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New insights on the complex 
dynamics of two-phase flow in 
porous media under intermediate-
wet conditions
Harris Sajjad Rabbani1, Vahid Joekar-Niasar  1, Tannaz Pak  2 & Nima Shokri1

Multiphase flow in porous media is important in a number of environmental and industrial applications 
such as soil remediation, CO2 sequestration, and enhanced oil recovery. Wetting properties control 
flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the 
strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-

wet conditions is less understood. This study reports the results of a series of two-dimensional high-
resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-

phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-
wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence 
of concave and convex interfaces. Intermediate wettability leads to various interfacial movements 
which are not identified under imbibition or drainage conditions. These pore-scale events significantly 
influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending 
fluid from weak imbibition to intermediate-wet conditions.

�e physics of immiscible two-phase �ow in porous media is a subject of intense study in a number of applica-
tions including enhanced oil recovery1, CO2 sequestration2, remediation of contaminated aquifers3, drying of 
porous media4 and drug delivery5. Wettability, de�ned as the tendency of a �uid to spread over a solid surface in 
the presence of another �uid6, has a signi�cant impact on the dynamics of immiscible displacement7–10. �e wet-
ting conditions of a solid surface – as a result of the relative importance of the adhesive and cohesive forces - can 
be classi�ed into strong-wet, intermediate-wet, and weak-wet. In strong-wet and weak-wet cases, one of the �uids 
has substantial preferential a�nity to a solid surface. Alternatively, if both �uids have similar a�nity to the solid 
surface, the surface is referred to as intermediate-wet. Under strong and weak wet conditions, �uid displacement 
processes in porous media are referred as drainage and imbibition. In drainage, the defending �uid is the wetting 
phase, while in imbibition the invading �uid wets the solid surface. �e pore-scale displacement mechanisms that 
have been identi�ed to occur in strong and weak wet porous media are snap-o�11, 12, piston like displacement13, 
corner �ow8, cooperative pore �lling7, Haines jump14 and droplet fragmentation15. However, pore-scale displace-
ment for intermediate-wet conditions remains less understood, despite the fact that intermediate-wet conditions 
occur in many natural porous media9.

Here, we use Computational Fluid Dynamics (CFD) modelling to perform direct numerical simulation of 
two-phase immiscible �uids displacement in a porous medium, which is designed based on the pore-scale X-ray 
tomography image of a real sand pack. Performing direct numerical simulations on 2D16, 17 and 3D18, 19 images 
of real porous media is an advanced tool that allows capturing more detailed �uid dynamics information com-
pared to pore-network modelling approach20–23, speci�cally for complex pore morphologies. We present results 
of direct 2D numerical simulations performed on a wide range of wettability conditions with a particular focus 
on intermediate-wet condition. Our results demonstrate the co-existence of concave and convex interfaces under 
intermediate-wet conditions emanated from the interplay between the wetting characteristics and pore geome-
try. Such a phenomenon promotes (i) pinning of convex interface, (ii) pore-level reverse displacement and (iii) 
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interface instability. �ese complex yet intriguing pore-scale displacement events provide novel explanations to 
the classical non-monotonic behaviour of recovery of defending �uid as a function of porous media wettability.

Direct numerical simulations
Immiscible two-phase �ow is simulated through a heterogeneous 2D porous medium (patterns presented in 
Supplementary Information, Fig. S1). �e Navier-Stokes equation coupled with Volume of Fluid algorithm 
(interface tracking approach) is numerically solved using OpenFoam (Open Field Operation and Manipulation). 
Complete information on the equations governing multiphase �ow in porous media is provided in Supplementary 
section. The wettability of porous media is defined by the contact angle, θ, between the fluid-fluid inter-
face (through the invading phase) and the grain surface, which is an input parameter to the solver. A series of 
numerical simulations are performed with di�erent θ values ranging from 5° to 140°. Contact angle ranging 
from 5° to 15° represents strong-imbibition, from 30° to 45° indicates weak-imbibition, from 60° to 100° shows 
intermediate-wet and from 120° to 140° represents drainage condition. In order to eliminate the e�ect of con-
tact angle hysteresis, the advancing and receding θ are kept equal, resulting in uniform distribution of contact 
angle across the simulation domain. �e invading �uid (with the viscosity of 0.001 Pa.s) is injected in the porous 
medium initially saturated with defending �uid (with the viscosity of 0.008 Pa s) at a constant �ow rate of 1.8 ml/
hr for 6.5 s.

