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 20 
Abstract – The Arctic is warming faster than anywhere else of comparable size on Earth, 21 

impacting global climate feedbacks and the Arctic biota. However, a warm Arctic is not 22 

novel. The Late Cretaceous fossil record of the region enables a detailed reconstruction of 23 

polar environmental conditions, and a thriving extinct ecosystem, during a previous 24 

'hothouse' global climate. Using leaf form (physiognomy) and tree ring characteristics we 25 

reconstruct Cenomanian to Coniacian polar thermal and hydrological regimes over an 26 

average annual cycle at eight locations in north-eastern Russia and northern Alaska. A new 27 

high spatial resolution (~1 km) WorldClim2 calibration of the Climate-Leaf Analysis 28 

Multivariate Program (CLAMP) yields similar, but often slightly warmer, results to previous 29 

analyses, but also provides more detailed insights into the hydrological regime through the 30 

return of annual and seasonal vapour pressure deficit (VPD), potential evapotranspiration 31 

(PET) estimates and soil moisture, as well as new thermal overviews through measures of 32 

thermicity and growing degree days. The new results confirm the overall warmth of the 33 

region, particularly close to the Arctic ocean, but reveals strong local differences that may be 34 

related to palaeoelevation in the Okhotsk-Chukotka Volcanogenic Belt in north-eastern 35 

Russia. While rainfall estimates have large uncertainties due to year-round wet soils in most 36 

locations, new measures of VPD and PET show persistent high humidity, but with notably 37 

drier summers at all the Arctic sites. 38 

 39 

1. Introduction 40 

The Arctic is warming faster than almost all other parts of our planet (IPCC 2014). This 41 

phenomenon is consistent with ‘polar amplification’ (Lee 2014) where any change in 42 

planetary scale net radiation balance, irrespective of whether ice is present at the poles or not, 43 

produces larger temperature changes at higher latitudes than in equatorial regions. Polar 44 

amplification is no better illustrated than in the Arctic during past episodes of extreme 45 
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warmth, such as in the early Late Cretaceous. Polar amplification makes Arctic palaeoclimate 47 

proxies sensitive recorders of global change phenomena, and by studying warm Arctic 48 

conditions we can derive the most reliable insights into future climate, and linked biospheric 49 

responses, at high northern latitudes.  50 

The current warming of the Arctic is dramatic and perhaps inevitably most 51 

investigations into the Late Cretaceous palaeoclimate of the region have focussed on the 52 

ancient thermal regime (e.g. Spicer & Parrish 1986; Spicer & Corfield 1992; Herman & 53 

Spicer 1996a, 1997a; Amiot et al. 2004; Spicer & Herman 2010; Herman, Spicer & Spicer 54 

2016), but arguably more important is the polar hydrological cycle. In today’s ‘coldhouse’ 55 

world a strong polar high-pressure cell leads to a relatively dry Arctic and only low 56 

temperatures, and thus low evaporation, prevents widespread aridity. However, in a warmer 57 

world a weaker polar high, and thus a weaker polar front, would have profound implications 58 

for global atmospheric circulation (including phenomena such as polar vortex outbreaks) and 59 

the water cycle.  60 

It is possible that in the Late Cretaceous a warm Arctic Ocean generated vigorous 61 

ocean-atmosphere feedbacks that helped sustain that ocean warmth while also producing a 62 

more or less permanent Arctic cloud cap (Spicer et al. 2014), but atmospheric hydrology is 63 

poorly constrained through a lack of reliable proxies. The focus of this work is to re-examine 64 

the Arctic early Late Cretaceous climate and introduce new quantitative proxy palaeo-65 

humidity measurements in order to characterise better the polar environment at times of 66 

global warmth.  67 

Late Cretaceous Arctic sediments of Alaska and north-eastern Russia, collectively 68 

referred to here as the North Pacific Region (NPR) (Fig. 1), host a wealth of palaeontological 69 

evidence attesting to a highly diverse extinct ecosystem thriving under a temperate and humid 70 

climate at palaeolatitudes as high as 82 °N (Fig. 2). The rich plant fossil record from the NPR 71 



has been investigated for more than a century (see background reviews in 72 

http://arcticfossils.nsii.org.cn) and is well documented in a large body of work (e.g. Hollick 73 

1930; Samylina 1963; Lebedev 1965; Smiley 1966; Budantsev 1968; Samylina 1968; Smiley 74 

1969a, b; Samylina 1973; Samylina 1974a, b; Filippova 1975a, b; Krassilov 1975; Lebedev 75 

1976; Samylina 1976; Kiritchkova & Samylina 1978; Krassilov 1978; Filippova 1979; Scott 76 

& Smiley 1979; Detterman & Spicer 1981; Budantsev 1983; Spicer & Parrish 1986; Spicer 77 

1986; Lebedev 1987; Spicer, Wolfe & Nichols 1987; Spicer 1987; Filippova 1988; 78 

Golovneva 1988; Grant, Spicer & Parrish 1988; Parrish & Spicer 1988a, b; Samylina 1988; 79 

Filippova 1989; Lebedev & Herman 1989; Herman 1990; Spicer & Chapman 1990; Spicer & 80 

Parrish 1990a; Spicer & Parrish 1990b; Golovneva 1991a, b; Herman 1991; Herman & 81 

Lebedev 1991; Herman & Shczepetov 1991; Samylina & Shczepetov 1991; Shczepetov 82 

1991; Golovneva & Herman 1992; Lebedev 1992; Shczepetov, Herman & Belaya 1992; 83 

Spicer & Corfield 1992; Spicer, Parrish & Grant 1992; Filippova & Abramova 1993; Herman 84 

1993; Spicer, Rees & Chapman 1993; Filippova 1994; Golovneva 1994a, b; Herman 1994; 85 

Herman & Spicer 1995; Shczepetov 1995; Herman & Spicer 1996b; Herman & Spicer 1997a, 86 

b; Golovneva 2000; Herman 2002; Herman, Spicer & Kvacek 2002; Spicer et al. 2002; 87 

Craggs 2005; Herman 2007; Herman et al. 2009; Golovneva & Alekseev 2010; Spicer & 88 

Herman 2010; Tomsich et al. 2010; Golovneva, Shchepetov & Alekseev 2011; Herman 2011, 89 

2013; Alekseev, Herman & Shchepetov 2014; Shczepetov & Golovneva 2014; Golovneva, 90 

Herman & Shczepetov 2015; Golovneva & Shchepetov 2015;  Herman et al. 2016; Herman, 91 

Spicer & Spicer 2016; Herman & Solokova 2016; Vasilenko, Maslova & Herman 2016; 92 

Shczepetov & Herman 2017; Nikitenko et al. 2017, 2018; Herman et al. 2019). While not 93 

exhaustive, these works attest to the richness and intensity of study that the Cretaceous Arctic 94 

floras have attracted despite the logistic difficulties of working in remote regions.  A brief 95 

synthesis is given here. 96 
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 111 

[Figure 1 near here] 112 

[Figure 2 near here] 113 

 114 

1.a. Early Late Cretaceous Arctic Forests 115 

In the early Late Cretaceous at latitudes above the palaeo-Arctic Circle (~66 °N) 116 

forests were conifer-dominated and at high latitudes almost exclusively deciduous (Parrish & 117 

