

Open access • Journal Article • DOI:10.1017/S0016756819000463

New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic — Source link 🖸

Robert A. Spicer, Robert A. Spicer, Paul J. Valdes, Alice C. Hughes ...+4 more authors

Institutions: Chinese Academy of Sciences, Open University, University of Bristol, Xishuangbanna Tropical Botanical Garden

Published on: 01 Oct 2020 - <u>Geological Magazine</u> (Cambridge University Press)

Topics: Arctic, Vapour Pressure Deficit and Annual cycle

Related papers:

- · The late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils
- · How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras
- · Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene
- Evidence for fire in the Pliocene Arctic in response to amplified temperature
- · Pliocene vegetation and climate of Arctic Norway and the variability of the Norwegian Atlantic current

Spicer, R. A., Valdes, P., Hughes, A., Yang, J., Spicer, T. E. V., Herman, A. B., & Farnsworth, A. (2019). New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic. *Geological Magazine*. https://doi.org/10.1017/S0016756819000463

Peer reviewed version

Link to published version (if available): 10.1017/S0016756819000463

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Cambridge University Press at https://www.cambridge.org/core/journals/geological-magazine/article/new-insights-into-the-thermal-regime-and-hydrodynamics-of-the-early-late-cretaceous-arctic/D561B4623B27F69E65727D98E682CFDB. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

1 2 3 4	New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic
4 5	ROBERT SPICER ^{1,2*} , PAUL VALDES ³ , ALICE HUGHES ² , JIAN YANG ⁴ , TERESA
6	SPICER ⁴ , ALEXEI HERMAN ⁵ , ALEXANDER FARNSWORTH ³
7	
8	¹ School of Environment, Earth and Ecosystem Sciences, The Open University, Milton
9	Keynes, MK7 6AA, UK.
10	² Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun,
11	Mengla, Yunnan 666303, P.R. China.
12	³ School of Geographical Sciences, University of Bristol, Bristol BS81SS, UK.
13	⁴ State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
14	Academy of Sciences, Beijing 100093, P.R. China.
15	⁵ Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia.
16	
17	• Corresponding author: r.a.spicer@open.ac.uk
18	Keywords: Polar warmth, palaeoclimate, CLAMP, ecosystem, Alaska, Russia, plant fossils
19	

20 21	Abstract – The Arctic is warming faster than anywhere else of comparable size on Earth,
22	impacting global climate feedbacks and the Arctic biota. However, a warm Arctic is not
23	novel. The Late Cretaceous fossil record of the region enables a detailed reconstruction of
24	polar environmental conditions, and a thriving extinct ecosystem, during a previous
25	'hothouse' global climate. Using leaf form (physiognomy) and tree ring characteristics we
26	reconstruct Cenomanian to Coniacian polar thermal and hydrological regimes over an
27	average annual cycle at eight locations in north-eastern Russia and northern Alaska. A new
28	high spatial resolution (~1 km) WorldClim2 calibration of the Climate-Leaf Analysis
29	Multivariate Program (CLAMP) yields similar, but often slightly warmer, results to previous
30	analyses, but also provides more detailed insights into the hydrological regime through the
31	return of annual and seasonal vapour pressure deficit (VPD), potential evapotranspiration
32	(PET) estimates and soil moisture, as well as new thermal overviews through measures of
33	thermicity and growing degree days. The new results confirm the overall warmth of the
34	region, particularly close to the Arctic ocean, but reveals strong local differences that may be
35	related to palaeoelevation in the Okhotsk-Chukotka Volcanogenic Belt in north-eastern
36	Russia. While rainfall estimates have large uncertainties due to year-round wet soils in most
37	locations, new measures of VPD and PET show persistent high humidity, but with notably
38	drier summers at all the Arctic sites.
39	
40	1. Introduction

40 1. Introduction

41 The Arctic is warming faster than almost all other parts of our planet (IPCC 2014). This 42 phenomenon is consistent with 'polar amplification' (Lee 2014) where any change in 43 planetary scale net radiation balance, irrespective of whether ice is present at the poles or not, 44 produces larger temperature changes at higher latitudes than in equatorial regions. Polar

45 amplification is no better illustrated than in the Arctic during past episodes of extreme

Deleted: and t

warmth, such as in the early Late Cretaceous. Polar amplification makes Arctic palaeoclimate
proxies sensitive recorders of global change phenomena, and by studying warm Arctic
conditions we can derive the most reliable insights into future climate, and linked biospheric
responses, at high northern latitudes.
The current warming of the Arctic is dramatic and perhaps inevitably most
investigations into the Late Cretaceous palaeoclimate of the region have focussed on the
ancient thermal regime (e.g. Spicer & Parrish 1986; Spicer & Corfield 1992; Herman &

54 Spicer 1996a, 1997a; Amiot et al. 2004; Spicer & Herman 2010; Herman, Spicer & Spicer

55 2016), but arguably more important is the polar hydrological cycle. In today's 'coldhouse'

56 world a strong polar high-pressure cell leads to a relatively dry Arctic and only low

57 temperatures, and thus low evaporation, prevents widespread aridity. However, in a warmer 58 world a weaker polar high, and thus a weaker polar front, would have profound implications 59 for global atmospheric circulation (including phenomena such as polar vortex outbreaks) and 60 the water cycle.

61 It is possible that in the Late Cretaceous a warm Arctic Ocean generated vigorous 62 ocean-atmosphere feedbacks that helped sustain that ocean warmth while also producing a 63 more or less permanent Arctic cloud cap (Spicer et al. 2014), but atmospheric hydrology is 64 poorly constrained through a lack of reliable proxies. The focus of this work is to re-examine 65 the Arctic early Late Cretaceous climate and introduce new quantitative proxy palaeo-66 humidity measurements in order to characterise better the polar environment at times of 67 global warmth.

68 Late Cretaceous Arctic sediments of Alaska and north-eastern Russia, collectively
69 referred to here as the North Pacific Region (NPR) (Fig. 1), host a wealth of palaeontological
70 evidence attesting to a highly diverse extinct ecosystem thriving under a temperate and humid
71 climate at palaeolatitudes as high as 82 °N.(Fig. 2). The rich plant fossil record from the NPR

72	has been investigated for more than a century (see background reviews in			
73	http://arcticfossils.nsii.org.cn) and is well documented in a large body of work (e.g. Hollick			
74	1930; Samylina 1963; Lebedev 1965; Smiley 1966; Budantsev 1968; Samylina 1968; Smiley			
75	1969a, b; Samylina 1973; Samylina 1974a <u>, b; Filippova 1975a, b; Krassilov 1975; Lebedev</u>	<	Deleted: Samylina 1974b;	
76	1976; Samylina 1976; Kiritchkova & Samylina 1978; Krassilov 1978; Filippova 1979; Scott		Deleted: 1975b Deleted: Filippova 1975a;	\neg
77	& Smiley 1979; Detterman & Spicer 1981; Budantsev 1983; Spicer & Parrish 1986; Spicer		Deleted: a	\sum
78	1986; Lebedev 1987; Spicer, Wolfe & Nichols 1987; Spicer 1987; Filippova 1988;		Deleted: et al.	
79	Golovneva 1988; Grant, Spicer & Parrish, 1988; Parrish & Spicer 1988a, b; Samylina 1988;		Deleted: et al.	
80	Filippova 1989; Lebedev & Herman 1989; Herman 1990; Spicer & Chapman 1990; Spicer &		Deleted: Parrish & Spicer 1988b; Formatted: Highlight	\neg
81	Parrish 1990a; Spicer & Parrish 1990b; Golovneva 1991a, b; Herman 1991; Herman &			
82	Lebedev 1991; Herman & Shczepetov 1991; Samylina & Shczepetov 1991; Shczepetov			
83	1991; Golovneva & Herman 1992; Lebedev 1992; Shczepetov, Herman & Belaya 1992;			
84	Spicer & Corfield 1992; Spicer, Parrish & Grant 1992; Filippova & Abramova 1993; Herman	S	Deleted: a	
85	1993; Spicer, Rees & Chapman 1993; Filippova 1994; Golovneva 1994 <u>a.</u> b; Herman 1994;		Deleted: et al. Formatted: Highlight	\neg
86	Herman & Spicer 1995; Shczepetov 1995; Herman & Spicer 1996b; Herman & Spicer 1997a,		Deleted: Golovneva 1994a;	
87	b; Golovneva 2000; Herman 2002; Herman, Spicer & Kvacek 2002; Spicer et al. 2002;			
88	Craggs 2005; Herman 2007; Herman et al. 2009; Golovneva & Alekseev 2010; Spicer &			
89	Herman 2010; Tomsich et al. 2010; Golovneva, Shchepetov & Alekseev 2011; Herman 2011,			
90	2013; Alekseev, Herman & Shchepetov 2014; Shczepetov & Golovneva 2014; Golovneva,			
91	Herman & Shczepetov 2015; Golovneva & Shchepetov 2015; Herman et al. 2016; Herman,			
92	Spicer & Spicer 2016; Herman & Solokova 2016; Vasilenko, Maslova & Herman 2016;	*****	Deleted: et al.	
93	Shczepetov & Herman 2017; Nikitenko et al. 2017, 2018; Herman et al. 2019). While not			
94	exhaustive, these works attest to the richness and intensity of study that the Cretaceous Arctic			
95	floras have attracted despite the logistic difficulties of working in remote regions. A brief		Deleted: so only	
			Deleted: a	\supset
96	synthesis is given here.		Deleted: overview	

111		
112	[Figure 1 near here]	Deleted:
113	[Figure 2 near here]	
114		
115	1.a. Early Late Cretaceous Arctic Forests	
116	In the early Late Cretaceous at latitudes above the palaeo-Arctic Circle (~66 °N)	
117	forests were conifer-dominated and at high latitudes almost exclusively deciduous (Parrish &	
118	Spicer 1988b; Spicer & Parrish 1990b; Spicer & Herman 2001; Spicer et al. 2002; Spicer &	
119	Herman 2010; Herman, Spicer & Spicer 2016). Key canopy-forming taxa were	
120	predominantly Cephalotaxopsis, Elatocladus, Pityophyllum, Araucarites, Sequoia	
121	reichenbachii and Pagiophyllum, while angiosperms were most abundant as understorey	
122	elements and along stream sides (Spicer & Herman 2010; Herman, Spicer & Spicer 2016),	
123	but were non-existent or rare in swamp or mire forests (Spicer, Parrish & Grant 1992).	Formatted: Not Highlight
124	Evergreen elements were regionally comparatively rare and restricted to conifers such as	Deleted: et al. Formatted: Not Highlight
125	Araucarites, Pagiophyllum and Geinitzia (http://arcticfossils.nsii.org.cn) characterised by	
126	having small hook- and scale-like xeromorphic leaves that reduced water loss during winter	
127	dormancy. Ground cover consisted mostly of ferns and sphenophytes (Herman, Spicer &	
128	Spicer 2016), but towards the end of the Late Cretaceous, even at the highest latitudes,	
129	herbaceous angiosperms (probably annuals and preserved only as pollen) contributed to the	
130	ground cover especially in areas disturbed by wildfires or along river margins (Frederiksen,	
131	Ager & Edwards 1988; Herman, Spicer & Spicer 2016). A comprehensive illustrated	
132	catalogue of Late Cretaceous polar forest megafossils is available online at	
133	http://arcticfossils.nsii.org.cn.	
134	Preserved standing isolated trees (Herman, Spicer & Spicer 2016) and even "fossil	

135 forests" are not uncommon in Late Cretaceous floodplain successions of the NPR. Stands of

straight upright trunks up to 4.5 m tall and 0.7 m in diameter have been reported from northern Alaska (Decker et al. 1997) and evidence that these represent mire forests comes from the observation they are rooted in coals and carbonaceous mudstones. These standing trees attest not only to the stature, and structure of the mire forests, but periodic extremely high sedimentation rates, suggesting intense rainfall events, river channel breakouts and associated flooding.

144 Occasionally fossil wood is structurally preserved and to-date all wood specimens 145 recovered have been coniferous with well-developed growth rings, typically showing sharp 146 transitions between summer growth and winter dormancy (Parrish & Spicer 1988a; Spicer & 147 Parrish 1990a; Herman, Spicer & Spicer 2016). Summer-wood rings in Cenomanian age trees 148 tend to be wide with typically >100 cells produced each growing season and few false rings 149 (Parrish & Spicer 1988a; Herman, Spicer & Spicer 2016) showing that growth was largely 150 uninterrupted during the summer season, but Maastrichtian woods have narrow early 151 (summer) rings with few smaller cells and numerous false rings indicative of frequent 152 interruptions to growth, most likely caused by temperatures falling below 10 °C (Spicer & 153 Parrish 1990a; Spicer & Herman 2010; Herman, Spicer & Spicer 2016). 154 1.b. Insolation and General Thermal Regime 155 As far as can be determined Earth's rotational and magnetic poles were roughly coincidental 156 in the Late Cretaceous and obliquity, and thus the high latitude light regime, was similar to 157 that of today (Lottes 1987) meaning that Arctic winters in near-polar settings were

- characterised by several months of darkness (Figs. 3-5). Despite this lack of direct insolation
- 159 polar winters along the coastlines of the Arctic Ocean were surprisingly warm, experiencing
- 160 temperatures that remained above freezing for much of the time (Spicer & Parrish 1990b;
- 161 Herman & Spicer 1996a, 1997a; Herman, Spicer & Spicer 2016). While the temperature

Deleted: 2

Formatted: Font color: Custom Color(RGB(142,170,219))

Deleted: 4

Formatted: Font color: Custom Color(RGB(142,170,219))

Formatted: Font color: Custom Color(RGB(142,170,219))

- 164 regime of the Late Cretaceous Arctic has been well characterised through multiple proxies,
- 165 the hydrological system is less well constrained.

