NEW INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS OF A SUBMANIFOLD IN A GENERALIZED RIEMANNIAN SPACE

Svetislav M. Minčić, Ljubica S. Velimirović and Mića S. Stanković

Abstract

The present work is a continuation of [5] and [6]. In [5] we have obtained derivational equations of a submanifold X_{M} of a generalized Riemannian space $G R_{N}$. Since the basic tensor in $G R_{N}$ is asymmetric and in this way the connection is also asymmetric, in a submanifold the connection is generally asymmetric too. By reason of this, we define 4 kinds of covariant derivative and obtain 4 kinds of derivational equations. In [6] we have obtained integrability conditions and Gauss-Codazzi equations using the $1^{\text {st }}$ and the $2^{\text {st }}$ kind of covariant derivative.

The present work deals in the cited matter, using the $3^{\text {rd }}$ and the $4^{\text {th }}$ kind of covariant derivative. One obtains three new integrability conditions for derivational equations of tangents and three such conditions for normals of the submanifold, as the corresponding Gauss-Codazzi equations too.

1 Introduction

1.1. A generalized Riemannian space $G R_{N}$ is a differentiable manifold equipped with an asymmetric basic tensor $G_{i j}\left(x^{1}, \ldots, x^{N}\right)$ (the components) where x^{i} are the local coordinates. The symmetric, respectively antisymmetric part of $G_{i j}$ are $H_{i j}$ and $K_{i j}$.

For the lowering and rasing of indices in $G R_{N}$ one uses $H_{i j}$, respectively $H^{i j}$, where

$$
\begin{equation*}
\left(H^{i j}\right)=\left(H_{i j}\right)^{-1}, \quad\left(\operatorname{det}\left(H_{i j}\right) \neq 0\right) . \tag{1.1}
\end{equation*}
$$

[^0]Cristoffel symbols at $G R_{N}$ are

$$
\begin{equation*}
\Gamma_{i . j k}=\frac{1}{2}\left(G_{j i, k}-G_{j k, i}+G_{i k, j}\right), \quad \Gamma_{j k}^{i}=H^{i p} \Gamma_{p . j k} \tag{1.2}
\end{equation*}
$$

where, for example, $G_{j i, k}=\partial G_{j i} / \partial x^{k}$. Based on the asymmetry of $G_{i j}$, it follows that the Cristoffel symbols are also asymmetric with respect to j, k in (1.2).

By equations

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{1}, \ldots, u^{M}\right) \equiv x^{i}\left(u^{\alpha}\right), \quad i=1, . ., N, \tag{1.3}
\end{equation*}
$$

a submanifold X_{M} is defined in local coordinates. If $\operatorname{rank}\left(B_{\alpha}^{i}\right)=M\left(B_{\alpha}^{i}=\right.$ $\partial x^{i} / \partial u^{\alpha}$) and

$$
\begin{equation*}
g_{\alpha \beta}=B_{\alpha}^{i} B_{\beta}^{j} G_{i j} \tag{1.4}
\end{equation*}
$$

X_{M} becomes $G R_{M} \subset G R_{N}$, with induced basic tensor (1.4), which is generally also asymmetric. Note that in the present work Latin indices i, j, \ldots take values $1, \ldots, N$ and refer to the $G R_{N}$, while the Greek ones take values $1, \ldots, M$ and refer to the $G R_{M}$.

In the $G R_{M}$ are valid the relations similar to (1.1) and (1.2). The symmetric part of $g_{\alpha \beta}$ is denoted with $h_{\alpha \beta}$, and antisymmetric one with $k_{\alpha \beta}$, where e.g.

$$
\begin{equation*}
h_{\alpha \beta}=B_{\alpha}^{i} B_{\beta}^{j} H_{i j}, \quad\left(h^{\alpha \beta}\right)=\left(h_{\alpha \beta}\right)^{-1} . \tag{1.5}
\end{equation*}
$$

Cristoffel symbols $\widetilde{\Gamma}_{\alpha . \beta \gamma}, \quad \widetilde{\Gamma}_{\beta \gamma}^{\alpha}=h^{\alpha \pi} \widetilde{\Gamma}_{\pi . \beta \gamma}$ are expressed by $g_{\alpha \beta}$ analogously to (1.2).

