Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:4** (2010), 137–146 DOI: 10.2298/FIL1004137M

NEW INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS OF A SUBMANIFOLD IN A GENERALIZED RIEMANNIAN SPACE

Svetislav M. Minčić, Ljubica S. Velimirović and Mića S. Stanković

Abstract

The present work is a continuation of [5] and [6]. In [5] we have obtained derivational equations of a submanifold X_M of a generalized Riemannian space GR_N . Since the basic tensor in GR_N is asymmetric and in this way the connection is also asymmetric, in a submanifold the connection is generally asymmetric too. By reason of this, we define 4 kinds of covariant derivative and obtain 4 kinds of derivational equations. In [6] we have obtained integrability conditions and Gauss-Codazzi equations using the 1^{st} and the 2^{st} kind of covariant derivative.

The present work deals in the cited matter, using the 3^{rd} and the 4^{th} kind of covariant derivative. One obtains three new integrability conditions for derivational equations of tangents and three such conditions for normals of the submanifold, as the corresponding Gauss-Codazzi equations too.

1 Introduction

1.1. A generalized Riemannian space GR_N is a differentiable manifold equipped with an asymmetric basic tensor $G_{ij}(x^1, ..., x^N)$ (the components) where x^i are the local coordinates. The symmetric, respectively antisymmetric part of G_{ij} are H_{ij} and K_{ij} .

For the lowering and rasing of indices in GR_N one uses H_{ij} , respectively H^{ij} , where

(1.1)
$$(H^{ij}) = (H_{ij})^{-1}, \quad (det(H_{ij}) \neq 0).$$

 $2010\ Mathematics\ Subject\ Classifications.\ 53A45,\ 53B05,\ 53B40.$

Key words and Phrases. Generalized Riemannian space, submanifold, derivational formulas, integrability conditions.

Received: October 1, 2009

Communicated by Ljubiša Kočinac

Cristoffel symbols at GR_N are

(1.2)
$$\Gamma_{i.jk} = \frac{1}{2} (G_{ji,k} - G_{jk,i} + G_{ik,j}), \quad \Gamma^{i}_{jk} = H^{ip} \Gamma_{p.jk}$$

where, for example, $G_{ji,k} = \partial G_{ji} / \partial x^k$. Based on the asymmetry of G_{ij} , it follows that the Cristoffel symbols are also asymmetric with respect to j, k in (1.2).

By equations

(1.3)
$$x^i = x^i(u^1, ..., u^M) \equiv x^i(u^{\alpha}), \quad i = 1, ..., N,$$

a submanifold X_M is defined in local coordinates. If $rank(B^i_{\alpha}) = M$ $(B^i_{\alpha} = \partial x^i / \partial u^{\alpha})$ and

(1.4)
$$g_{\alpha\beta} = B^i_{\alpha} B^j_{\beta} G_{ij},$$

 X_M becomes $GR_M \subset GR_N$, with **induced basic tensor** (1.4), which is generally also asymmetric. Note that in the present work Latin indices i, j, ... take values 1, ..., N and refer to the GR_N , while the Greek ones take values 1, ..., M and refer to the GR_M .

In the GR_M are valid the relations similar to (1.1) and (1.2). The symmetric part of $g_{\alpha\beta}$ is denoted with $h_{\alpha\beta}$, and antisymmetric one with $k_{\alpha\beta}$, where e.g.

(1.5)
$$h_{\alpha\beta} = B^i_{\alpha} B^j_{\beta} H_{ij}, \quad (h^{\alpha\beta}) = (h_{\alpha\beta})^{-1}.$$

Cristoffel symbols $\widetilde{\Gamma}_{\alpha,\beta\gamma}$, $\widetilde{\Gamma}^{\alpha}_{\beta\gamma} = h^{\alpha\pi}\widetilde{\Gamma}_{\pi,\beta\gamma}$ are expressed by $g_{\alpha\beta}$ analogously to (1.2).

