
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol, 72, No. 1, JANUARY 1992

New Iterative Methods for Linear Inequalities

K. YANG 2 AND K. G. MURTY 3

Communicated by O. L. Mangasarian

Abstract. New iterative methods for solving systems of linear inequali-
ties are presented. Each step in these methods consists of finding the
orthogonat projection of the current point onto a hyperplane corre-
sponding to a surrogate constraint which is constructed through a posi-
tive combination of a group of violated constraints. Both sequential and
parallel-implementations are discussed.

Key Words. Linear inequalities, surrogate constraints, iterative
methods, sequential implementation, paralleI implementation.

1. Introduction

We consider the problem of finding a feasible solution to

Ax <_b, (1)

where A = (aij)~2~ "×n and b = (b~)~ Z ~. Large-scale versions of this problem
appear in image reconstruction f rom projections (Ref. 1), which is becoming
important in many scientific fields. In medical science, computerized tomo-
graphy reconstructs the images of cross sections of the human body by
processing data obtained f rom measuring the attenuation of X-rays p~tssing

The authors are grateful to a referee for pointing out the result in Lemma 5.1 and its importance
in the proof of Theorem 5.1. This work was supported partially by NSF Grant No. ECS-85-
21183.

2Formerly, Graduate Student, Department of Industrial and Operations Engineering,
University of Michigan, AnnArbor, Michigan. Presently, Assistant Professor, Department of
Industrial and Manufacturing Engineering, Wayne State University, Detroit, Michigan.

3Professor, Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, Michigan.

163
0022-3239/92/0100-0163506.50/0 © 1992 Plenum Publishing Corporation

164 JOTA: VOL. 72, NO. 1, JANUARY 1992

through it. Other image reconstruction problems arise in remote sensing
(Ref. 2), seismic tomography (Ref. 3), and industrial nondestructive testing.

One approach transforms (1) into a linear program and solves it by
methods such as Karmarkar's method (Refs. 4 and 5) or the simplex
method. These methods require matrix operations which are often imprac-
tical for the large-scale systems that arise in applications such as image
reconstruction.

The second approach involves using iterative methods, the basic compu-
tation step in which is extremely simple and easy to program. Because of
these advantages, the linear inequality solvers employed in image reconstruc-
tion are most often iterative methods. One class of iterative methods is
derived from the relaxation method for linear inequalities (Refs. 6 and 7)
and Kaczmarz's method (Ref. 8) for linear equations. The name refers to
the fact that they consider one constraint at a time, so in each step, all but
one constraint are relaxed. In each iteration, a violated constraint is identified
and an orthogonal projection is made onto it from the current point. So
they are also called successive orthogonal projection methods. Bregman
(Refs. 9 and 10), Eremin (Ref. I1), and Gubin et al. (Rel: 12) extended this
idea to finding a point in a convex set defined by a system of inequalities
involving convex functions. An orthogonal projection onto a single linear
constraint is computationally inexpensive, but considering only one con-
straint at a time leads to slow convergence. Instead, it is better to process a
group of constraints at a time. But making an orthogonal projection onto
the affine space corresponding to a group of constraints is computationally
expensive; the amount of work for it grows as the cube of the number of
constraints in the group.

Another class of iterative methods is derived from Cimmino's algorithm
(Ref. 13) for linear equations. Censor and Elfving (Ref. 14) and De Pierro
and Iusem (Ref. 15) developed a Cimmino-type algorithm for linear inequal-
ities. This method makes orthogoual projections simultaneously onto each
of the violated constraints ,from the current point and takes the new point
to be a convex combination of those projection points. Cimmino's method
is amenable to parallel implementation, but making projections onto every
violated constraint is again computationally expensive, and the method tends
to have slow convergence.

In this paper, we propose surrogate constraint methods which are able
to process a group of violated constraints at a time but retain the same
computational simplicity of the relaxation method, and at the same time are
highly amenable to massively parallel implementation. In each iteration, a
surrogate constraint is derived from a group of violated constraints. The
current point is orthogonally projected onto this surrogate constraint treated
as an equation, and the process is repeated until a feasible solution is found.