For the unit, mutually orthogonal vectors N_{A}^{i}, which are orthogonal to the $G R_{M}$ too, we have [1]

$$
\begin{equation*}
H_{i j} N_{A}^{i} N_{B}^{j}=e_{A} \delta_{B}^{A}=h_{A B}, e_{A} \in\{-1,1\}, H_{i j} N_{A}^{i} B_{\alpha}^{j}=0, \tag{1.6}
\end{equation*}
$$

where $A, B, \cdots \in\{M+1, \ldots, N\}$.
As it is known, the following relations between Cristoffel symbols of a generalized Riemannian space and its subspace are valid:

$$
\begin{gather*}
\widetilde{\Gamma}_{\alpha . \beta \gamma}=\Gamma_{i . j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k}+H_{i j} B_{\alpha}^{i} B_{\beta, \gamma}^{j} \tag{1.7}\\
\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=h^{\pi \alpha} \widetilde{\Gamma}_{\pi . \beta \gamma}=h^{\pi \alpha}\left(\Gamma_{i . j k} B_{\pi}^{i} B_{\beta}^{j} B_{\gamma}^{k}+H_{i j} B_{\pi}^{i} B_{\beta, \gamma}^{j}\right) \tag{1.8}
\end{gather*}
$$

i.e.

$$
\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=h^{\pi \alpha} H_{p i} B_{\pi}^{p}\left(\Gamma_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}+B_{\beta, \gamma}^{i}\right) .
$$

1.2. The set of normals of the submanifold $X_{M} \subset G R_{N}$ make a normal bundle for X_{M}, and we note it X_{N-M}^{N}. One can introduce a metric tensor on X_{N-M}^{N}

$$
\begin{equation*}
g_{A B}=G_{i j} N_{A}^{i} N_{B}^{j} \tag{1.9}
\end{equation*}
$$

which is asymmetric in a general case.
The symmetric part is

$$
h_{A B}=H_{i j} N_{A}^{i} N_{B}^{j} \underset{(1.5)}{=} e_{A} \delta_{B}^{A}=h_{B A}=\left\{\begin{array}{ll}
e_{A}, & \mathrm{~A}=\mathrm{B} \tag{1.10}\\
0, & \text { otherwise. }
\end{array}, e_{A} \in\{-1,1\}\right.
$$

If

$$
\left(h^{A B}\right)=\left(h_{A B}\right)^{-1}
$$

we have

$$
h^{A B}=e_{A} \delta_{B}^{A}=h_{A B}=h^{B A} .
$$

On X_{N-M}^{N} one can define in two manners connection coefficients

$$
\begin{equation*}
\underset{\substack{1 \\ 2}}{\bar{\Gamma}_{B \mu}^{A}}=H_{i j} h^{A Q} N_{Q}^{j}\left(N_{B, \mu}^{i}+\Gamma_{q q}^{i} N_{B p}^{p} B_{\mu}^{q}\right) \tag{1.11}
\end{equation*}
$$

Being the coefficients $\Gamma, \widetilde{\Gamma}, \bar{\Gamma}$ non-symmetric in general, for a tensor, defined at points of $G R_{M}$, is possible define four kinds of covariant derivative. For example

In this way four connection $\underset{\theta}{\nabla}, \theta \in\{1, \ldots, 4\}$, on $X_{M} \subset G R_{N}$ are defined. We shall note the obtained structures $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{1, \ldots, 4\}\right)$.

2 New first and second kind integrability conditions of derivational equations

2.0. In [5] are obtained derivational equations of a submanifold in a $G R_{N}$, and in [6] integrability conditions of these equations in the structure ($X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in$ $\{1,2\}$). In the present work we engage in this problem for the structure ($X_{M} \subset$ $\left.G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$.

As it is proved in [5] (Th. 1.2.), derivational equations in the considered case for a tangent are

$$
\begin{equation*}
B_{\alpha \mid \mu}^{i}=\sum_{P} \Omega_{\theta}^{\Omega_{P \alpha \mu}} N_{P}^{i}, \quad \theta \in\{3,4\}, \tag{2.1}
\end{equation*}
$$

and then for induced torsion in X_{M} is valid

$$
\begin{equation*}
\widetilde{T}_{\beta \gamma}^{\alpha}=0\left(\widetilde{\Gamma}_{\beta \gamma}^{\alpha}=\widetilde{\Gamma}_{\gamma \beta}^{\alpha}\right) . \tag{2.2}
\end{equation*}
$$