166 1.c. Research Scope

- 167 In this work we re-examine the thermal regime of this extinct early Late Cretaceous
- 168 (Cenomanian to Coniacian) polar 'Lost World' in the light of new high spatial resolution (~1
- 169 km) WorldClim2 (Fick & Hijmans 2017; http://www.worldclim.org/), calibrations of the non-
- taxonomic leaf physiognomic proxy known as CLAMP (http://clamp.ibcas.ac.cn), but the
- 171 main focus is to explore new insights into the hydrological regime. We examine not only
- 172 precipitation and soil moisture capacity, but humidity in terms of specific humidity (SH),
- 173 relative humidity (RH), vapour pressure deficit (VPD) and potential evapotranspiration
- 174 (PET). VPD and PET are investigated in respect of annual average values and seasonal
- 175 variations.
- 176

177 2. Methods and Materials

178	Individual plants are spatially static so they have to be well adapted to their local		
179	environment or they die as a direct result of environmental stress or competition from those		
180	better equipped to withstand the prevailing conditions. These adaptations, preserved in the		
181	abundant early Late Cretaceous plant fossil record of the NPR, can be used to determine past		
182	conditions either as average annual or seasonal climate, as in the case of leaf form, or as a		
183	near-daily record of environmental change encoded as variations in wood growth (tree rings).		
184	By using both leaf form and tree ring data (Herman, Spicer & Spicer 2016) we can quantify		
185	the early Late Cretaceous high Arctic atmospheric conditions voer seasonal or even sub-	~	Deleted: down to a
186	seasonal temporal resolutions		Deleted: Deleted: measured in weeks (Herman et al. 2016)

Deleted:)

192	The principal leaf-based palaeoclimate proxy for assessing a range of climate
193	variables is known as CLAMP (Climate-Leaf Analysis Multivariate Program)
194	(http://clamp.ibcas.ac.cn) (Wolfe 1993; Kovach & Spicer 1996; Yang et al. 2011, 2015).
195	CLAMP utilises the universal relationships that exist between leaf form in woody
196	dicotyledonous plants and an array of climate variables. On a global scale aggregate leaf form
197	in a stand of vegetation is more strongly determined by climate than by taxonomic
198	composition (Yang et al. 2015), and through a combination of pleiotropy and integrated
199	developmental pathways all leaf traits are correlated with each other (Pigliucci 2003) and an
200	array of climate variables (Wolfe 1993; Wolfe & Spicer 1999; Yang et al. 2011, 2015). Using
201	a multivariate statistical engine CLAMP decodes these relationships and, by scoring fossil
202	leaf traits the same way as for living vegetation growing under known climatic regimes,
203	estimates of past conditions can be obtained (http://clamp.ibcas.ac.cn).
204	No proxy is perfect, so a multiproxy approach should be used where possible. For the
205	high Late Cretaceous Arctic CLAMP and oxygen isotopes from marine (Zakharov et al.
206	1999, 2011) and non-marine vertebrate remains (Amiot et al. 2004) <u>all give broadly similar</u>
207	estimates (Herman & Spicer 1997a; Amiot et al. 2004; Spicer & Herman 2010; Herman,
208	Spicer & Spicer 2016), increasing confidence in the fidelity of <u>all</u> the proxies. However, all
209	proxies depend on modern observations for their calibration and several modern
210	observational datasets are available, each with its own characteristics.
211	
212	2.a. CLAMP Calibration
213	Previous CLAMP analyses of Late Cretaceous Arctic leaves have been based on modern

- 214 gridded climate observations recorded between 1961 and 1990 at a spatial resolution of 0.5 x
- $215 0.5^{\circ}$ (New, Hulme & Jones 1999), with interpolations and altitude corrections to the exact
- 216 location of the vegetation stands comprising the CLAMP training sets

217	$(https://www.paleo.bristol.ac.uk/ummodel/scripts/html_bridge/clamp_UEA.html). This are a standard to the standard stan$
218	calibration dataset is known as GridMet_3br (http://clamp.ibcas.ac.cn). Higher spatial
219	resolution data are also available using the same observational network of meteorological
220	stations. One such dataset is that of WorldClim2 (http://worldclim.org/version2) (Fick &
221	Hijmans 2017), which interpolates average meteorological observations between 1970 and
222	2000 on to a spatial grid approximating to 1 km ² .
223	One advantage of using WorldClim2 for calibration is that numerous environmental
224	variables have been mapped on to the same grid, so by using CLAMP the range of
225	environmental signals decoded from leaf form can be extended. The new temperature-related
226	environmental variables that correlate strongly with leaf form are 1) the compensated
227	thermicity index (THERM.), 2) growing degree days above 0 °C (GDD_0), 3) growing
228	degree days above 5 °C (GDD_5), 4) minimum temperature of the warmest month
229	(MIN_T_W) and 5) maximum temperature of the coldest month (MAX_T_C). New
230	humidity-related variables are 6) mean annual vapour pressure deficit (VPD.ANN), 7) mean
231	summer vapour pressure deficit (VPD.SUN), 8) mean winter vapour pressure deficit
232	(VPD.WIN), 9) mean spring vapour pressure deficit (VPD.SPR), 10) mean autumn vapour
233	pressure deficit (VPD.AUT), 11) mean annual potential evapotranspiration (PET.ANN), 12)
234	potential evapotranspiration during the warmest month (PET.WARM),13) potential
235	evapotranspiration during the coldest month (PET.COLD), 14) soil moisture capacity
236	(SOIL.M) and 15) the number of months when the mean temperature is above 10 $^\circ$ C. This
237	last metric serves as a further comparison between the WorldClim2 data and previous
238	calibrations because it should return values similar to those indicating the length of the
239	growing season (LGS). For easy reference Table 1 summarises all the CLAMP metrics
240	presented here.

242	climate variables to show not only the relative position on the regression of the NPR fossil	
243	locations but also the scatter of the modern training data and thus the precision of the	
244	CLAMP predictions. All regression models are derived from the leaf physiognomy/climate	
245	relationships in 4D space as used in earlier CLAMP analyses (Herman & Spicer 1996b;	
246	<u>1997a; Spicer & Herman, 2010).</u>	
247	Χ	[
248	2.b. Climate Variable Definitions	r g r
249	Descriptions and regression models for the 11 standard CLAMP climate variables (mean	
250	annual temperature - MAT, warm month mean temperature - WMMT, cold month mean	u 1
251	temperature - CMMT, length of the growing season - LGS, growing season precipitation -	(F
252	GSP, mean monthly growing season precipitation - MMGSP, precipitation during the three	
253	consecutive wettest months - 3WET, precipitation during the three consecutive driest months	
254	- 3DRY, mean annual relative humidity - RH. ANN, mean annual specific humidity -	
255	SH.ANN and mean annual moist enthalpy - ENTH) are given in the CLAMP website	
256	(http://clamp.ibcas.ac.cn) and summarised in Table 1. Here we describe the newly added	
257	climate variables.	
258	The compensated thermicity index (THERM.) is given by	
259	THERM. = $((T + m + M)^*10) \pm C$ (1)	
260	where T is the mean annual temperature, m is the minimum temperature of the coldest	
261	month, M is the maximum temperature of the coldest month and C is a 'compensation value'.	
262	Calculating C is complicated and depends on continentality, which is simply a measure of the	
263	difference between the WMMT and the CMMT. In the extratropical zones of the World	
264	(northern and southern 27° parallels, respectively) THERM. is designed to equilibrate the	
265	large differences in temperature that occur between winter cold and summer warmth in	

Figures 6-10, graphs A-Z, illustrate the CLAMP regression models for each of the

241

Formatted: Not Highlight

Deleted: Figure 5, parts a–e, illustrates the CLAMP regression models for each of the climate variables (Fig. 5, graphs A–Z) to show not only the relative position on the regression of the NPR fossil locations but also the scatter of the modern training data and thus the precision of the CLAMP predictions. All regression models are derived from the leaf physiognomy/climate relationships in 4D space as used in earlier CLAMP analyses (Herman &Spicer 1996b; 1997a; Spicer and Herman, 2010).¶

Formatted: Highlight

275 continental climates compared to those small differences that occur in maritime climates. 276 Details of how C is calculated are given in the Worldwide Bioclimatic Classification System 277 (www.globalbioclimatics.org) (Rivas-Martinez, Sanchez-Mata & Costa 1999). 278 GDD 0 is a measure of the cumulative heat available to plants and is the sum of the 279 mean monthly temperatures for months with mean temperatures greater than 0 °C multiplied 280 by number of days above that temperature. 281 GDD 5 is the sum of mean monthly temperatures for months with mean temperature 282 greater than 5 °C multiplied by number of days above that temperature. 283 VPD reflects the ease of losing water to the atmosphere and as such affects 284 transpiration as well as evaporation. It is the difference between the actual water vapour 285 pressure and the water vapour pressure at saturation. At saturation (VPD=0 kPa) water will 286 condense out to form clouds, dew or films of water on surfaces, including leaves. VPD 287 combines temperature and relative humidity so, unlike relative humidity, vapour-pressure 288 deficit has a simple nearly straight-line relationship to the rate of evapo-transpiration and 289 other measures of evaporation. Because of this, plant distribution (Huffaker 1942) and leaf 290 physiognomy are more strongly reflective of VPD.ANN than RH. ANN (Fig. 7, 1, 1). This 291 suggests strong leaf trait adaptations to overcoming transpiration depression at low VPDs. 292 Also, VPD is strongly correlated with stomatal conductance and carbon isotope fractionation 293 (e.g. Oren et al. 1999; Bowling et al. 2002; Katul, Palmroth & Oren 2009). As well as annual 294 mean VPD (VPD.ANN), seasonal VPD estimates (spring - VPD.SPR, summer - VPD.SUM, 295 autumn - VPD. AUT and winter - VPD.WIN) are also given by CLAMP. 296 Potential evapotranspiration (PET) is an expression of the ability of the atmosphere to 297 remove water through evapotranspirational processes assuming no limits on plant water 298 supply. Such an assumption appears valid in the case of the early Late Cretaceous Arctic as

299 evidenced by the widespread occurrence of thick coals indicative of raised mires (Sable &

Deleted: 5b Deleted: 1 Deleted: J

303	Stricker 1987; Grant, Spicer & Parrish 1988), gleyed palaeosols and isotopic analysis (Ufnar
304	et al. 2004). PET combines the energy available for evaporation and the capacity of the lower
305	atmosphere to move evaporated water vapour away from the land surface, for example by
306	winds and convective processes. Because solar radiation provides the energy for evaporation,
307	PET is lower on cloudy days, in winter and at higher latitudes. Like VPD, PET can be
308	thought of as an indication of how difficult it is for a plant to transpire, a process that is
309	essential for moving water and nutrients from the soil to the leaves. Because of this, and as
310	with VPD, leaf physiognomy correlates well with PET (Fig. <u>8</u> , <u>Q; Fig. 9</u> , <u>V & W</u>) particularly
311	at low PET values. Although herbaceous plants transpire less than woody plants because they
312	have a lower leaf surface area, the PET reference measure is based on uniformly short grass
313	completely covering the ground. PET estimates for the warmest month (PET.WARM, Fig. 2
314	\underbrace{V} and coldest month (PET.COLD, Fig. $\underbrace{9, W}$) are given as well as the mean annual PET
315	(PET.ANN, Fig. <u>8</u> Q).
316	In the work presented here we introduce a new CLAMP calibration based on
317	WorldClim2 that we call WorldClim2_3br. As well as using the WorldClim2 gridded climate
318	data for the standard CLAMP climate variables, we add the 15 new climate variables
319	considered above. The new WorldClim2-based climate training set (WorldClim2_3br) and
320	the accompanying modern leaf physiognomic (Physg3brcAZ) data files are given in the
321	Supplementary Materials.
322	
323	2.c. Fossil Assemblages

- 324 Here we re-analyse eight well-documented fossil leaf assemblages (see
- http://arcticfossils.nsii.org.cn) from across the NPR (Figs. 1 & 2) spanning the Cenomanian
- 326 to Coniacian. All have been previously analysed for the standard CLAMP climate variables

Deleted: 5	
Deleted: c	
Deleted: -S	

Deleted: 5c	
Deleted: R	
Deleted: 5c	
Deleted: S	
Deleted: 5	
Deleted: c	

Deleted: WorldClim3

337	calibrated using low spatial resolution modern gridded climate data (GridMet_3br) (Spicer &
338	Herman 2010; Herman, Spicer & Spicer 2016). We use the same modern vegetation trait
339	scores as used previously (Physg3brcAZ) but with the new WorldClim2_3br \sim 1 km ² gridded
340	data and with 15 new environmental variables. Where palaeolatitudes are quoted they are
341	derived from GeTech.Plc palaeogeographies (an example of which is shown in Fig. 2) used
342	in climate modelling (http://www.bridge.bris.ac.uk/resources/simulations). These
343	palaeogeographies time-integrate a range of geological data and include plate kinematics.
344	CLAMP scoresheets for these fossil assemblages are given in the Supplementary Materials.
345	
346	3. Results and Discussion
347	Tables 2-4 present results obtained for the fossil assemblages using the new WorldClim2 3br

348	CLAMP calibration as well as (for comparison) previously obtained results that used low	Deleted: 3
349	spatial resolution GridMet_3br CLAMP calibration. The GridMet_3br results are given in	
350	parentheses. Figures $6-10$, graphs A–Z, show the CLAMP regression models for the new	Deleted: 5a-e
351	WorldClim2_3br calibration and the positions of the fossil sites on the regression model. The	
352	regression models indicate the relationship between leaf physiognomy and the individual	
353	climate variable and thus the precision of the predictions. They also indicate the positions of	
354	the values for each fossil assemblage for each climate variable relative to those for modern	
355	vegetation. Note that despite essentially the same observational network of meteorological	
356	stations underpinning both gridded datasets, GridMet_3br and WorldClim2_3br calibrations	
357	rarely yield identical results. These differences are purely a function of the different gridding	
358	processes between the GridMet_3br and WorldClim2_3brc and a slightly different period of	
359	climate observations: 1961–1990 in the case of GRIDMet_3br and 1970–2000 for	
360	WorldClim2_3br. Such differences define the maximum predictive precision possible for any	