Spicer 1988b; Spicer & Parrish 1990b; Spicer & Herman 2001; Spicer et al. 2002; Spicer & 118 

Herman 2010; Herman, Spicer & Spicer 2016). Key canopy-forming taxa were 119 

predominantly Cephalotaxopsis, Elatocladus, Pityophyllum, Araucarites, Sequoia 120 

reichenbachii and Pagiophyllum, while angiosperms were most abundant as understorey 121 

elements and along stream sides (Spicer & Herman 2010; Herman, Spicer & Spicer 2016), 122 

but were non-existent or rare in swamp or mire forests (Spicer, Parrish & Grant 1992). 123 

Evergreen elements were regionally comparatively rare and restricted to conifers such as 124 

Araucarites, Pagiophyllum and Geinitzia (http://arcticfossils.nsii.org.cn) characterised by 125 

having small hook- and scale-like xeromorphic leaves that reduced water loss during winter 126 

dormancy. Ground cover consisted mostly of ferns and sphenophytes (Herman, Spicer & 127 

Spicer 2016), but towards the end of the Late Cretaceous, even at the highest latitudes, 128 

herbaceous angiosperms (probably annuals and preserved only as pollen) contributed to the 129 

ground cover especially in areas disturbed by wildfires or along river margins (Frederiksen, 130 

Ager & Edwards 1988; Herman, Spicer & Spicer 2016). A comprehensive illustrated 131 

catalogue of Late Cretaceous polar forest megafossils is available online at 132 

http://arcticfossils.nsii.org.cn. 133 

Preserved standing isolated trees (Herman, Spicer & Spicer 2016) and even “fossil 134 

forests” are not uncommon in Late Cretaceous floodplain successions of the NPR. Stands of 135 
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straight upright trunks up to 4.5 m tall and 0.7 m in diameter have been reported from 138 

northern Alaska (Decker et al. 1997) and evidence that these represent mire forests comes 139 

from the observation they are rooted in coals and carbonaceous mudstones. These standing 140 

trees attest not only to the stature, and structure of the mire forests, but periodic extremely 141 

high sedimentation rates, suggesting intense rainfall events, river channel breakouts and 142 

associated flooding.  143 

Occasionally fossil wood is structurally preserved and to-date all wood specimens 144 

recovered have been coniferous with well-developed growth rings, typically showing sharp 145 

transitions between summer growth and winter dormancy (Parrish & Spicer 1988a; Spicer & 146 

Parrish 1990a; Herman, Spicer & Spicer 2016). Summer-wood rings in Cenomanian age trees 147 

tend to be wide with typically >100 cells produced each growing season and few false rings 148 

(Parrish & Spicer 1988a; Herman, Spicer & Spicer 2016) showing that growth was largely 149 

uninterrupted during the summer season, but Maastrichtian woods have narrow early 150 

(summer) rings with few smaller cells and numerous false rings indicative of frequent 151 

interruptions to growth, most likely caused by temperatures falling below 10 °C (Spicer & 152 

Parrish 1990a; Spicer & Herman 2010; Herman, Spicer & Spicer 2016).  153 

1.b. Insolation and General Thermal Regime 154 

As far as can be determined Earth’s rotational and magnetic poles were roughly coincidental 155 

in the Late Cretaceous and obliquity, and thus the high latitude light regime, was similar to 156 

that of today (Lottes 1987) meaning that Arctic winters in near-polar settings were 157 

characterised by several months of darkness (Figs. 3–5). Despite this lack of direct insolation 158 

polar winters along the coastlines of the Arctic Ocean were surprisingly warm, experiencing 159 

temperatures that remained above freezing for much of the time (Spicer & Parrish 1990b; 160 

Herman & Spicer 1996a, 1997a; Herman, Spicer & Spicer 2016). While the temperature 161 
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regime of the Late Cretaceous Arctic has been well characterised through multiple proxies, 164 

the hydrological system is less well constrained.  165 

1.c. Research Scope  166 

In this work we re-examine the thermal regime of this extinct early Late Cretaceous 167 

(Cenomanian to Coniacian) polar ‘Lost World’ in the light of new high spatial resolution (~1 168 

km) WorldClim2 (Fick & Hijmans 2017; http://www.worldclim.org/) calibrations of the non-169 

taxonomic leaf physiognomic proxy known as CLAMP (http://clamp.ibcas.ac.cn), but the 170 

main focus is to explore new insights into the hydrological regime. We examine not only 171 

precipitation and soil moisture capacity, but humidity in terms of specific humidity (SH), 172 

relative humidity (RH), vapour pressure deficit (VPD) and potential evapotranspiration 173 

(PET). VPD and PET are investigated in respect of annual average values and seasonal 174 

variations. 175 

 176 

2. Methods and Materials 177 

Individual plants are spatially static so they have to be well adapted to their local 178 

environment or they die as a direct result of environmental stress or competition from those 179 

better equipped to withstand the prevailing conditions. These adaptations, preserved in the 180 

abundant early Late Cretaceous plant fossil record of the NPR, can be used to determine past 181 

conditions either as average annual or seasonal climate, as in the case of leaf form, or as a 182 

near-daily record of environmental change encoded as variations in wood growth (tree rings). 183 

By using both leaf form and tree ring data (Herman, Spicer & Spicer 2016) we can quantify 184 

the early Late Cretaceous high Arctic atmospheric conditions  over seasonal or even sub-185 

seasonal temporal resolutions. 186 
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The principal leaf-based palaeoclimate proxy for assessing a range of climate 192 

variables is known as CLAMP (Climate-Leaf Analysis Multivariate Program) 193 

(http://clamp.ibcas.ac.cn) (Wolfe 1993; Kovach & Spicer 1996; Yang et al. 2011, 2015). 194 

CLAMP utilises the universal relationships that exist between leaf form in woody 195 

dicotyledonous plants and an array of climate variables. On a global scale aggregate leaf form 196 

in a stand of vegetation is more strongly determined by climate than by taxonomic 197 

composition (Yang et al. 2015), and through a combination of pleiotropy and integrated 198 

developmental pathways all leaf traits are correlated with each other (Pigliucci 2003) and an 199 

array of climate variables (Wolfe 1993; Wolfe & Spicer 1999; Yang et al. 2011, 2015). Using 200 

a multivariate statistical engine CLAMP decodes these relationships and, by scoring fossil 201 

leaf traits the same way as for living vegetation growing under known climatic regimes, 202 

estimates of past conditions can be obtained (http://clamp.ibcas.ac.cn).  203 

No proxy is perfect, so a multiproxy approach should be used where possible. For the 204 

high Late Cretaceous Arctic CLAMP and oxygen isotopes from marine (Zakharov et al. 205 

1999, 2011) and non-marine vertebrate remains (Amiot et al. 2004) all give broadly similar 206 

estimates (Herman & Spicer 1997a; Amiot et al. 2004; Spicer & Herman 2010; Herman, 207 

