξη(11)
kl

+ (ξyy)k C
ξ (1)
kl

+

+ (ηyy)k C
η(1)
kl

Dxy(11)
kl

= (ξx)k (ξy)k C
ξ (2)
kl

+ (ηx)k (ηy)k C
η(2)
kl

+

+
(

(ξx)k (ηy)k + (ξy)k (ηx)k
)
C
ξη(11)
kl

+

+ (ξxy)k C
ξ (1)
kl

+ (ηxy)k C
η(1)
kl

for k, l = i + (j − 1)N with i = 1, 2, . . . , N

and j = 1, 2, . . . ,M

(27)
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where the components of the Cartesian derivatives

Dx(1)
kl

, Dx(2)
kl

, Dy(1)
kl

, Dy(2)
kl

, Dxy(11)
kl

can be written in matrix

form as

Dx(1), Dx(2), Dy(1), Dy(2), Dxy(11) (28)

At this point, it is possible to approximate the Cartesian

derivatives using the matrices (28) which have the map-

ping transformation included.

Finally, themathematical expressions for the outward

unit normal vectorn are given for themaster element. Con-

sideringFigure 2 as a reference for thenomenclature of cor-

ners (numbers in circles) and edges (numbers in squares),

for the �rst and third edges ξ = ∓1 the outward unit nor-

mal vector components are
[

nx

ny

]

=
ξ

√

x2η + y
2
η

[

yη

−xη

]

(29)

whereas for the second and fourth edges η = ±1 they are
[

nx

ny

]

=
η

√

x2
ξ
+ y2

ξ

[

−yξ
xξ

]

(30)

Figure 2: Corners and edges enumeration of the master element.

3.2 Discretized form of the governing

equations

In order to write and understand the discrete forms of the

elastostatic (7) and elastodynamic (8) problems the dis-

placement vector U should be �rstly de�ned. It can be di-

vided intoU =
[

Ux Uy

]T

, whereUx andUy contain the

u and v displacement components of all the grid points,

respectively. It is remarked thatUx andUy have dimension

N · M × 1 and they follow the same structure indicated by

expression (16). Ultimately, the single components of the

displacement vectors can be indicated by (Ux)k and (Uy)k
as suggested in expression (16) by πk. Thus, using the def-

inition of the derivation matrices (27) and the governing

equations of the elastostatic problem (7) the following dis-

crete form is exhibited

(2G + λ)
N·M∑

l=1

Dx(2)
kl (Ux)l + G

N·M∑

l=1

Dy(2)
kl (Ux)l+

+ (λ + G)
N·M∑

l=1

Dxy(11)
kl (Uy)l + (Fx)k = 0

(λ + G)
N·M∑

l=1

Dxy(11)
kl (Ux)l + G

N·M∑

l=1

Dx(2)
kl (Uy)l+

+ (2G + λ)
N·M∑

l=1

Dy(2)
kl (Uy)l + (Fy)k = 0

for k = i + (j − 1)N with i = 1, 2, . . . , N

and j = 1, 2, . . . ,M

(31)

where (Fx)k , (Fy)k are the components of the force vectors

Fx , Fy which obviously have the same structures indicated

by equation (16). In the present case G and λ are constant

terms. Hence, the present implementation allows to con-

sider mechanical properties that vary element by element.

It is remarked that equation (31) is written at the master

element level, since the mapping technique is embedded

in the derivative terms. A compact form of equation (31) is

given in the following

(2G + λ)Dx(2)Ux + GD
y(2)Ux + (λ + G)D

xy(11)Uy + Fx = 0

(λ + G)Dxy(11)Ux + GD
x(2)Uy + (2G + λ)Dy(2)Uy + Fy = 0

(32)

Rebuilding the displacement vector U equation ((32)) be-

comes
[

(2G + λ)Dx(2) + GDy(2) (λ + G)Dxy(11)

(λ + G)Dxy(11) GDx(2) + (2G + λ)Dy(2)

][

Ux

Uy

]

+

+

[

Fx

Fy

]

=

[

0

0

]

(33)

It is clear that the algebraic system has dimension

(2N ·M) × (2N ·M). Furthermore equation (33) could not

be solved directly since the boundary conditions have not

been applied yet to the problem. Thus, the lines related to

the boundary conditions have to be substituted by the al-

gebraic expressions of the boundary conditions.



100 | Nicholas Fantuzzi

Using the same notation as the one presented above,

equation (13) can be written in algebraic form as follows

(Un)k = (nx)k (Ux)k + (ny)k (Uy)k ,

(Ut)k = (nx)k (Uy)k − (ny)k (Ux)k

(σn)k =
(

(2G + λ) (nx)
2
k +

+λ (ny)
2
k

) N·M∑

l=1

Dx(1)
kl (Ux)l+

+2G (nx)k (ny)k

N·M∑

l=1

Dy(1)
kl (Ux)l+

+2G (nx)k (ny)k

N·M∑

l=1

Dx(1)
kl (Uy)l+

+
(

(2G + λ) (ny)
2
k + λ (nx)

2
k

) N·M∑

l=1

Dy(1)
kl (Uy)l

(τnt)k = −2G (nx)k (ny)k

N·M∑

l=1

Dx(1)
kl (Ux)l+

+G
(

(nx)
2
k − (ny)

2
k

) N·M∑

l=1

Dy(1)
kl (Ux)l+

+G
(

(nx)
2
k − (ny)

2
k

) N·M∑

l=1

Dx(1)
kl (Uy)l+

+2G (nx)k (ny)k

N·M∑

l=1

Dy(1)
kl (Uy)l

for k = i + (j − 1)N with i = 1, 2, . . . , N

and j = 1, 2, . . . ,M

(34)

where (nx)k , (ny)k are the components of the normal vec-

tor projected along x and y, respectively. It should be noted

that equation (34) does not have to be necessarily evalu-

ated in all the points of the domain, as indicated by the

index k. On the contrary, only the boundary points are in-

volved in this process. Nonetheless, in order to use the def-

initions (28) it is preferable to implement equation (34)

skipping the points that are not involved by the bound-

aries. For this reason a set of algebraic equations are writ-

ten for the boundary conditions in a similar form to the one

presented by equation (33). This set is presented in matrix

form below

Un = nxUx + nyUy

Ut = nxUy − nyUx

σn =
(

(2G + λ)n2
x + λn

2
y

)
Dx(1)Ux+

+2GnxnyD
y(1)Ux + 2GnxnyD

x(1)Uy+

+
(

(2G + λ)n2
y + λn

2
x

)
Dy(1)Uy

τnt = −2GnxnyD
x(1)Ux + G

(
n2
x − n

2
y

)
Dy(1)Ux+

+G
(
n2
x − n

2
y

)
Dx(1)Uy + 2GnxnyD

y(1)Uy

(35)

Thus the kinematic displacements of (35) can bewritten as

Un =
[

nx ny

]
[

Ux

Uy

]

Ut =
[

−ny nx

]
[

Ux

Uy

] (36)

and the stresses from (35) become

σn =
[ (

(2G + λ)n2
x + λn

2
y

)
Dx(1) + 2GnxnyD

y(1) . . .

. . . 2GnxnyD
x(1) +

(

(2G + λ)n2
y + λn

2
x

)
Dy(1)

][

Ux

Uy

]

τnt =

[

−2GnxnyD
x(1) + G

(
n2
x − n

2
y

)
Dy(1) . . .