For the unit, mutually orthogonal vectors N_A^i , which are orthogonal to the GR_M too, we have [1]

(1.6)
$$H_{ij}N_A^i N_B^j = e_A \delta_B^A = h_{AB}, \ e_A \in \{-1, 1\}, \ H_{ij}N_A^i B_\alpha^j = 0,$$

where $A, B, \dots \in \{M + 1, \dots, N\}$.

As it is known, the following relations between Cristoffel symbols of a generalized Riemannian space and its subspace are valid:

(1.7)
$$\widetilde{\Gamma}_{\alpha,\beta\gamma} = \Gamma_{i,jk} B^i_{\alpha} B^j_{\beta} B^k_{\gamma} + H_{ij} B^i_{\alpha} B^j_{\beta,\gamma},$$

(1.8)
$$\widetilde{\Gamma}^{\alpha}_{\beta\gamma} = h^{\pi\alpha}\widetilde{\Gamma}_{\pi,\beta\gamma} = h^{\pi\alpha}(\Gamma_{i,jk}B^i_{\pi}B^j_{\beta}B^k_{\gamma} + H_{ij}B^i_{\pi}B^j_{\beta,\gamma}),$$

i.e.

(1.8')
$$\widetilde{\Gamma}^{\alpha}_{\beta\gamma} = h^{\pi\alpha} H_{pi} B^p_{\pi} (\Gamma^i_{jk} B^j_{\beta} B^k_{\gamma} + B^i_{\beta,\gamma}).$$

1.2. The set of normals of the submanifold $X_M \subset GR_N$ make a **normal bundle** for X_M , and we note it X_{N-M}^N . One can introduce a metric tensor on X_{N-M}^N

$$(1.9) g_{AB} = G_{ij} N^i_A N^j_B,$$

138

which is asymmetric in a general case.

The symmetric part is

(1.10)
$$h_{AB} = H_{ij} N_A^i N_B^j = e_A \delta_B^A = h_{BA} = \begin{cases} e_A, & A=B, \\ 0, & \text{otherwise.} \end{cases}, e_A \in \{-1, 1\}.$$

If

$$(h^{AB}) = (h_{AB})^{-1},$$

we have

$$h^{AB} = e_A \delta^A_B = h_{AB} = h^{BA}$$

On X_{N-M}^N one can define in two manners connection coefficients

(1.11)
$$\overline{\Gamma}_{1B\mu}^{A} = H_{ij}h^{AQ}N_{Q}^{j}(N_{B,\mu}^{i} + \Gamma_{pq}^{i}N_{B}^{p}B_{\mu}^{q}).$$

Being the coefficients Γ , Γ , $\overline{\Gamma}$ non-symmetric in general, for a tensor, defined at points of GR_M , is possible define four kinds of covariant derivative. For example

In this way four connection $\nabla_{\theta}, \theta \in \{1, \dots, 4\}$, on $X_M \subset GR_N$ are defined. We shall note the obtained structures $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{1, \dots, 4\})$.

2 New first and second kind integrability conditions of derivational equations

2.0. In [5] are obtained derivational equations of a submanifold in a GR_N , and in [6] integrability conditions of these equations in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{1,2\})$. In the present work we engage in this problem for the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3,4\})$.

As it is proved in [5] (Th. 1.2.), *derivational equations* in the considered case for a tangent are

(2.1)
$$B^{i}_{\alpha|\mu} = \sum_{P} \bigcap_{\theta} P^{\alpha\mu} N^{i}_{P}, \quad \theta \in \{3, 4\},$$

and then for induced torsion in X_M is valid

(2.2)
$$\widetilde{T}^{\alpha}_{\beta\gamma} = 0 \quad (\widetilde{\Gamma}^{\alpha}_{\beta\gamma} = \widetilde{\Gamma}^{\alpha}_{\gamma\beta}).$$

By virtue of the Th. 2.3. in [5], for unit normal is

(2.3)
$$N^{i}_{A|\mu} = -e_A \underset{\theta}{\Omega}_{A\rho\mu} h^{\pi\rho} B^{i}_{\pi}, \quad \theta \in \{3,4\},$$

and

(2.4)
$$\overline{\Gamma}^A_{1B\mu} = \overline{\Gamma}^A_{2B\mu} = \overline{\Gamma}^A_{B\mu}$$

in (1.12), and based on (1.8) in [5]