Deleted: 1

364	proxy using modern gridded climate observations for calibration because they are a measure		
365	of how well we can quantify modern climate.		
366			
367	3.a. Thermal regime		
368	While not identical, the two calibrations yield similar results regarding the thermal regime		
369	and the differences are smaller than, or the same as, the uncertainties. They show clearly that		
370	despite the lack of winter insolation terrestrial CMMTs across the Arctic NPR region, even at		
371	latitudes as high as \sim 80 °N, rarely fell below freezing. This might appear surprising for the		
372	highest palaeolatitudes (Novaya Sibir – 81.6 °N, North Slope Alaska – 77 °N) that		
373	experienced more than three months of continuous winter darkness (Fig. 2), but these sites	(Deleted: 2
374	were close to the Arctic Ocean coastline and several lines of evidence point to the Arctic		
375	Ocean being warm with winter sea surface temperatures of ~6 °C (Herman & Spicer 1997a),		
376	or even approaching 10 °C as indicated here by the winter coastal plain temperatures of the		
377	North Slope, Alaska.		
378			
379	[Table 2 near here]	(Deleted: 1
380			
381	The estimates for the length of the growing season are also consistent with the light		
382	regimes at different palaeolatitudes (Figs. 3-5). Because leaf load is directly related to	(Deleted: 2
383	transpiration and the humidity regime, we have attempted to estimate the timing of bud break		Deleted: 4
384	and leaf fall in the predominantly deciduous NPR vegetation. Bud break and leaf fall likely		
385	occurred in early March and late October respectively in the Cenomanian Vilui Basin		
386	(palaeolatitude 72 °N, LGS 7.5 months) when mean temperatures rose above 10 °C and there		
387	was at least 8 hours of direct sunlight (Fig. <u>5</u>).	(Deleted: 4
388			

394	[Figure <u>3 near here]</u>	Deleted: 2
395		
396	In Grebenka, also Cenomanian but at 74 °N, the growing season is similar with a	
397	slightly warmer winter despite the slightly higher latitude (Fig. 4). The Penzhina assemblage	Deleted: 3
398	(Plat. 72 °N) has a shorter growing season of around 5 months due to the lower winter	
399	temperature (Fig. 5). The 10 °C mark was not passed until almost mid-April when there were	Deleted: 4
400	16 hours of direct sunlight during each 24-hour period and the growing season lasted until	
401	late September when temperatures dipped below 10 °C and daylight hours approached 12.	
402	The foliage traits of the highest palaeolatitude assemblage, Novaya Sibir (Turonian, Plat. \sim 82	
403	°N), suggest that bud break occurred in early April and growth continued until the beginning	
404	of October, a growing period of 5.8 months. The Coniacian North Slope assemblage from the	
405	northern Alaska palaeo-floodplain has the longest growing season (7.5 months) despite its	
406	palaeolatitude of ~78 °N. This is because winter temperatures barely dipped below 10 °C $$	
406 407	palaeolatitude of ~78 °N. This is because winter temperatures barely dipped below 10 °C (Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid	Deleted: 1
		Deleted: 1 Deleted: 2
407	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid	
407 408	(Table 2, Fig. 3) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must	
407 408 409	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby	
407 408 409 410	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour	
407 408 409 410 411	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour period is likely to have been the critical driver for leaf expansion and abscission, meaning	
407 408 409 410 411 412	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour period is likely to have been the critical driver for leaf expansion and abscission, meaning that bud burst likely took place in late February and leaf fall in early-mid October. Early Late	
407 408 409 410 411 412 413	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour period is likely to have been the critical driver for leaf expansion and abscission, meaning that bud burst likely took place in late February and leaf fall in early-mid October. Early Late Cretaceous North Slope tree ring characteristics (Parrish & Spicer 1988a) indicate the rapid	
407 408 409 410 411 412 413 414	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour period is likely to have been the critical driver for leaf expansion and abscission, meaning that bud burst likely took place in late February and leaf fall in early-mid October. Early Late Cretaceous North Slope tree ring characteristics (Parrish & Spicer 1988a) indicate the rapid	Deleted: 2
407 408 409 410 411 412 413 414 415	(Table <u>2</u> , Fig. <u>3</u>) and although the mean air temperature would have passed 10 °C in mid February and dipped below 10 °C in early November, a period of ~8.5 months, growth must have been moderated by insolation. With relatively warm conditions maintained by a nearby warm Arctic Ocean <u>we estimate that</u> a minimum of 4 hours of direct sunlight per 24-hour period is likely to have been the critical driver for leaf expansion and abscission, meaning that bud burst likely took place in late February and leaf fall in early-mid October. Early Late Cretaceous North Slope tree ring characteristics (Parrish & Spicer 1988a) indicate the rapid onset of growth and a prolonged and uninterrupted summer growth period.	Deleted: 2

425	sea level. Clues to these elevational differences come from the moist enthalpy estimates		
426	(Table <u>3</u>). The North Slope assemblage is known to represent near sea level conditions		Deleted: 2
427	because the plant-bearing units inter-finger with marine sediments (Mull, Houseknecht &		
428	Bird 2003), and as would be expected this site yields the highest moist enthalpy value		
429	indicative of the lowest elevation. The site with the lowest moist enthalpy value (highest		
430	elevation) is in the Okhotsk-Chukotka Volcanogenic Belt (Arman) and the difference		
431	between the two enthalpy values is 20 kJ/kg (Table 3) which translates to a height difference		Deleted: 2
432	of ~2 km (Forest, Molnar & Emanuel 1995; Spicer 2018). However, this difference is not		
433	spatially or temporally corrected. The Arman site has been estimated to have been at ~ 0.6 km		
434	using the Kaivayam assemblage as a sea level datum and the GridMet_3br calibration		
435	(Herman 2018). Using the new WorldClim2_3brc raises this surface height estimate for the		
436	Arman flora to $\sim 0.9 \pm 0.8$ km. Based on the relative palaeo-enthalpy estimates all the NPR		
437	localities likely were below 1 km elevation, but detailed analysis awaits future moist enthalpy		
438	fields derived from integrating proxy and palaeoclimate modelling.		
439			
440	[Figure <u>4</u> near here]		Deleted: 3
441			
442	[Figure <u>5</u> near here]		Deleted: 4
443			
444	3.c. Precipitation		
445	Table 3 shows the estimated precipitation regime derived from leaf form. In general, the		Deleted: 2
446	wetter the climate the less well leaf physiognomy predicts the precipitation regime (Figs. 6 &	~	Deleted: 5a
447	Z, E-H). Many of the Arctic angiosperm leaves are large (Herman 1994), which is an		Deleted: , Deleted: b
448	advantageous adaptation to low and predominantly diffuse sunlight situations provided that		
449	water is abundant. Abundant thick Late Cretaceous coals (Sable & Stricker 1987), many of		

458	which represent raised mires (Youtcheff, Rao & Smith 1987; Grant, Spicer & Parrish 1988),	
459	and isotope analyses (Ufnar et al. 2004) all suggest that early Late Cretaceous Arctic annual	
460	precipitation was high.	
461		
462	[Table <u>3</u> near here]	Deleted: 2
463		
464	Although we can be certain that in general the Late Cretaceous Arctic was wet,	
465	deriving accurate precipitation estimates from high latitude palaeofloras is problematic for	
466	several reasons. Firstly, leaf fossils are invariably preserved in aquatic environments where	
467	low oxygen limits decay. The limited distance that leaves can be transported from their	
468	growth site before burial (Spicer 1981; Ferguson 1985; Spicer & Wolfe 1987) means that the	
469	source plants most likely grew in locations where the water table was high year-round. The	
470	estimate of soil moisture capacity for the NPR fossil assemblages (Table, <u>3 SOIL_M, Fig. 9</u> ,	Deleted: 2
471	U) also suggests moist soils. Moreover, this water may not reflect local precipitation but	Deleted: 5d
472	conditions in the headwaters of the river catchment many tens if not hundreds of kilometres	
473	away. Secondly, even if the water table was maintained by local precipitation, the soil system	
474	stores water and buffers seasonal variations in water availability, meaning that 3WET and	
475	3DRY estimates represent seasonality in rainfall only poorly. Thirdly, at high latitudes where	
476	light and temperature impose dormancy and seasonal leaf-shedding, rainfall in the dormant	
477	period is unlikely to be reflected in leaf physiognomy. This is not the case, however, for	
478	winter temperatures.	
479	Winter temperatures are to some extent encoded in leaf physiognomy (Fig. <u>6</u> , C)	Deleted: 5a
480	because young leaves have to be adapted to rapidly warming spring conditions, the rate of	
481	warming being determined in large part by the CMMT (Spicer, Herman & Kennedy 2004).	
482	However, below observed winter temperatures of -10 $^{\circ}$ C this extrapolative encoding, which	

487	tends to yield winter temperatures that are too warm (Spicer, Herman & Kennedy 2004), does	
488	not apply at all to winter precipitation where soil moisture may be high year-round but	
489	inaccessible to the plant in early spring if the soil is frozen. The GSP estimate (note not the	
490	mean annual precipitation) of between 50 and 125 cm is quite low where the regression	
491	model shows little scatter (Fig. 6, E), but because the growing season is often less than half	Deleted: 5a
492	the year this indicates that overall the annual precipitation could have been at least double	
493	that indicated. Although CLAMP routinely returns estimates for precipitation during the	
494	three wettest (3WET) and three driest months (3DRY), these values may be unreliable	
495	because of the marked growth seasonality. In view of the arguments just given for wet soils it	
496	is noteworthy that there is a marked difference in the 3WET:3DRY ratio, which for all	
497	assemblages except Vilui B return ratios near 4:1.	
498	Y	Deleted: ¶
499	The wet soils would necessarily mute these ratios, so the fact that they are pronounced	[Figure 5 a near here]¶
		[Figure 5 b near here]¶
500	suggests even more extreme rainfall seasonality than the values suggest and that the Arctic	[Figure 5 c near here]
501	may have experienced a 'monsoonal' climate in the early Late Cretaceous. An essentially	
502	'summer wet' (wet:dry ratio 3:1) has been proposed for the Arctic in the Eocene based on	
503	isotopic analysis of fossil wood interpreted to have been evergreen (Schubert et al. 2012), but	
504	an 'ever wet' precipitation regime for this Epoch is indicated by leaf form (West, Greenwood	
505	& Basinger 2015) based on predominantly deciduous angiosperm taxa. To really understand	
506	the hydrological regime in a warm Arctic requires, as far as is possible, decoupling the soil	
507	water environment from that of the atmosphere.	
508		
509	3.d. Humidity	
510		

510 Until now CLAMP has routinely returned only two humidity measures: mean annual relative

511 humidity (RH.ANN) and mean annual specific humidity (SH.ANN). SH is simply the amount

519	of water in grams contained within a kilogram of dry air and as such is a measure of the			
520	absolute water content of the air. Leaf form appears to code for mean annual SH quite well in			
521	that the CLAMP regression model (Fig. 7, J) shows relatively little scatter compared to that	(Deleted: 5b	
522	of mean annual RH (Fig. 7, I). RH is a measure of the amount of water in the atmosphere	(Deleted: 5b	
523	relative to what it can hold and as such is highly dependent upon temperature. As the scatter			
524	in Fig. 7. I shows leaf form does not correlate well with RH so CLAMP predictions of RH	(Deleted: 5b	
525	carry a lot of uncertainty.			
526 527 528 529	A better measure of humidity, one that reflects the force opposing transpiration, is vapour pressure deficit (VPD). VPD is the difference between the amount of moisture actually in the air and how much moisture the air could potentially hold when it is saturated and, like SH, is not measured in relation to temperature. High VPD values are found in arid	(Deleted: ¶ [Figure 5 d near here]¶	
530	environments while low VPDs reflect air close to saturation and thus a high resistance to			
531	transpiration.			
1				
532	Figs. <u>7 & 8</u> , L-P, show that at low VPD values leaf form correlates very well with	\leq	Deleted: [Figure 5 e near here]¶ Deleted: 5b	$ \longrightarrow $
533	VPD, presumably because leaves have to possess adaptations to enhance transpiration, while	14	Deleted: 30	\dashv
534	in high VPD situations transpiration can take place easily without the need for specific leaf	X	Deleted: c	\square
535	trait spectra to increase transpiration. Thus, there is more scatter in the CLAMP regressions at			
536	high VPDs. So, unlike precipitation, CLAMP estimates of VPD in moist regimes are			
537	generally more precise than in dry regimes.			
538	[Table <mark>4 near here]</mark>		Deleted: 3	
539	Table <u>4</u> shows that all the Arctic early Late Cretaceous leaf assemblages indicate low		Deleted: 3	
540	VPDs (<5 kPa) in spring, autumn and winter but, because autumn and winter are times when			
541	leaves are senescent or shed, these values have to be interpreted with caution. The spring and			

553	summer values are likely to be the most reliable because this is when the leaves are	
554	functional. The highest summer VPDs are those from fossil assemblages in NE Russia	
555	(Grebenka, Arman, Tylpegyrgynai) and these assemblages also point to the lowest annual RH	
556	values, while the lowest summer VPD and annual values are revealed in assemblages from	
557	the Arctic Ocean coastal areas (Novaya Sibir, North Slope), the Yukon-Koyukuk Basin and	
558	the Vilui Basin. These assemblages also indicate the highest RH.ANN values. Of all the	
559	Arctic fossil sites those bordering the Arctic Ocean and nearest the palaeo-pole (Novaya Sibir	
560	and North Slope) have the lowest VPDs, the only exception being the North Slope that has a	
561	VPD.WIN value similar to those of Grebenka and Arman. These assemblages also indicate	
562	the warmest winter temperatures (Fig. 3). However, even assemblages indicating the driest	
563	summers have very low VPDs compared to most modern vegetation in the calibration (Figs.	
564	7 & 8, L-P), indicating an overall extremely wet atmosphere compared to that experienced	<
565	by most vegetation in the modern CLAMP training sets.	
566	PET is a measure of how easily the atmosphere removes water from a surface and so,	
567	like VPD, indicates the ease with which transpiration can take place. Also, like VPD, PET	
568	shows a close relationship with leaf trait spectra at low PET values i.e. wet regimes. All NPR	
569	fossil assemblages fall in the lower half of the regressions showing that they experienced	
570	similar PETs as modern vegetation in the more humid half of the 3br training set. The	
571	PET.WARM and PET.COLD values also show that any dry season was in the summer,	
572	presumably because higher temperatures and convective winds favoured greater evaporation.	
573	Taking Figures <u>3-5</u> together it is noticeable that Figure <u>4</u> shows the highest	\leq
574	humidities and that these occur at palaeolatitude \sim 75 °N from sites (Grebenka and	
575	Tylpegyrgynai) that were not immediately adjacent to the Arctic Ocean, but closer to the	
576	north Pacific. These high humidities may be a function of a cool northern Pacific gyre	

Deleted: 5 Deleted: c

-(Deleted: 5 b
-(Deleted: and
Ľ	Deleted: c

Deleted: 2	
Deleted: 4	
Deleted: 3	

585 (Herman & Spicer 1996a, 1997a) or reflect a more northward and diffuse palaeoposition of

- 586 the polar front, which today is located at ~60 °N as a consequence of a strong polar high.
- 587

588 4. Conclusions

589 4.a. Thermal regime.