Results and Discussion
Intermediate-wet porous media and interface dynamics. �e capillary forces in intermediate-wet 
porous media are weak. �is leads to occurrence of various interfacial phenomena that are not present in strong 
and weak wet porous media. �e key interfacial feature observed under uniformly distributed contact angle in the 
range of 60°–100° is the presence of both concave and convex interfaces. �is is illustrated in Fig. 1(a).

�e co-existence of both concave and convex interfaces stems from the increasing dependence of the interface 
morphology on the angularity of pores (the angle at which a pore converges or diverges) as the wettability changes 
from strong-wet to intermediate-wet conditions. In other words, the complex interplay between contact angle and 
pore angularity in�uence the direction of capillary forces leading to the variations of the interface curvature24–26. 
Statistical analysis of interface curvature presented in Fig. 1(b) illustrates the comparison between the positive 
(convex) and negative (concave) curvature under intermediate-wet conditions.

Figure 1. (a) �e main interfacial features observed during immiscible two-phase �ow in intermediate-wet 
porous media (θ = 60°) at 2.8 s. (b) Curvature distribution of interfaces shown in Fig. 1(a). (c) Dynamics of 
concave (labelled as “1”) and convex (labelled as “2”) interfaces during displacement in the porous medium with 
θ = 60°. Pinning of convex interface and reverse displacement mechanism as a result of co-existence of concave 
and convex interface is observed. (d) Interface instability in a single pore. In the phase distribution shown 
in Fig. 1(a,c,d), red, blue and green represents defending �uid, invading �uid and the �uid-�uid interface, 
respectively. �e pressure �eld shown in Fig. 1(c–d) indicates the pressure values normalized with respect to the 
outlet pressure. �e direction of injection in all images is from bottom to top.
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�e co-existence of concave and convex interfaces in�uences the displacement dynamics and overall �ow pat-
tern at micro and macro-scale. �e micro-scale interface topology has been illustrated in Fig. 1(c,d). Figure 1(c) 
shows that while the concave interface (interface 1) is displaced upwards, the convex interface (interface 2) is tem-
porarily “pinned” at the junction of pore body. �e behaviour of the interfaces 1 and 2 can be explained using the 
computed pressure �elds presented in Fig. 1(c). Due to the contrast in the morphology of the interfaces 1 and 2, 
the pressure gradient developed within the invading phase causes the preferential �ow of invading phase towards 
interface 1. �is restricts the displacement of interface 2 as shown in Fig. 1(c). Over time, pressure gradient across 
interface 2 declines; as a consequence, the interface is forced back into the pore throat against the direction of the 
main stream �ow. Such a mechanism has been observed in Berg et al.14 and Joekar-Niasar et al.27. We refer to this 
phenomenon as the “reverse displacement”. It is important to note that as interface 2 enters the pore throat, its 
curvature changes from convex to concave. �is analysis demonstrates the impact of pore angularity in dictating 
the curvature of the interface for the contact angle θ of 60°.

The obtained high resolution numerical results allow us to investigate another complex interfacial pro-
cess occurring in intermediate-wet porous media that is related to the instability of interface in a single pore 
(Fig. 1(d)). As explained before, in the presence of intermediate-wet condition, the curvature of an interface can 
change from convex to concave or vice versa. Figure 1(d) illustrates that such morphological transformation of 
interface is not spontaneous, but occurs through an intermediate stage where the interface is instable. �e mor-
phology of the instable interface is signi�cantly di�erent from its stable counter parts that are concave and convex. 
Figure 1(d) shows that across one single interface, the sign of capillary pressure (de�ned by the di�erence between 
the pressures across the interface) changes. At macroscopic-scale, this will lead to non-uniform distribution of 
the capillary pressure.

�e instable interface depicted in Fig. 1(d) manifests that near the pore wall 1, the interface is convex, while 
at the pore wall 2 the interface is concave. �e sharp variation in the curvature of interface induces pressure 
gradient within invading phase similar to what has been discussed before. However, unlike the case illustrated in 
Fig. 1(c), both concave and convex sides of the interface are attached and facilitates the movement of each other 
exhibiting cooperative behaviour. As a result of the pressure gradient, the invading phase tends to �ow from high 
pressure region (convex) to low pressure region (concave) indicated with black arrows in Fig. 1(d). �is ceases the 
advancement of convex interface momentarily, but provides impetus for the concave interface to move forward.

Non-monotonic recovery of defending fluid as a function of wettability. Under intermediate-wet 
conditions, interaction of interface with pore surface leads to the co-existence of concave and convex inter-
face (Fig. 1(a)) which has been observed in di�erent pores (Fig. 1(c)) and even within a single irregular pore 
(Fig. 1(d)). To investigate the in�uence of these displacement events on the macroscopic �ow behaviour, we 
quanti�ed the recovery e�ciency of the defending �uid as a function of the wettability of porous media with the 
results being presented in Fig. 2.