JOTA: VOL. 72, NO. 1, JANUARY 1992 165

2. Notation and Assumptions

Ai = ith row vector of A, assumed#0, and integer for all i;
K = set of feasible solutions of (1), assumed # ~ ;
I c { 1 , . . . , m } denotes an index set, which identifies a subset

of the constraints;
Ki= {x[Aix <~ bi} is the half space corresponding to the ith constraint;
Hi = {xlAix= b~} is the hyperplane corresponding to the boundary of

the ith constraint;
Kt = {N Ki}g~x, K I C k , since Kx=K;
]S[= cardinality of the set S;
A~=II[x n matrix with rows Ai, i~I;
bl = (bi, ieI), column vector;
llx[i = + w/~ x~, Euclidean norm of the vector x;
d(x, Hi)= minimum Euclidean distance from x to Hi;
d(x, Ki)=minimum Euclidean distance from x to Ki;

d=0 , if xEK,., and d=d(x, Hi), otherwise;
(x) = sup{d(x, Ki): i = 1 to m} ;

d(x, K)=minimum Euclidean distance from x to K;
L=leng th of the binary encoding of all data in (1);
I(x)= {i: Aix-b~>O}, for any x~R".

I(x) is the index set of violated constraints at x. The point x e K i f f I(x) =
~ . Finding I(x) is highly amenable to massive parallel implementation. We
can use up to m simple processors operating in parallel, each one dedicated
to checking a separate constraint or a small group of constraints in (1). The
following lemma (Refs. 16 and 17) will be used in the convergence proofs.

Lemma 2.1. If the system (1) is feasible, then there is a feasible solution
2, with I~jt < 2L/2n, j= 1 , . . . , n.

Without any loss of generality, we assume that each row of A is normal-
ized so that IlAilj = 1, for all i= 1 to m. This has no effect on K, or Ki, or Hi,
but makes it easier to write the projections on Hi. Clearly, a point x+K iff
~b (x)= 0. In practice, we are usually interested in getting an approximate
solution for (1) within some tolerance. Given a tolerance e > 0, a point X is
said to be feasible to (1) within tolerance e if ~b(x)< E, i.e.,

x e K , = {x: Aix<bi+ E, for all i= 1 to m}.

3. Basic Surrogate Constraint Method

In this method, when 2 is the current point, if 1(2)=/ , a row vector
~r = (~ri: i~I(Yc)) of positive weights is selected, and the surrogate constraint

166 JOTA: VOL. 72, NO. 1, JANUARY 1992

(z A D x < (zbr) generated. The corresponding surrogate hyperplane is

Hs = {x: (zAI)x = (zb,)}.

We assume that the weight vector ~r is normalized so that

Y. (zi: over i e I (2)) = 1.

This assumption is made purely for the sake of simplifying some statements.
The next point in the method is one on the line segment joining the current
point and its reflection on the surrogate hyperplane. The actual point selected
in this line segment depends on a parameter ~, which can be set by the user
anywhere between 0 and 2 (X = 1 corresponds to the orthogonal projection).
The algorithm is initiated with some point x ° e R", which could be 0 or some
known near-feasible point. The general step k + 1, for k > 0 is given below.

Step k + 1. Let x k be the point obtained at the end of the previous
step. Identify the index set Ik = I (x ~) of violated constraints. If Ik = ~5, x k
is feasible to (1); terminate. Otherwise, select a weight vector
z(k) = (z~: iEIk), and compute

x k+l = x k - [~, (z(k)A1kx k - z(k)bzk)(z(k)Ai~)r]/LI z(k)A~kH 2, (2)

where 0 < , t < 2 ; go to the next step.
See Fig. I. The most expensive piece of work in each step, that of finding

the index set I (x k) of violated constraints, is easily implemented in a massive
parallel way as discussed above; this is a major advantage of these methods.

/
K

Surrogate
Hyperplane

Fig. I. A step in the surrogate constraint method with A=l . Both constraints
are violated at x k.

.