- 590 The new WorldClim2_3br CLAMP calibration confirms earlier isotopic (Amiot et al. 2004),
- 591 vegetation (Parrish & Spicer 1988b) and leaf physiognomic analyses (Herman & Spicer
- 1996b, 1997a; Spicer <u>&</u> Herman 2010) from the NPR demonstrating a thermal regime that
- 593 may be broadly characterised as 'temperate' even at palaeolatitudes as high as ~80 °N where
- 594 freezing temperatures were of limited duration and severity. The precision of the
- 595 palaeoclimate regime estimates are constrained by the uncertainties associated with our
- 596 inability to quantify precisely modern climate. These uncertainties, which will differ between
- 597 calibration suites depending on calibration sampling distribution, density and temporal
- 598 coverage, apply to any palaeoenvironmental proxy that relies on calibrations using the
- 599 modern conditions and should not be ignored when making inter-proxy comparisons or
- 600 interpreting past environments. In the analyses presented here MAT estimates differ by up to
- 601 0.6 °C, WMMT by up to 0.9 °C and CMMT by up to 1.5 °C depending purely on the
- 602 underlying modern gridded climate data.

603

604 4.b. Palaeoelevation

No terrestrial palaeotemperature comparisons can be meaningful without taking into account differences in the surface height at which the estimates are made. In the case of the early Late Cretaceous NPR it is clear that some thermal differences between assemblages can be attributed to relative elevational differences, but that no site was likely to have been above 1 km. However, a 1 km elevation range can translate into MAT differences of several

Deleted: and	
Deleted: and	
Deleted: and	
Deleted: region	

614 degrees Celsius depending on early Late Cretaceous near polar terrestrial lapse rates. This 615 aspect of the NPR palaeoclimate, and better characterisation of Late Cretaceous moist 616 enthalpy fields, await future modelling work. 617 618 4.c. Precipitation and humidity 619 The precipitation regime throughout the NPR overall appears moderately wet with Deleted: region 620 most sites indicating summer (growing season) precipitation ~0.5 m, but apparently with 621 marked seasonal variations. Compared to all the sites in the modern calibration data humidity Deleted: 3 622 is high year-round, but with most evaporative stress occurring in the summer. PET (Table 4) Deleted: 2 623 never exceeds rainfall even in the summer growth period (Table 3), leading to year-round 624 saturated soils. Drought was not limiting to growth in any of the NPR early Late Cretaceous 625 Deleted: 1 localities and CMMTs (Table 2) were never low enough for long enough to freeze the soil to 626 below tree rooting depth. 627 Our new insights into annual and seasonal atmospheric humidity in the warm early Deleted: 628 Late Cretaceous Arctic supports the concept of a very humid near-polar regime markedly 629 different from today's frigid desert under a strong polar high-pressure cell and with a 630 corresponding strong polar front at ~60 °N. It is likely that the polar front in the early Late 631 Cretaceous was displaced towards the pole and more diffuse than at present. A key 632 component of the weaker polar high was the warm Arctic Ocean that, as evidenced by year-633 round high humidities, generated a vigorous hydrological cycle, which in turn helped 634 maintain the polar warmth. 635 The vegetation and climate records entombed in the extensive Late Cretaceous 636 sediments of the Artic point towards what the North polar region is likely to experience as 637 overall anthropogenic global warming progresses. Polar amplification will rapidly drive the 638 Arctic from a place where at present precipitation is sparse under a cold strong polar high-

644	pressure system to a region that is wet and polar air masses become increasingly loosely	
645	constrained as warming proceeds and the polar high weakens. The hydrological cycle is	
646	likely to become invigorated through warming-induced evaporation and enhanced	
647	transpiration from greater vegetation cover and complexity. Eventually this will result in a	
648	near permanent polar cloud cap, high humidity and frequent fog occurrences over both land	
649	and sea, further enhancing warming.	
650		
651	Acknowledgements. The research was performed within the framework of the State program	
652	no. 0135-2019-0044 of the Geological Inst., Russian Acad. Sci. and partly supported by the	Deleted: 2016
653	Russian Foundation for Basic Research project no. 19-05-00121 (AH). CLAMP recalibration	Deleted: 0001
654	was made possible through NSFC-NERC joint research program (41661134049 and	
655	NE/P013805/1) (PJV) and an XTBG International Fellowship for Visiting Scientists (RAS).	
656		
657	Declarations of Interest	
658	All authors declare no competing interests.	
659		
660	Online Supplementary Material at http://journals.cambridge.org/geo	
661 662		
663	References	Commented [RAS1]: Alexei - what other works should
664	ALEKSEEV, P.I., HERMAN, A.B. & SHCHEPETOV, S.V. 2014. New angiosperm genera from	go in here? It would be good to add more recent Russian ones.
665 666	Cretaceous sections of Northern Asia. <i>Stratigraphy and Geol. Correlation</i> , 22 (6), 606–617.	
667		Formatted: Indent: Left: 0 cm, Hanging: 1 cm,
668	AMIOT, R., LECUYER, C., BEUFFETAUT, E., F., F., LEGENDRE, S. & MEARTINEAU, F. 2004.	Line spacing: single
669	Latitudinal temperature gradient during the Cretaceous Upper-Campanian-Middle	
670	Maastrichtian: 2018 record of continental vertebrates. Earth and Planetary Science	
671	Letters, 226 , 255–272.	Deleted: -

675	BOWLING, D.R., MCDOWELL, N.G., BOND, B.J., LAW, B.E. & EHLERINGER, J.R. 2002. ¹³ C	
676	content of ecosystem respiration is linked to precipitation and vapor pressure deficit.	
677	<i>Oecologia</i> , 131 , 113–124.	
678	BUDANTSEV, L.Y. 1968. Late Cretaceous flora of the Vilui Depression. Botanicheskii	
679	Zhurnal, 53 , 3–16.	Deleted: -
680	BUDANTSEV, L.Y. 1983. Istoriya Arkticheskoi Flory Epokhi Rannego Kainofita (Arctic Flora	
681	History in the Early Cenophytic Epoch). Nauka, Leningrad.	
682	CRAGGS, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney Range Flora of	
683	northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 217, 25-46.	Deleted: -
684	DECKER, P.L., WILSON, G.C., WATTS, A.B. & WORK, D. 1997. Growth position petrified trees	
685	over-lying thick Nanushuk Group coal, Lili Creek, Lookout Ridge Quadrangle, North	
686	Slope Alaska. In: Clough, J.G. & Larson, F. (eds) Short Notes on Alaskan Geology	
687	1997. Alaska Division of Geological and Geophysical Surveys, 63–70.	
688	DETTERMAN, R.L. & SPICER, R.A. 1981. New stratigraphic assignment for rocks along	
689	Igilatvik (Sabbath) Creek, William O. Douglas Wildlife Range, Alaska. U.S.	
690	Geological Survey in Alaska, accomplishments during 1979. U.S. Geological Survey	
691	<i>Circular</i> , 823-B , 11–12.	Deleted: -
692	FERGUSON, D.K. 1985. The origin of leaf-assemblages - new light on an old problem. Review	
693	of Palaeobotany and Palynology, 46, 117–188.	
694	FICK, S.E. & HIJMANS, R.J. 2017. Worldclim2: New 1-km spatial resolution climate surfaces	
695	for global land surfaces. International Journal of Climatology, 37, 4302-4315,	
696	http://doi.org/https://doi.org/10.1002/joc.5086.	
697	FILIPPOVA, G.G. 1975a. Flora of the Lower Cretaceous deposits of the Umkuveem and	
698	Ainakhkurgen Depressions. Materialy po geologii i poleznym iskopayemym Severo-	
699	Vostoka SSSR, 22, 23-35.	Deleted: -

704	FILIPPOVA, G.G. 1975b. On the age of the volcanogenic deposits of the left bank of the		
705	Palyavaam River (Chukotka). Proceedings of the Institute of Biology and Pedology,		
706	Far Eastern Scientific Centre, USSR Academy of Sciences, New Series [Trudy Biologo-		
707	Pochvennogo Instituta DVNTs AN SSSR, Novaya Seriya], 27, 55, 59.		Deleted: -
708	FILIPPOVA, G.G. 1979. Cenomanian flora of the Grebenka River and its stratigraphic		
709	significance Dalnevostochnaya Paleofloristika (Palaeofloristics of the Far East). Trudy		
710	Biologo-Pochvennogo Instituta DVNTs Academii Nauk SSSR, Novaya Seriya, 53, 91		Deleted: -
711	115.		
712	FILIPPOVA, G.G. 1988. Grebenka floristic assemblage in the Anadyr River basin (Chukotka).		
713	Tikhookeanskaya Geologiya, 17, 50–60.		Deleted: -
714	FILIPPOVA, G.G. 1989. New data on the Grebenka Flora from the Anadyr River Basin		
715	Vulkanogennyi Mel Dalnego Vostoka (Volcanogenic Cretaceous of the Far East). DVO		
716	Academii Nauk SSSR, Vladivostok, 76–87.		Formatted: Font: Not Bold
			Deleted: -
717	FILIPPOVA, G.G. 1994. Coniacian flora of the northern part of the Pekulnei Range. Kolyma,	Ì	Formatted: Font: Not Bold
718	March 1994, 13–21.	~	Deleted: -
719	FILIPPOVA, G.G. & ABRAMOVA, L.N. 1993. Late Cretaceous flora of North-eastern Russia.		Formatted: Font: Not Bold
720	Nedra, Moscow.		
721	FOREST, C.E., MOLNAR, P. & EMANUEL, K.E. 1995. Palaeoaltimetry from energy		
722	conservation principles. Nature, 343, 249–253.		
723	FREDERIKSEN, N.O., AGER, T.A. & EDWARDS, L.E. 1988. Palynology of Maastrichtian and		
724	Paleocene rocks, lower Colville River region, North Slope of Alaska. Canadian		
725	Journal of Earth Sciences, 25, 512–527.		Deleted: -
726	GOLOVNEVA, L.B. 1988. Novyi rod Microconium (Cupressaceae) iz pozdnemelovykh		
727	otlozhenii Severo-Vostoka SSSR (A new genus <i>Microconium</i> (Cupressaceae) form the		

734	Late Cretaceous deposits of the North-East of the USSR). Botanicheskii Zhurnal, 73(8),	
735	1179–1184 (in Russian).	Deleted: -
736	GOLOVNEVA, L.B. 1991a. Novyi rod Palaeotrapa (Trapaceae?) i novye vidy Quereuxia iz	
737	rarytkinskoi svity (Koryakskoye nagor'ye, maastrikht-danii (The new genus	
738	Palaeotrapa (Trapaceae?) and new species Quereuxia from the Rarytkin Formation	
739	(the Koryak Upland, Maastrichtian - Danian)). Botanicheskii Zhurnal, 76(4), 601–610	Deleted: -
740	(in Russian).	
741	GOLOVNEVA, L.B. 1991b. Vidy roda Trochodendroides (Cercidiphyllaceae) v maastrikht-	
742	datskoi rarytkinskoi flore Koryakskogo nagor'ya (The species of the genus	
743	Trochodendroides (Cercidiphyllaceae) in Maastrichtian - Danian Rarytkin Flora of the	
744	Koryak Upland). Botanicheskii Zhurnal, 76(3), 427-436 (in Russian).	Deleted: -
745	GOLOVNEVA, L.B. 1994a. Maastrichtian–Danian Floras of Koryak Uplands. Trudy	
746	Botanicheskogo Instituta, VL Komarova, 13, 1–145.	Deleted: -
747	GOLOVNEVA, L.B. 1994b. The flora of the Maastrichtian-Danian deposits of the Koryak	
748	Uplands, northeast Russia. Cretaceous Research, 15, 89, 100.	Deleted: -
749	GOLOVNEVA, L.B. 2000. The Maastrichtian (Late Cretaceous) climate in the Northern	
750	Hemisphere. In: Hart, M.B. (ed) Climates: past and present. Geological Society of	
751	London Special Publication, London, 181, 43–54.	Deleted: -
752	GOLOVNEVA, L.B., & ALEKSEEV, P. I. 2010. The genus <i>Trochodendroides</i> Berry in the	Formatted: Small caps
753	Cretaceous floras of Siberia. In: Budantsev, L.Yu. (ed.), Palaeobotany, Vol. 1, 120-166	Formatted: Line spacing: Double
754	[in Russian, English summary].	
755	•	Formatted: Check spelling and grammar
756	GOLOVNEVA, L.B. & HERMAN, A.B. 1992. New data on composition and age of flora of the	Formatted: Normal, Line spacing: single
757	Koryak Formation (Borth-eastern Russia). Botanicheskii Zhurnal, 77(7), 60–71.	Deleted: -