(2.5)
$$\Omega_{P\alpha\mu} = e_P H_{ij} N_P^i (B^j_{\alpha,\mu} + \Gamma^j_{pm} B^p_{\alpha} B^m_{\mu}) = \Omega_{P\alpha\mu}.$$

In relation with (2.2,4), the addends in (1.12), related to X_M and to X_{N-M}^N are not different for separate kinds of derivatives, and (1.12) now becomes

where the coefficients $\widetilde{\Gamma}$ are symmetric, and $\overline{\Gamma}$ are unique $(\overline{\Gamma}_1 = \overline{\Gamma}_2 = \overline{\Gamma})$. If in a differentiated tensor no exists indices as i, j, ..., we write $|\mu$ instead of $|\mu$.

Using (2.1,3), we get (see (2.4) in [6])

$$(2.7) \qquad B^{i}_{\alpha|\mu|\nu} - B^{i}_{\alpha|\nu|\mu} = \sum_{P} [e_{P}h^{\pi\rho}(-\underset{\theta}{\Omega}_{P}\alpha\mu\underset{\omega}{\Omega}_{P}\rho\nu + \underset{\omega}{\Omega}_{P}\alpha\nu\underset{\theta}{\Omega}_{P}\rho\mu)B^{i}_{\pi} + (\underset{\theta}{\Omega}_{P}\alpha\mu|\nu} - \underset{\omega}{\Omega}_{P}\alpha\nu|\mu)N^{i}_{P}], \quad \theta, \omega \in \{3, 4\}.$$

2.1. With respect of Ricci-type identities (12) and (13) from [2], and taking into consideration (2.2), we have

$$(2.8) \qquad \qquad B^{i}_{\alpha|\mu|\nu} - B^{i}_{\alpha|\nu|\mu} = \underset{\theta}{R^{i}}_{pmn} B^{p}_{\alpha} B^{m}_{\mu} B^{n}_{\nu} - \widetilde{R}^{\pi}_{\alpha\mu\nu} B^{i}_{\pi}, \ \theta \in \{3,4\},$$

where

(2.9a)
$$R^i_{1jmn} = \Gamma^i_{jm,n} - \Gamma^i_{jn,m} + \Gamma^p_{jm}\Gamma^i_{pn} - \Gamma^p_{jn}\Gamma^i_{pm},$$

(2.9b)
$$R_{2jmn}^{i} = \Gamma_{mj,n}^{i} - \Gamma_{nj,m}^{i} + \Gamma_{mj}^{p}\Gamma_{np}^{i} - \Gamma_{nj}^{p}\Gamma_{mp}^{i}$$

are curvature tensors of the 1st, respectively 2nd kind of GR_N and $\widetilde{R}^{\alpha}_{\beta\mu\nu}$ is, with respect of (2.2), curvature tensor of $R_M \subset GR_N$.

We obtained in [6] three kinds integrability conditions for derivational equation of a tangent B^i_{α} , i.e. for $B^i_{\alpha|\mu}$, $\theta \in \{1, 2\}$. We shall consider here such conditions for $\theta \in \{3, 4\}$.

If one substitutes $\theta = \omega \in \{3, 4\}$ into (2.7) and compares with (2.8), taking into consideration (2.5) and (2.6), we get

(2.10)
$$\begin{aligned} R^{i}_{\theta-2} B^{p}_{\alpha} B^{m}_{\mu} B^{n}_{\nu} &= [\widetilde{R}^{\pi}_{\alpha\mu\nu} - \sum_{P} e_{P} h^{\pi\rho} (\Omega_{\theta} P_{\alpha\mu} \Omega_{\theta} P_{\rho\nu} - \Omega_{\theta} P_{\alpha\nu} \Omega_{\theta} P_{\rho\mu})] B^{i}_{\pi} \\ &+ \sum_{P} [\Omega_{\theta} P_{\alpha\mu}|_{\nu} - \Omega_{\theta} P_{\alpha\nu}|_{\mu}] N^{i}_{P}, \quad \theta \in \{3, 4\}, \end{aligned}$$