. . . G
(
n2
x − n

2
y

)
Dx(1) + 2GnxnyD

y(1)

][

Ux

Uy

]

(37)

For the sake of clarity the points that belong to the bound-

aries are identi�ed by k = 1, 2, . . . , N (�rst column)

k = N + 1, 2N, 2N + 1, 3N, . . . , (M − 2)N + 1, (M − 1)N

(�rst and last points of the middle columns) and k =

(M − 1)N +1, . . . ,MN (last column). These points are part

of the boundary matrices which compose the global sti�-

ness matrix. It should be remarked that four of this set of

points are the corner points, which need particular con-

ditions in order to have a correct implementation of the

method. In order to have a general implementation of the

present method it is fundamental to separate the corner

points from the boundary points of the edges (as suggested

by Francesco Tornabene during a private communication

with the author in April 2012). An analytical way of solv-

ing the corner point problem has not been given yet, even

though several numerical solutions [126–137] have been

proposed. Expressions (37) give all the possible combina-

tions in order to have di�erent boundary conditions for the

plane problems. For example one can have the clamped

condition Un = Ūn ,Ut = Ūt, the free condition σn =

σ̄n , τnt = τ̄nt and the mixed condition that can be a sym-

metric condition respect to an axis orthogonal to the nor-

mal one Un = Ūn , τnt = τ̄nt. Ūn , Ūt and σ̄n , τ̄nt are the

applied displacements and forces on the boundaries, re-

spectively. Each element, of the domain decomposition,

is identi�ed by a set of domain and boundary equations.

Only the domain points are taken from equation (33) and

only the boundary points are extracted from equation (37).

Moreover, it is more convenient to separate the bound-

ary and domain degrees of freedom from the displacement

vectors Ux ,Uy. The displacement vector containing the

boundary points is identi�ed by Ub so that it has dimen-

sion (2N + 2 (M − 2)) nd, where nd = 2 is the number of

degrees of freedom (two in-plane displacements). Group-

ing the displacements of the domain points the vector Ud

is de�ned and it has dimension ((N − 2) (M − 2)) nd. As it

was anticipated in the introduction prior versions of the

present formulations were called multi-domain di�eren-

tial quadrature, since regular (nomapping) divisions were

employed. For these cases only N = ̸ M, nevertheless, it

is possible to simplify the presentation of the whole the-

ory considering N = M. Hence, the boundary points be-
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come (4N − 4) nd and the domain points are (N − 2)
2 nd.

The general implementation (N ≠ M) is recommended in

order to have both techniques within the same code. In

conclusion the algebraic equations for a single SFEM el-

ement are the following

[

Kbb Kbd

Kdb Kdd

](e) [

Ub

Ud

](e)

+

[

Fb

Fd

](e)

=

[

0

0

](e)

(38)

where (e) identi�es the generic e-th element, Fd is the vec-

tor of the domain loads Fx, Fy and Fb is the vector of the

boundary loads (that can be displacements or stresses). As

far as the free vibration problem is concerned (10), its dis-

crete form can be presented in matrix form (using the pre-

viously presented elastostatic problem (33)) as follows

[

(2G + λ)Dx(2)+ GDy(2) (λ + G)Dxy(11)

(λ + G)Dxy(11) GDx(2) (2G + λ)Dy(2)

][

Ux

Uy

]

+

+ ρω2

[

I 0

0 I

][

Ux

Uy

]

=

[

0

0

]

(39)

whereUx ,Uy contain the displacement components of the

mode shapes according to Φx ,Φy de�ned by equation (9)

and Iis the identity matrix of dimension (N ·M) × (N ·M).

Applying the boundary conditions (37) the �nal matrix

form of the free vibration problem, for a generic e-th el-

ement, becomes





[

Kbb Kbd

Kdb Kdd

](e)

+ ω2

[

0 0

0 Mdd

](e)




[

Ub

Ud

](e)

=

=

[

0

0

](e)

(40)

that after the assembly section can be clearly solved as an

eigenvalue problem.

3.3 Graphical representation of a SFEM

mesh

Before jumping into the set of equations for the continuity

and external boundary conditions, it could be helpful to

have a graphical representation of a general SFEMmesh as

the one in Figure 3. This �gure represents the inter-element

edges and the external boundaries with solid lines. In ad-

dition Figure 4 presents the nomenclature of the unit vec-

tors for the same mesh of Figure 3. Since quadrilateral el-

ements are used, at least four normal vectors have to be

de�ned. It should be noted that if the edge is curved the

outward unit vector is not constant but changes point by

Figure 3: Internal and external boundary conditions for element

edges and corners.

Figure 4: Outward unit normal vectors de�nition for a generic sub-

division.

point according to the element geometry as expressed by

equations (29) and (30).

It is observed that two groups of points occur, the one

on the edges (E) and the others at the element corners (C).

Kinematic (Dirichlet) boundary conditions are indi-

cated with the type E1 as for the element Ω(1). Static (Neu-

mann) boundary conditions are termed for type E2. The

stress vector referred to the edge 3 of the element Ω(1) can

be indicated as σ(1)n3 . The subscript of the normal vector in-

dicates the edge 3 and the superscript stands for the cur-

rent element (1) that holds that normal vector. It should

be emphasized that the corner conditions strongly depend

on the conditions of the pair of edges at the corners where

they belong. Thus, looking at the corner conditions sev-

eral con�gurations can occur. The two corners on element
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Ω(1) on the edge 4have a kinematic (Dirichlet) condition E1

because the clamped boundary condition is stronger than

a static (Neumann) one. The other corners indicated by

C1 do not have static boundary conditions since two Neu-

mann conditions have to be enforced at the same time at a

single point. The compatibility conditions are indicated by

E3 along the element edges. For example the edge points of

element Ω(1) along 1 are superimposed to the points along

3 of elementΩ(2). Hence, only one group of points is under-

lined in Figure 3. Nevertheless computationally speaking

a double set of equations have to be enforced. Consider-

ing the edge 1 of element Ω(1) and the edge 3 of element

Ω(2) that face eachother, the compatibility conditions have

to be enforced (the equations governing this case will be

shown in the following). The external and internal corner

type conditions are indicated as C2 and C3 in Figure 3. It is

recalled that the corners of all the elements concurring at a

speci�cnode are superimposed aswell as thepoints on the

edges. For instance, the two corners with C2 conditions be-

long to the two neighbour elements. In the cited cases the

C2 conditions have the same form of the E3 ones because

only two elements concur at the corner. Nevertheless, the

internal corners C3 should have di�erent continuity condi-

tions. The solution for that problemwill bedescribed in the

following. It must be remarked that all the enforced conti-

nuity conditions are continuous with their �rst derivative

at the interfaces, and they can be indicated as C(1) contin-

uous.

3.4 Element connectivity

Since a strong formulation is proposed, the boundary con-

ditions are not automatically satis�es such as in FEM.

Hence, they must be de�ned as it was done in the previ-

ous section. However, only the external boundary condi-

tions have been introduced. To connect the elements and

performing the assemblage of the whole system, the con-

tinuity conditions should be enforced between facing ele-

ments. In order to perform that, the same de�nitions given

by equations (37) are used. When two elements share the

same boundary, two lines of points are superimposed and

conditions per physical point can bewritten (because each

grid point has 2 degrees of freedom). The continuity con-

ditions enforce the equality of the displacements and the

stresses between these two edges. Just to give an example

if the element (e) faces the element (e+1) the following con-

ditions must be written

U(e)
n − U(e+1)

n = 0, U(e)
t − U(e+1)

t = 0

σ(e)n − σ(e+1)n = 0, τ(e)nt − τ
(e+1)
nt = 0

(41)

The algebraic equations (41) will be part of matrices K(e)
bb
,

K(e,e+1)
bd

, K(e+1)
bb

, K(e+1,e)
bd

whereas the other matrices related

to the domain points are unchanged, since no mathe-

matical condition relates the two facing elements. It can

be noted that the �rst line of equations (41) is related to

the kinematic (Dirichlet) conditions, thus no derivation is

involved. Whereas the second line of equations (41) are

the static (Neumann) conditions in which derivatives of

the displacement parameters occur as shown by equa-

tions (37). The current implementation follows this rule:

when the compatibility conditions are written between

two elements, identi�ed by (e) and (e+1), the kinematic con-

ditions are enforced on the boundary points of the element
(e), and the static conditions are set on the boundary points

of the element (e+1). It is recalled that when a derivative

is approximated using DQ method, all the points in the

derivative direction (or all the domain points in case of the

mixed derivative) are involved. Hence,when the kinematic

equations are considered on the boundary points of the

element (e) the matrix K(e,e+1)
bd

= 0, since it contains the

domains points which are related to the boundary ones.