By virtue of the Th. 2.3. in [5], for unit normal is

$$
\begin{equation*}
N_{A \mid \mu}^{i}=-e_{A} \Omega_{\theta}{ }_{A \rho \mu} h^{\pi \rho} B_{\pi}^{i}, \quad \theta \in\{3,4\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Gamma}_{B}^{A}{ }_{B \mu}=\bar{\Gamma}_{2}^{A}=\bar{\Gamma}_{B \mu}^{A}, \tag{2.4}
\end{equation*}
$$

in (1.12), and based on (1.8) in [5]

$$
\begin{equation*}
\underset{\substack{1 \\ \Omega_{P \alpha \mu}}}{ }=e_{P} H_{i j} N_{P}^{i}\left(B_{\alpha, \mu}^{j}+\underset{m_{p}}{j} B_{\alpha}^{p} B_{\mu}^{m}\right)=\underset{3}{\Omega_{3}} \Omega_{P \alpha \mu} . \tag{2.5}
\end{equation*}
$$

In relation with $(2.2,4)$, the addends in (1.12), related to X_{M} and to X_{N-M}^{N} are not different for separate kinds of derivatives, and (1.12) now becomes

$$
\begin{align*}
& t_{j \beta B \mid \mu}^{i \alpha A}=t_{j \beta B, \mu}^{i \alpha A}+\underset{\substack{1 \\
3 \\
3 \\
4}}{\Gamma_{\substack{p m \\
p m \\
m p}}^{i} t_{j \beta B}^{p \alpha A} B_{\mu}^{m}-\Gamma_{\substack{j m \\
m j \\
m j \\
j m}}^{p} t_{p \beta B}^{i \alpha A} B_{\mu}^{m}} \tag{2.6}\\
& +\widetilde{\Gamma}_{\pi \mu}^{\alpha} t_{j \beta B}^{i \pi A}-\widetilde{\Gamma}_{\beta \mu}^{\pi} t_{j \pi B}^{i \alpha A}+\bar{\Gamma}_{P \mu}^{A} t_{j \beta B}^{i \alpha P}-\bar{\Gamma}_{B \mu}^{P} t_{j \beta P}^{i \alpha A},
\end{align*}
$$

where the coefficients $\widetilde{\Gamma}$ are symmetric, and $\bar{\Gamma}$ are unique $\left(\underset{1}{\bar{\Gamma}}=\bar{\Gamma}_{2}=\bar{\Gamma}\right)$. If in a differentiated tensor no exists indices as i, j, \ldots, we write $\mid \mu$ instead of $\left.\right|_{\theta} \mu$.

Using (2.1,3), we get (see (2.4) in [6])

$$
\begin{align*}
& B_{\theta|\mu| \nu}^{i}-B_{\alpha|\nu| \mu}^{i}=\sum_{P}\left[e_{P} h^{\pi \rho}\left(-\underset{\theta}{\Omega_{P \alpha \mu}}{\underset{\omega}{P \rho \nu}}^{\Omega_{\omega}}+\underset{\omega}{\Omega_{P \alpha \nu}}{\underset{\theta}{P \rho \mu \mu}}\right) B_{\pi}^{i}\right. \tag{2.7}\\
&+\left(\underset{\theta}{\left(\Omega_{P \alpha \mu \mid \nu}\right.}-\underset{\omega}{\Omega_{P \alpha \nu \mid \mu}}\right) \\
&\left.\Omega_{P}^{i}\right], \quad \theta, \omega \in\{3,4\} .
\end{align*}
$$

2.1. With respect of Ricci-type identities (12) and (13) from [2], and taking into consideration (2.2), we have
where

$$
\begin{equation*}
\underset{1}{R_{j m n}^{i}}=\Gamma_{j m, n}^{i}-\Gamma_{j n, m}^{i}+\Gamma_{j m}^{p} \Gamma_{p n}^{i}-\Gamma_{j n}^{p} \Gamma_{p m}^{i} \tag{2.9a}
\end{equation*}
$$

$$
\begin{equation*}
\underset{2}{R_{j m n}^{i}}=\Gamma_{m j, n}^{i}-\Gamma_{n j, m}^{i}+\Gamma_{m j}^{p} \Gamma_{n p}^{i}-\Gamma_{n j}^{p} \Gamma_{m p}^{i} \tag{2.9b}
\end{equation*}
$$

are curvature tensors of the $\mathbf{1}^{\text {st }}$, respectively $2^{\text {nd }}$ kind of $G R_{N}$ and $\widetilde{R}_{\beta \mu \nu}^{\alpha}$ is, with respect of (2.2), curvature tensor of $R_{M} \subset G R_{N}$.

We obtained in [6] three kinds integrability conditions for derivational equation of a tangent B_{α}^{i}, i.e. for $B_{\alpha \mid \mu}^{i}, \theta \in\{1,2\}$. We shall consider here such conditions for $\theta \in\{3,4\}$.