Spicer & Spicer 2016), increasing confidence in the fidelity of all the proxies. However, all 208 

proxies depend on modern observations for their calibration and several modern 209 

observational datasets are available, each with its own characteristics.  210 

 211 

2.a. CLAMP Calibration 212 

Previous CLAMP analyses of Late Cretaceous Arctic leaves have been based on modern 213 

gridded climate observations recorded between 1961 and 1990 at a spatial resolution of 0.5 x 214 

0.5° (New, Hulme & Jones 1999), with interpolations and altitude corrections to the exact 215 

location of the vegetation stands comprising the CLAMP training sets 216 



(https://www.paleo.bristol.ac.uk/ummodel/scripts/html_bridge/clamp_UEA.html). This 217 

calibration dataset is known as GridMet_3br (http://clamp.ibcas.ac.cn). Higher spatial 218 

resolution data are also available using the same observational network of meteorological 219 

stations. One such dataset is that of WorldClim2 (http://worldclim.org/version2) (Fick & 220 

Hijmans 2017), which interpolates average meteorological observations between 1970 and 221 

2000 on to a spatial grid approximating to 1 km2.  222 

One advantage of using WorldClim2 for calibration is that numerous environmental 223 

variables have been mapped on to the same grid, so by using CLAMP the range of 224 

environmental signals decoded from leaf form can be extended. The new temperature-related 225 

environmental variables that correlate strongly with leaf form are 1) the compensated 226 

thermicity index (THERM.), 2) growing degree days above 0 °C (GDD_0), 3) growing 227 

degree days above 5 °C (GDD_5), 4) minimum temperature of the warmest month 228 

(MIN_T_W) and 5) maximum temperature of the coldest month (MAX_T_C). New 229 

humidity-related variables are 6) mean annual vapour pressure deficit (VPD.ANN), 7) mean 230 

summer vapour pressure deficit (VPD.SUN), 8) mean winter vapour pressure deficit 231 

(VPD.WIN), 9) mean spring vapour pressure deficit (VPD.SPR), 10) mean autumn vapour 232 

pressure deficit (VPD.AUT), 11) mean annual potential evapotranspiration (PET.ANN), 12) 233 

potential evapotranspiration during the warmest month (PET.WARM),13) potential 234 

evapotranspiration during the coldest month (PET.COLD), 14) soil moisture capacity 235 

(SOIL.M) and 15) the number of months when the mean temperature is above 10 °C. This 236 

last metric serves as a further comparison between the WorldClim2 data and previous 237 

calibrations because it should return values similar to those indicating the length of the 238 

growing season (LGS). For easy reference Table 1 summarises all the CLAMP metrics 239 

presented here. 240 



Figures  6–10, graphs A–Z,  illustrate the CLAMP regression models for each of the 241 

climate variables to show not only the relative position on the regression of the NPR fossil 242 

locations but also the scatter of the modern training data and thus the precision of the 243 

CLAMP predictions. All regression models are derived from the leaf physiognomy/climate 244 

relationships in 4D space as used in earlier CLAMP analyses (Herman & Spicer 1996b; 245 

1997a; Spicer & Herman, 2010). 246 

 247 

2.b. Climate Variable Definitions 248 

Descriptions and regression models for the 11 standard CLAMP climate variables (mean 249 

annual temperature - MAT, warm month mean temperature - WMMT, cold month mean 250 

temperature - CMMT, length of the growing season - LGS, growing season precipitation - 251 

GSP, mean monthly growing season precipitation - MMGSP, precipitation during the three 252 

consecutive wettest months - 3WET, precipitation during the three consecutive driest months 253 

– 3DRY, mean annual relative humidity – RH. ANN, mean annual specific humidity – 254 

SH.ANN and mean annual moist enthalpy – ENTH) are given in the CLAMP website 255 

(http://clamp.ibcas.ac.cn) and summarised in Table 1. Here we describe the newly added 256 

climate variables. 257 

The compensated thermicity index (THERM.) is given by 258 

THERM. = ((T + m + M)*10) ± C       (1) 259 

where T is the mean annual temperature, m is the minimum temperature of the coldest 260 

month, M is the maximum temperature of the coldest month and C is a ‘compensation value’. 261 

Calculating C is complicated and depends on continentality, which is simply a measure of the 262 

difference between the WMMT and the CMMT. In the extratropical zones of the World 263 

(northern and southern 27º parallels, respectively) THERM. is designed to equilibrate the 264 

large differences in temperature that occur between winter cold and summer warmth in 265 
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continental climates compared to those small differences that occur in maritime climates. 275 

Details of how C is calculated are given in the Worldwide Bioclimatic Classification System 276 

(www.globalbioclimatics.org) (Rivas-Martinez, Sanchez-Mata & Costa 1999).  277 

GDD_0 is a measure of the cumulative heat available to plants and is the sum of the 278 

mean monthly temperatures for months with mean temperatures greater than 0 °C multiplied 279 

by number of days above that temperature. 280 

GDD_5 is the sum of mean monthly temperatures for months with mean temperature 281 

greater than 5 °C multiplied by number of days above that temperature. 282 

VPD reflects the ease of losing water to the atmosphere and as such affects 283 

transpiration as well as evaporation. It is the difference between the actual water vapour 284 

pressure and the water vapour pressure at saturation. At saturation (VPD=0 kPa) water will 285 

condense out to form clouds, dew or films of water on surfaces, including leaves. VPD 286 

combines temperature and relative humidity so, unlike relative humidity, vapour-pressure 287 

deficit has a simple nearly straight-line relationship to the rate of evapo-transpiration and 288 

other measures of evaporation. Because of this, plant distribution (Huffaker 1942) and leaf 289 

physiognomy are more strongly reflective of VPD.ANN than RH. ANN (Fig. 7, L, I). This 290 

suggests strong leaf trait adaptations to overcoming transpiration depression at low VPDs. 291 

Also, VPD is strongly correlated with stomatal conductance and carbon isotope fractionation 292 

(e.g. Oren et al. 1999; Bowling et al. 2002; Katul, Palmroth & Oren 2009). As well as annual 293 

mean VPD (VPD.ANN), seasonal VPD estimates (spring – VPD.SPR, summer – VPD.SUM, 294 

autumn – VPD. AUT and winter – VPD.WIN) are also given by CLAMP. 295 

Potential evapotranspiration (PET) is an expression of the ability of the atmosphere to 296 

remove water through evapotranspirational processes assuming no limits on plant water 297 

supply. Such an assumption appears valid in the case of the early Late Cretaceous Arctic as 298 

evidenced by the widespread occurrence of thick coals indicative of raised mires (Sable & 299 
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Stricker 1987; Grant, Spicer & Parrish 1988), gleyed palaeosols and isotopic analysis (Ufnar 303 

et al. 2004). PET combines the energy available for evaporation and the capacity of the lower 304 

atmosphere to move evaporated water vapour away from the land surface, for example by 305 

winds and convective processes. Because solar radiation provides the energy for evaporation, 306 

PET is lower on cloudy days, in winter and at higher latitudes. Like VPD, PET can be 307 

thought of as an indication of how difficult it is for a plant to transpire, a process that is 308 

essential for moving water and nutrients from the soil to the leaves. Because of this, and as 309 

with VPD, leaf physiognomy correlates well with PET (Fig. 8, Q; Fig. 9, V & W) particularly 310 

at low PET values. Although herbaceous plants transpire less than woody plants because they 311 

have a lower leaf surface area, the PET reference measure is based on uniformly short grass 312 

completely covering the ground. PET estimates for the warmest month (PET.WARM, Fig. 9, 313 