On the contrary for the static equations enforced on the

boundary points of the element (e+1), K(e+1,e)
bd

≠ 0, since it

contains the algebraic terms of the derivative approxima-

tion of the stresses between the elements. As far as the cor-

ner point conditions are concerned, their implementation

could follow the approaches presented in the past [126–

137]. It is recalled that in order to treat the corners, di�erent

conditions should be taken into consideration as a func-

tion of the internal or external boundaries involved. The

dealing of the corners is an open problem in literature and

researches proposed di�erent solutions on the subject.

One of the most interesting solutions has been given by

Boyd [15]: “. . . the corner singularities will dominate the

asymptotic behaviour of the Chebyshev coe�cients. . . ,

and the convergence will be algebraic rather than expo-

nential”. Moreover: “The generic recommendation is to ig-

nore the singularities unless either (i) one has prior knowl-

edge that u (x, y) is discontinuous or has other strongly

pathological behaviour or (ii) poor convergence and rapid

variation of the numerical solution near the corners sug-

gests a posteriori that the solution is strongly singular”.

Following the suggestions given by Boyd, for the study of

the mechanics of structural components a �nite element

without the corner points was implemented (as suggested

by Francesco Tornabene during a private communication

with the author in June 2013), in order to avoid them in the

program.

A graphical representation of this implementation is

given in Figure 5. In order to proceed with this numeri-

cal procedure the weighting coe�cients of the boundaries



New insights into the strong formulation �nite element method | 103

have to be computed separately from the inner points since

di�erent discretizations occur. It is remarked that this kind

of implementation does not give accurate results for these

structural problems and no numerical result is presented

in this work. The instability of the corner-less approach

is mainly due to the approximation of the mixed deriva-

tive, which is mainly involved in the free external condi-

tions and static inter-element connectivity. Thus, the fol-

lowing corner point implementation has been followed.

The �rst con�guration is presented in Figure 6a when a

corner point of a single element is studied. This corner can

have two edges both clamped, both free or just one of them

clamped. The symbol EB is usedwhenexternal boundaries

are considered, whereas the internal boundaries are indi-

cated with IB. The represented element is the general el-

ement (e). It is obvious that when at least one of the two

edges of element (e) is clamped the corner is �xed too. So

only kinematic conditions have to be imposed.

Figure 5: Grid points involved in the derivative approximation, when

the corner points are avoided from the implementation. The boxes

on the edges are related to the boundary points which have two

points less than inner rounded boxes.

U(e)
n(n1)

= 0

U(e)
t(n1)

= 0
or

U(e)
n(n2)

= 0

U(e)
t(n2)

= 0
(42)

whereU(e)
n ,U(e)

t are the algebraic displacement vectors (36)

that contain the normal and tangential components to

the edge, respectively. The complete symbol U(e)
n(n1)

, U(e)
t(n1)

Figure 6: De�nition of the external corners conditions for: a) a sin-

gle element, two facing elements.

means that the algebraic vector contains the normal dis-

placement components of the element (e) with respect to

the normaln1. It is important to note that when both edges

have a Dirichlet condition the following relation should be

set

U(e)
n(n1)

+ U(e)
n(n2)

= 0 and U(e)
t(n1)

+ U(e)
t(n2)

= 0 (43)

It is important to de�ne equation (43) because physically

the corner belongs to two edges. Analogously, when both

edges are set free (Neumann condition) a similar expres-

sion can be reported

σ(e)
n(n1)

+ σ(e)
n(n2)

= 0 and τ(e)
nt(n1)

+ τ(e)
nt(n2)

= 0 (44)

where σ(e)n , τ(e)nt are the algebraic stress vectors (37)with the

same meaning of the symbols of the previous de�nitions.

Equations (42)- (44) are extremely important when mixed

boundary conditions are set, such as the symmetry. It is
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remarked that equations (42)- (44) change when bound-

ary and stress loads are applied to the edge. In particular

if a displacement is imposed on the edge with n1, equa-

tion (43) becomes

U(e)
n(n1)

= Ūn and U(e)
t(n1)

= Ūt (45)

Similarly if a stress load is applied on the edge with n1,

equation (44) is

σ(e)
n(n1)

= σ̄n and τ(e)
nt(n1)

= τ̄nt (46)

Another con�gurationwith two facing elements and an ex-

ternal boundary is depicted in Figure 6b. The corners of the

elements (e) and (e+1) both have an external edge with free

conditions (Neumann). The facing edge should be used to

set the compatibility conditions (41). Since the continuity

condition is physically stronger than the Neumann one,

equation (41) are also used in these corners. If boundary

loads are enforced the continuity conditions continue to

be the best choice for having a better accuracy. Amore gen-

eral con�guration is presented in Figure 7. At the moment

a theoretical counterpart of the equations needed for this

implementations has not been found yet. For this reason

the following numerical trick is proposed, for a general

implementation of this kind of con�guration. First of all

an internal corner is studied, as in Figure 7a, where only

internal boundaries (IBs) are present. Second of all an ex-

ternal corner point occur in Figure 7b. It is obvious that

for both corners, continuity conditions (41) must be pre-

scribed, with the only exception of one of EB clamped or

whenboundary loads are set, so equations (42), (45) or (46)

must be used. The present approach for multi-corner con-

�guration sets a static (Neumann) condition and several

kinematic (Dirichlet) ones. For instance, �ve elements con-

cur at the displayed node. First, the code identi�es the se-

quence of elements, e.g. 1, 3, 5, 2, 4 and enforce four kine-

matic conditions (eight algebraic equations), following the

�rst expressions of equation (41) as

e = 1, e + 1 = 3 → U(1)
n − U(3)

n = 0,

U(1)
t − U(3)

t = 0

e = 3, e + 1 = 5 → U(3)
n − U(5)

n = 0,

U(3)
t − U(5)

t = 0

e = 5, e + 1 = 2 → U(5)
n − U(2)

n = 0,

U(5)
t − U(2)

t = 0

e = 2, e + 1 = 4 → U(2)
n − U(4)

n = 0,

U(2)
t − U(4)

t = 0

(47)

Equation (47) can be graphically shortened as

e = 1, e + 1 = 3 → U(1,3)

e = 3, e + 1 = 5 → U(3,5)

e = 5, e + 1 = 2 → U(5,2)

e = 2, e + 1 = 4 → U(2,4)

(48)

Finally, the static (Neumann) conditions are set between

Figure 7:Multiple corner boundary conditions schemes: a) internal

corner of �ve elements with IB conditions; b) external corner of �ve

elements with EB and IB conditions.

the last two elements of the group. Following the second

expressions of equation (41) they are

e = 4, e + 1 = 1 → σ(4)n − σ(1)n = 0, τ(4)nt − τ
(1)
nt = 0 (49)

Analogously to the kinematic expressions above, equa-

tion (49) can be shortened as

e = 4, e + 1 = 1 → σ(4,1) (50)