If one substitutes $\theta=\omega \in\{3,4\}$ into (2.7) and compares with (2.8), taking into consideration (2.5) and (2.6), we get

$$
\left.\left.\begin{array}{rl}
\underset{\theta-2}{R_{p m n}^{i}} B_{\alpha}^{p} B_{\mu}^{m} B_{\nu}^{n} & =\left[\widetilde{R}_{\alpha \mu \nu}^{\pi}-\sum_{P} e_{P} h^{\pi \rho}\left(\Omega_{\theta}{ }_{P \alpha \mu} \Omega_{\theta} P \rho \nu\right.\right. \tag{2.10}\\
& -{\underset{\theta}{P}}_{P \alpha \nu} \Omega_{\theta} P \rho \mu
\end{array}\right)\right] B_{\pi}^{i} .
$$

which are the $1^{\text {st }}$ and the $2^{\text {nd }}$ integrability conditions of derivational equation (2.1) in the structure ($X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}$).
a) Composing the previous equation with $H^{i j} B_{\beta}^{j}$, one gets

$$
\begin{equation*}
\underset{\theta-2}{R} j p m n B^{j} \beta B_{\alpha}^{p} B_{\mu}^{m} B_{\nu}^{n}=\widetilde{R}_{\beta \alpha \mu \nu}-\sum_{P} e_{P}\left(\Omega_{\theta}{ }_{P \alpha \mu} \Omega_{\theta}{ }_{P \beta \nu}-\Omega_{\theta}{ }_{P \alpha \nu} \Omega_{P \beta \mu}\right), \theta \in\{3,4\}, \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\theta-2}{R} j p m n=H_{i j} \underset{\theta-2}{R}{ }_{p m n}^{i}, \quad \widetilde{R}_{\beta \alpha \mu \nu}=h_{\pi \beta} \widetilde{R}_{\alpha \mu \nu}^{\pi}, \theta \in\{3,4\} . \tag{2.12a,b}
\end{equation*}
$$

Taking into count the antisymmetry of the tensors (2.12) with respect of the first two indices and substituting i in place of p, the equation (2.11) becomes

$$
\begin{equation*}
\widetilde{R}_{\alpha \beta \mu \nu}=\underset{\theta-2}{R} i j m n B_{\alpha}^{i} B_{\beta}^{j} B_{\mu}^{m} B_{\nu}^{n}-\sum_{P} e_{P}\left(\Omega_{\theta} P \alpha \mu \Omega_{\theta} P \beta \nu-\underset{\theta}{\Omega_{P \alpha \nu}} \Omega_{P \beta \mu}\right), \theta \in\{3,4\} \tag{2.13}
\end{equation*}
$$

which are Gauss equations of the $\mathbf{1}^{\text {st }}$ and the $\mathbf{2}^{\text {nd }}$ kind in the structure ($X_{M} \subset$ $\left.G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$.
b) Composing the equation (2.10) with $H_{i j} N_{Q}^{j}$ we obtain finally

$$
\begin{equation*}
R_{\theta-2}^{i j m n} B_{\alpha}^{i} N_{Q}^{j} B_{\mu}^{m} B_{\nu}^{n}=e_{Q}\left(\Omega_{\theta} Q_{\alpha \nu \mid \mu}-{\underset{\theta}{Q \alpha \mu \mid \nu}}\right), \theta \in\{3,4\}, \tag{2.14}
\end{equation*}
$$

and that are the $1^{\text {st }}$ Codazzi equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind at the cited structure.
2.2. Consider the same matter for the unit normal N_{A}^{i}. Using $(2.3,1)$, we obtain (see (2.13) in [6]):

$$
\begin{align*}
& N_{A|\mu| \nu}^{i}-N_{A|\nu| \mu}^{i}=-e_{A} h^{\pi \rho}\left[\left(\underset{\theta}{\Omega_{A \rho \mu \mid \nu}}-\underset{\omega}{\Omega_{\omega}} \underset{\theta}{ } \underset{\theta}{ } \mid \mu\right) B_{\pi}^{i}\right. \\
& \left.+\sum_{P}\left(\underset{\theta}{\Omega_{A \rho \mu}}{\underset{\omega}{ }}^{\Omega_{P \pi \nu}}-{\underset{\omega}{\Omega}}_{\Omega_{A \rho \nu}}^{\Omega_{P \pi \mu}}\right) N_{P}^{i}\right] . \tag{2.15}
\end{align*}
$$