which are the 1st and the 2nd integrability conditions of derivational equation (2.1) in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\}).$

a) Composing the previous equation with $H^{ij}B^j_\beta$, one gets

$$(2.11) \quad \underset{\theta-2}{R} _{jpmn} B^{j} \beta B^{p}_{\alpha} B^{m}_{\mu} B^{n}_{\nu} = \widetilde{R}_{\beta \alpha \mu \nu} - \sum_{P} e_{P} (\underset{\theta}{\Omega_{P \alpha \mu}} \underset{\theta}{\Omega_{P \beta \nu}} - \underset{\theta}{\Omega_{P \alpha \nu}} \underset{\theta}{\Omega_{P \beta \mu}}), \ \theta \in \{3,4\},$$

where

(2.12 *a*, *b*)
$$R_{jpmn} = H_{ij} R_{\theta-2}^{i} mn, \quad \widetilde{R}_{\beta\alpha\mu\nu} = h_{\pi\beta} \widetilde{R}_{\alpha\mu\nu}^{\pi}, \quad \theta \in \{3, 4\}.$$

Taking into count the antisymmetry of the tensors (2.12) with respect of the first two indices and substituting *i* in place of *p*, the equation (2.11) becomes

$$(2.13) \quad \widetilde{R}_{\alpha\beta\mu\nu} = \underset{\theta \to 2}{R}_{ijmn} B^{i}_{\alpha} B^{j}_{\beta} B^{m}_{\mu} B^{n}_{\nu} - \sum_{P} e_{P} (\underset{\theta}{\Omega_{P} \alpha \mu} \underset{\theta}{\Omega_{P} \beta \nu} - \underset{\theta}{\Omega_{P} \alpha \nu} \underset{\theta}{\Omega_{P} \beta \mu}), \ \theta \in \{3, 4\},$$

which are **Gauss equations of the 1st and the 2nd kind** in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\}).$

b) Composing the equation (2.10) with $H_{ij}N_Q^j$ we obtain finally

(2.14)
$$\underset{\theta \to 2}{R}_{ijmn} B^i_{\alpha} N^j_Q B^m_{\mu} B^n_{\nu} = e_Q (\Omega_{\theta} Q_{\alpha\nu|\mu} - \Omega_{\theta} Q_{\alpha\mu|\nu}), \ \theta \in \{3, 4\},$$

and that are the 1^{st} Codazzi equations of the 1^{st} and the 2^{nd} kind at the cited structure.

2.2. Consider the same matter for the unit normal N_A^i . Using (2.3,1), we obtain (see (2.13) in [6]):

(2.15)
$$N^{i}_{A|\mu|\nu} - N^{i}_{A|\nu|\mu} = -e_{A}h^{\pi\rho} [(\Omega_{\theta}A_{\rho\mu}\nu - \Omega_{\omega}A_{\rho\nu}\mu)B^{i}_{\pi} + \sum_{P} (\Omega_{\theta}A_{\rho\mu}\Omega_{\mu}P_{\pi\nu} - \Omega_{\omega}A_{\rho\nu}\Omega_{\theta}P_{\pi\mu})N^{i}_{P}].$$

In order to find corresponding Ricci-type identity for the left side of this equation for $\theta = \omega \in \{3, 4\}$, we use (2.6). Firstly, we have

(2.16)
$$N^i_{A|\mu} = N^i_{A,\mu} + \Gamma^i_{pm} N^p_A B^m_\mu - \overline{\Gamma}^P_{A\mu} N^i_P,$$