V) and coldest month (PET.COLD, Fig. 9, W) are given as well as the mean annual PET 314 

(PET.ANN, Fig. 8, Q). 315 

In the work presented here we introduce a new CLAMP calibration based on 316 

WorldClim2 that we call WorldClim2_3br. As well as using the WorldClim2 gridded climate 317 

data for the standard CLAMP climate variables, we add the 15 new climate variables 318 

considered above. The new WorldClim2-based climate training set (WorldClim2_3br) and 319 

the accompanying modern leaf physiognomic (Physg3brcAZ) data files are given in the 320 

Supplementary Materials. 321 

 322 

2.c. Fossil Assemblages 323 

Here we re-analyse eight well-documented fossil leaf assemblages (see 324 

http://arcticfossils.nsii.org.cn) from across the NPR (Figs. 1 & 2) spanning the Cenomanian 325 

to Coniacian. All have been previously analysed for the standard CLAMP climate variables 326 
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calibrated using low spatial resolution modern gridded climate data (GridMet_3br) (Spicer & 337 

Herman 2010; Herman, Spicer & Spicer 2016). We use the same modern vegetation trait 338 

scores as used previously (Physg3brcAZ) but with the new WorldClim2_3br ~1 km2 gridded 339 

data and with 15 new environmental variables. Where palaeolatitudes are quoted they are 340 

derived from GeTech.Plc palaeogeographies (an example of which is shown in Fig. 2) used 341 

in climate modelling (http://www.bridge.bris.ac.uk/resources/simulations). These 342 

palaeogeographies time-integrate a range of geological data and include plate kinematics. 343 

CLAMP scoresheets for these fossil assemblages are given in the Supplementary Materials. 344 

 345 

3. Results and Discussion 346 

Tables 2-4 present results obtained for the fossil assemblages using the new WorldClim2_3br 347 

CLAMP calibration as well as (for comparison) previously obtained results that used low 348 

spatial resolution GridMet_3br CLAMP calibration. The GridMet_3br results are given in 349 

parentheses. Figures 6–10, graphs A–Z, show the CLAMP regression models for the new 350 

WorldClim2_3br calibration and the positions of the fossil sites on the regression model. The 351 

regression models indicate the relationship between leaf physiognomy and the individual 352 

climate variable and thus the precision of the predictions. They also indicate the positions of 353 

the values for each fossil assemblage for each climate variable relative to those for modern 354 

vegetation. Note that despite essentially the same observational network of meteorological 355 

stations underpinning both gridded datasets, GridMet_3br and WorldClim2_3br calibrations 356 

rarely yield identical results. These differences are purely a function of the different gridding 357 

processes between the GridMet_3br and WorldClim2_3brc and a slightly different period of 358 

climate observations: 1961–1990 in the case of GRIDMet_3br and 1970–2000 for 359 

WorldClim2_3br. Such differences define the maximum predictive precision possible for any 360 
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proxy using modern gridded climate observations for calibration because they are a measure 364 

of how well we can quantify modern climate.  365 

 366 

3.a. Thermal regime 367 

While not identical, the two calibrations yield similar results regarding the thermal regime 368 

and the differences are smaller than, or the same as, the uncertainties. They show clearly that 369 

despite the lack of winter insolation terrestrial CMMTs across the Arctic NPR region, even at 370 

latitudes as high as ~80 °N, rarely fell below freezing. This might appear surprising for the 371 

highest palaeolatitudes (Novaya Sibir – 81.6 °N, North Slope Alaska – 77 °N) that 372 

experienced more than three months of continuous winter darkness (Fig. 3), but these sites 373 

were close to the Arctic Ocean coastline and several lines of evidence point to the Arctic 374 

Ocean being warm with winter sea surface temperatures of ~6 °C (Herman & Spicer 1997a), 375 

or even approaching 10 °C as indicated here by the winter coastal plain temperatures of the 376 

North Slope, Alaska.  377 

 378 

[Table 2 near here] 379 

 380 

The estimates for the length of the growing season are also consistent with the light 381 

regimes at different palaeolatitudes (Figs. 3–5). Because leaf load is directly related to 382 

transpiration and the humidity regime, we have attempted to estimate the timing of bud break 383 

and leaf fall in the predominantly deciduous NPR vegetation. Bud break and leaf fall likely 384 

occurred in early March and late October respectively in the Cenomanian Vilui Basin 385 

(palaeolatitude 72 °N, LGS 7.5 months) when mean temperatures rose above 10 °C and there 386 

was at least 8 hours of direct sunlight (Fig. 5).  387 

 388 
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[Figure 3 near here] 394 

 395 

In Grebenka, also Cenomanian but at 74 °N, the growing season is similar with a 396 

slightly warmer winter despite the slightly higher latitude (Fig. 4). The Penzhina assemblage 397 

(Plat. 72 °N) has a shorter growing season of around 5 months due to the lower winter 398 

temperature (Fig. 5). The 10 °C mark was not passed until almost mid-April when there were 399 

16 hours of direct sunlight during each 24-hour period and the growing season lasted until 400 

late September when temperatures dipped below 10 °C and daylight hours approached 12. 401 

The foliage traits of the highest palaeolatitude assemblage, Novaya Sibir (Turonian, Plat. ~82 402 

°N), suggest that bud break occurred in early April and growth continued until the beginning 403 

of October, a growing period of 5.8 months. The Coniacian North Slope assemblage from the 404 

northern Alaska palaeo-floodplain has the longest growing season (7.5 months) despite its 405 

palaeolatitude of ~78 °N. This is because winter temperatures barely dipped below 10 °C 406 

(Table 2, Fig. 3) and although the mean air temperature would have passed 10 °C in mid 407 

February and dipped below 10 °C in early November, a period of ~8.5 months, growth must 408 

have been moderated by insolation. With relatively warm conditions maintained by a nearby 409 

warm Arctic Ocean we estimate that a minimum of 4 hours of direct sunlight per 24-hour 410 

period is likely to have been the critical driver for leaf expansion and abscission, meaning 411 

that bud burst likely took place in late February and leaf fall in early-mid October. Early Late 412 

Cretaceous North Slope tree ring characteristics (Parrish & Spicer 1988a) indicate the rapid 413 

onset of growth and a prolonged and uninterrupted summer growth period. 414 

 415 

3.b. Relative Palaeoelevations 416 

The differences in thermal regime between the various leaf fossil assemblages used in our 417 

analyses depend not only on their palaeo-position but also on their relative elevations above 418 
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sea level. Clues to these elevational differences come from the moist enthalpy estimates 425 

(Table 3). The North Slope assemblage is known to represent near sea level conditions 426 

because the plant-bearing units inter-finger with marine sediments (Mull, Houseknecht & 427 