In order to find corresponding Ricci-type identity for the left side of this equation for $\theta=\omega \in\{3,4\}$, we use (2.6). Firstly, we have

$$
\begin{equation*}
N_{A \mid \mu}^{i}=N_{A, \mu}^{i}+\Gamma_{p m}^{i} N_{A}^{p} B_{\mu}^{m}-\bar{\Gamma}_{A \mu}^{P} N_{P}^{i} \tag{2.16}
\end{equation*}
$$

and further

$$
\begin{aligned}
N_{A|\mu| \nu}^{i} & =\left(N_{A \mid \mu}^{i}\right)_{, \nu}+\Gamma_{s n}^{i} N_{A \mid \mu}^{s} B_{\nu}^{n}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} N_{A \mid \sigma}^{s}-\bar{\Gamma}_{A \nu}^{S} N_{S \mid \mu}^{i} \\
& =N_{A, \mu \nu}^{i}+\Gamma_{p m, n}^{i} N_{A}^{p} B_{\mu}^{m} B_{\nu}^{n}+\Gamma_{p m}^{i} N_{A, \nu}^{p} B_{\mu}^{m}+\Gamma_{p m}^{i} N_{A}^{p} B_{\mu, \nu}^{m} \\
& -\bar{\Gamma}_{A \mu, \nu}^{P} N_{P}^{i}-\bar{\Gamma}_{A \mu}^{P} N_{P, \nu}^{i}+\Gamma_{s n}^{i} N_{A, \mu}^{s} B_{\nu}^{n}+\Gamma_{s n}^{i} \Gamma_{p m}^{s} B_{\nu}^{n} N_{A}^{p} B_{\mu}^{m} \\
& -\Gamma_{s n}^{i} N_{P}^{s} \bar{\Gamma}_{A \mu}^{P} B_{\nu}^{n}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} N_{A, \sigma}^{i}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} \Gamma_{p m}^{i} N_{A}^{p} B_{\sigma}^{m}+\widetilde{\Gamma}_{\mu \nu}^{\sigma} \bar{\Gamma}_{A \sigma}^{P} N_{P}^{i} \\
& -\bar{\Gamma}_{A \nu}^{S} N_{S, \mu}^{i}-\bar{\Gamma}_{A \nu}^{S} \Gamma_{p m}^{i} N_{S}^{p} B_{\mu}^{m}+\bar{\Gamma}_{A \nu}^{S} \bar{\Gamma}_{S \mu}^{P} N_{P}^{i},
\end{aligned}
$$

wherefrom

$$
\begin{equation*}
N_{A \mid \mu}^{i} \underset{3}{i} \mid \nu-N_{A|\nu| \mu}^{i}=\bar{R}_{p m n}^{i} N_{A}^{p} B_{\mu}^{m} B_{\nu}^{n}-\bar{R}_{A \mu \nu}^{P} N_{P}^{i} \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{R}_{B \mu \nu}^{A}=\bar{\Gamma}_{B \mu, \nu}^{A}-\bar{\Gamma}_{B \nu, \mu}^{A}+\bar{\Gamma}_{B \mu}^{P} \bar{\Gamma}_{P \nu}^{A}-\bar{\Gamma}_{B \nu}^{P} \bar{\Gamma}_{P \mu}^{A} \tag{2.18}
\end{equation*}
$$

is curvature tensor of the space GR_{N} with respect to the normal submanifold in the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$.

By means of the $4^{\text {th }}$ kind of covariant derivative we obtain an equation corresponding to (2.17), and we conclude

$$
\begin{equation*}
\underset{\theta \mid \theta}{i} N_{A| | \mu \mid \nu}^{i}-N_{A|\nu| \mu}^{i}=\underset{\theta-2}{R} p m n N_{A}^{p} B_{\mu}^{m} B_{\nu}^{n}-\bar{R}_{A \mu \nu}^{P} N_{P}^{i}, \quad \theta \in\{3,4\} . \tag{2.19}
\end{equation*}
$$