JOTA: VOL. 72, NO. 1, JANUARY 1992 167

A variety of strategies can be used for selecting the weight vector
,r(k) = (rc~:ielk). One selects all the weights to be equal, i.e.,

,r~= 1/I/hi, i e lk .

Another strategy computes the error r i = A i x k - b t , the Euclidean distance
from the current point x k to K,., for each i~lk, and takes

A third strategy takes the weight vector to be a convex combination of the
above two vectors, etc. For the sake of simplicity, all our convergence proofs
will be based on the assumption that the weight vector z = (zi: i s I (x~)) is
selected so as to satisfy

7ri> y, ieI (xk) ,

when x k is the current point, where y is some predetermined small positive
quantity.

Convergence Results.

Definition 3.1. When K S ~ , a sequence {xk}ff= 1 in R" is called strictly
Fejer-monotone with respect to the set K if, for every x e K ,

Ilx k+l -x l l < Ilxk-xll, for all k > 0 . (3)

Every Fejer-monotone sequence is bounded if KeyES, since Ilxk-xll is
always positive and monotonically decreasing with K.

Theorem 3.1. If K S ~ , any sequence {Xk} generated by the above
algorithm is strictly Fejer-monotone with respect to K.

Proof. Select any point x e K . Define ek=x~--X, k = 0 , 1 For
simplicity, denote 7r(k) by 7r and Ik by L Then, if I S ~ ,

e k + l = e k - - 2 (g A l x k - rcbz)(rcAz) r/II rcAiII 2

I[ek+ 1112 = 11 e~ll 2 + 22(rcAzx ~ _ l f b i) 2 / I I rrArll 2

- 22 (~rAix ~ - rcbz)fJrAi)fx k - x)/II 1rAAI2

= I[ekll 2 + 2 2 (1 r A I X k - l g b I) 2 /] l rrAzll 2

- 22 (rcAzx ~ - rcbz)(rcAzx k - rcbz- ~rAzx + Jrbi)/II rcAAI 2

= Ilekll 2 + 22(rcAz x k - rcb,)2/]l *rAzll 2

- 22 (rcAzx k - rcbt)Z/II ,rArll 2

+ 22 (rcAzx k - rcbz)(rcAzx - rcbz)/II rcAAI 2.

168

Since

we have

JOTA: VOL. 72, NO. 1, JANUARY 1992

zA~x k > zbi and zAxx < zbx,

2)~ (zAzx k - z b i) (z A z x - ~bz)/ll~A,II 2 ~0.

Therefore, it follows that

tlek+lt[2_< Ilekll2-,~ (2 - ~,)(zazx ~ - zbz)2/llzhzll2< Ilekll 2. (4)
[]

Theorem 3.2. If K¢ff i , any infinite sequence {x k} generated by the
above algorithm has the property

tim ¢ (x ~) = O.
k--~oo

Proof. Select any point x e K, and define e k= x k - x, for all k, as above.
Fejer-monotonicity implies that the sequence { Ile~ll }~=1 is monotonically
decreasing, hence it converges, which implies that

lim Ile~÷lll = lim Ilekll.
k ~ o o k ~ e c

It follows from (4) that

Since

lim (z(k)Arkx k - z(k)blk) = O.
k---~ co

z,{k) >),, for all ieI(xk),

(~ z , : over /e /k) = 1,

Aixk-bi>O, for all ieIk,

this implies that either

lim (Aix k - b~) = O,
k ~ o o

for all is Ik,

JOTA: VOL. 72, NO. 1, JANUARY 1992 169

o r

for some/~< 0% I(x fl) = ~ .

Therefore,

lim (~b (x k) = sup d(x k, Ke) = 0.
k ~ o ~ ie{l, . . . ,m}

[]

Lemma 3.1. Assume that K ~ ~5 and that the sequence {xk}ff= 1 satisfies
the following conditions:

(i) {x~}ff=l is Fejer-monotone with respect to K;
(ii) limk-.~ ~ (Xk) = 0.

Then, {x k} converges to an xeK .