and further

$$\begin{split} N^{i}_{A_{j}|\mu|\nu} &= (N^{i}_{A_{j}|\mu})_{,\nu} + \Gamma^{i}_{sn}N^{s}_{A_{j}|\mu}B^{n}_{\nu} - \widetilde{\Gamma}^{\sigma}_{\mu\nu}N^{s}_{A_{j}|\sigma} - \overline{\Gamma}^{S}_{A\nu}N^{i}_{S_{j}|\mu} \\ &= N^{i}_{A,\mu\nu} + \Gamma^{i}_{pm,n}N^{p}_{A}B^{m}_{\mu}B^{n}_{\nu} + \Gamma^{i}_{pm}N^{p}_{A,\nu}B^{m}_{\mu} + \Gamma^{i}_{pm}N^{p}_{A}B^{m}_{\mu,\nu} \\ &- \overline{\Gamma}^{P}_{A\mu,\nu}N^{i}_{P} - \overline{\Gamma}^{P}_{A\mu}N^{i}_{P,\nu} + \Gamma^{i}_{sn}N^{s}_{A,\mu}B^{n}_{\nu} + \Gamma^{i}_{sn}\Gamma^{s}_{pm}B^{n}_{\nu}N^{p}_{A}B^{m}_{\mu} \\ &- \Gamma^{i}_{sn}N^{s}_{P}\overline{\Gamma}^{P}_{A\mu}B^{n}_{\nu} - \widetilde{\Gamma}^{\sigma}_{\mu\nu}N^{i}_{A,\sigma} - \widetilde{\Gamma}^{\sigma}_{\mu\nu}\Gamma^{i}_{pm}N^{p}_{A}B^{m}_{\sigma} + \widetilde{\Gamma}^{\sigma}_{\mu\nu}\overline{\Gamma}^{P}_{A\sigma}N^{i}_{P} \\ &- \overline{\Gamma}^{S}_{A\nu}N^{i}_{S,\mu} - \overline{\Gamma}^{S}_{A\nu}\Gamma^{i}_{pm}N^{p}_{S}B^{m}_{\mu} + \overline{\Gamma}^{S}_{A\nu}\overline{\Gamma}^{P}_{S\mu}N^{i}_{P}, \end{split}$$

wherefrom

(2.17)
$$N^{i}_{A|\mu|\nu} - N^{i}_{A|\nu|\mu} = \overline{R}^{i}_{1pmn} N^{p}_{A} B^{m}_{\mu} B^{n}_{\nu} - \overline{R}^{P}_{A\mu\nu} N^{i}_{P},$$

where

(2.18)
$$\overline{R}^{A}_{B\mu\nu} = \overline{\Gamma}^{A}_{B\mu,\nu} - \overline{\Gamma}^{A}_{B\nu,\mu} + \overline{\Gamma}^{P}_{B\mu}\overline{\Gamma}^{A}_{P\nu} - \overline{\Gamma}^{P}_{B\nu}\overline{\Gamma}^{A}_{P\mu},$$

is curvature tensor of the spaceGR_N with respect to the normal submanifold in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\}).$

By means of the 4^{th} kind of covariant derivative we obtain an equation corresponding to (2.17), and we conclude

$$(2.19) N^{i}_{A|\mu|\nu} - N^{i}_{A|\nu|\mu} = \underset{\theta}{R^{i}_{pmn}} N^{p}_{A} B^{m}_{\mu} B^{n}_{\nu} - \overline{R}^{P}_{A\mu\nu} N^{i}_{P}, \ \theta \in \{3,4\}.$$

If one substitutes into (2.15) $\theta = \omega \in \{3, 4\}$ and equilizes the right sides of obtained equation and (2.19), we get the 1st and the 2nd kind integrability conditions of derivational equation (2.3) in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\})$:

(2.20)
$$\frac{R_{\theta-2}^{i}p_{mn}N_{A}^{p}B_{\mu}^{m}B_{\nu}^{n} = e_{A}h^{\pi\rho}(\Omega_{\theta}A_{\rho\mu}|_{\nu} - \Omega_{\theta}A_{\rho\nu}|_{\mu})B_{\pi}^{i}}{+ [\overline{R}_{A\mu\nu}^{P} - e_{A}h^{\pi\rho}\sum_{P}(\Omega_{\theta}A_{\rho\mu}\Omega_{\theta}P_{\pi\nu} - \Omega_{\theta}A_{\rho\nu}\Omega_{\theta}P_{\pi\mu})]N_{P}^{i}, \ \theta \in \{3,4\}.$$