If one substitutes into (2.15) $\theta=\omega \in\{3,4\}$ and equilizes the right sides of obtained equation and (2.19), we get the $\mathbf{1}^{\text {st }}$ and the $2^{\text {nd }}$ kind integrability conditions of derivational equation (2.3) in the structure ($X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in$ $\{3,4\}$):

$$
\begin{align*}
& \underset{\theta-2}{R^{p m n}} N_{A}^{p} B_{\mu}^{m} B_{\nu}^{n}=e_{A} h^{\pi \rho}\left(\Omega_{\theta}^{\Omega_{A \rho \mu \mid \nu}}-\underset{\theta}{\left.\Omega_{A \rho \nu \mid \mu}\right)} B_{\pi}^{i}\right. \\
& \quad+\left[\bar{R}_{A \mu \nu}^{P}-e_{A} h^{\pi \rho} \sum_{P}\left(\underset{\theta}{\Omega_{A \rho \mu}} \Omega_{\theta}^{\Omega_{P \pi \nu}}-\underset{\theta}{\Omega_{A \rho \nu}} \Omega_{\theta}{ }_{P \pi \mu}\right)\right] N_{P}^{i}, \theta \in\{3,4\} . \tag{2.20}
\end{align*}
$$

a) If we compose this equation with $H_{i j} B_{\beta}^{j}$ one obtains an equation equivalent with (2.14), that is the $1^{\text {st }}$ Codazzi equation of the $1^{s t}$ and the $2^{n d}$ kind for the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$.
b) By composing the equation (2.20) with $H_{i j} N_{B}^{j}$, one obtains endly

$$
\begin{equation*}
\underset{\theta-2}{R_{i j m n}} N_{A}^{i} N_{B}^{j} B_{\mu}^{m} B_{\nu}^{n}=\bar{R}_{A B \mu \nu}+e_{A} e_{B} h^{\pi \rho}\left(\Omega_{A \pi \mu} \Omega_{\theta}{ }_{B \rho \nu}-\Omega_{\theta}{ }_{A \pi \nu} \Omega_{\theta} B \rho \mu\right) \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{R}_{A B \mu \nu}=h_{A P} \bar{R}_{B \mu \nu}^{P} \tag{2.22}
\end{equation*}
$$

The equation (2.21) is the $2^{\text {nd }}$ Codazzi equation of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind for the structure ($X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}$).

Based on expressed above, the next theorems are valid:
Theorem 2.1. The $1^{\text {st }}$ and the $2^{\text {nd }}$ kind integrability conditions for derivational equations (2.1), (2.3) in the in the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$ are given by equations (2.10), (2.20) respectively, where $\underset{\theta}{\Omega}$ is given in (2.5), $\underset{1}{R}, \underset{2}{R}$ in (2.9), \widetilde{R} is curvature tensor of the symmetric connection $\widetilde{\Gamma}$, while \bar{R} is given in (2.18), (2.22).

Theorem 2.2. The Gauss equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind in the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$ are given in (2.13), the $1^{\text {st }}$ Codazzi equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind in (2.14), and the $2^{\text {nd }}$ Codazzi equations of the $1^{\text {st }}$ and the $2^{\text {nd }}$ kind in (2.21) in the same structure.

3 Third kind integrability condition of derivational equations

3.1. Using simultaneously the $3^{r d}$ and the $4^{\text {th }}$ kind of covariant derivative by virtue of (2.6), we obtain Ricci-type identity (eq. (46) in [2]):

$$
\begin{equation*}
B_{\substack{\alpha|\mu| \nu}}^{i}-B_{\substack{\alpha|\nu| \mu}}^{i}={\underset{4}{p \mu \nu}}_{i}^{R_{\alpha}^{p}}-\widetilde{R}_{\alpha \mu \nu}^{\pi} B_{\pi}^{i}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{4}{R_{j \mu \nu}^{i}}=\left(\Gamma_{j m, n}^{i}-\Gamma_{n j, m}^{i}+\Gamma_{j m}^{p} \Gamma_{n p}^{i}-\Gamma_{n j}^{p} \Gamma_{p m}^{i}\right) B_{\mu}^{m} B_{\nu}^{n}+T_{j m}^{i}\left(B_{\mu, \nu}^{m}-\widetilde{\Gamma}_{\nu \mu}^{\pi} B_{\pi}^{m}\right) \tag{3.2}
\end{equation*}
$$

is curvature tensor of the $4^{\text {th }}$ kind of $\mathbf{G R}_{N}$ with respect to $X_{M} \subset G R_{N}$.