In the second con�guration of Figure 7b, considering only

external free (Neumann) boundary conditions the follow-

ing implementation is followed. The previous sequence
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of the element changes, due to the opening, and for the

case depicted in Figure 7b become 1, 4, 2, 5, 3. With the

same meaning of the symbols reported in equations (48)

and (50) the following conditions are set

e = 1, e + 1 = 4 → U(1,4)

e = 4, e + 1 = 2 → U(4,2)

e = 2, e + 1 = 5 → U(2,5)

e = 5, e + 1 = 3 → U(5,3)

e = 3, e + 1 = 5 → σ(3,5)

(51)

It should be pointed out that the conditions U(e,e+1),

U(e+1,e) or σ(e,e+1), σ(e+1,e) are physically the same but nu-

merically di�erent, since they refer to di�erent grid points

in the global sti�nessmatrix. Further details about this as-

pect will be given in the following subsection. Two other

aspects are raised: �rstly if the conditions U(1,3), U(3,1) or

σ(1,3), σ(3,1) were set between the two edges that share ex-

ternal boundaries, inaccurate and unstable numerical so-

lution would occur. Secondly, the corner condition using

four static (Neumann) and one kinematic (Dirichlet) equa-

tions has been tested, but the accuracy achieved was not

su�cient when compared to the present solution. Thus,

at the moment, the multi-corner point implementation re-

mains unchanged with respect to the previous published

works [126–137].

3.5 Assemblage

The�nal step before the solution is the assembly section. It

is a verywell-known fact how to assembly a classic FEMal-

gebraic system using C0 boundary conditions. On the con-

trary it is less common to see a C1 implementation using

strong formulation and continuity conditions. The global

structure has the same form of equation (38) where all

the sub-matrices are located accordingly. For instance if a

mesh is made of three elements the following global sys-

tem occur












K(1)
bb

K(1,2)
bb

K(1,3)
bb

K(1)
bd

K(1,2)
bd

K(1,3)
bd

K(2,1)
bb

K(2)
bb

K(2,3)
bb

K(2,1)
bd

K(2)
bd

K(2,3)
bd

K(3,1)
bb

K(3,2)
bb

K(3)
bb

K(3,1)
bd

K(3,2)
bd

K(3)
bd

K(1)
db

0 0 K(1)
dd

0 0

0 K(2)
db

0 0 K(2)
dd

0

0 0 K(3)
db

0 0 K(3)
dd

























U(1)
b

U(2)
b

U(3)
b

U(1)
d

U(2)
d

U(3)
d













= −













F(
1)
b

F(
2)
b

F(
3)
b

F(
1)
d

F(
2)
d

F(
3)
d













(52)

The �rst thing that can be noted is that the boundary ma-

trices are full matrices, whereas the domain ones are diag-

onal as expected, since no connection occurs among the

inner points of the elements. Moreover, it should be noted

that each sub-matrix contains a particular set of algebraic

equations. The matrix form (52) is general and compre-

hend any con�guration. however, some matrices could be

empty. For instance, if two elements are not connected

Kbb = 0 andKbd = 0. moreover, if the kinematic equations

between two elements are set, the matrices Kbd = 0. In or-

der to give a simpler example, element (1) is connected to

element (2) and at the same time element (2) is connected to

element (3), but (1) and (3) do not share any boundary. This

is the classic case of l-shaped domain. considering these

connectivity conditions equation (52) becomes













K(1)
bb

K(1,2)
bb

0 K(1)
bd

0 0

K(2,1)
bb

K(2)
bb

K(2,3)
bb

K(2,1)
bd

K(2)
bd

0

0 K(3,2)
bb

K(3)
bb

0 K(3,2)
bd

K(3)
bd

K(1)
db

0 0 K(1)
dd

0 0

0 K(2)
db

0 0 K(2)
dd

0

0 0 K(3)
db

0 0 K(3)
dd

























U(1)
b

U(2)
b

U(3)
b

U(1)
d

U(2)
d

U(3)
d













= −













F(
1)
b

F(
2)
b

F(
3)
b

F(
1)
d

F(
2)
d

F(
3)
d













(53)

It is noted that K(1,3)
bb

= K(1,3)
bd

= 0, since kinematic con-

nectivity is set on the element (1) K(1,2)
bd

= 0, whereas

the static conditions are written on the element (2), thus

K(2,1)
bb

= ̸ 0,K(2,1)
bd

≠ 0. Analogously the connectivity is en-

forcedbetween elements (2) and (3). In conclusion equation

((52)) can be rewritten in a more compact form as follows
[

K̃bb K̃bd

K̃db K̃dd

][

Ũb

Ũd

]

= −

[

F̃b

F̃d

]

(54)

where K̃bb, K̃bd, K̃db, K̃dd contain the upper-left, upper-

right, lower-left and lower-right parts of expression (52)

respectively. with the similar meaning of the symbols

Ũb , Ũd , F̃b , F̃d are de�ned. analogously the global

algebraic system for the free vibration problem is repre-

sented by the form
([

K̃bb K̃bd

K̃db K̃dd

]

+ ω2

[

0 0

0 M̃dd

])[

Ũb

Ũd

]

=

[

0

0

]

(55)

In order to improve the performance of the �nal code

the static condensation can be carried out for both equa-
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tion (54) and (55). For the static case expression (54) be-

comes

Ũb = −K̃−1
bb

(

F̃b + K̃bdŨd

)

Ũd =
(

K̃dd − K̃dbK̃
−1
bbK̃bd

)−1 (

K̃dbK̃
−1
bbF̃b − F̃d

) (56)

And the dynamic case (55) can be rewritten as

Ũb = −K̃−1
bbK̃bdŨd((

K̃dd − K̃dbK̃
−1
bbK̃bd

)

+ ω2M̃dd

)

Ũd = 0
(57)

For the �rst case, the second equation of expression (56)

is solved by gaussian elimination and the boundary dis-

placements are retrieved using the �rst equation of (56).

In the latter study, the generalized eigenvalue problem

is solved (the second expression of (57)). Once the mode

shapes of the inner points Ũd are evaluated, the boundary

quantities are retrieved using the �rst equation in (57).

4 Validation studies

As most of the numerical methodologies based on do-

main decomposition or �nite elements, the present nu-

merical approach su�ers from two main issues: one is

due to the accuracy inside each element (related to the

derivative approximation), the other one is brought by

the mapping technique and the element distortion. For

these reasons several validation tests are presented in or-

der to showanddemonstratewhat has beenhitherto cited.

It is not the purpose of the present work to investigate

the behavior of the technique using several basis func-

tions and point collocations. Thus, the most well-known

accurate method has been considered: Lagrange polyno-

mials (known also as Polynomial Di�erential Quadrature

(PDQ)) and Chebyshev-Gauss-Lobatto (C-G-L) grid. For fur-

ther details about this the reader can refer to the reviewpa-

pers [136, 137]. It is recalled that PDQ has been introduced

by Shu [20] and the C-G-L grid has a non-uniform distribu-

tion which takes the following form in the master element

ξi = cos
(
N−i
N−1π

)
, i = 1, 2, . . . , N

ηj = cos
(

M−j
M−1π

)

, j = 1, 2, . . . ,M
(58)

All the following computations have been carried out

changing the number of grid points N, M inside each el-

ement and the number of elements ne used for the mesh

subdivision. In particular, emphasis has been put on the

use of several boundary conditions, especially the results

related to the use of the mixed ones (such as the symme-

try), since this has never been applied before [126–137].