a) If we compose this equation with $H_{ij}B^j_\beta$ one obtains an equation equivalent with (2.14),that is the 1st Codazzi equation of the 1st and the 2nd kind for the structure $(X_M \subset GR_N, \sum_{\alpha}, \ \theta \in \{3, 4\}).$

b) By composing the equation (2.20) with $H_{ij}N_B^j$, one obtains endly

$$(2.21) \qquad \underset{\theta \to 2}{R}_{ijmn} N_A^i N_B^j B_\mu^m B_\nu^n = \overline{R}_{AB\mu\nu} + e_A e_B h^{\pi\rho} (\underset{\theta}{\Omega}_{A\pi\mu} \underset{\theta}{\Omega}_{B\rho\nu} - \underset{\theta}{\Omega}_{A\pi\nu} \underset{\theta}{\Omega}_{B\rho\mu}),$$

where

(2.22)
$$\overline{R}_{AB\mu\nu} = h_{AP}\overline{R}^{P}_{B\mu\nu}$$

The equation (2.21) is the 2nd Codazzi equation of the 1st and the 2nd kind for the structure $(X_M \subset GR_N, \nabla, \theta \in \{3, 4\})$.

Based on expressed above, the next theorems are valid:

Theorem 2.1. The 1st and the 2nd kind integrability conditions for derivational equations (2.1), (2.3) in the in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\})$ are given by equations (2.10), (2.20) respectively, where Ω_{θ} is given in (2.5), R, R in (2.9), \widetilde{R} is curvature tensor of the symmetric connection $\widetilde{\Gamma}$, while \overline{R} is given in (2.18), (2.22).

Theorem 2.2. The Gauss equations of the 1st and the 2nd kind in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\})$ are given in (2.13), the 1st Codazzi equations of the 1st and the 2nd kind in (2.14), and the 2nd Codazzi equations of the 1st and the 2nd kind in (2.14), in the same structure.

3 Third kind integrability condition of derivational equations

3.1. Using simultaneously the 3^{rd} and the 4^{th} kind of covariant derivative by virtue of (2.6), we obtain Ricci-type identity (eq. (46) in [2]):

(3.1)
$$B^{i}_{\alpha|\mu|\nu}_{3|4} - B^{i}_{\alpha|\nu|\mu}_{3|4|3} = R^{i}_{4|\mu\nu}B^{p}_{\alpha} - \widetilde{R}^{\pi}_{\alpha\mu\nu}B^{i}_{\pi},$$

where

$$(3.2) \qquad R_{4j\mu\nu}^{i} = (\Gamma_{jm,n}^{i} - \Gamma_{nj,m}^{i} + \Gamma_{jm}^{p} \Gamma_{np}^{i} - \Gamma_{nj}^{p} \Gamma_{pm}^{i}) B_{\mu}^{m} B_{\nu}^{n} + T_{jm}^{i} (B_{\mu,\nu}^{m} - \widetilde{\Gamma}_{\nu\mu}^{\pi} B_{\pi}^{m})$$

is curvature tensor of the $\mathbf{4^{th}}$ kind of $\mathbf{GR_N}$ with respect to $\mathbf{X_M} \subset \mathbf{GR_N}.$

On the other hand, if we put into (2.7) $\theta = 3$, $\omega = 4$ and compare the obtained equation with (3.1), we obtain the 3^{rd} kind integrability condition of derivational equation (2.1) in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\})$:

(3.3)

$$\begin{aligned}
R_{4p\mu\nu}^{i}B_{\alpha}^{p} &= [\widetilde{R}_{\alpha\mu\nu}^{\pi} - \sum_{P} e_{P}h^{\pi\rho}(\underset{1}{\Omega_{P\alpha\mu}}\underset{2}{\Omega_{P\rho\nu}} - \underset{2}{\Omega_{P\alpha\nu}}\underset{1}{\Omega_{P\rho\mu}})]B_{\tau}^{i} \\
&+ \sum_{P}(\underset{1}{\Omega_{P\alpha\mu}}_{\nu} - \underset{2}{\Omega_{P\alpha\nu}}_{\mu})N_{P}^{i}.
\end{aligned}$$