On the other hand, if we put into (2.7) $\theta=3, \omega=4$ and compare the obtained equation with (3.1), we obtain the $3^{\text {rd }}$ kind integrability condition of derivational equation (2.1) in the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$:

$$
\left.\begin{array}{rl}
R_{4}^{i} & =\left[\widetilde{R}_{\alpha \mu \nu}^{\pi} B_{\alpha}^{p}\right. \tag{3.3}
\end{array}-\sum_{P} e_{P} h^{\pi \rho}\left(\Omega_{P \alpha \mu} \Omega_{P \rho \nu}-{\underset{2}{2}}_{P \alpha \nu}^{1} \Omega_{P \rho \mu}\right)\right] B_{\pi}^{i} .
$$

a) Composing previous equation with $H_{i j} B_{\beta}^{j}$, we get

$$
R_{4}{ }_{j p \mu \nu} B_{\beta}^{j} B_{\alpha}^{p}=\widetilde{R}_{\beta \alpha \mu \nu}-\sum_{P} e_{P}\left(\Omega_{1} \Omega_{P \alpha \mu} \Omega_{2} P \beta \nu-\Omega_{2} \Omega_{1} \Omega_{P \beta \mu}\right),
$$

i.e., exchanging $j \rightarrow i, p \rightarrow j, \alpha \leftrightarrow \beta$, it follows that

$$
\begin{equation*}
\widetilde{R}_{\alpha \beta \mu \nu}=R_{4} R_{j \mu \nu} B_{\alpha}^{i} B_{\beta}^{j}-\sum_{P} e_{P}\left(\underset{1}{\Omega_{P \alpha \mu}}{\underset{2}{P \beta \nu}}^{\Omega_{2}}{\underset{1}{\Omega}}_{P \alpha \nu} \Omega_{P \beta \mu}\right), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{4}{R_{i j \mu \nu}}=H_{i p}{\underset{4}{j \mu \nu}}_{p}^{p} \tag{3.5}
\end{equation*}
$$

The equation (3.4) is Gauss equation of the $3^{\text {rd }}$ in the structure $\left(X_{M} \subset G R_{N},{ }_{\theta}^{\nabla}, \theta \in\{3,4\}\right)$.
b) Composing (3.4) with $H_{i j} N_{Q}^{j}$, we obtain

This is the $1^{\text {st }}$ Codazzi equation of the $3^{\text {rd }}$ kind in the cited structure.
3.2. On the base of (2.6) and (2.16) we have

$$
\begin{aligned}
\underset{\substack{3 \\
N_{A|\mu| \nu}^{i}}}{ } & =\left(N_{A \mid \mu}^{i}\right)_{, \nu}+\Gamma_{n s}^{i} N_{A \mid \mu}^{s} B_{\nu}^{n}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} N_{A \mid \sigma}^{i}-\bar{\Gamma}_{A \nu}^{S} N_{S \mid}^{i} \\
& =N_{A, \mu \nu}^{i}+\Gamma_{p m, n}^{i} N_{A}^{p} B_{\mu}^{m} B_{\nu}^{n}+\Gamma_{p m}^{i} N_{A, \nu}^{p} B_{\mu}^{m}+\Gamma_{p m}^{i} N_{A}^{p} B_{\mu, n u}^{m} \\
& -\bar{\Gamma}_{A \mu, \nu}^{P} N_{P}^{i}-\bar{\Gamma}_{A \mu}^{P} N_{P, \nu}^{i}+\Gamma_{n s}^{i} N_{A, \mu}^{s} B_{\nu}^{n}+\Gamma_{n s}^{i} \Gamma_{p m}^{s} B_{\nu}^{n} N_{A}^{p} B_{\mu}^{m} \\
& -\Gamma_{n s}^{i} N_{P}^{s} \bar{\Gamma}_{A \mu}^{P} B_{\nu}^{n}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} N_{A, \sigma}^{i}-\widetilde{\Gamma}_{\mu \nu}^{\sigma} \Gamma_{p m}^{i} N_{A}^{p} B_{\sigma}^{m}+\widetilde{\Gamma}_{\mu \nu}^{\sigma} \bar{\Gamma}_{A \sigma}^{P} N_{P}^{i} \\
& -\bar{\Gamma}_{A \nu}^{S} N_{S, \mu}^{i}-\bar{\Gamma}_{A \nu}^{S} \Gamma_{p m}^{i} N_{S}^{p} B_{\mu}^{m}+\bar{\Gamma}_{A \nu}^{S} \bar{\Gamma}_{S \mu}^{P} N_{P}^{i},
\end{aligned}
$$

and

$$
\begin{equation*}
N_{A|\mu| \nu}^{i}-N_{\substack{3|\nu| \mu}}^{i}=\underset{4}{R_{p \mu \nu}^{i}} N_{A}^{p}-\bar{R}_{A \mu \nu}^{P} N_{P}^{i} \tag{3.6}
\end{equation*}
$$