Figure 2(a) shows the distribution of phases under di�erent wetting conditions. Visual inspection of this 
�gure along with Fig. 2(b) shows that under intermediate-wet conditions the blobs of defending �uid are more 
widespread compared to other wetting conditions which might be attributed to the interface coalescence. 
Furthermore, the recovery e�ciency of the defending �uid (the area represented by white in Fig. 2(a)) as a func-
tion of the wettability of porous media is quanti�ed and shown in Fig. 2(c).

Traditionally, the contact angle measured on �at surface is known to be a major indicator of change in wet-
tability of porous media8, which can be mathematically defined according to Young-Dupre law, i.e. σ1 = σo 
cos(θ) + σ2 where σ1 is the surface tension between defending �uid and solid surface, σo is the interfacial tension 
between invading and defending �uid and σ2 is the surface tension between invading �uid and solid surface. Since 
on the basis of Young-Dupre law, the capillary forces are the weakest under intermediate-wet conditions (or to be 
more speci�c at contact angle θ of 90°), one may expect the highest recovery e�ciency under intermediate-wet 
condition. However, our results do not support this conclusion. As indicated in Fig. 2(c), the recovery e�ciency is 
a non-monotonic function of wettability of porous media, but the highest recovery e�ciency is found to be under 
weak imbibition conditions. Figure 2(c) shows that the recovery of defending �uid reduces when the contact 
angle θ increases from 45° to 100° which is counter intuitive. Although, the trend indicated in Fig. 2(c) has been 
observed previously by Ryazanov et al.28 and Zhao et al.8, the underlying physical processes were remained elusive 
which are discussed next.

Our numerical results delineate the underlying mechanisms of the counter-intuitive decline of defending-�uid 
recovery from the weak imbibition to the intermediate-wet condition. We found that this non-monotonic behav-
iour is governed by a critical contact angle θc. �e critical contact angle when the arc interface (i.e. the interface 
residing in corners of pores) is �at is a function of the corner angle29. �e relationship between corner angle of 
pore and critical contact angle θc can be mathematically de�ned as θ = π −

β
c 2

, where β is the corner angle. For a 
typical micro-model (which is the simulation domain of present investigation), β = 90° which results in θc = 45°. 
Detailed analysis of the role of corner angle on capillary pressure and interface dynamics under various wetting 
conditions has been presented in Ma et al.29 and Rabbani et al.30 thus not repeated here. According to Fig. 2(c), the 
maximum recovery in our system occurs at weak imbibition condition (at the contact angle close to 45°) which is 
indeed in agreement with the micro�uidic experimental results reported in Zhao et al.8 and 3D investigation 
performed by Singh et al.31. Furthermore, Fig. 1 suggests that under intermediate-wet conditions (θ = 60°–100°), 
pore angularity (i.e. converging-diverging angle) plays a crucial role in dictating the curvature of the interface. 
Di�erent direction of capillary forces acting along the interfaces that are residing in di�erent pores induces dra-
matic decline in the mobility of convex interface which eventually reduces the recovery e�ciency (Fig. 1(c)). 
Although, interface instability shown in Fig. 1(d) can be regarded as a phenomenon that inhibits the entrapment 
of defending phase (due to cooperative behaviour of concave and convex interface), its in�uence is localized 
within single pores. In contrary to the interface instability, the e�ects of pinning of convex interfaces and reverse 
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displacement phenomena (as a consequence of pinned convex interface) shown in Fig. 1(c) dominate the dynam-
ics of displacement in intermediate-wet condition.

Since the conventional Young-Dupre law does not accommodate the role of pore geometry (corner angle and 
converging-diverging angle), the characterization of recovery e�ciency curves by mere de�nition of wettability 
based on the �at surfaces can be misleading and can obscure the true physics controlling the recovery curve (as 
illustrated in our results obtained by the direct numerical simulation).

Summary and Conclusions
Wetting characteristics of porous media signi�cantly in�uence multiphase �ow and transport processes. In the 
present study, we conducted a comprehensive series of investigation by means of direct numerical simulation 
to delineate the pore-scale mechanisms controlling immiscible two-phase �ow in porous media under di�erent 
wettability scenarios with a particular focus on intermediate-wet conditions which has been rarely discussed in 
literature. �e present pore-scale analysis helps to rationalize the physics governing some of the unexplained pre-
vious observations8, 28. With the current experimental tools available, it is not feasible to experimentally observe 
some of the e�ects induced by the wettability condition which ultimately determine the dynamics of displace-
ment in porous media (such as the pressure �eld developed at pore-scale in�uencing the interface dynamics as 
illustrated in Fig. 1(c,d)). Inspection and visualization of our numerical results enabled us to gain insights on the 
complex pore level dynamics controlling the displacement mechanisms as a function of wetting properties of 
porous media and the resulting macroscopic displacement patterns that emerge.