a) Composing previous equation with $H_{ij}B^j_\beta$, we get

$$R_{4}_{jp\mu\nu}B_{\beta}^{j}B_{\alpha}^{p} = \widetilde{R}_{\beta\alpha\mu\nu} - \sum_{P}e_{P}(\underset{1}{\Omega_{P\alpha\mu}}\underset{2}{\Omega_{P\beta\nu}} - \underset{2}{\Omega_{P\alpha\nu}}\underset{1}{\Omega_{P\beta\mu}}),$$

i.e., exchanging $j \to i, p \to j, \alpha \leftrightarrow \beta$, it follows that

(3.4)
$$\widetilde{R}_{\alpha\beta\mu\nu} = \underset{4}{R}_{ij\mu\nu}B^{i}_{\alpha}B^{j}_{\beta} - \sum_{P}e_{P}(\underset{1}{\Omega_{P\alpha\mu}}\underset{2}{\Omega_{P\beta\nu}} - \underset{2}{\Omega_{P\alpha\nu}}\underset{1}{\Omega_{P\beta\mu}}),$$

where

(3.5)
$$R_{4j\mu\nu} = H_{ip} R_{4j\mu\nu}^p$$

The equation (3.4) is Gauss equation of the 3^{rd} in the structure $(X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3, 4\}).$

b) Composing (3.4) with $H_{ij}N_Q^j$, we obtain

$$R_{4ij\mu\nu}N_Q^iB_\alpha^j = e_Q(\Omega_{Q\alpha\mu|\nu} - \Omega_{Q\alpha\nu|\mu}).$$

This is the 1st Codazzi equation of the 3rd kind in the cited structure.

3.2. On the base of (2.6) and (2.16) we have

$$\begin{split} N^{i}_{A_{|\mu|\nu}} &= (N^{i}_{A_{|\mu|}})_{,\nu} + \Gamma^{i}_{ns} N^{s}_{A_{|\mu}} B^{n}_{\nu} - \Gamma^{\sigma}_{\mu\nu} N^{i}_{A_{|\sigma}} - \overline{\Gamma}^{S}_{A\nu} N^{i}_{S_{|\mu}} \\ &= N^{i}_{A,\mu\nu} + \Gamma^{i}_{pm,n} N^{p}_{A} B^{m}_{\mu} B^{n}_{\nu} + \Gamma^{i}_{pm} N^{p}_{A,\nu} B^{m}_{\mu} + \Gamma^{i}_{pm} N^{p}_{A} B^{m}_{\mu,nu} \\ &- \overline{\Gamma}^{P}_{A\mu,\nu} N^{i}_{P} - \overline{\Gamma}^{P}_{A\mu} N^{i}_{P,\nu} + \Gamma^{i}_{ns} N^{s}_{A,\mu} B^{n}_{\nu} + \Gamma^{i}_{ns} \Gamma^{s}_{pm} B^{n}_{\nu} N^{p}_{A} B^{m}_{\mu} \\ &- \Gamma^{i}_{ns} N^{s}_{P} \overline{\Gamma}^{P}_{A\mu} B^{n}_{\nu} - \widetilde{\Gamma}^{\sigma}_{\mu\nu} N^{i}_{A,\sigma} - \widetilde{\Gamma}^{\sigma}_{\mu\nu} \Gamma^{i}_{pm} N^{p}_{A} B^{m}_{\sigma} + \widetilde{\Gamma}^{\sigma}_{\mu\nu} \overline{\Gamma}^{P}_{A\sigma} N^{i}_{P} \\ &- \overline{\Gamma}^{S}_{A\nu} N^{i}_{S,\mu} - \overline{\Gamma}^{S}_{A\nu} \Gamma^{i}_{pm} N^{p}_{S} B^{m}_{\mu} + \overline{\Gamma}^{S}_{A\nu} \overline{\Gamma}^{P}_{S\mu} N^{i}_{P}, \end{split}$$

and

(3.6)
$$N^{i}_{A|\mu|\nu} - N^{i}_{A|\nu|\mu} = R^{i}_{4\,\mu\nu} N^{p}_{A} - \overline{R}^{P}_{A\mu\nu} N^{i}_{P}$$

where R_{4} is given in (3.2), and \overline{R} in (2.18).