765	GOLOVNEVA, L.B., HERMAN, A.B., & SHCZEPETOV, S.V. 2015. The genus Menispermites		Formatted: Small caps
766	Lesquereux (angiosperms) in the Cretaceous Grebenka Flora of Northeastern Russia.		
767	Paleontological Journal, 49(4), 429-437.		
768	GOLOVNEVA, L.B. & SHCHEPETOV, S.V. 2015. Floristic assemblages from Upper Cretaceous		Formatted: Small caps
769	deposits of East Chukotka. In: Paleobotanika (Palaeobotany), Vol. 6. St. Marafon,		Formatted: Font: Bold
770	Petersbourg, 96–119 [in Russian].		
771	GOLOVNEVA, L.B., SHCHEPETOV, S.V., & ALEKSEEV, P.I. 2011. Chingandzha Flora (Late	~	Formatted: Small caps
772	Cretaceous, North-eastern Russia): systematic composition, palaeoecological features		Formatted: Normal
773	and stratigraphic significance. In: Lectures in Memory of A.N. Kryshtofovich, Iss. 7, 37-		Formatted: Font: Bold
774	61 [in Russian],		Formatted: Check spelling and grammar
775	GRANT, P.R., SPICER, R.A. & PARRISH, J.T. 1988. Palynofacies of northern Alaskan		
776	Cretaceous coals. 7th International Palynological Congress Brisbane, Abstracts		
777	Volume, <mark>60</mark> .		Formatted: Font: Bold
778	HERMAN, A.B. 1990. Late Cretaceous Floras and Climate of the Anadyr-Koryakian		
779	Subregion (North-East USSR). Proceedings of the Symposium "Paleofloristic and		
780	Paleoclimatic Changes in the Cretaceous and Tertiary, 73–79.		Deleted: -
781	HERMAN, A.B. 1991. Cretaceous angiosperms and phytostratigraphy of North-Western		
782	Kamchatka and Yelistratov Peninsula. In: Herman, A.B. & Lebedev, E.L. (eds)		
783	Stratigraphy and flora of the Cretaceous of north-western Kamchatka. Nauka,		
784	Moscow, 5 _{-141.}		Deleted: -
785	HERMAN, A.B. 1993. Late Maestrichtian flora from the Emima-ll'naivaam Interfluve, the		
786	northeastern Koryak Highland, and its stratigraphic significance. Stratigraphy and		
787	Geological Correlation, 1, 427–434.		Deleted: -

791	HERMAN, A.B. 1994. Late Cretaceous Arctic platanoids and high latitude climate. In: Boulter,			
792	M.C. & Fisher, H.C. (eds) Cenozoic Plants and Climates of the Arctic (NATO ASI Ser.,			
793	<i>I 27</i>). Springer, Berlin, 151–159.		Deleted: -	
794	HERMAN, A.B. 2002. Late Early-Late Cretaceous floras of the North Pacific Region:			
795	florogenesis and early angiosperm invasion. Review of Palaeobotany and Palynology,			
796	122 , 1–11.		Deleted: -	
797	HERMAN, A.B. 2007. Comparative paleofloristics of the Albian-early Paleocene in the			
798	Anadyr-Koryak and North Alaska Subregions, Part 1: The Anadyr-Koryak Subregion.			
799	Stratigraphy and Geological Correlation, 15, 321-332.		Deleted: -	
800	HERMAN, A.B. 2011. Al'bskaya – Paleotsenovaya Flora Severnoi Patsifîki (Albian –			
801	Paleocene Flora of the North Pacific Region). GEOS, Moscow.			
802	HERMAN, A.B. 2013. Albian – Paleocene Flora of the North Pacific: Systematic Composition,	~	Formatted: Small caps	
	Palaeofloristics and Phytostratigraphy. Stratigraphy and Geological Correlation, 21(7),		Formatted: Normal	
803				
803 804	<u></u>			
804	<u>689–747.</u>		Deleted: ¶	
804 805	689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora		Deleted: ¶	
804 805 806	 689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora site (North-Eastern Asia). <i>Fossil Imprint</i>, 74, 159–164, 		Deleted: ¶	
804 805 806 807	 689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora site (North-Eastern Asia). <i>Fossil Imprint</i>, 74, 159–164, HERMAN, A.B., AKHMETIEV, M.A., KODRUL, T.M., MOISEEVA, M.G. & IAKOVLEVA, A.I. 		Deleted: ¶	
804 805 806 807 808	 689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora site (North-Eastern Asia). <i>Fossil Imprint</i>, 74, 159–164, HERMAN, A.B., AKHMETIEV, M.A., KODRUL, T.M., MOISEEVA, M.G. & IAKOVLEVA, A.I. 2009. Flora Development in Northeastern Asia and Northern Alaska during the 		Deleted: ¶ Deleted: -	
804 805 806 807 808 809	 689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora site (North-Eastern Asia). <i>Fossil Imprint</i>, 74, 159–164, HERMAN, A.B., AKHMETIEV, M.A., KODRUL, T.M., MOISEEVA, M.G. & IAKOVLEVA, A.I. 2009. Flora Development in Northeastern Asia and Northern Alaska during the Cretaceous–Paleogene Transitional Epoch. <i>Stratigraphy and Geological Correlation</i>, 		Deleted: - Formatted: Small caps	
804 805 806 807 808 809 810	 689–747. HERMAN, A.B. 2018. On the likely palaeoelevation of the Turonian-Coniacian Arman Flora site (North-Eastern Asia). <i>Fossil Imprint</i>, 74, 159–164, HERMAN, A.B., AKHMETIEV, M.A., KODRUL, T.M., MOISEEVA, M.G. & IAKOVLEVA, A.I. 2009. Flora Development in Northeastern Asia and Northern Alaska during the Cretaceous–Paleogene Transitional Epoch. <i>Stratigraphy and Geological Correlation</i>, 17, 79–97. 		Deleted: -	

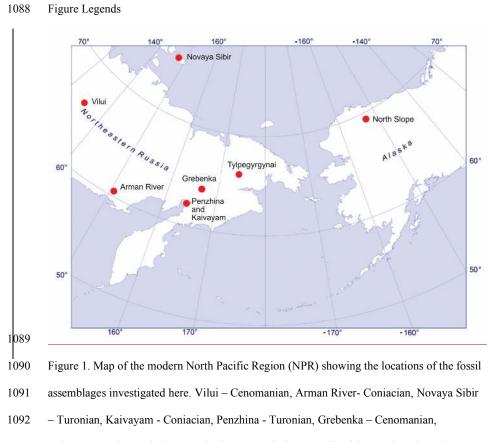
819	HERMAN, A.B., KOSTYLEVA, V.V., NIKOLSKII, P.A., BASILYAN, A.E., & KOTEL'NIKOV, A.E.	
820	2019. New data on the Late Cretaceous flora of the New Siberia Island, New Siberian	Formatted: Normal
821	Islands. Stratigraphy and Geological Correlation, 27(3),	Formatted: Font: Check spelling and grammar
822	HERMAN, A.B. & LEBEDEV, Y.L. 1991. Stratigraphy and flora of the Cretaceous deposits of	
823	North-West Kamchatka. Academy of Sciences of the USSR Report 468.	
824	HERMAN, A.B. & SHCZEPETOV, S.V. 1991. The Mid-Cretaceous flora of the Anadyr river	
825	basin (Tchukotka, NE Siberia). Proceedings of the Pan-European Palaeobotanical	
826	Conference, Palaeovegetational development in Europe, 273-279.	Deleted: -
827	HERMAN, A.B. & SPICER, R.A. 1995. Latest Cretaceous flora of northeastern Russia and the	
828	"Terminal Cretaceous Event" in the Arctic. Paleontological Journal, 29, 22–25.	Deleted: -
829	HERMAN, A.B. & SOKOLOVA, A.B. 2016. Late Cretaceous Kholokhovchan Flora of	Formatted: Small caps
330	Northeastern Asia: Composition, age and fossil plant descriptions. Cretaceous	Formatted: Font: Italic
331	<u>Research</u> , 59 , 249–271.	Formatted: Font: Bold
332	HERMAN, A.B. & SPICER, R.A. 1996a. Palaeobotanical evidence for a warm Cretaceous	
333	Arctic Ocean. Nature, 380, 330-333.	
334	HERMAN, A.B. & SPICER, R.A. 1996b. Nilssoniocladus in the Cretaceous Arctic: new species	
335	and biological insights. Review of Palaeobotany and Palynology, 92, 229-243.	Deleted: -
836	HERMAN, A.B. & SPICER, R.A. 1997a. New quantitative palaeoclimate data for the Late	
337	Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeography,	
838	Palaeoclimatology, Palaeoecology, 128 , 227 <u>–</u> 251.	Deleted: -
339	HERMAN, A.B. & SPICER, R.A. 1997b. The Koryak flora: did the early Tertiary deciduous	
840	flora begin in the late Maastrichtian of northeastern Russia? Mededelingen Nederlands	
341	Instituuut voor Toegepaste Geowetenschappen TNO, 58, 87–92.	Deleted: -
342	HERMAN, A.B., SPICER, R.A. & KVACEK, J. 2002. In: Wagreich, M. (ed) Aspects of	
343	Cretaceous Stratigraphy and Palaeobiogeography. Proceedings 6th Internat.	

849	Cretaceous Symposium, Vienna 2000. Österreichische Academie der Wissenschaften,	
850	Schriftenreihe der Erdwissenschaftlichen Kommissionen, Vienna, 15, 93–108.	Deleted: -
851	HERMAN, A.B., SPICER, R.A. & SPICER, T.E.V. 2016. Environmental constraints on terrestrial	
852	vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous.	
853	Palaeogeogr., Palaeoclimatol., Palaeoecol., 441, 317–338.	
854	HOLLICK, A. 1930. The Upper Cretaceous, Floras of Alaska. United States Geological Survey	Deleted: s
855	Professional Paper, 159, 1–123.	Deleted: -
856	HUFFAKER, C.B. 1942. Vegetational Correlations with Vapour Pressure Deficit and Relative	
857	Humidity. American Midland Naturalist, 28, 486-500.	
858	IPCC (ed) 2014. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth	
859	Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing	
860	Team. IPCC, Geneva, Switzerland, 151.	
861	KATUL, G.G., PALMROTH, S. & OREN, R. 2009. Leaf stomatal responses to vapour pressure	
862	deficit under current and CO2- enriched atmosphere explained by the economics of gas	
863	exchange. Plant Cell Environment, 32, 968-979.	
864	KIRITCHKOVA, A.I. & SAMYLINA, V.A. 1978. Korrelyatsiya nizhnemelovykh otlozhenii	
865	Lenskogo uglenosnogo basseina i Severo-Vostoka SSSR (Correlation of Lower	
866	Cretaceous deposits of Lena coal-bearing basin and North-eastern USSR). Soviet Geol.,	
867	12 , 3–18.	
868	KOVACH, W.L. & SPICER, R.A. 1996. Canonical correspondance analysis of leaf	
869	physiognomy: a contribution to the development of a new palaeoclimatological tool.	
870	Palaeoclimates, 2, 125–138.	Deleted: -
871	KRASSILOV, V.A. 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II Late	
872	Cretaceous and Danian. Palaeogeography, Palaeoclimatology, Palaeoecology, 17,	
873	157 <mark>_</mark> 172.	Deleted: -