Figure 2. (a) Fluid phase and pressure distribution under di�erent wetting conditions at the end of simulation. 
White colour represents pathway of invading phase. Pressure is normalized with respect to the outlet pressure 
and it indicates the pressure in the defending phase. (b) Distribution of blobs size of defending �uid under 
di�erent wettability scenarios. �e inset illustrates the maximum blob size as a function of the contact angle. (c) 
�e non-monotonic dependency of the defending phase recovery on the wettability of porous media.
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Our numerical results revealed a non-monotonic dependence of defending �uid recovery on the wetting char-
acteristics of porous media with the recovery e�ciency being the highest under the weak imbibition condition. 
At pore-scale, our results con�rms the presence of both concave and convex interfaces under intermediate-wet 
conditions. We show that for a uniform contact angle, both concave and convex interface exists in heterogeneous 
porous media. �is co-existence of concave and convex interface leads to several interfacial processes in�uencing 
the dynamics of multiphase �ow. �e illustrated processes including pinning of convex interface and reverse 
displacement causes decline in the recovery e�ciency of defending �uid.

Furthermore, we illustrate that linking the contact angle measured on �at surfaces to the recovery e�ciency of 
defending �uid is not su�cient to describe the governing mechanisms and that the geometry of pore is another 
important parameter which must be taken into consideration that controls the recovery e�ciency.

Materials and Methods
Simulation domain. We have used pore-scale images obtained by 3D X-ray micro-tomography of a real 
sand pack32 as the simulation domain. �e 2D image that was used for simulation in the present study is shown in 
Fig. S1 of the Supplementary information which illustrates the grain arrangement at the central cross section of 
the sand pack. More information about the pore and grain size is given in Table S1 of the Supplementary informa-
tion. Rhinoceros (CAD so�ware) was used to extract the pore network skeleton from digital images of the porous 
medium which was imported into the simulator as an STL (STereoLithography) �le.

�e numerical domain was �rst converted into triangulated surface geometry, which was later discretised into 
small elements by means of the mesh generator in OpenFoam16. �e �nal arrangement of these elements was 
almost unstructured, near the grain surface it was split-hexahedrals and hexahedrals elsewhere16. �e meshing 
algorithm employed in this research has been successfully used by Ferrari et al.33. According to the grid independ-
ence analysis performed in Rabbani et al.30, the optimum size of the spatial element chosen for the computational 
domains scaled with respect to the average pore size was 0.1.

Validation of the numerical simulation. In addition to the numerical simulations, micro�uidics exper-
iments were conducted to evaluate the performance of the numerical model. A micromodel was fabricated using 
the same pore-scale 2D image obtained by 3D X-Ray micro-tomography of a sand pack. �e micromodel was fab-
ricated in a silicon wafer using standard photolithography and inductively coupled plasma-deep reactive ion etch-
ing (ICP-DRIE) methods. Further detail about the fabrication procedure can be found in Willingham et al.34. �e 
contact angle of the micromodel was 15.8°. �e micromodel was saturated with PMX – 200 Silicone Fluid having 
viscosity of 1 × 10−1 Pa s (provided by Dow Corning) at �ow rate of 100 ml/hr and then displaced by de-ionized 
water at 1.0 ml/hr. Dynamics of the displacement was recorded using an optical microscope (Leica M205C, 20.5:1 
zoom, 0.925 µm resolution, equipped with a Leica DFC 3000G high resolution digital camera). More detail about 
the experimental procedure can be found in Rodríguez de Castro et al.35, 36. We have quanti�ed the distribution of 
the trapped blobs of the defending �uid obtained by the simulation and experiment (results presented in Fig. 3).

�e comparison shows that the numerical prediction slightly underestimates the experimental results. A pos-
sible explanation for this discrepancy could be related to the edges of the grains. In the micromodel, the grains 
could have some roughness, which is not presented in the domain used for the numerical simulation. Roughness 
of the grains enhances the entrapment of smaller blobs. Other possible reasons of this discrepancy could be 
related to the measured contact angle of the micromodel as well as the experimental values obtained based on the 
segmented images. �ese could be possible sources of the di�erence observed between numerically determined 
residual saturation (30.4%) and the experimentally measured value (32%).

Figure 3. Comparison between the blob-size distributions computed numerically and the ones measured by the 
micro�uidic experiments for the �uids PMX – 200 Silicone Fluid and water with water injection rate of 1.0 ml/hr.
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