where $\underset{4}{R}$ is given in (3.2), and \bar{R} in (2.18).
By substituting into (2.15) $\theta=3, \omega=4$ and comparing the obtained equation with (3.6), we obtain the $3^{\text {rd }}$ kind integrability condition of derivational equation (2.3) in the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$:

$$
\begin{align*}
& {\underset{4}{2}}_{p \mu \nu}^{i} N_{A}^{p}=-e_{A} h^{\pi \rho}\left(\Omega_{1}{ }_{A \rho \mu \mid \nu}-{\underset{2}{2}}_{A \rho \nu \mid \mu}\right) B_{\pi}^{i} \\
& +\left[\bar{R}_{A \mu \nu}^{P}-e_{A} h^{\pi \rho} \sum_{P}\left(\Omega_{1} A \rho \mu \Omega_{2} \Omega_{P \pi \nu}-\Omega_{2} A \rho \nu{ }_{1} \Omega_{P \pi \mu}\right)\right] N_{P}^{i} . \tag{3.11}
\end{align*}
$$

a) Composing this equation with $H_{i j} B_{\beta}^{j}$ one obtains the equation of the form (3.5), that is the $1^{\text {st }}$ Codazzi of the $3^{r d}$ kind.
b) Composing (3.7) with $H_{i j} N_{B}^{j}$, we obtain the $2^{\text {nd }}$ Codazzi equation of the $3^{\text {rd }}$ kind in the above cited structure:

$$
\begin{equation*}
R_{4} R_{i j \mu \nu} N_{A}^{i} N_{B}^{j}=\bar{R}_{A B \mu \nu}+e_{A} e_{B} h^{\pi \rho}\left(\Omega_{1}{ }_{A \rho \mu} \Omega_{2}^{B \pi \nu}-\Omega_{2} A \rho \nu{ }_{1} \Omega_{B \pi \mu}\right) . \tag{3.8}
\end{equation*}
$$

From exposed, the following theorems are valid.
Theorem 3.1. The $3^{\text {rd }}$ kind integrability conditions of derivational equations $(2.1,3)$ for $\left(X_{M} \subset G R_{N}\right.$, with the structure $\left(X_{M} \subset G R_{N}, \underset{\theta}{\nabla}, \theta \in\{3,4\}\right)$, where the connection $\underset{\theta}{\nabla}$ is defined in (2.6), are given:

- for tangents B_{α}^{i} by equation (3.3),
- for normals N_{A}^{i} by equation (3.7).

Theorem 3.2. In the same structure (from the previous theorem) the Gauss equation of the $3^{\text {rd }}$ kind for $X_{M} \subset G R_{N}$ is given in (3.4), the $1^{\text {st }}$ Codazzi equation of the $3^{\text {rd }}$ kind by (3.5), and the $2^{\text {nd }}$ Codazzi equation of the $3^{\text {rd }}$ kind by (3.8).

References

[1] Minčić, S. M., Ricci type identities in a subspace of a space of non-symmetric affine connexion, Publ. Inst. Math. (Beograd)(N.S) 18(32) (1975), 137-148.
[2] Minčić, S. M., New Ricci type identities in a subspace of a space of nonsymmetric affine connection, Izvestiya VUZ, Matematika, 4(203), (1979), 17-27 (in Russian).
[3] Minčić, S. M., Symmetry properties of curvature tensors of the space with nonsymmetric affine connection and generalized Riemanian space, Zbornik radova Filoz. fak. u Nišu, 1(11), (1987), 69-78.
[4] Minčić, S. M., Some characteristics of curvature tensors of nonsymmetric affine connexion, N. Sad, J. math., vol. 29, No 3 (1999), 169-186.
[5] Minčić, S. M., Velimirović, Lj.S., Derivational formulas of a submanifold of a generalized Riemannian space, N. Sad, J. math., 36, No 2 (2006), 91-100.
[6] Minčić, S. M., Velimirović, Lj.S., Stanković, M.S., Integrability conditions of derivational equations of a submanifold of a generalized Riemannian space, N. Sad, J. math., to appear.

Svetislav M. Minčić:
University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

Ljubica S. Velimirović:
University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

E-mail: vljubica@pmf.ni.ac.rs
Mića S. Stanković:
University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

E-mail: stmica@ptt.rs

[^0]: 2010 Mathematics Subject Classifications. 53A45, 53B05, 53B40.
 Key words and Phrases. Generalized Riemannian space, submanifold, derivational formulas, integrability conditions.

 Received: October 1, 2009
 Communicated by Ljubiša Kočinac