879	KRASSILOV, V.A. 1978. Late Cretaceous gymnosperms from Sakhalin, U.S.S.R., and the	
880	terminal Cretaceous event. Palaeontology, 21 (4), 893-905.	Deleted: -
881	LEBEDEV, Y.L. 1965. Late Jurassic Flora of Zeia River and the Jurassic - Cretaceous	
882	Boundary. Academy of Sciences of the USSR, 125, 5-142.	Deleted: -
883	LEBEDEV, Y.L. 1976. Evolution of Albian-Cenomanian floras of Northeast USSR and the	
884	association between their composition and facies conditions. International Geology	
885	<i>Review</i> , 19 , 1183–1190.	Deleted: -
886	LEBEDEV, Y.L. 1987. Stratigraphy and age of the Okhotsk-Chukotsk volcanogenic belt.	
887	Academy of Sciences of the USSR, 421, 3–175.	Deleted: -
888	LEBEDEV, Y.L. 1992. The Cretaceous floras of Northeastern Asia. Izvestiya Akademii Nauk,	
889	seriya geologicheskaya, 4 , 85 <u>–</u> 96.	Deleted: -
890	LEBEDEV, Y.L. & HERMAN, A.B. 1989. A new genus of Cretaceous angiosperms- Dalembia.	
		Delated
891	Review of Palaeobotany and Palynology, 59 , 77–91.	Deleted: -
891 892	LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia</i> -	Deletea: -
		Deletea: -
892	LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia</i> -	Deleted: -
892 893	LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-</i> <i>Pacific Journal of the Atmospheric Sciences</i> , 50 , 31–43.	Deletea: -
892 893 894	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and 	Deretea: -
892 893 894 895	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 	Deleted: -
892 893 894 895 896	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 749. 	Deleted: -
892 893 894 895 896 897	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 749. MULL. C.G., HOUSEKNECHT, D.W. & BIRD, K.J. 2003. Revised Cretaceous and Tertiary 	Deleted: -
 892 893 894 895 896 897 898 	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 749. MULL. C.G., HOUSEKNECHT, D.W. & BIRD, K.J. 2003. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska. <i>U.S. Geological</i> 	
 892 893 894 895 896 897 898 899 	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 749. MULL. C.G., HOUSEKNECHT, D.W. & BIRD, K.J. 2003. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska. <i>U.S. Geological Survey Professional Paper</i>, 1673, 1–51. 	
 892 893 894 895 896 897 898 899 900 	 LEE, S. 2014. A theory for polar amplification from a general circulation perspective. <i>Asia-Pacific Journal of the Atmospheric Sciences</i>, 50, 31–43. LOTTES, A.L. 1987. Paleolatitude determinations: comparison of palaeoclimatic and palaeomagnetic methods. <i>Geological Society of America Abstracts with Program</i>, 19, 749. MULL. C.G., HOUSEKNECHT, D.W. & BIRD, K.J. 2003. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska. <i>U.S. Geological Survey Professional Paper</i>, 1673, 1–51. NEW, M., HULME, M. & JONES, P. 1999. Representing Twentieth-Century Space–Time 	

910	NIKITENKO, B.L., DEVYATOV, V.P., LEBEDEVA, N.K., BASOV, V.A., GORYACHEVA, A.A.,	Formatted: Small caps
911	PESTCHEVITSKAYA, E.B., & GLINSKIKH, L.A. 2017. Jurassic and Cretaceous	
912	stratigraphy of the New Siberian Archipelago (Laptev and East Siberian seas): facies	
913	zoning and lithostratigraphy. Geologiya i Geofizika, 58(12), 1867–1885 (in Russian).	
914	NIKITENKO, B.L., DEVYATOV, V.P., LEBEDEVA, N.K., BASOV, V.A., FURSENKO, E.A.,	Formatted: Small caps
915	GORYACHEVA, A.A., PESTCHEVITSKAYA, E.B., GLINSKIKH, L.A., & KHAFAEVA, S.N.	Formatted: Normal
916	2018. Jurassic and Cretaceous biostratigraphy and organic matter geochemistry of the	
917	New Siberian Islands (Russian Arctic). Geologiya i Geofizika, 59(2), 211–230 (in	
918	Russian).	
919	OREN, R., SPERRY, J.S., KATUL, G.G., PATAKI, D.E., EWERS, B.E., PHILLIPS, N. & SCHÄFER,	
920	K.V.R. 1999. Survey and synthesis of intra- and interspecific variation in stomatal	
921	sensitivity to vapour pressure deficit. Plant Cell Environment, 22, 1515-1526.	
922	PARRISH, J.T. & SPICER, R.A. 1988a. Middle Cretaceous wood from the Nanushuk Group,	
923	Central North Slope, Alaska. Palaeonotology, 31, 19-34.	
924	PARRISH, J.T. & SPICER, R.A. 1988b. Late Cretaceous terrestrial vegetation: a near-polar	
925	temperature curve. Geology, 16, 2–25.	
926	PIGLIUCCI, M. 2003. Phenotypic integration: studying the ecology and evolution of complex	
927	phenotypes. Ecology Letters, 6, 265–272.	
928	RIVAS-MARTINEZ, S., SÁNCHEZ-MATA, D. & COSTA, M. 1999. Itinera Geobotanica, 12, 3-	
929	316.	
930	SABLE, E.G. & STRICKER, G.D. 1987. Coal in the National Petroleum Reserve in Alaska	
931	(NPRA): framework geology and resources. In: Taileur, I. & Weimer, P. (eds) Alaskan	
932	North Slope Geology. Society of Economic Paleontologists and Mineralogists, Pacific	
933	Section, Bakersfield, California, 1, 195–215.	

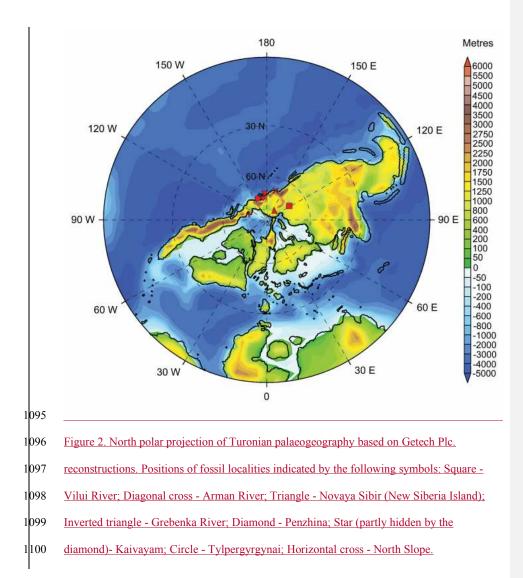
934	SAMYLINA, V.A. 1963. Mesozoic flora Aldan. Academiya Nauk S.S.S.R., Paleobotanica, ser.	
935	8, 4 , 59–139.	
936	SAMYLINA, V.A. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and	Formatted: EndNote Bibliography
937	fruit remains. J. Linnaean Soc. (Botany), 61, 207–218.	Formatted: Font: Palatino
938	SAMYLINA, V.A. 1973. Correlation of Lower Cretaceous continental deposits of Northeast	
939	USSR based on palaeobotanical data. Sovietskaya Geologiya, 8, 42-57.	
940	SAMYLINA, V.A. 1974a. Florae Cretae Prioris Partium Boreali-orientalium URSS. Academia	
941	Scientiarum URSS, 3–54.	
942	SAMYLINA, V.A. 1974b. Early Cretaceous floras of Northeast USSR (problems of	
943	establishing Cenophytic floras) [Rannemelovye flory severo-vostoka SSSR. K probleme	
944	stanovleniya flor Kainofita]. Nauka, Leningrad.	
945	SAMYLINA, V.A. 1976. The Cretaceous flora of Omsukchan (Magadan district). Komarov	
946	Botanical Institute of the Academy of Sciences of the USSR.	
947	SAMYLINA, V.A. 1988. Arkagala stratoflora of northeastern Asia [Arkagalinskaya sratoflora	
948	severo-vostoka Azii]. Nauka, Leningrad.	
949	SAMYLINA, V.A. & SHCZEPETOV, S.V. 1991. Ginkgovyye i chekanovskievyye iz	Deleted: SAMYLINA, V.A. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit
950	verkhnemelovykh otlozhenii Yeliseevskogo obnazheniiy na r. Grebyonka	remains. J. Linnaean Soc. (Botany), 61, 207–218.¶
951	(pravoberezh'ye r. Anadyr') (The ginkgoaleans and czekanowskialeans from the Upper	
952	Cretaceous deposits of the Yeliseev outcrop on the Grebenka River (the right bank of	
953	the Anadyr River)). Botanicheskii Zhurnal, 76(7), 950–956 (in Russian).	
954	Schubert, B.A., Jahren, A.H., Eberle, J.J., Sternberg, L.S.L. & Eberth, D.A. 2012. A	
955	summertime rainy season in the Arctic forests of the Eocene. Geology, 40, 523-526.	
956	SCOTT, R.A. & SMILEY, C.J. 1979. Some Cretaceous megafossils and microfossils from the	
957	Nanushuk Group, northern Alaska: a preliminary report. U.S. Geological Survey	
958	<i>Circular</i> , 794 , 89–111.	

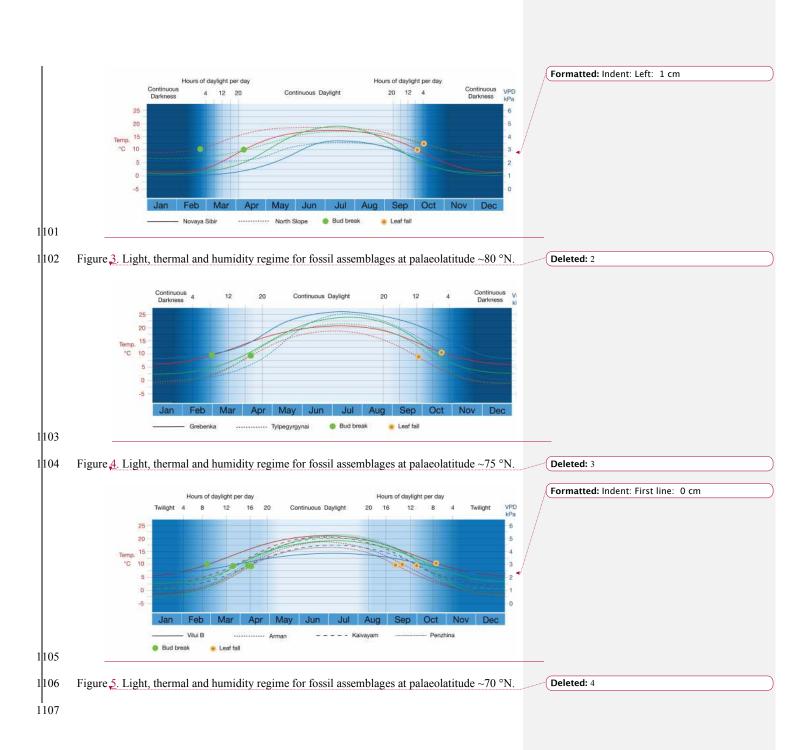

962	SHCZEPETOV, S.V. 1991. Mid Cretaceous flora of the Chauna Group (central Chukotka):	
963	stratigraphic setting, systematic composition, atlas of plants [Srednemelovaya flora	
964	Chaunskoi Serii (tsentral'naya Chukotka): stratigraficheskoye polozheniye,	
965	sistematicheskii sostav, stlas rastenii], Magadan.	Formatted: Font: Italic
966	SHCZEPETOV, S.V. 1995. Nonmarine Cretaceous Stratigraphy of North-eastern Russia	
967	[Korrelyatsiya nemorskogo mela Severo-Vostoka Rossii]. Severo-Vostochnyi	
968	kompleksnyi nauchno-issledovatel'skiy institut Sibirskogo otdeleniya Akademii nauk,	
969	Magadan, Magadan.	
970	SHCZEPETOV, S.V., & GOLOVNEVA, L.B. 2014. The Late Cretaceous Zarya flora of the	Formatted: Small caps
971	Northern Okhotsk region and phytostratigraphy of the lower part of the Okhotsk-	
972	Chukotka volcanogenic belt section. Stratigraphy and Geological Correlation, 22(4),	
973	<u>391–405.</u>	
974	SHCZEPETOV, S.V., & HERMAN, A.B. 2017. The formation conditions of the burial site of Late-	Formatted: Small caps
975	Cretaceous dinosaurs and plants in the Kakanaut River basin (Koryak Highlands,	Formatted: Normal
975 976	Cretaceous dinosaurs and plants in the Kakanaut River basin (Koryak Highlands, Northeastern Asia). <i>Stratigraphy and Geological Correlation</i> , 25 (4), 400–418,	Formatted: Normal Formatted: Font: Check spelling and grammar
976	Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418.	
976 977	Northeastern Asia). <i>Stratigraphy and Geological Correlation</i> , 25 (4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. <i>Mid-Cretaceous flora of the right</i>	
976 977 978	Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils	
976 977 978 979	Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan.	
976 977 978 979 980	 Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan. SMILEY, C.J. 1966. Cretaceous floras of the Kuk River area, Alaska, stratigraphic and 	
976 977 978 979 980 981	 Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan. SMILEY, C.J. 1966. Cretaceous floras of the Kuk River area, Alaska, stratigraphic and climatic interpretations. Geological Society of America Bulletin, 77, 1–14. 	
976 977 978 979 980 981 982	 Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan. SMILEY, C.J. 1966. Cretaceous floras of the Kuk River area, Alaska, stratigraphic and climatic interpretations. <i>Geological Society of America Bulletin</i>, 77, 1–14. SMILEY, C.J. 1969a. Floral zones and correlations of Cretaceous Kukpowruk and Corwin 	
976 977 978 979 980 981 982 983	 Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan. SMILEY, C.J. 1966. Cretaceous floras of the Kuk River area, Alaska, stratigraphic and climatic interpretations. Geological Society of America Bulletin, 77, 1–14. SMILEY, C.J. 1969a. Floral zones and correlations of Cretaceous Kukpowruk and Corwin Formations, northwestern Alaska. American Association of Petroleum Geologists 	
976 977 978 979 980 981 982 983	 Northeastern Asia). Stratigraphy and Geological Correlation, 25(4), 400–418, SHCZEPETOV, S.V., HERMAN, A.B. & BELAYA, B.V. 1992. Mid-Cretaceous flora of the right bank of the Anadyr River (stratigraphic setting, systematic composition, plant fossils atlas). SevVost. Kompl. NauchnIssled. Inst. DVO AN SSSR, Magadan. SMILEY, C.J. 1966. Cretaceous floras of the Kuk River area, Alaska, stratigraphic and climatic interpretations. Geological Society of America Bulletin, 77, 1–14. SMILEY, C.J. 1969a. Floral zones and correlations of Cretaceous Kukpowruk and Corwin Formations, northwestern Alaska. American Association of Petroleum Geologists 	