4.1 Free in-plane vibrations of a square plate

In order to �rst present the good accuracy of the present

methodology the well-known case of the in-plane free vi-

brations of a square plate is given in the following. Sev-

eral articles presented this problem in literature in previ-

ous published papers [139–141]. Thus, the past solutions

are used here as a benchmark for the present code. Fur-

thermore, some observations can bemadewhilemodeling

this structure. It is a very well-known fact that the easiest

boundary condition for the GDQ method is the kinematic

(�xed, Dirichlet) one. This is self-explained by the fact that

the problem is solved using the partial di�erential system

of equations as a function of the displacements. Thus, us-

ing the identity matrix as matrix for the boundary condi-

tions, automatically all the edges are �xed. On the con-

trary, it is more di�cult to enforce the natural (free, Neu-

mann) boundary conditions, since the conditions on the

stresses also comprehend the derivatives of the displace-

ments. For this reason the �rst comparison is given with

respect to a fully clamped (C-C-C-C) plate using a single el-

ement and a mesh made of four elements. The plate sub-

division is performed using regular elements, so that the

element dimensions are given by the plate edge divided by

the number of element per edge. In other words if a and b

identify the two edges of the plate, when four elements are

considered each element has dimension a/2 and b/2. It is

recalled that using a regular subdivision (a multi-domain

technique is under consideration) a di�erent number of

points per side can be considered. This is particularly im-

portant when a rectangular plate is taken into account

(a/b = 2), whereas for a square plate (a/b = 1) it is bet-

ter to have N = M. A FEM model is also presented using

Abaqus,with a regular (100×100 for a/b = 1 and200×100

for a/b = 2) mesh made of CPS8 elements. The results

related to a C-C-C-C plate are shown in Table 1. The natu-

ral frequencies are presented in their dimensionless form

as Ω = ωa
√

ρ (1 − ν2) /E, where ω indicates the circular

frequency. The case of a completely free (F-F-F-F) plate is

reported in Table 2, where only Neumann conditions are

used. For both cases the same number of grid points is

used and it is noted that when N = ̸ M in the rectangular

plate model, the results are more accurate than the case

with N = M. This e�ect is more noticeable when a ≫ b

like 5 or 10 times. It is also remarked that the present solu-

tions agree with the results presented by other authors in

literature.
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Table 1: First ten dimensionless frequencies for C-C-C-C isotropic in-plane square and rectangular plates using di�erent techniques.

a/b = 1

Ω Ref. [139] Ref. [140] ne = 1 ne = 1 ne = 4 ne = 4 FEM

N = M = 7 N = M = 21 N = M = 7 N = M = 11 (CPS8)

100 × 100

1 3.555 3.549 3.55507 3.55519 3.55521 3.55518 3.55519

2 3.555 3.549 3.55507 3.55519 3.55521 3.55518 3.55519

3 4.235 4.221 4.23521 4.23501 4.23587 4.23501 4.23501

4 5.186 5.201 5.19662 5.18570 5.18481 5.18570 5.18571

5 5.859 5.967 5.83147 5.85862 5.85948 5.85862 5.85861

6 5.895 6.000 5.83147 5.89441 5.89867 5.89442 5.89442

7 ś ś 5.86942 5.89441 5.89867 5.89442 5.89442

8 ś ś 6.72321 6.70768 6.70674 6.70767 6.70768

9 ś ś 7.10014 7.11317 7.11554 7.11317 7.11318

10 ś ś 7.10014 7.11317 7.11554 7.11317 7.11318

a/b = 2

Ω Ref. [139] Ref. [140] ne = 1 ne = 1 ne = 4 ne = 4 FEM

N = M = 7 N = 21,M = 11 N = 11,M = 7 N = 21,M = 11 (CPS8)

200 × 100

1 4.789 4.741 4.78860 4.78902 4.78903 4.78902 4.78903

2 6.379 6.387 6.37838 6.37856 6.37860 6.37856 6.37855

3 6.712 6.682 6.71533 6.71212 6.71238 6.71213 6.71213

4 7.049 7.037 7.05019 7.04875 7.04885 7.04875 7.04878

5 7.608 7.565 7.61663 7.60830 7.60877 7.60831 7.60827

6 8.140 8.128 8.20558 8.14019 8.14008 8.14019 8.14022

7 ś ś 9.33430 8.99796 8.99838 8.99797 8.99795

8 ś ś 9.78770 9.51559 9.51617 9.51560 9.51557

9 ś ś 10.17764 9.71655 9.71624 9.71655 9.71655

10 ś ś 10.94940 10.60077 10.60080 10.60079 10.60078

4.2 Free in-plane vibrations of a circular

plate

In the present subsection, the mapping technique is in-

troduced and tested. The reference article is the one by

Park [142], where a clamped isotropic circular plate is

investigated. The plate has a radius of 0.5 m and it is

made of Aluminiumwith Young’smodulus of 71 GPa, Pois-

son’s ratio of 0.33 and density 2700 kg/m3. The prob-

lem of annular and circular plates is very well-known in

literature [143]. The results are proposed for two di�er-

ent meshes with ne = 4 and ne = 12. The elements

have 8 nodes in order to map correctly the curvature. The

meshes used are the same as the ones used in the previous

works [126, 133, 134]. Table 3 shows the comparisons with

the results proposed by Park and also a FEM solution us-

ing 9802 CPS8 elements. Good agreement is observed for

the �rst 25 natural frequencies. It is underlined that the

reference articles show only the symmetric frequencies,

whereas the present solution and the FEM report all the

physical quantities of the structure.

4.3 Static analysis of a thick walled cylinder

Consider the standard thick-walled cylinder test presented

by MacNeal and Harder [144]. In this example, the struc-

ture is under plane strain conditions and simulate a thick-

walled cylinder (of in�nite length) subjected to an inter-

nal pressure p. A 10 degrees segment is modeled with

an inner radius Ri = 3 m and an outer radius Ro = 9 m.

In the present analysis the radial, tangential and longi-

tudinal stresses are evaluated and compared to an ex-

act solution given in literature. Furthermore, the radial

displacement is also presented. The analyses are carried

out considering di�erent number of Poisson’s ratios ν =
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Table 2: First ten dimensionless frequencies for F-F-F-F isotropic in-plane square and rectangular plates using di�erent techniques.

a/b = 1

Ω Ref. [139] Ref. [140] ne = 1 ne = 1 ne = 4 ne = 4 FEM

N = M = 7 N = M = 21 N = M = 7 N = M = 11 (CPS8)

100 × 100

1 2.321 2.321 2.32451 2.32171 2.31605 2.32145 2.32060

2 2.472 2.472 2.45872 2.46801 2.45043 2.47238 2.47162

3 2.472 2.472 2.48889 2.46801 2.45388 2.47641 2.47162

4 2.628 2.628 2.62683 2.62859 2.62428 2.62825 2.62845

5 2.987 2.987 2.96949 2.98631 2.97801 2.98617 2.98738

6 3.452 3.452 3.45888 3.44945 3.45045 3.44062 3.45224

7 ś ś 3.69459 3.71042 3.68715 3.72062 3.72313

8 ś ś 3.69459 3.71244 3.68902 3.72062 3.72313

9 ś ś 4.21216 4.31437 4.18625 4.32203 4.30307

10 ś ś 4.72090 4.96327 4.80540 4.96643 4.96863

a/b = 2

Ω Ref. [139] Ref. [140] ne = 1 ne = 1 ne = 4 ne = 4 FEM

N = M = 7 N = 21,M = 11 N = 11,M = 7 N = 21,M = 11 (CPS8)