Proof. This follows from Lemmas 5 and 6 of Ref. 12. []

Theorem 3.3. Let e > 0 be a specified error tolerance. If K ~ ~ , and
we set I (x ~') = {i: Aex k - hi> e} in the above aigorithm, it converges to a point
xeK~ in a finite number of iterations.

Proof. (i) First, we show that, for any x~K, if xkCK~, then

[Ix k+l -x[[< []xk-x[[, for all k_>0.

This follows directly from the fact that, if xkCK~, then I (x k) ¢ ~ , so the
algorithm will not terminate in the step when x k is the current point. From
(4), we have

Itd'+ 111 = -< II ekll 2 - Z (2 - ~)(TcArx k - ~rbz)2/I[zrAzll 2 < Ilekll =-

Hence, the result follows.
(ii) Then, we show that, in this case, any infinite sequence {xk}ff=l

generated by this algorithm has the property

lira q~ (x k) _< e.
k ~ o

This follows from the fact that the sequence { [[ekt[}~°=l is positive and mono-
tonically decreasing, hence it converges. So,

lirn Hek+ll[= lim [leklt.

So, it follows from (4) that

lim (rc(k)A2kx k - rc(k)b,~) = O. (5)
k.--~ oz~

170

But since

JOTA: VOL. 72, NO. 1, JANUARY 1992

~ try: over ielk) = 1,

for all ielk,

where

II zAz~ll ~ (!1 z l l) (l lAd) ~(II~II)(IIAIAF)
\1/2/ . \l/z

= ~ z E i) I ~ ~[aij] 2) <m,
ielk iElk j = 1

IIAx~ll2 = supllAl~cll/llxl[,
xv~0

and where

n)1/2
}[A1kllF = ~ ~ [a,'i[2

\ i e l k j = I

and that

7r(k)>O,

A~xk-b~> e,

this implies that

~r(k)A,S- 7r(k)b,k > E,

as long as Ik@~, which contradicts (5). So there must exist/~< oo, such
that I(x ~) = ~ , which implies that, at iteration/~,

~b (x z) = sup d((x z, K,) _ e.
ie { l,...,m }

In other words, x~eK,.
(iii) Bounds on/~. Select a point xeK, and define ek=xk--X, for all k.

From Lemma 2.1, we have

Ile°II < 2 L- I/x/~.

If at iteration k, I(x ~) ~ ~, Aix k- b~> ~, for all i~I(xk), it follows that

ZrAlkXk-zblk>(~ zi: over ielk)(min{Atxk-b~: over i~I~})

>(~ z~: over ielk),>,.

JOTA: VOL. 72, NO. 1, J A N U A R Y 1992 171

is the Frobenius norm of Aik. It follows that

Ilek+ 1 [IZ < Ile~ll 2 - ;~ (2 - ,~)e2/m 2.

Therefore, this algorithm converges within/~ steps, where

/~_< m222L- Z/nZ (2 - Z) s 2. []

4. Sequential Surrogate Constraint Method

In many applications, the matrix A is often very large (m and n are lO s
or more) and sparse (less than 0.1% of entries are nonzero), and working
on the whole matrix A may be almost impossible. So, it is preferable to work
on a small subset of constraints of (1) at a time. Specifically, the matrix A
can be partitioned into p submatrices, and the right-hand side vector b can
be partitioned compatibly into p subvectors, as follows:

• m m m

A 1 b l

: i :

A = A t , b = b t (6)

t

A p b p
g E

where A t is an mtx n matrix, b t has rn~ rows, t = 1 to p, and
p

m t - ~ m .
t = l

Now, we will show that the surrogate constraint method can be used to solve
the system (1) by successively applying on the subsystems,

Atx~_b t, t = 1 to p,

in cyclic order•
For any x e R n, define

F (x) = {i: ith constraint in tth subsystem is violated by x}.

We denote by z t= (z~ zt~,) the weight vector for the tth subsystem,
t = 1 to p. When the current point is x ~, and we have to operate on the tth
subsystem next, we will set

z~ > O, if i e I t (xk) ,

z~ = O, otherwise.