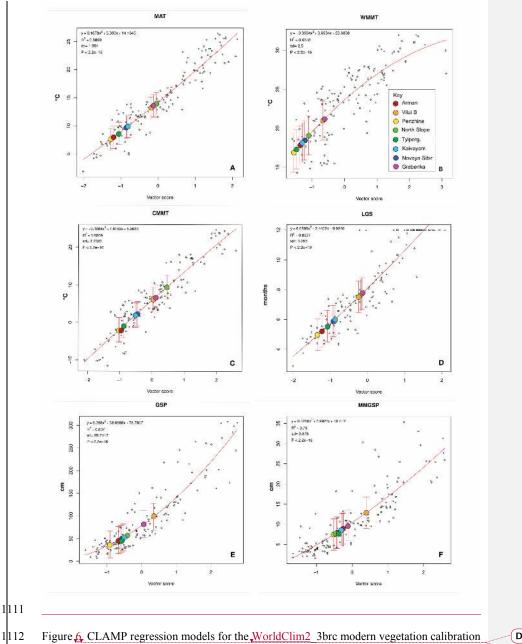
985	SMILEY, C.J. 1969b. Cretaceous Floras of the Chandler-Colville Region, Alaska, stratigraphy
986	and preliminary floristics. American Association of Petroleum Geologists Bulletin, 53,
987	482–502.
988	SPICER, R.A. 1981. The sorting and deposition of allochthonous plant material in a modern
989	environment at Silwood Lake, Silwood Park, Berkshire. USGS Prof. Pap. 1143, 1-77.
990	SPICER, R.A. 1986. Comparative leaf architectural analysis of Cretaceous radiating
991	angiosperms. In: Spicer, R.A. & Thomas, B.A. (eds) Systematic and Taxonomic
992	Approaches in Palaeobotany. Systematics Association Special Volume, 31, 223-233.
993	SPICER, R.A. 1987. Late Cretaceous Floras and terrestrial environment of Northern Alaska.
994	Alaskan North Slope Geology, 1, 497–512.
995	SPICER, R.A. 2018. Phytopaleoaltimetry: Using Plant Fossils to Measure Past Land Surface
996	Elevation. In: Hoorn, C., Perrigo, A. & Antonelli, A. (eds) Mountains, Climate and
997	Biodiversity, (Wiley-Blackwell), 96-109.
998	SPICER, R.A., AHLBERG, A., HERMAN, A.B., KELLEY, S.P., RAIKEVICH, M.I. & REES, P.M.
999	2002. Palaeoenvironment and ecology of the middle Cretaceous_Grebenka flora of
1000	northeastern Asia. Palaeogeography Palaeoclimatology Palaeoecology, 184, 65-105.
1001	SPICER, R.A. & CHAPMAN, J.E. 1990. The evolution of high latitude floras, Trends in Ecology
1002	and Evolution, 5, 279–284.
1003	SPICER, R.A. & CORFIELD, R.M. 1992. A Review of Terrestrial and Marine Climates in the
1004	Cretaceous and Implications for Modelling the Greenhouse Earth. Geological
1005	Magazine, 129 , 168–180.
1006	SPICER, R.A. & HERMAN, A.B. 2001. The Albian-Cenomanian flora of the Kukpowruk River,
1007	western North Slope, Alaska: stratigraphy and plant communities. Cretaceous
1008	<i>Research</i> , 22 , 1–40.

1011	SPICER, R.A. & HERMAN, A.B. 2010. The Late Cretaceous Environment of the Arctic: A	
1012	quantitative reassessment using plant fossils. Palaeogeography, Palaeoclimatology,	
1013	Palaeoecology, 295 , 423 <u>442</u> .	Deleted: -
1014	SPICER, R.A., HERMAN, A.B. & KENNEDY, E.M. 2004. The Foliar Physiognomic Record of	
1015	Climatic Conditions During Dormancy: CLAMP and the Cold Month Mean	
1016	Temperature. Journal of Geology, 112, 685–702.	Deleted: -
1017	SPICER, R.A., HERMAN, A.B., YANG, J. & SPICER, T.E.V. 2014. Why Future Climate Change	
1018	is likely to be Underestimated: evidence from Palaeobotany. Journal of the Botanical	
1019	Society of Bengal, 67 , 75–88.	Deleted: -
1020	SPICER, R.A. & PARRISH, J.T. 1986. Paleobotanical evidence for cool North Polar climates in	
1021	middle Cretaceous (Albian-Cenomanian) time. Geology, 14, 703-706.	
1022	SPICER, R.A. & PARRISH, J.T. 1990a. Late Cretaceous-early <u>Tertiary</u> palaeoclimates of	Deleted: Tertairy
1023	northern high latitudes: a guantitative view. Journal of Geological Society, Lond., 147,	Deleted: qunatitative
1024	329–341.	
1025	SPICER, R.A. & PARRISH, J.T. 1990b. Latest Cretaceous woods of the central North Slope,	
1026	Alaska. Palaeontology, 33, 225-242.	
1027	SPICER, R.A., REES, P.M. & CHAPMAN, J.E. 1993. Cretaceous phytogeography and climate	
1028	signals. In: Allen J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A., Valdes, P.J.	
1029	(eds), Palaeoclimates and Their Modelling. Royal Society/Chapman and Hall. 69–78.	
1030	SPICER, R.A., PARRISH, J.T. & GRANT, P.R. 1992. Evolution of vegetation and coal-forming	
1031	environments in the Late Cretaceous of the North Slope of Alaska. In: McCabe P.J.,	
1032	Parrish J.T. (eds), Controls on the Distribution and Quality of Cretaceous Coals.	
1033	Geol. Soc. Amer. Spec. Pap., No 267 , 177–192.	
1034	SPICER, R.A. & WOLFE, J.A. 1987. Plant taphonomy of late Holocene deposits in Trinity	
1035	(Clair Engle) Lake, northern California. Paleobiology, 13, 227–245.	

1041	SPICER, R.A., WOLFE, J.A. & NICHOLS, D. J. 1987. Alaskan Cretaceous-Tertiary floras and	
1042	Arctic origins. Paleoebiology, 13, 73-83.	
1043	TOMSICH, C.S., MCCARTHY, P.J., FOWELL, S.J. & SUNDERLIN, D. 2010. Paleofloristic and	Formatted: Small caps
1044	Paeoenevironmental information from a Late Cretaceous (Maastrichtian) flora of the	
1045	lower Cantwell Formation near Sable Mountain, Denali National park, Alaska.	
1046	Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 389–408,	Formatted: Font: Italic
 1047	UFNAR, D.F., LUDVIGSON, G.A., GONZÁLEZ, L.A., BRENNER, R.L. & WITZKE, B.J. 2004. High	Deleted: ¶ Formatted: Font: Bold
1048	latitude meteoric 2180 compositions: Paleosol siderite in the Middle Cretaceous	
1049	Nanushuk Formation, North Slope, Alaska. <i>Geological Society of America Bulletin</i> ,	
1050	116 , 463, 473.	Deleted: -
1051	VASILENKO, D.V., MASLOVA, N.P. & HERMAN, A.B. 2016. Galls on the Compositiphyllum	Formatted: Small caps
1052	retinerve (Herman) Herman et Kvaček (Angiosperms) from the Turonian of the	Formatted: Normal
1053	Northwestern Kamchatka Peninsula, Russia. Paleontological Journal, 50 (6), 653–657.	
1054	WEST, C.K., GREENWOOD, D.R. & BASINGER, J.F. 2015. Was the Arctic Eocene 'rainforest'	
1055	monsoonal? Estimates of seasonal precipitation from early Eocene megafloras from	
1056	Ellesmere Island, Nunavut. <i>Earth and Planetary Science Letters</i> , 427 , 18–30.	Deleted: -
1050	WOLFE, J.A. 1993. A method of obtaining climatic parameters from leaf assemblages: United	
1057		Deleted: -
	States Geological Survey Bulletin. United States Geological Survey Bulletin, 2040, 1	Deleted: -
1059	73.	
1060	WOLFE, J.A. & SPICER, R.A. 1999. Fossil Leaf Character States: Multivariate Analysis.	
1061	Geological Society, London, 233–239.	
1062	YANG, J., SPICER, R.A., SPICER, T.E.V., ARENS, N.C., JACQUES, F.M.B., SU, T., KENNEDY,	
1063	E.M., HERMAN, A.B., et al. 2015. Leaf form-climate relationships on the global stage:	
1064	an ensemble of characters. <i>Global Ecology and Biogeography</i> , 24 , 1113–1125.	
1064	an ensemble of characters. <i>Global Ecology and Biogeography</i> , 24 , 1113–1125.	

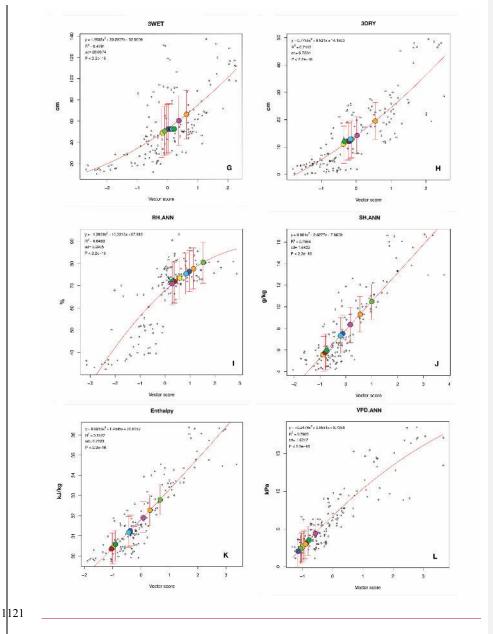

1069	YANG, J., SPICER, R.A., SPICER, T.E.V. & LI, CS. 2011. 'CLAMP Online': a new web-based	
1070	palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North	
1071	America. Palaeobiodiversity and Palaeoenvironments, 91, 163-183.	Deleted: -
1072	YOUTCHEFF, J.S.J., RAO, P.D. & SMITH, J.E. 1987. Variability in two northwest Alaska coal	
1073	deposits. In: Taileur, I. & Weimer, P. (eds) Alaskan North Slope Geology. Society of	
1074	Economic Paleontologists and Mineralogists, Pacific Section, Bakersfield, California,	
1075	1, 225–232.	Deleted: -
1076	ZAKHAROV, Y.D., BORISKINA, N.G., IGNATYEV, A.V., TANABE, K., SHIGETA, Y., POPOV,	
1077	A.M., AFANANSYEVA, T.B. & MAEDA, H. 1999. Palaeotemperature curve for the Late	
1078	Cretaceous of the northwestern circum-Pacific. Cretaceous Research, 20, 685-697.	
1079	ZAKHAROV, Y.D., SHIGETA, Y., POPOV, A.M., VELIVETSKAYA, T.A. & AFANANSYEVA, T.B.	
1080	2011. Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland):	
1081	isotopic and palaeontological evidence. Sedimentary Geology, 235, 122-131.	
1082		
1083		
1084		

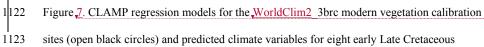



1087

1093 Tylpergyrgynai - Coniacian, North Slope - Coniacian. Details of the stratigraphy and

1094 sedimentary successions at each site are given in http://arcticfossils.nssi.org.cn.

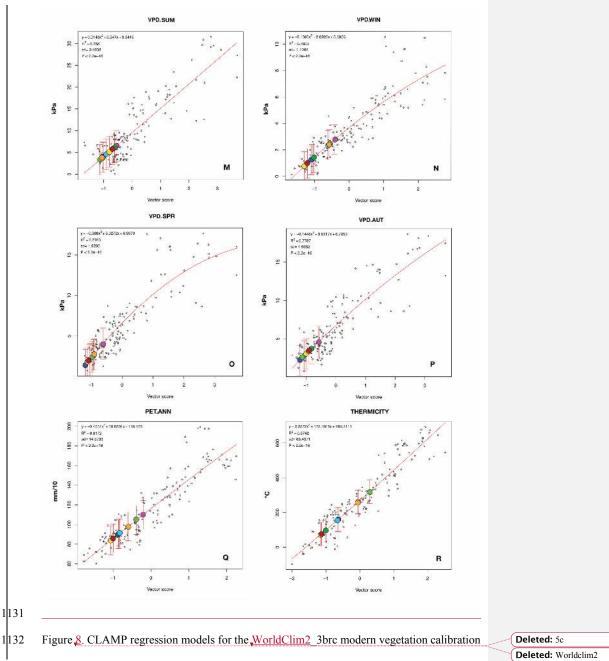




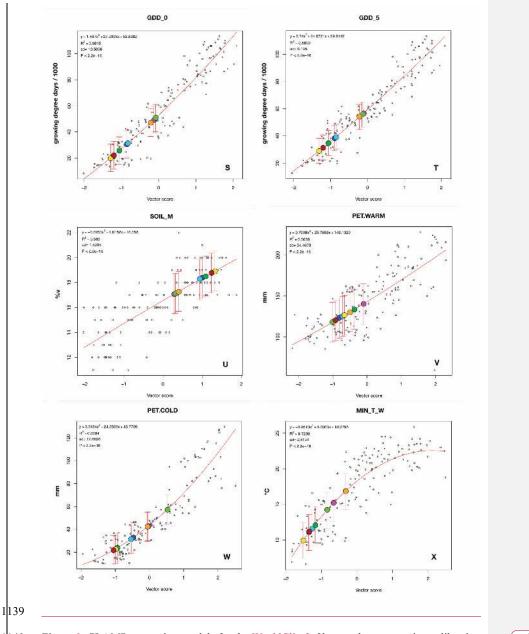
sites (open black circles) and predicted climate variables for eight early Late Cretaceous

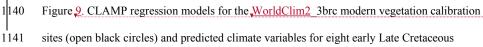
Deleted: 5 Deleted: a Deleted: Worldclim2

- 1117 fossil sites (coloured circles as in the Key shown in Fig. 5a B). Bars indicate ± 1 sd. MAT -
- 1118 mean annual temperature, WMMT warm month mean temperature, CMMT- cold month
- 1119 mean temperature, LGS length of the growing season (temp. >10 °C), GSP growing
- 1120 season precipitation, MMGSP mean monthly growing season precipitation.