Bird 2003), and as would be expected this site yields the highest moist enthalpy value 428 

indicative of the lowest elevation. The site with the lowest moist enthalpy value (highest 429 

elevation) is in the Okhotsk-Chukotka Volcanogenic Belt (Arman) and the difference 430 

between the two enthalpy values is 20 kJ/kg (Table 3) which translates to a height difference 431 

of ~2 km (Forest, Molnar & Emanuel 1995; Spicer 2018). However, this difference is not 432 

spatially or temporally corrected. The Arman site has been estimated to have been at ~0.6 km 433 

using the Kaivayam assemblage as a sea level datum and the GridMet_3br calibration 434 

(Herman 2018). Using the new WorldClim2_3brc raises this surface height estimate for the 435 

Arman flora to ~0.9 ± 0.8 km. Based on the relative palaeo-enthalpy estimates all the NPR 436 

localities likely were below 1 km elevation, but detailed analysis awaits future moist enthalpy 437 

fields derived from integrating proxy and palaeoclimate modelling. 438 

 439 

[Figure 4 near here] 440 

 441 

[Figure 5 near here] 442 

 443 

3.c. Precipitation 444 

Table 3 shows the estimated precipitation regime derived from leaf form. In general, the 445 

wetter the climate the less well leaf physiognomy predicts the precipitation regime (Figs. 6 & 446 

7, E-H). Many of the Arctic angiosperm leaves are large (Herman 1994), which is an 447 

advantageous adaptation to low and predominantly diffuse sunlight situations provided that 448 

water is abundant. Abundant thick Late Cretaceous coals (Sable & Stricker 1987), many of 449 
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which represent raised mires (Youtcheff, Rao & Smith 1987; Grant, Spicer & Parrish 1988), 458 

and isotope analyses (Ufnar et al. 2004) all suggest that early Late Cretaceous Arctic annual 459 

precipitation was high.  460 

 461 

[Table 3 near here] 462 

 463 

Although we can be certain that in general the Late Cretaceous Arctic was wet, 464 

deriving accurate precipitation estimates from high latitude palaeofloras is problematic for 465 

several reasons. Firstly, leaf fossils are invariably preserved in aquatic environments where 466 

low oxygen limits decay. The limited distance that leaves can be transported from their 467 

growth site before burial (Spicer 1981; Ferguson 1985; Spicer & Wolfe 1987) means that the 468 

source plants most likely grew in locations where the water table was high year-round. The 469 

estimate of soil moisture capacity for the NPR fossil assemblages (Table, 3 SOIL_M, Fig. 9, 470 

U) also suggests moist soils. Moreover, this water may not reflect local precipitation but 471 

conditions in the headwaters of the river catchment many tens if not hundreds of kilometres 472 

away. Secondly, even if the water table was maintained by local precipitation, the soil system 473 

stores water and buffers seasonal variations in water availability, meaning that 3WET and 474 

3DRY estimates represent seasonality in rainfall only poorly. Thirdly, at high latitudes where 475 

light and temperature impose dormancy and seasonal leaf-shedding, rainfall in the dormant 476 

period is unlikely to be reflected in leaf physiognomy. This is not the case, however, for 477 

winter temperatures. 478 

Winter temperatures are to some extent encoded in leaf physiognomy (Fig. 6, C) 479 

because young leaves have to be adapted to rapidly warming spring conditions, the rate of 480 

warming being determined in large part by the CMMT (Spicer, Herman & Kennedy 2004). 481 

However, below observed winter temperatures of -10 °C this extrapolative encoding, which 482 
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tends to yield winter temperatures that are too warm (Spicer, Herman & Kennedy 2004), does 487 

not apply at all to winter precipitation where soil moisture may be high year-round but 488 

inaccessible to the plant in early spring if the soil is frozen. The GSP estimate (note not the 489 

mean annual precipitation) of between 50 and 125 cm is quite low where the regression 490 

model shows little scatter (Fig. 6, E), but because the growing season is often less than half 491 

the year this indicates that overall the annual precipitation could have been at least double 492 

that indicated.  Although CLAMP routinely returns estimates for precipitation during the 493 

three wettest (3WET) and three driest months (3DRY), these values may be unreliable 494 

because of the marked growth seasonality. In view of the arguments just given for wet soils it 495 

is noteworthy that there is a marked difference in the 3WET:3DRY ratio, which for all 496 

assemblages except Vilui B return ratios near 4:1.  497 

 498 

The wet soils would necessarily mute these ratios, so the fact that they are pronounced 499 

suggests even more extreme rainfall seasonality than the values suggest and that the Arctic 500 

may have experienced a ‘monsoonal’ climate in the early Late Cretaceous. An essentially 501 

‘summer wet’ (wet:dry ratio 3:1) has been proposed for the Arctic in the Eocene based on 502 

isotopic analysis of fossil wood interpreted to have been evergreen (Schubert et al. 2012), but 503 

an ‘ever wet’ precipitation regime for this Epoch is indicated by leaf form (West, Greenwood 504 

& Basinger 2015) based on predominantly deciduous angiosperm taxa. To really understand 505 

the hydrological regime in a warm Arctic requires, as far as is possible, decoupling the soil 506 

water environment from that of the atmosphere.  507 

 508 

3.d. Humidity 509 

Until now CLAMP has routinely returned only two humidity measures: mean annual relative 510 

humidity (RH.ANN) and mean annual specific humidity (SH.ANN). SH is simply the amount 511 
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of water in grams contained within a kilogram of dry air and as such is a measure of the 519 

absolute water content of the air. Leaf form appears to code for mean annual SH quite well in 520 

that the CLAMP regression model (Fig. 7, J) shows relatively little scatter compared to that 521 

of mean annual RH (Fig. 7, I). RH is a measure of the amount of water in the atmosphere 522 

relative to what it can hold and as such is highly dependent upon temperature. As the scatter 523 

in Fig. 7, I shows leaf form does not correlate well with RH so CLAMP predictions of RH 524 

carry a lot of uncertainty.  525 

A better measure of humidity, one that reflects the force opposing transpiration, is 526 

vapour pressure deficit (VPD). VPD is the difference between the amount of moisture 527 

actually in the air and how much moisture the air could potentially hold when it is saturated 528 

and, like SH, is not measured in relation to temperature. High VPD values are found in arid 529 

environments while low VPDs reflect air close to saturation and thus a high resistance to 530 

transpiration. 531 

Figs. 7 & 8, L-P, show that at low VPD values leaf form correlates very well with 532 

VPD, presumably because leaves have to possess adaptations to enhance transpiration, while 533 

in high VPD situations transpiration can take place easily without the need for specific leaf 534 

trait spectra to increase transpiration. Thus, there is more scatter in the CLAMP regressions at 535 

high VPDs. So, unlike precipitation, CLAMP estimates of VPD in moist regimes are 536 

generally more precise than in dry regimes.  537 

[Table 4 near here] 538 

Table 4 shows that all the Arctic early Late Cretaceous leaf assemblages indicate low 539 

VPDs (<5 kPa) in spring, autumn and winter but, because autumn and winter are times when 540 

leaves are senescent or shed, these values have to be interpreted with caution. The spring and 541 
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summer values are likely to be the most reliable because this is when the leaves are 553 

functional. The highest summer VPDs are those from fossil assemblages in NE Russia 554 