172 JOTA: VOL. 72, NO. 1, JANUARY 1992

Then, the corresponding surrogate constraint for the tth subsystem is

zf Wx <_ rctb ',

and the surrogate hyperplane of the tth subsystem is

Ht~ = {x: rctAtx = 7rtbt}.

The algorithm goes through major cycles. In every major cycle, each of
the p subsystems is operated on once, in serial order t = 1 to p. Initialization
is the same as in the previous algorithm. Consider a major cycle. In this
major cycle, operate on subsystems in the order t = 1 to p.

Let x k be the current point, and let the tth subsystem be the one to be
operated next. Find It(xk).

I f I t (x k) = Z~, define x ~+ 1= xk, and go to the next subsystem with x ~+ ~,
if t<p. If t=p, this completes the major cycle. I f there is no change in the
current point throughout this major cycle, then the current point is feasible
to (1); terminate. Otherwise, go to the next major cycle with the current
point.

If P (x k) # ~ , select a weight vector 7r t and define

x k+l = x k - ;td k, (7a)

where

d k= (l f W x k - rc'bt)Qr'A')r/II ~tA'll2 (7b)

and 0<A,<2. With x g+l, go to the next subsystem if t<p, or to the next
major cycle if t =p.

Convergence Results.

Lemma 4.1. Let c°e Nn, and let C r be a row vector in N'. Let F be the
half space {x: C rx < Ctc°}. If z ¢ F is such that its orthogonal projection on
F is c °, then

]ly-z~,tl < ttY-Ztl, for all y ~ F and z , ~ = z - a (z - e °) for 0 < a < 2 .

See Fig. 2.

Proof. See Refs. 6 and 11. []

Lemma 4.2. Suppose that the point x~+~=xk-ad~ is obtained by
operating on the tth subsystem with x k as the current point, where d k is given
by (7b). Let F t be the half-space corresponding to the surrogate constraint in

JOTA: VOL. 72, NO. 1, JANUARY 1992 173

z~
I

I

I

y

c °
'~'z

Fig. 2. Illustration of Lemma 4,1.

this step,

7ctAtx ~ l~tb t.

C t Then K F and

t l y - (xg -adk) I i < Ily-xkII , for all y~Ft and O<a <2. (8)

Proof. Any point feasible to the subsystem alone must satisfy the
surrogate constraint, i.e., must be in I "t. So, K c F t. The surrogate hyperplane
in this iteration is

' - {x: # A ' x = #b'}, g s -

and x k - d g is the orthogonal projection of x k onto it. So,

rrtb' = # A t (x ~ - dk).

Relation (8) now follows by using the result in Lemma 4.1. []

Theorem 4.1. In this algorithm, if x k+l # x k, then

[]x-xk+l[[< []x- xk[[, for all x~K.

Proof. It follows directly from Lemma 4.2. []

Theorem 4.2. If K # ~Z~, any sequence {xk}~=~ generated by this algo-
rithm has the property that

lira ~b (x k) = 0.
k - * oc~

174 JOTA: VOL. 72, NO. 1, JANUARY 1992

Proof. For any x ~ K , Theorem 4.1 implies that the sequence
{llx~-xll}~=, is monotonically decreasing, thus it converges. So, if t (k)
denotes the subsystem operated upon when x k is the current point, and if
Ir t(~) is the weight vector used in that step, then

Since

l im (rct(k)At(k)x k -- z~t(~)b t(k)) = O.
k-.~ oo

7rff) > 0, for all ielt(k)(Xk),

and sums to one over these i, and since

A~(k)x k - b~ (k) > O, for all i t l t(k)(xk),

this implies that either

lim (A f f) x k - b~ (k)) = O, for all iel t(k)(xk),
k--,, c~

or there exist an f < oo such that, at major cycle ~,

I t (x k) = ~ , for all t = 1 to p.

Therefore,

lim ~ (x ~) = 0.
k ~ o o

[]

Proof. We proceed as in the proof of Theorem 3.3. From Theorem
4.1, we know that, if xkCK,, then

IIx-x~*lll < Itx-x~ll, for all x~K.