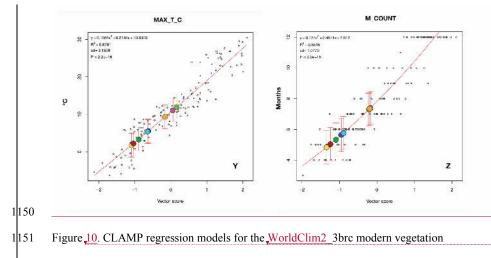
Deleted: 5b


Deleted: Worldclim2


- 1126 fossil sites (coloured circles as in the Key shown in Fig. 5a B). 3WET -precipitation in the
- 1127 three consecutive wettest months, 3DRY precipitation in the three consecutive driest
- 1128 months, RH.ANN mean annual relative humidity, SH.ANN mean annual specific
- 1129 humidity, ENTH mean annual moist enthalpy, VPD.ANN mean annual vapour pressure
- 1130 deficit.

1133 sites (open black circles) and predicted climate variables for eight early Late Cretaceous

- 1136 fossil sites (coloured circles as in the Key shown in Fig. 5a B). VPD.SUM mean summer
- 1137 vapour pressure deficit, VPD.WIN mean winter vapour pressure deficit, VPD.SPR mean
- 1138 spring vapour pressure deficit, VPD.AUT mean autumn vapour pressure deficit.



Deleted: 5d

Deleted: Worldclim2

- 1144 fossil sites (coloured circles as in the Key shown in Fig. 5a B). GDD_0 growing degree
- 1145 days when temperatures are above freezing, GDD_5 growing degree days when
- 1146 temperatures are above +5°C, SOIL_M derived soil moisture capacity, PET.WARM -
- 1147 potential evapotranspiration during the warmest month, PET.COLD potential
- 1148 evapotranspiration during the coldest month, MIN_T_W minimum temperature of the

1152 calibration sites (open black circles) and predicted climate variables for eight early Late

1153 Cretaceous fossil sites (coloured circles as in the Key shown in Fig. 5a B). MAX_T_C -

1154 maximum temperature during the coldest month, M_COUNT - number of months where the

1155 temperature is above +10°C.

1156

Deleted: 5e

Deleted: Worldclim2

1159 1160 1161	Table legends		
1162	Table 1, Summary of CLAMP environmental variables, their acronyms, descriptions and	(Deleted: ¶
1163	units, derived from WorldClim2 gridded data at ~ 1 km spatial resolution.		
1164	4	(Formatted: Indent: Left: 0.25 cm, First line: 0 cm
1165	Table 2. Summary of temperature-related CLAMP-derived metrics for early Late	< (Deleted: ¶
1166	Cretaceous plant assemblages from the North Pacific Region. Values obtained by a CLAMP	·····(Deleted: 1
1167	calibration based on WorldClim2_3br and GRIDMet_3br (in parentheses) gridded climate		
1168	data. MAT - mean annual temperature, WMMT - warm month mean temperature, CMMT		
1169	0- cold month mean temperature, MIN_T_W - minimum temperature of the warmest		
1170	month, MAX_T_C - maximum temperature of the coldest month, THERM compensated		
1171	thermicity index: sum of mean annual temp., min. temp. of coldest month, max. temp. of		
1172	the coldest month, x 10, with compensations for better comparability across the globe,		
1173	GDD_0 - sum of mean monthly temperature for months with mean temperature greater than		
1174	0°C multiplied by number of days, GDD_5 - sum of mean monthly temperature for months		
1175	with mean temperature greater than 5 °C multiplied by number of days, LGS - length of the		
1176	growing season when mean temperatures are above 10 °C, M_COUNT - count of the		
1177	number of months with mean temp greater than 10 °C.		
1178			
1179	Table 3. Summary of precipitation, soil moisture and moist enthalpy CLAMP-derived metrics	(Deleted: 2
1180	for early Late Cretaceous plant assemblages from the North Pacific Region. Values obtained		
1181	by a CLAMP calibration based on WorldClim2 and, in parentheses, GRIDMet_3br gridded		
1182	climate data. GSP - precipitation during the growing season, MMGSP - mean monthly		
1183	precipitation during the growing season, 3WET – precipitation during the three consecutive		
1184	wettest months, $3DRY$ – precipitation during the three consecutive driest months, $SOIL_M$ -		

1189	Derived	l available so	oil water	capacity (volumetric	fraction)	predicted	l using th	e global
------	---------	----------------	-----------	------------	------------	-----------	-----------	------------	----------

1190 compilation of soil ground observations

1191 (ftp://ftp.soilgrids.org/data/recent/AWCh1 M sl2 250m.tif), ENTH-annual mean moist

1192 enthalpy.

1193

1194	Table 4. Summary of humidity metrics, soil moisture and moist enthalpy CLAMP-derived

Deleted: 3

- 1195 metrics for early Late Cretaceous plant assemblages from the North Pacific Region. Values
- 1196 obtained by a CLAMP calibration based on WorldClim2 and GRIDMet_3br (in parentheses)
- 1197 gridded climate data. RH.ANNUAL - annual mean relative humidity, SH.ANNUAL - annual
- 1198 mean specific humidity, VPD.ANN - annual mean vapour pressure deficit, VPD.SUM - mean
- 1199 VPD for the summer quarter, VPD.WIN - mean VPD for the winter quarter, VPD.SPR -
- 1200 mean VPD for the spring quarter, VPD-AUT - mean VPD for the autumn quarter, PET.ANN
- 1201 - annual mean potential evapotranspiration, PET.WARM - mean potential evapotranspiration
- 1202 for the warmest quarter, PET.COLD - mean potential evapotranspiration for the coldest

1203 quarter.

1206

Table 1. CLAMP Climate Variables and Descriptions

Formatted Table

4

Name	<u>Acronyn</u>	Description	<u>Units</u>
Mean annual temperature	MAT	Mean temperature throughout the year	℃ ℃ ℃
Warm month mean temp.	WMMT	Average temperature of the warmest month	°C
Cold month mean temp.	CMMT	Average temperature of the coldest month	°C
Length of the growing season	<u>LGS</u>	Number of months when temperatures are ≥ 10°C	Number
Growing season precipitation	<u>GSP</u>	Total precipitation during the growing season (temperature ≥ 10°C)	<u>cm</u>
Mean monthly growing season precipitation	MMGSP	Average precipitation per month during the growing season	<u>cm</u>
Precipitation during the three wettest months	<u>3-WET</u>	Average precipitation during the three consecutive wettest months	<u>cm</u>
Precipitation during the three driest months	3-DRY	Average precipitation during the three consecutive driest months	<u>cm</u>
Relative humidity	RH.ANN	Average annual relative humidity	%
Specific humidity	RH.ANN	Average annual specific humidity (the amount of	g/kg
-		water in a kg of dry air)	
Enthalpy	<u>ENTH</u>	Average annual moist enthalpy (energy per kilogram of air)	<u>kJ/kg</u>
Minimum temperature of the warmest month	MIN_T_W	Lowest daily temperature during the warmest month	<u>°C</u>
Maximum temperature of the coldest month	MAX T C	Warmest daily temperature during the coldest month	<u>°C</u>
Compensated Thermicity Index	THERM	Sum of mean annual temp., min. temp. of coldest month, max. temp. of the coldest month, x 10, with compensations for better global comparability	<u>°C</u>
<u>Growing degree days 0</u>	<u>GDD_0</u>	Sum of mean monthly temperature for months with mean temperature > 0°C multiplied by the number of days this	<u>Number</u>
Growing degree days 5	GDD_5	<u>occurs</u> Sum of mean monthly temperature for months with mean temperature 5°C multiplied by number of days this occurs	<u>Number</u>
Month count	M_COUNT	<u>Count of the number of months when the</u> temperature > 10°C	Number
<u>Soil Moisture</u>	<u>SOIL M</u>	Derived available soil water capacity (volumetric fraction) at 7 standard depths predicted using the global compilation of soil ground observations.	<u>%v</u>
Mean annual vapour pressure deficit	VPD. ANN	Average annual vapour pressure deficit	hPa
Mean summer vapour pressure deficit	VPD.SUM	Average vapour pressure deficit during the three summer months	hPa
Mean winter vapour pressure deficit	VPD.WIN	Average vapour pressure deficit during the three winter months	<u>hPa</u>
Mean spring vapour pressure deficit	VPD.SPR	Average vapour pressure deficit during the three spring months	<u>hPa</u>
Mean autumn vapour pressure deficit	VPD.AUT	Average vapour pressure deficit during the three autumn months	<u>hPa</u>
Potential evapotranspiration (PET)	PET.ANN	The ability of the atmosphere to remove water through evapo-transpiration, given unlimited water supply, averaged over the year	mm/mont
Mean PET of the warmest month	PET.WARM	PET averaged over the warmest month	mm/mont

Table 2. Temperature-Related Metrics Deleted: 1 MIN_T_W (°C) M COUNT (months) Formatted Table CMMT (°C) MAX_T_C (°C) THERM. (°C) LGS (months) LOCALITY AGE MAT (°C) WMMT (°C) GDD_0 GDD_5 Vilui "B" 13.1 (12.8) 21 (21) 6.2 (5.3) 16.9 9.3 260 47124 53955 7.5 (7.4) 7.3 Cenomanian 11.1 7.7 (7.4) 7.4 Grebenka Cenomanian 13.5 (12.9) 21.2 (20.8) 6.8 (5.9) 15.2 261 49372 56645 Tylpergyrg. 8.7 (8.4) 18.4 (18.8) -0.8 (-1.6) 11.7 3.4 100 34745 5.3 Coniacian 25612 5.5 (5.4) Novaya Sibir Turonian 9.8 (9.2) 17.3 (17) 2.4 (1.1) 11.0 5.5 161 30389 38347 5.9 (5.8) 5.6 North Slope Coniacian 13.9 (13.3) 19.1 (19.1) 9.4 (7.9) 14.2 12.0 320 50590 55643 7.6 (7.6) 7.3 Arman 8.0 (8.2) 17.8 (18.7) -1.9 (-2) 11.1 2.2 78 22150 31392 5.2 (5.3) 5.0 Cenomanian Kaivayam 9.9 (9.6) 18.1 (18.3) 1.9 (1.1) 5.4 6.0 (6.0) 5.8 Coniacian 12.2 158 31201 39311 Penzhina 7.6 (7.7) 16.9 (17.7) 1.8 75 5.0 (4.9) 4.8 Turonian -2 (-2.4) 10.0 20161 29057 Standard Deviation 2.0 (1.1) 2.5 (1.4) 3.2 (1.9) 10510 9195 1.1 (0.7) 1.1 2.5 68 3.2

1210 1213

CALITY	AGE	GSP (cm)	MMGSP (cm)	3WET (cm)	3DRY (cm)	SOIL_M (%V)	ENTH (kJ/kg)	◄(Formatted Table
"B"	Cenomanian	98 (105)	13 (13.5)	66 (62)	20 (21)	17.3	323 (324)		
enka	Cenomanian	82 (82)	10 (9)	60 (58)	14 (15)	17.1	319 (317)		
ergyrg.	Coniacian	50 (48)	9 (9)	53 (49)	12 (13)	18.5	305 (303)		
aya Sibir	Turonian	47 (54)	8 (8.2)	52 (50)	12 (15)	18.4	313 (310)		
n Slope	Coniacian	58 (79)	7 (9)	51 (53)	13 (13)	17.1	328 (326)		
ı	Cenomanian	47 (48)	9 (9)	53 (48)	12 (14)	18.8	303 (304)		
ayam	Coniacian	53 (60)	9 (9)	53 (52)	13 (15)	18.2	312 (310)		
nina	Turonian	37 (38)	8 (8)	49 (47)	11 (14)	18.9	304 (304)		
lard Deviat	ion	30 (30)	4 (3)	23 (14)	7 (3)	1.6	8 (5)		

 $1214\\1215$

Table 4. Humidity Metrics												Deleted: 3	
LOCALITY	AGE	RH.ANNUAL (%)	SH.ANNUAL (g/kg)	VPD.ANN (kPa)	VPD.SUM (kPa)	VPD.WIN (kPa)	VPD.SPR (kPa)	VPD. AUT (kPa)	PET.ANN (mm)/10	PET.WARM (mm)	PET.COL (mm)	Formatted Table	
Vilui "B"	Cenomanian	78 (80)	9.3 (9.6)	2.8	3.8	2.4	2.7	3.0	97.9	119.9	42.3		
Grebenka	Cenomanian	71 (73)	8.3 (8)	4.5	6.5	2.8	4.1	4.7	110.0	140.3	42.8		
Tylpergyrg.	Coniacian	71 (71)	5.8 (5.3)	3.4	6.1	1.3	2.6	3.7	90.1	133.7	24.0		
Novaya Sibir	Turonian	77 (77)	7.6 (7)	2.0	3.9	1.2	1.4	2.1	90.0	122.9	33.0		
North Slope	Coniacian	80 (80)	10.5 (10.1)	2.3	3.3	2.5	2.4	2.2	104.4	117.9	57.6		
Arman	Cenomanian	72 (74)	5.6 (5.8)	3.0	5.7	1.0	2.2	3.3	85.9	130.5	21.9		
Kaivayam	Coniacian	75 (76)	7.3 (7)	2.5	4.5	1.4	2.0	2.7	91.1	125.0	31.7		
Penzhina	Turonian	73 (75)	5.8 (5.8)	2.5	5.1	0.7	1.7	2.7	83.7	126.5	22.8		
Standard Dev	iation	9 (5)	1.6 (1)	1.9	3.5	1.1	1.9	2.0	14.6	24.5	12.7		