(Grebenka, Arman, Tylpegyrgynai) and these assemblages also point to the lowest annual RH 555 

values, while the lowest summer VPD and annual values are revealed in assemblages from 556 

the Arctic Ocean coastal areas (Novaya Sibir, North Slope), the Yukon-Koyukuk Basin and 557 

the Vilui Basin. These assemblages also indicate the highest RH.ANN values. Of all the 558 

Arctic fossil sites those bordering the Arctic Ocean and nearest the palaeo-pole (Novaya Sibir 559 

and North Slope) have the lowest VPDs, the only exception being the North Slope that has a 560 

VPD.WIN value similar to those of Grebenka and Arman. These assemblages also indicate 561 

the warmest winter temperatures (Fig. 3). However, even assemblages indicating the driest 562 

summers have very low VPDs compared to most modern vegetation in the calibration (Figs. 563 

7 & 8, L–P), indicating an overall extremely wet atmosphere compared to that experienced 564 

by most vegetation in the modern CLAMP training sets.  565 

PET is a measure of how easily the atmosphere removes water from a surface and so, 566 

like VPD, indicates the ease with which transpiration can take place. Also, like VPD, PET 567 

shows a close relationship with leaf trait spectra at low PET values i.e. wet regimes. All NPR 568 

fossil assemblages fall in the lower half of the regressions showing that they experienced 569 

similar PETs as modern vegetation in the more humid half of the 3br training set. The 570 

PET.WARM and PET.COLD values also show that any dry season was in the summer, 571 

presumably because higher temperatures and convective winds favoured greater evaporation. 572 

Taking Figures 3–5 together it is noticeable that Figure 4 shows the highest 573 

humidities and that these occur at palaeolatitude ~75 °N from sites (Grebenka and 574 

Tylpegyrgynai) that were not immediately adjacent to the Arctic Ocean, but closer to the 575 

north Pacific. These high humidities may be a function of a cool northern Pacific gyre 576 
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(Herman & Spicer 1996a, 1997a) or reflect a more northward and diffuse palaeoposition of 585 

the polar front, which today is located at ~60 °N as a consequence of a strong polar high. 586 

 587 

4. Conclusions 588 

4.a. Thermal regime.  589 

The new WorldClim2_3br CLAMP calibration confirms earlier isotopic (Amiot et al. 2004), 590 

vegetation (Parrish & Spicer 1988b) and leaf physiognomic analyses (Herman & Spicer 591 

1996b, 1997a; Spicer & Herman 2010) from the NPR demonstrating a thermal regime that 592 

may be broadly characterised as 'temperate' even at palaeolatitudes as high as ~80 °N where 593 

freezing temperatures were of limited duration and severity. The precision of the 594 

palaeoclimate regime estimates are constrained by the uncertainties associated with our 595 

inability to quantify precisely modern climate. These uncertainties, which will differ between 596 

calibration suites depending on calibration sampling distribution, density and temporal 597 

coverage, apply to any palaeoenvironmental proxy that relies on calibrations using the 598 

modern conditions and should not be ignored when making inter-proxy comparisons or 599 

interpreting past environments. In the analyses presented here MAT estimates differ by up to 600 

0.6 °C, WMMT by up to 0.9 °C and CMMT by up to 1.5 °C depending purely on the 601 

underlying modern gridded climate data. 602 

 603 

4.b. Palaeoelevation 604 

 No terrestrial palaeotemperature comparisons can be meaningful without taking into 605 

account differences in the surface height at which the estimates are made. In the case of the 606 

early Late Cretaceous NPR it is clear that some thermal differences between assemblages can 607 

be attributed to relative elevational differences, but that no site was likely to have been above 608 

1 km.  However, a 1 km elevation range can translate into MAT differences of several 609 
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degrees Celsius depending on early Late Cretaceous near polar terrestrial lapse rates. This 614 

aspect of the NPR palaeoclimate, and better characterisation of Late Cretaceous moist 615 

enthalpy fields, await future modelling work.  616 

 617 

4.c. Precipitation and humidity 618 

 The precipitation regime throughout the NPR overall appears moderately wet with 619 

most sites indicating summer (growing season) precipitation ~0.5 m, but apparently with 620 

marked seasonal variations. Compared to all the sites in the modern calibration data humidity 621 

is high year-round, but with most evaporative stress occurring in the summer. PET (Table 4) 622 

never exceeds rainfall even in the summer growth period (Table 3), leading to year-round 623 

saturated soils. Drought was not limiting to growth in any of the NPR early Late Cretaceous 624 

localities and CMMTs (Table 2) were never low enough for long enough to freeze the soil to 625 

below tree rooting depth. 626 

 Our new insights into annual and seasonal atmospheric humidity in the warm early 627 

Late Cretaceous Arctic supports the concept of a very humid near-polar regime markedly 628 

different from today's frigid desert under a strong polar high-pressure cell and with a 629 

corresponding strong polar front at ~60 °N. It is likely that the polar front in the early Late 630 

Cretaceous was displaced towards the pole and more diffuse than at present. A key 631 

component of the weaker polar high was the warm Arctic Ocean that, as evidenced by year-632 

round high humidities, generated a vigorous hydrological cycle, which in turn helped 633 

maintain the polar warmth.  634 

 The vegetation and climate records entombed in the extensive Late Cretaceous 635 

sediments of the Artic point towards what the North polar region is likely to experience as 636 

overall anthropogenic global warming progresses. Polar amplification will rapidly drive the 637 

Arctic from a place where at present precipitation is sparse under a cold strong polar high-638 
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pressure system to a region that is wet and polar air masses become increasingly loosely 644 

constrained as warming proceeds and the polar high weakens. The hydrological cycle is 645 

likely to become invigorated through warming-induced evaporation and enhanced 646 

transpiration from greater vegetation cover and complexity. Eventually this will result in a 647 

near permanent polar cloud cap, high humidity and frequent fog occurrences over both land 648 

and sea, further enhancing warming. 649 
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 1087 
Figure Legends 1088 

 1089 

Figure 1. Map of the modern North Pacific Region (NPR) showing the locations of the fossil 1090 

assemblages investigated here. Vilui – Cenomanian, Arman River- Coniacian, Novaya Sibir 1091 

– Turonian, Kaivayam - Coniacian, Penzhina - Turonian, Grebenka – Cenomanian, 1092 

Tylpergyrgynai - Coniacian, North Slope – Coniacian. Details of the stratigraphy and 1093 

sedimentary successions at each site are given in http://arcticfossils.nssi.org.cn. 1094 



 1095 

Figure 2. North polar projection of Turonian palaeogeography based on Getech Plc. 1096 

reconstructions. Positions of fossil localities indicated by the following symbols: Square - 1097 

Vilui River; Diagonal cross - Arman River; Triangle - Novaya Sibir (New Siberia Island); 1098 

Inverted triangle - Grebenka River; Diamond - Penzhina; Star (partly hidden by the 1099 

diamond)- Kaivayam; Circle - Tylpergyrgynai; Horizontal cross - North Slope. 1100 



 1101 

Figure 3. Light, thermal and humidity regime for fossil assemblages at palaeolatitude ~80 °N.  1102 

 1103 

Figure 4. Light, thermal and humidity regime for fossil assemblages at palaeolatitude ~75 °N. 1104 