200 × 100

1 1.954 1.938 1.96633 1.95803 1.95933 1.94801 1.95365

2 2.961 2.927 2.96229 2.95793 2.95905 2.96102 2.96082

3 3.267 3.238 3.30916 3.29986 3.26824 3.26463 3.26705

4 4.726 4.702 4.61846 4.68942 4.72633 4.72400 4.72633

5 4.784 4.752 4.68062 4.76869 4.79928 4.81284 4.78411

6 5.205 5.178 5.24640 5.21348 5.21344 5.19110 5.20445

7 ś ś 5.30536 5.27862 5.25165 5.26765 5.25689

8 ś ś 5.64674 5.39243 5.37669 5.35378 5.36510

9 ś ś 6.02023 6.15741 6.09865 6.15654 6.14655

10 ś ś 6.08108 6.41060 6.43985 6.46616 6.44752

(0.3, 0.49, 0.499, 0.4999) and the elastic modulus is set

equal to E = 1 Pa. The plane strain exact solution can be

found in the book by Timoshenko [2]. The equation for the

radial displacement is

d

dr

(
1

r

d

dr
(r ur)

)

= 0 (59)

where ur indicates the radial displacement and r is the ra-

dial coordinate. Integrating two times equation (59), the

following expression for the radial displacement comes

out

ur = a r +
b

r
(60)

where a, b are two integration constants that can be easily

derived as

a = (1 − 2ν)
b

R2
o

b =
−p (1 + ν)

E
(

1
R2
o
− 1

r2

) (61)

Once the radial displacement is de�ned the stress quanti-

ties can be evaluated afterwards as follows

σr =
E

1 + ν

(
dur
dr

+
ν

1 − 2ν

(
dur
dr

+
ur
r

))

σt =
E

1 + ν

(
ur
r
+

ν

1 − 2ν

(
dur
dr

+
ur
r

))

σz =
E

1 + ν

(
ν

1 − 2ν

(
dur
dr

+
ur
r

))

(62)

It is remarked form equation (62) that σz ≠ 0 since a

plane strain conditionshas been considered. The results of

the present case are reported in Table 4 for three di�erent

meshes that are depicted in Figure 8 using di�erent num-

ber of grid points. In each case the number of degrees of

freedom is kept relatively high, using polynomials of high

degree in order to catch the solution with a small num-

ber of �nite elements and a small error. Table 4 reports not

only the numerical solution but also the percentage of the
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Table 3: First twenty-�ve frequencies for C-C-C-C isotropic circular plate using di�erent techniques.

f [Hz] Ref. [142] Ref. [142] FEM (CPS8) ne = 9802 ne = 12 N = M = 7 ne = 4 N = M = 15

1 3363.6 3362 3361.73 3363.074 3363.044

2 ś ś 3361.73 3363.074 3363.044

3 3836.4 3835 3834.85 3836.446 3836.351

4 5217.5 5219 5219.37 5221.504 5221.404

5 ś ś 5219.37 5221.522 5221.407

6 5380.5 5383 5382.86 5385.225 5384.962

7 ś ś 5382.86 5385.225 5384.962

8 6624 6626 6625.62 6628.278 6628.200

9 6749.3 6764 6763.75 6767.236 6766.389

10 ś ś 6763.75 6767.236 6766.389

11 6929 6939 6938.50 6941.662 6941.210

12 ś ś 6938.50 6941.838 6941.214

13 7019.3 7021 7021.35 7024.409 7024.091

14 8093 8130 8130.48 8134.337 8133.058

15 ś ś 8130.48 8137.422 8134.240

16 8476.5 8489 8489.44 8496.113 8492.753

17 ś ś 8489.44 8496.113 8492.753

18 8530.6 8557 8557.33 8562.647 8560.662

19 ś ś 8557.33 8562.647 8560.662

20 9258 9263 9262.99 9266.436 9266.602

21 ś ś 9262.99 9266.436 9266.602

22 9328.1 9401 9401.23 9409.051 9404.896

23 ś ś 9401.23 9409.051 9404.896

24 9887.7 9925 9925.01 9932.331 9928.872

25 ś ś 9925.01 9935.469 9928.876

relative error. The numerical solutions are in good agree-

ment with the exact solution provided by hand calcula-

tions, for di�erent values of Poisson’s ratio and number of

elements. In fact, the error computed is very small in all

cases. In order to complete the analysis a convergence test

is carried out in Figure 9 where the number of degrees of

freedom (dofs) is increasing keeping the same number of

elements. The three curves obtained using SFEM are com-

pared to a FEM solution obtained in Straus. The exact so-

lution is used as a reference for computing the error along

the vertical axis of the plot. From the double-log plot it can

be noticed as expected that the convergence ratio of the

SFEM is steeper than the FEM due to the high-order poly-

nomial approximation.

4.4 Sensitivity analysis of a composite thick

walled cylinder

Simulating the previous example a composite case is de-

ducted. In particular, the aimof this application is to inves-

tigate the sensitivity of the present geometry when two dif-

ferentmaterials are considered. Themeshused in the com-

putations is depicted in Figure 10. The geometry is kept the

same as the previous case, whereas the value of the elas-

tic modulus of the inner and outer sheets is variable using

10, 100, 1000. All the quantities are evaluated at the inner

radius as it can be deducted from the radial stress that is

equal to the external applied load. The results presented

in Table 5 are aimed to be used as a reference for further

studies on the subject.
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Table 5: Results for a thick-walled composite cyilinder for several values of the Poisson’s ratio and the ratio between the core and sheet

moduli using 21×21 grid points per element and the meshes of Figure 10.

ν
E/Ec = 10 E/Ec = 100 E/Ec = 1000

ne = 3 ne = 5 ne = 3 ne = 5 ne = 3 ne = 5

Radial displacement ur[m]

0.3 12.14834 12.14834 15.48735 15.48735 16.21028 16.21028

0.49 11.91896 11.91895 13.92165 13.92165 14.53872 14.53872

0.499 11.88706 11.88705 13.75455 13.75455 14.08313 14.08313

0.4999 11.88384 11.88381 13.73592 13.73592 13.96643 13.96643

Radial stress σr [Pa]

0.3 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999

0.49 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999

0.499 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999

0.4999 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999 -0.99999

Circumferential stress σϑ [Pa]

0.3 4.02352 4.02352 5.24712 5.24712 5.51205 5.51205

0.49 4.26979 4.26979 5.14866 5.14866 5.41946 5.41946

0.499 4.28238 4.28238 5.11164 5.11164 5.25754 5.25754

0.4999 4.28367 4.28365 5.10707 5.10707 5.20955 5.20955

Normal stress σz [Pa]

0.3 0.90706 0.90706 1.27414 1.27414 1.35362 1.35362

0.49 1.60220 1.60220 2.03285 2.03285 2.16554 2.16554

0.499 1.63791 1.63791 2.05171 2.05171 2.12452 2.12452

0.4999 1.64151 1.64150 2.05313 2.05313 2.10436 2.10436

Figure 8: Isotropic and composite thick-walled cylinder meshes

used for the convergence computations.

Figure 9: Convergence and stability curves for an isotropic thick-

walled cylinder using di�erent meshes.

4.5 2D elastic structure made of two

di�erent materials

The present numerical application has been taken from

the book by Zong and Zhang [122], where a 2D rectangular

12 m×6 m body has a lateral traction q = 10 Pa. The struc-

ture can be studied using a doubly symmetry on the x and

y axis and the whole domain can be just divided into two

squared elements ne = 2. In this way a composite struc-

ture can be studiedwithout considering themapping tech-

nique. Themechanical properties of the half on the left are

E1 = 3 · 107 Pa, ν1 = 0.25, whereas the ones of the half on
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Figure 10: Composite thick-walled cylinder meshes used for the

convergence computations.

the right are E2 = 3·106 Pa, ν1 = 0.25. The results are com-

pared in terms of stresses σx and τxy, at section y = 1.5m.

The SFEM solution is superimposed to the reference ones

using N = M = 21 in Figure 11. The black solid line is the

solution proposed by Zong and Zhang and the black cir-

cles are related to a FEM (Abaqus) solution obtained by

Zong and Zhang. Extremely good agreement is observed

and this example shows that it is possible to investigate

composite structures easily with the present method.