Define e k = x k - - x . Since {[lekI[} is monotonically decreasing and bounded
below, it converges, and this implies that

lim Ilek÷~ll = lim Ile~ll.
k--* oo k ~ o o

But this happens only if there exists an f < ~ such that, at major cycle f, the
current point is x ~ and I ' (x k) = Zf, for all t = 1 to p. Otherwise for all k, there

Theorem 4.3. Let E > 0 be a specified error tolerance. I f K # ~ , and if
we operate this algorithm by setting

I t (x k) = {i: A~x k - b~ > E}, for all k,

it converges to a point x ~ K , in a finite number of major cycles.

JOTA: VOL. 72, NO. 1, JANUARY 1992 175

exists a subsystem t such that I t (x k) 4 = ~ , then lr'A'x k - tc'bt > e, hence

l im Ileal[~ l im llek+lll,
k ~ c o k ~ o o

a contradiction. So, operated as stated, this algorithm must converge to a
point in K, in a finite number of major cycles.

Now, we derive a bound on f. From Lemma 2.1, it follows that
Ite°ll <2L-~/,,/n. I f at the beginning of a major cycle r, the current point
xkCK, , there exists at least one subsystem t, and at least one constraint in
it, say, the ith, such that A~x k - b~ > e. So, a change of point must occur in
some step in this major cycle. Let t be the subsystem operated on in that
step; let x g, x g+l be the points at the beginning and end of this step; and let
~r t be the weight vector used. So,

eg+ 1 = e g_ ~ (zrtAtxg _ zrtbt)(ztAtfr /]1 ~ 4tll 2,

l id + 1112 ~ [Idll 2 - ~L (2 - &) (z r t A t x g - lrtbt)2/II ~ 'A ' II 2,

Now, as in the proof of Theorem 3.3, we get

I]eg+ 1 I[= < lle~ll 2 - ;~ (2-/I,) ff2/m 2.

From this, it follows that this algorithm terminates within ? major cycles,
where

<_ m222z'- 2/n)~ (2 -- ~) e 2. []

5. Parallel Surrogate Constraint Method

The algorithm of the previous section can be modified so as to work on
all the subsystems Atx < b t, t = 1 to p, simultaneously in parallel. We will call
this version the parallel surrogate constraint method. This method is also
initiated with some point x°e Rn. The general step k + 1, for k > 0, is given
below.

Step k + 1. Let x ~ be the point obtained at the end of the previous
step. For each subsystem t = 1 to p, find I t (x k) as defined in the previous
section. If I t (x k) = ~ , define Pt(x ~') = x k. If F (x 1') ~ ~ , select the weight
vector Jr t as in the previous section, and define Pt(x k) = x k - d k, where

d~= (~r'Atx k - zrtbt)(TrtA~)r/tlrctAtll2.

176 JOTA: VOL. 72, NO. 1, JANUARY 1992

If It(x k) = ~ , for all t = 1 to p, then x k is feasible to (1); terminate. Otherwise,
define

P
P(x~) = E r~P,(x~),

t= l

where r, are nonnegative numbers summing to 1 with r , > 0 for all t such
that It(x k) ~ ~ . Define

x k+' = x k + Z (p(xk)-- xk),

where 0 < ;~ < 2, and go to the next step.

let

Then,

(9)

Convergence Results.

Lemma 5.1. Let p be a positive integer, let Vt ~ Sn, for t = 1 to p, and

P P
V = ~ rtVt, ~ r t = l , 0 ~ r , ~ l , fo ra l l t = l t o p .

t= l t= l

P
II VlI2~ E r , II V~ll 2

t= l

Proof. We proceed by induction on p. For p = 2,

V= rI VI +'c2V2,

where

So,

~'1 + r 2 = 1, "~1 > 0 , r 2 ~ O .

It VII == llrl V1 + r2V21t 2= r211 111 llz+ r211V2112+2rlv2(VOrV2.