 1105 

Figure 5. Light, thermal and humidity regime for fossil assemblages at palaeolatitude ~70 °N. 1106 
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 1111 

Figure 6. CLAMP regression models for the WorldClim2_3brc modern vegetation calibration 1112 

sites (open black circles) and predicted climate variables for eight early Late Cretaceous 1113 
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fossil sites (coloured circles as in the Key shown in Fig. 5a B). Bars indicate ±1 sd. MAT - 1117 

mean annual temperature, WMMT – warm month mean temperature, CMMT- cold month 1118 

mean temperature, LGS – length of the growing season (temp. >10 °C), GSP – growing 1119 

season precipitation, MMGSP – mean monthly growing season precipitation. 1120 



 1121 

Figure 7. CLAMP regression models for the WorldClim2_3brc modern vegetation calibration 1122 

sites (open black circles) and predicted climate variables for eight early Late Cretaceous 1123 
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fossil sites (coloured circles as in the Key shown in Fig. 5a B). 3WET -precipitation in the 1126 

three consecutive wettest months, 3DRY - precipitation in the three consecutive driest 1127 

months, RH.ANN – mean annual relative humidity, SH.ANN – mean annual specific 1128 

humidity, ENTH – mean annual moist enthalpy, VPD.ANN – mean annual vapour pressure 1129 

deficit.  1130 



 1131 

Figure 8. CLAMP regression models for the WorldClim2_3brc modern vegetation calibration 1132 

sites (open black circles) and predicted climate variables for eight early Late Cretaceous 1133 
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fossil sites (coloured circles as in the Key shown in Fig. 5a B). VPD.SUM - mean summer 1136 

vapour pressure deficit, VPD.WIN - mean winter vapour pressure deficit, VPD.SPR - mean 1137 

spring vapour pressure deficit, VPD.AUT – mean autumn vapour pressure deficit.  1138 



 1139 

Figure 9. CLAMP regression models for the WorldClim2_3brc modern vegetation calibration 1140 

sites (open black circles) and predicted climate variables for eight early Late Cretaceous 1141 
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fossil sites (coloured circles as in the Key shown in Fig. 5a B). GDD_0 - growing degree 1144 

days when temperatures are above freezing, GDD_5 - growing degree days when 1145 

temperatures are above +5°C, SOIL_M - derived soil moisture capacity, PET.WARM - 1146 

potential evapotranspiration during the warmest month, PET.COLD - potential 1147 

evapotranspiration during the coldest month, MIN_T_W - minimum temperature of the 1148 

warmest month.   1149 

 1150 

Figure 10. CLAMP regression models for the WorldClim2_3brc modern vegetation 1151 

calibration sites (open black circles) and predicted climate variables for eight early Late 1152 

Cretaceous fossil sites (coloured circles as in the Key shown in Fig. 5a B). MAX_T_C - 1153 

maximum temperature during the coldest month, M_COUNT - number of months where the 1154 

temperature is above +10°C.  1155 

1156 

Deleted: 5e1157 
Deleted: Worldclim21158 



 1159 
Table legends 1160 

 1161 

Table 1. Summary of CLAMP environmental variables, their acronyms, descriptions and 1162 

units, derived from WorldClim2 gridded data at ~ 1 km spatial resolution. 1163 

 1164 

Table 2. Summary of temperature-related CLAMP-derived metrics for early Late 1165 

Cretaceous plant assemblages from the North Pacific Region. Values obtained by a CLAMP 1166 

calibration based on WorldClim2_3br and GRIDMet_3br (in parentheses) gridded climate 1167 

data. MAT - mean annual temperature, WMMT - warm month mean temperature, CMMT 1168 

0- cold month mean temperature, MIN_T_W - minimum temperature of the warmest 1169 

month, MAX_T_C - maximum temperature of the coldest month, THERM. - compensated 1170 

thermicity index: sum of mean annual temp., min. temp. of coldest month, max. temp. of 1171 

the coldest month, x 10, with compensations for better comparability across the globe, 1172 

GDD_0 - sum of mean monthly temperature for months with mean temperature greater than 1173 

0℃ multiplied by number of days, GDD_5 - sum of mean monthly temperature for months 1174 

with mean temperature greater than 5 °C multiplied by number of days, LGS - length of the 1175 

growing season when mean temperatures are above 10 °C, M_COUNT - count of the 1176 

number of months with mean temp greater than 10 °C.  1177 

 1178 

Table 3. Summary of precipitation, soil moisture and moist enthalpy CLAMP-derived metrics 1179 

for early Late Cretaceous plant assemblages from the North Pacific Region. Values obtained 1180 

by a CLAMP calibration based on WorldClim2 and, in parentheses, GRIDMet_3br gridded 1181 

climate data. GSP – precipitation during the growing season, MMGSP – mean monthly 1182 

precipitation during the growing season, 3WET – precipitation during the three consecutive 1183 

wettest months, 3DRY – precipitation during the three consecutive driest months, SOIL_M - 1184 
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Derived available soil water capacity (volumetric fraction) predicted using the global 1189 

compilation of soil ground observations 1190 

(ftp://ftp.soilgrids.org/data/recent/AWCh1_M_sl2_250m.tif), ENTH-annual mean moist 1191 

enthalpy.  1192 

 1193 

Table 4. Summary of humidity metrics, soil moisture and moist enthalpy CLAMP-derived 1194 

metrics for early Late Cretaceous plant assemblages from the North Pacific Region. Values 1195 

obtained by a CLAMP calibration based on WorldClim2 and GRIDMet_3br (in parentheses) 1196 

gridded climate data. RH.ANNUAL - annual mean relative humidity, SH.ANNUAL - annual 1197 

mean specific humidity, VPD.ANN - annual mean vapour pressure deficit, VPD.SUM - mean 1198 

VPD for the summer quarter, VPD.WIN - mean VPD for the winter quarter, VPD.SPR - 1199 

mean VPD for the spring quarter, VPD-AUT - mean VPD for the autumn quarter, PET.ANN 1200 

- annual mean potential evapotranspiration, PET.WARM - mean potential evapotranspiration 1201 

for the warmest quarter, PET.COLD - mean potential evapotranspiration for the coldest 1202 

quarter. 1203 
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 1206 

Table 1. CLAMP Climate Variables and Descriptions 

Name Acronyn Description Units 

Mean annual temperature MAT Mean temperature throughout the year °C 

Warm month mean temp. WMMT Average temperature of the warmest month °C 
Cold month mean temp. CMMT Average temperature of the coldest month °C 

Length of the growing season LGS Number of months when temperatures are ≥ 
10°C 

Number 

Growing season precipitation GSP Total precipitation during the growing season 

(temperature ≥ 10°C) 

cm 

Mean monthly growing season precipitation MMGSP Average precipitation per month during the 
growing season 

cm 

Precipitation during the three wettest months 3-WET Average precipitation during the three 
consecutive wettest months  

cm 

Precipitation during the three driest months 3-DRY Average precipitation during the three 

consecutive driest months 

cm 

Relative humidity RH.ANN Average annual relative humidity % 
Specific humidity RH.ANN Average annual specific humidity (the amount of 

water in a kg of dry air) 

g/kg 

Enthalpy ENTH Average annual moist enthalpy (energy per 
kilogram of air) 

kJ/kg 

Minimum temperature of the warmest month MIN_T_W Lowest daily temperature during the warmest 
month 