Figure 11: Stress distributions at y = H/2 for a bi-material beam.

The present result using N = M = 21 for each element is compared

to the same presented by Zong and Zhang [122], who solved the

problem using multi-domain DQ and FEM (Abaqus).

4.6 Square plate with a square inclusion

Another application taken from the book by Zong and

Zhang [122] considers a square plate with a square inclu-

sion subjected to a horizontal traction q = 100 Pa. The

problem has a double symmetry so a quarter of the plate

can be studied. For the present case four regular (squared)

elements are used ne = 4. The material properties for the

inclusion are E1 = 3·106 Pa, ν1 = 0.25 and the ones for the

matrix are E1 = 3 · 107 Pa, ν1 = 0.3. The dimension of the

quarter of the plate is L = 2m and the side of the squared

inclusion is L/2 = 1m. The results are presented in terms

of displacements u = ux and v = uy in Figure 12, where the

present solution with a solid line is compared to the solu-

tions proposed by Zong and Zhang [122]. The black solid

line is the Abaqus solution, the stars and triangles mark-

ers are the solutions proposed by Zong and Zhang [122].

Figure 12 is obtained drawing a section at y = L/4 = 0.5m.

Analogously at the same section the stresses σx, σy and

τxy are shown in Figure 13. The present solution is ob-

tained using N = M = 21. A good agreement is observed,

even though some di�erences can be seen at the mate-

rial discontinuity interface, since a di�erence between the

present solution and the others occurs. Thus, Figure 14 is

presented where another FEM solution has been carried

out using a very �ne mesh and it can be noted that the

present results are in very good agreement with this new

FEM reference solution. This is due to the fact that Zong

and Zhang used a coarse Abaqus mesh for their calcula-

tions.

Figure 12: The present result using N = M = 21 for each element

is compared to the same presented by Zong and Zhang [122], who

solved the problem using multi-domain DQ and FEM (Abaqus).
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Figure 13: The present result using N = M = 21 for each element

is compared to the same presented by Zong and Zhang [122], who

solved the problem using multi-domain DQ and FEM (Abaqus).

Figure 14: The present result using N = M = 21 for each element is

compared to the same computed by Abaqus.

4.7 Square plate with a circular inclusion

Considering the same material data of the previous exam-

ple a square plate with a circular inclusion is investigated

in the following as in Zong and Zhang [122]. The plate is

subjected to a vertical traction q = 100 Pa and a double

symmetry occurs in this case also. The quarter plate has

L = 2.5mand the inclusionhas a radius R = 1m.Themap-

ping technique is compulsory for this case, since distorted

elements must be used in order to map the circumference

correctly. The plots in Figure 15 use the same symbols of

the previous case. For solving this problem four elements

are used ne = 4 with N = M = 21. The top-left sub�gure



114 | Nicholas Fantuzzi

of Figure 15 shows the horizontal displacement ux on the

x axis, whereas the others represent the vertical displace-

ment uy and the stresses σx and σy on the yaxis. A very

good agreement is observed for the present case also.

4.8 Vibrations of a 2D cantilever elastic

beam

The problems presented in the present section have been

investigated in the past [128–130], when the �rst ten natu-

ral frequencies have been also compared to FEM and other

methods [145, 146]. The same problem is nowused to show

the convergence of the technique when di�erent number

of points are used in each element. It is recalled that the

structure is a 2D cantilever beam of length L = 0.1m and

height H = 0.01mwith the following mechanical proper-

ties E = 205.939 GPa, ν = 0.3 and ρ = 7845.32 kg/m3.

In this section the convergence and stability behaviour of

the technique is investigatedusing a reference solution ob-

tained through commercial FEM code Abaqus. A very �ne

reference solution is calculated using ne = 105 regular

(squared) CPS8 (8-node biquadric without reduced inte-

gration) elements. Three SFEM structures are drawn us-

ing ne = 1, ne = 3 and ne = 10. It is noted that the �rst

two meshes are made of distorted elements (rectangular

shape), whereas the latest has all regular (squared) ele-

ments. This choice has beenmade, because in this way the

e�ect on the mesh distortion can be studied. In particu-

lar the mesh distortion can be overcome by using di�erent

number of points along two directions.

The convergence error is evaluated in two di�er-

ent ways: using the logarithm of the relative error and

the absolute one. The relative error is computed as

log10
∣
∣f1
/
f1ref − 1

∣
∣, whereas the absolute one as f1 − f1ref .

The �rst measures the di�erence between the two solu-

tions looking at the absolute value of the signi�cant dig-

its; it is intrinsically dimensionless and lets the user un-

derstand the global trend of the solution. The second one

just shows the dimensional di�erences between the two

quantities, it is physical so that the user can understand

directly the real trend of the solution. It should be noted

that the absolute error shows immediately when the trend

oscillates towards theminimum error, whereas this aspect

is slightly hiddenby the relative error due to the imposition

of the absolute value. The relative error is a classic way of

error measurement in FEM approach, since it is very well-

known that FEM has a ‘convergence from above’ when the

mesh is re�ned. On the contrary in SFEM, due to the fact

that the approximation inside each element can change

(as in p-FEM), a ‘convergence from above’ not always oc-

curs.

In Figure 16 the abscissa contains the logarithm of the

number of degrees of freedom of each problem dofs =

2 (N − 2) (M − 2) ne and the reference valuehas been taken

with respect to a computed eigenvalue of 2.66805 ·107 →

f1ref = 822.08573764683945Hz. It is clear from Figure 16

that when N ≠ M and in particular when N ≫ M the solu-

tion tends todiverge.On the contrary the solution is always

stable when N = M, but a strong accuracy is reached only

when several dofs are considered.

4.9 Cook isotropic beam with two eccentric

holes

In the present section a new �nite element benchmark

is proposed, considering the reference problem of Cook’s

beam [147–149]. The plan-form of the Cook’s beam has

been kept the same, but two holes have been added in two

eccentric locations as depicted in Figure 17a . The elastic

material data are E = 3 · 107 Pa and ν = 0.3 and the

shear stress applied at the right side of the plate is equal

to F = 100 Pa. The beam is in plane stress conditions. The

mesh used in the computation is presented in Figure 17b .

The results are presented in tabular and graphical forms.

Table 6 reports the comparison in terms of global displace-

ment andMises stress at a speci�c point for the static anal-

ysis, and the �rst ten natural frequency for themodal anal-

ysis. The reference point for the static analysis has coordi-

nates (48,52) m. All the results are compared to a FEM so-

lution obtained with a relatively �ne mesh. Next to each

result the percentage of the relative error is presented. As

it is obvious, the error decreases when the number of ele-

ments increases. It can be noted that the solution can be

considered accurate for N = M = 9 both statically and dy-

namically. Figure 18 shows a graphical coloured plot of the

Mises stress on the whole geometry compared to the same

map create with Abaqus software.

4.10 Laminated composite circular arch with

circular holes

As a �nal numerical test the free vibration problem of the

structure depicted in Figure 19 is described. The arch has

an opening angle of 90 degrees and radius R = 2.5m. The

total width of the arch is h = 1 m, with a bottom and top

sheets of thickness hs = 0.25mandacorewith hc = 0.5m.

The holes have a diameter of d = 0.25m and they are cen-

tred in the core of the arch. There are three holes, one on
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Figure 15: The present result using N = M = 21 for each element is compared to the same presented by Zong and Zhang [122], who solved

the problem using multi-domain DQ and FEM (Abaqus).

the symmetry axis and two half circles are drawn at the

boundary edges. Both the right and left edges are clamped

(the circular holes are free). The right and left edges are

inclined of 45 degrees with respect to the horizontal axis.

The arch is in plane stress condition.