By substituting into (2.15) $\theta = 3$, $\omega = 4$ and comparing the obtained equation with (3.6), we obtain the 3rd kind integrability condition of derivational equation (2.3) in the structure $(X_M \subset GR_N, \nabla, \theta \in \{3, 4\})$:

(3.11)
$$\frac{R_{4}^{i}{}_{\rho\mu\nu}N_{A}^{p} = -e_{A}h^{\pi\rho}(\underset{1}{\Omega_{A}\rho\mu}{}_{\nu} - \underset{2}{\Omega_{A}\rho\nu}{}_{\mu}{}_{\mu})B_{\pi}^{i}}{+ [\overline{R}_{A\mu\nu}^{P} - e_{A}h^{\pi\rho}\sum_{P}(\underset{1}{\Omega_{A}\rho\mu}\underset{2}{\Omega_{P}\pi\nu} - \underset{2}{\Omega_{A}\rho\nu}\underset{1}{\Omega_{P}\pi\mu})]N_{P}^{i}.$$

a) Composing this equation with $H_{ij}B^j_\beta$ one obtains the equation of the form (3.5), that is the 1^{st} Codazzi of the 3^{rd} kind.

b) Composing (3.7) with $H_{ij}N_B^j$, we obtain the 2nd Codazzi equation of the 3^{rd} kind in the above cited structure:

(3.8)
$$R_{ij\mu\nu}N_A^iN_B^j = \overline{R}_{AB\mu\nu} + e_A e_B h^{\pi\rho} (\Omega_{1}_{A\rho\mu}\Omega_{B\pi\nu} - \Omega_{2}_{A\rho\nu}\Omega_{1}_{B\pi\mu}).$$

From exposed, the following theorems are valid.

Theorem 3.1. The 3^{rd} kind integrability conditions of derivational equations (2.1,3) for $(X_M \subset GR_N, \text{ with the structure } (X_M \subset GR_N, \nabla_{\theta}, \theta \in \{3,4\})$, where the connection \sum_{A} is defined in (2.6), are given:

- for tangents B^i_{α} by equation (3.3), - for normals N^i_A by equation (3.7).

Theorem 3.2. In the same structure (from the previous theorem) the Gauss equation of the 3^{rd} kind for $X_M \subset GR_N$ is given in (3.4), the 1^{st} Codazzi equation of the 3^{rd} kind by (3.5), and the 2^{nd} Codazzi equation of the 3^{rd} kind by (3.8).

References

- [1] Minčić, S. M., Ricci type identities in a subspace of a space of non-symmetric affine connexion, Publ. Inst. Math. (Beograd)(N.S) 18(32) (1975), 137-148.
- [2] Minčić, S. M., New Ricci type identities in a subspace of a space of nonsymmetric affine connection, Izvestiya VUZ, Matematika, 4(203), (1979), 17-27 (in Russian).
- [3] Minčić, S. M., Symmetry properties of curvature tensors of the space with nonsymmetric affine connection and generalized Riemanian space, Zbornik radova Filoz. fak. u Nišu, 1(11), (1987), 69-78.
- [4] Minčić, S. M., Some characteristics of curvature tensors of nonsymmetric affine connexion, N. Sad, J. math., vol. 29, No 3 (1999), 169-186.

- [5] Minčić, S. M., Velimirović, Lj.S., Derivational formulas of a submanifold of a generalized Riemannian space, N. Sad, J. math., 36, No 2 (2006), 91-100.
- [6] Minčić, S. M., Velimirović, Lj.S., Stanković, M.S., Integrability conditions of derivational equations of a submanifold of a generalized Riemannian space, N. Sad, J. math., to appear.

Svetislav M. Minčić:

University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

Ljubica S. Velimirović:

University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

E-mail: vljubica@pmf.ni.ac.rs

Mića S. Stanković:

University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia.

E-mail: stmica@ptt.rs