°C 

Maximum temperature of the coldest month MAX_T_C Warmest daily temperature during the coldest 

month 

°C 

Compensated Thermicity Index THERM Sum of mean annual temp., min. temp. of 
coldest month, max. temp. of the coldest month, 

x 10, with compensations for better global 
comparability  

°C 

Growing degree days 0 GDD_0 Sum of mean monthly temperature for months 

with mean temperature  
> 0°C multiplied by the number of days this 
occurs 

Number 

Growing degree days 5 GDD_5 Sum of mean monthly temperature for months 
with mean temperature  
> 5°C multiplied by number of days this occurs 

Number 

Month count M_COUNT Count of the number of months when the 
temperature > 10°C 

Number 

Soil Moisture SOIL_M Derived available soil water capacity (volumetric 

fraction) at 7 standard depths predicted using 
the global compilation of soil ground 
observations.  

%v 

Mean annual vapour pressure deficit VPD. ANN Average annual vapour pressure deficit hPa 
Mean summer vapour pressure deficit VPD.SUM Average vapour pressure deficit during the three 

summer months 
hPa 

Mean winter vapour pressure deficit VPD.WIN Average vapour pressure deficit during the three 
winter months 

hPa 

Mean spring vapour pressure deficit VPD.SPR Average vapour pressure deficit during the three 

spring months 

hPa 

Mean autumn vapour pressure deficit VPD.AUT Average vapour pressure deficit during the three 
autumn months 

hPa 

Potential evapotranspiration (PET) PET.ANN The ability of the atmosphere to remove water 
through evapo-transpiration, given unlimited 
water supply, averaged over the year 

mm/month 

Mean PET of the warmest month PET.WARM PET averaged over the warmest month mm/month 
Mean PET of the coldest month PET.COLD PET averaged over the coldest month mm/month 
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 1209 

Table 2. Temperature-Related Metrics   

LOCALITY AGE MAT (°C) WMMT (°C) 
CMMT 

(°C) 
MIN_T_W 

(°C) 
MAX_T_C 

(°C) 
THERM. 

(°C) 
GDD_0 GDD_5 

LGS 
(months) 

M_COUNT 
(months) 

Vilui "B" Cenomanian 13.1 (12.8) 21 (21) 6.2 (5.3) 16.9 9.3 260 47124 53955 7.5 (7.4) 7.3 

Grebenka Cenomanian 13.5 (12.9) 21.2 (20.8) 6.8 (5.9) 15.2 11.1 261 49372 56645 7.7 (7.4) 7.4 

Tylpergyrg. Coniacian 8.7 (8.4) 18.4 (18.8) -0.8 (-1.6) 11.7 3.4 100 25612 34745 5.5 (5.4) 5.3 

Novaya Sibir Turonian 9.8 (9.2) 17.3 (17) 2.4 (1.1) 11.0 5.5 161 30389 38347 5.9 (5.8) 5.6 

North Slope Coniacian 13.9 (13.3) 19.1 (19.1) 9.4 (7.9) 14.2 12.0 320 50590 55643 7.6 (7.6) 7.3 

Arman Cenomanian 8.0 (8.2) 17.8 (18.7) -1.9 (-2) 11.1 2.2 78 22150 31392 5.2 (5.3) 5.0 

Kaivayam Coniacian 9.9 (9.6) 18.1 (18.3) 1.9 (1.1) 12.2 5.4 158 31201 39311 6.0 (6.0) 5.8 

Penzhina Turonian 7.6 (7.7) 16.9 (17.7) -2 (-2.4) 10.0 1.8 75 20161 29057 5.0 (4.9) 4.8 

Standard Deviation 2.0 (1.1) 2.5 (1.4) 3.2 (1.9) 2.5 3.2 68 10510 9195 1.1 (0.7) 1.1 

 1210 
 1211 
 1212 
 1213 
Table 3. Precipitation, Soil Moisture and Enthalpy Metrics   

LOCALITY AGE GSP (cm) MMGSP (cm) 3WET (cm) 3DRY (cm) SOIL_M (%V) ENTH (kJ/kg) 

Vilui "B" Cenomanian 98 (105) 13 (13.5) 66 (62) 20 (21) 17.3 323 (324) 

Grebenka Cenomanian 82 (82) 10 (9) 60 (58) 14 (15) 17.1 319 (317) 

Tylpergyrg. Coniacian 50 (48) 9 (9) 53 (49) 12 (13) 18.5 305 (303) 

Novaya Sibir Turonian 47 (54) 8 (8.2) 52 (50) 12 (15) 18.4 313 (310) 

North Slope Coniacian 58 (79) 7 (9) 51 (53) 13 (13) 17.1 328 (326) 

Arman Cenomanian 47 (48) 9 (9) 53 (48) 12 (14) 18.8 303 (304) 

Kaivayam Coniacian 53 (60) 9 (9) 53 (52) 13 (15) 18.2 312 (310) 

Penzhina Turonian 37 (38) 8 (8) 49 (47) 11 (14) 18.9 304 (304) 

Standard Deviation 30 (30) 4 (3) 23 (14) 7 (3) 1.6 8 (5) 

 1214 
 1215 

Table 4. Humidity Metrics   

LOCALITY AGE 
RH.ANNUAL  

(%) 
SH.ANNUAL 

(g/kg) 
VPD.ANN 

(kPa) 
VPD.SUM 

(kPa) 
VPD.WIN 

(kPa) 
VPD.SPR 

(kPa) 
VPD. AUT 

(kPa) 
PET.ANN 
(mm)/10 

PET.WARM 
(mm) 

PET.COLD 
(mm) 

Vilui "B" Cenomanian 78 (80) 9.3 (9.6) 2.8 3.8 2.4 2.7 3.0 97.9 119.9 42.3 

Grebenka Cenomanian 71 (73) 8.3 (8) 4.5 6.5 2.8 4.1 4.7 110.0 140.3 42.8 

Tylpergyrg. Coniacian 71 (71) 5.8 (5.3) 3.4 6.1 1.3 2.6 3.7 90.1 133.7 24.0 

Novaya 
Sibir Turonian 77 (77) 7.6 (7) 2.0 3.9 1.2 1.4 2.1 90.0 122.9 33.0 

North Slope Coniacian 80 (80) 10.5 (10.1) 2.3 3.3 2.5 2.4 2.2 104.4 117.9 57.6 

Arman Cenomanian 72 (74) 5.6 (5.8) 3.0 5.7 1.0 2.2 3.3 85.9 130.5 21.9 

Kaivayam Coniacian 75 (76) 7.3 (7) 2.5 4.5 1.4 2.0 2.7 91.1 125.0 31.7 

Penzhina Turonian 73 (75) 5.8 (5.8) 2.5 5.1 0.7 1.7 2.7 83.7 126.5 22.8 

Standard Deviation 9 (5) 1.6 (1) 1.9 3.5 1.1 1.9 2.0 14.6 24.5 12.7 
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