The reference numerical solution is carried out using

FEMStrauswith a relatively �nemeshwith 74646dofs. The

SFEM mesh is made of ne = 48 elements according to Fig-

ure 19. Four di�erent solutions are calculated. The �rst one

is referred to an isotropic arch with E = 30 MPa, ν = 0.3

and ρ = 1000 kg/m3. The others consider laminated struc-

tures, when the ratios between the sheets and the core is

variable. The elastic modulus of the core is kept constant

Ec = E = 30 MPa and the Young’s modulus of the sheets

increases following the ratios Es/Ec = 10, 100, 1000. Ta-

ble 7 reports the results in terms of natural frequencies

where the readiness is helped with the relative error be-

tween the reference FEM solution and the SFEM one. As

expected, the error decreases when the number of grid

points increases. Furthermore the �rst six mode shapes of

the four cases considered are illustrated in Figures 20 – 23.

It can be noted that the modes are global, when the struc-

ture is isotropic and the ratio between the core and the

sheets is small, whereas when the ratio is large the modes

concentrate on the soft-core which is the softest part of the

structure and the global behaviour is less signi�cant.

5 Closure

It can be concluded that the complete set of governing

and boundary equations in di�erential and discrete forms

have been presented for elastostatic and elastodynamic

problems using the SFEM approach. The present proce-

dure demonstrated to be very accurate to solve both clas-

sical and new numerical applications when also compos-

ite materials are taken into account. Moreover, some new
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Figure 16: Convergence of the �rst natural frequency of a cantilever elastic beam with ne = 1, ne = 3, ne = 10 and di�erent number of

points along the two directions.

numerical benchmarks have been presented for future de-

velopments on the same subject. The manuscript deals

with the modelling of the present method and the imple-

mentation technique of the SFEM. It should be mentioned

that the attention is not focused on the stability of the

numerical technique when di�erent basis functions and

grid distributions are used. Thus, this topic could be the

aim of a future paper, where it could be investigated the

accuracy and stability of the method when these param-

eters are changed. The numerical applications provided

solutions from the literature and new geometries com-

pared with classic FEM. In all the cases very good agree-

ment is observed and this demonstrates the correctness

of the methodology, when compared to other classical ap-

proaches and FEM commercial codes. Furthermore, fol-

lowing previously published works, the author would like

to deepen the knowledge about the application of elasto-

static SFEM problems related to fracture mechanics top-

ics [150–153] in future papers.
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(a) (b)

Figure 17: a) Geometry of the Cook’s beam with two eccentric holes (dimensions in meters [m]). b) SFEM mesh used in the computations.

(a) (b)

Figure 18: a) SFEM Mises stress color map, b) Abaqus FEM Mises color map; both on the undeformed shape.
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Table 7: First ten frequencies for a circular composite arch with circular holes, increasing the number of grid points per element.

FEM SFEM

Isotropic arch

f [Hz] dofs = ne = 48 err (%) ne = 48 err (%) ne = 48 err (%) ne = 48 err (%)

= 74646 N = M = 5 N = M = 7 N = M = 9 N = M = 11

1 12.28002 12.28312 0.025 12.27989 -0.001 12.28021 0.002 12.27998 0.000

2 15.35798 15.36383 0.038 15.35464 -0.022 15.35973 0.011 15.35916 0.008

3 23.78326 23.80035 0.072 23.78339 0.001 23.78345 0.001 23.78313 -0.001

4 29.17763 29.18699 0.032 29.17475 -0.010 29.18183 0.014 29.18046 0.010

5 38.81811 38.86387 0.118 38.80420 -0.036 38.82353 0.014 38.82181 0.010

6 40.03110 39.88207 -0.372 40.02701 -0.010 40.02956 -0.004 40.03057 -0.001

7 53.52950 53.36088 -0.315 53.51688 -0.024 53.53366 0.008 53.53343 0.007

8 57.36951 57.43483 0.114 57.36167 -0.014 57.37167 0.004 57.37036 0.001

9 60.65324 60.70018 0.077 60.65306 0.000 60.65354 0.000 60.65304 0.000

10 63.30650 63.21378 -0.146 63.29492 -0.018 63.31129 0.008 63.31032 0.006

Composite arch E/Ec = 10

1 26.39486 26.36465 -0.114 26.39481 0.000 26.39486 0.000 26.39478 0.000

2 26.93003 26.99436 0.239 26.94819 0.067 26.93976 0.036 26.93453 0.017

3 50.24074 50.21545 -0.050 50.27271 0.064 50.25536 0.029 50.24771 0.014

4 51.76582 51.77008 0.008 51.77039 0.009 51.76707 0.002 51.76588 0.000

5 66.56456 66.59229 0.042 66.58919 0.037 66.58092 0.025 66.57215 0.011

6 74.78007 74.31327 -0.624 74.77522 -0.006 74.77924 -0.001 74.78089 0.001

7 82.17393 82.13006 -0.053 82.17678 0.003 82.17621 0.003 82.17474 0.001

8 84.01456 83.82778 -0.222 84.03978 0.030 84.02784 0.016 84.02101 0.008

9 90.81161 90.75894 -0.058 90.81334 0.002 90.81344 0.002 90.81228 0.001

10 97.57337 97.25551 -0.326 97.57839 0.005 97.57610 0.003 97.57478 0.001

Composite arch E/Ec = 100

1 52.92372 53.09493 0.323 52.99118 0.127 52.95069 0.051 52.93544 0.022

2 64.73952 64.72375 -0.024 64.74849 0.014 64.74164 0.003 64.73995 0.001

3 92.17044 92.03309 -0.149 92.22634 0.061 92.19096 0.022 92.17969 0.010

4 101.1039 100.9813 -0.121 101.1082 0.004 101.1075 0.004 101.1055 0.002

5 103.1860 103.0722 -0.110 103.2130 0.026 103.1994 0.013 103.1920 0.006

6 108.9535 108.6645 -0.265 108.9564 0.003 108.9577 0.004 108.9560 0.002

7 122.7692 122.4327 -0.274 122.7823 0.011 122.7800 0.009 122.7749 0.005

8 127.7322 127.4390 -0.230 127.7277 -0.004 127.7340 0.001 127.7330 0.001

9 128.5981 128.1156 -0.375 128.6563 0.045 128.6226 0.019 128.6095 0.009

10 133.6918 133.3974 -0.220 133.6987 0.005 133.7026 0.008 133.6980 0.005

Composite arch E/Ec = 1000

1 105.7750 105.7615 -0.013 105.8164 0.039 105.7919 0.016 105.7829 0.007

2 110.1931 110.0682 -0.113 110.1940 0.001 110.1935 0.000 110.1935 0.000

3 116.8438 116.7519 -0.079 116.8677 0.020 116.8522 0.007 116.848 0.004

4 126.3414 125.9453 -0.314 126.3211 -0.016 126.3378 -0.003 126.3409 0.000

5 137.8245 137.4203 -0.293 137.8758 0.037 137.8512 0.019 137.8364 0.009

6 150.4189 149.6223 -0.530 150.3782 -0.027 150.4160 -0.002 150.4190 0.000

7 150.7741 150.2760 -0.330 150.7483 -0.017 150.7715 -0.002 150.7744 0.000

8 155.8039 155.7738 -0.019 155.8231 0.012 155.8049 0.001 155.8037 0.000

9 172.5842 172.3676 -0.126 172.6097 0.015 172.5949 0.006 172.5893 0.003

10 177.8687 177.4118 -0.257 177.8791 0.006 177.8712 0.001 177.8700 0.001
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Figure 19: SFEM mesh of a laminated composite circular arch with

circular holes.

Viola and Francesco Tornabene for their encouragement

throughout the preparation of this work. A special thanks
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