Therefore,

rl][VIlIm + rmlj V=ll = - II vii 2

= r , II Vl II 2+ r211112112- rill V, 112- r~ll Vzll2-2r,rz(V,)rV2

= "t'l (1 -- "t'l)iI V1 II 2 + r2(1 - r2)II V2[I 2_ 2"rl r2(V1)rV2

= "g'lr2H VI H 2"-~- r 2 r l] 1 V z l l Z - 2 r l r 2 (V l) r V 2

= ritz11 V1 - V2112>0.

It follows that

II VII 2 -< r , tl V~ tl = + T2t] V= II =.

Hence, the assertion is valid for p = 2.

JOTA: VOL. 72, NO. I, JANUARY 1992 177

Induct ion Hypothesis. Assume that the assertion is valid for p - 1. We
will prove that the assertion is also valid fo rp under the induction hypothesis.
Let

p - 1

?= X r,v, /(1 - rA,
t = l

p p - I

V= • vtV,= E r y t + r . V p = (l - v .) ? + r . V p .
t = l t = l

From the above argument, we have

II vlf <_ r.tl Vpll2 + (1 - rp)ll ?lt 2
p - - I p

< rpll Vptl 2 + (1 - rp) • ~tfl V, l12/(1 - rp) = E r, ll v, tl =,
t = l t = t

by the induction hypothesis. So, the assertion is valid for all finite positive
integers p. []

Theorem 5.1. In this algorithm, if x k+l ~ x k, then

] l x - x k+l l[< nx-xk[[, for all x ~ K .

Proof. We have
P

xk+l = x k - A E vt(~ ' W x ~ - ~'bt)(~'At)r/ll~tAtll2.
t = l

Let e k = x k - x,

gt= (zrtAtx k - rffbt)(gtAt)r /l]~tAtll2 ,

P P
V = ~, vt(f f tAtxk-~tbt)(rdAtlr/ l[rdAtl[2= E vtV,,

t = l t = l

P
e k + 1 = e k _ 2 ~ , t (~ t A t x k - rdbt)(rdA t) r/tl rdA' Ii 2 = e k __ ~ V,

t = l

liek+ 1 Ii2 = lleklI: + ; . 2 g r v - 22Vre k

P
= Ilekll 2 + 2211VH 2 - 22 2 zt(x t A ' x k - rdbt)

t = l

x [z 'A' (x k - x)] /H~'a' l t2
P

= Ilekll 2 + ~211 VII ~ - 2~ X rt(~,Atx~- z'b')
t = l

x [zr'(A'x ~ - b')]/ll zr'A'll 2

178 J O T A : VOL. 72, NO. 1, J A N U A R Y 1992

P
+ 23` Y, r,(~rtAtx k - ~rtbt)[Trt(Atx - b~)]/ll 7rtAtlI2

t = l

P
< lle~llz+ 3̀ 211 mt[2 - 23. E r t (~rtAtxk- tr'b')2/]l rr'A'I[=

t ~ l

P

= llekll2+3`=ll Nil a-23` E r,II m, II ~
t = l

From Lemma 5.1, we have

P

3`211VIl~-<3` = E ~,tl V, It 2,
t = l

and so,

P
+1 2 < k 2 3` tl ek II _i le II - 3 ` (2 -) ~ r, tlVtllZ<llekll2. (10)

t = l
[]

Theorem 5.2. If K # ~ , any sequence {Xk}k%l generated by this algo-
rithm has the property

l i m ¢ (x k) = O.
k---> oo

Proof. For any x~K, Theorem 5.1 implies that the sequence
{llxk-xlt}~=l is monotonically decreasing, hence it converges. It follows
from (10) that

P
lim ~ rt(TrtAtx k - rc~b')2/ttrctAttt2 =0. (11)

k---* oo t = l

Since r, > 0 for all t such that It(x k) # ~ , and since the rt sum to 1, relation
(11) implies that

l i m (g t A t x k -- rctb t) = O, for all such t.
k~oc~

Since for each subsystem, rr~ are strictly positive for al l jd t (xk) , and sum to
1, this implies that either

lira (Asx k - b~) = O, for all j~ It(xk),
k---~ ~

and for all subsystems, t = 1 to p, or there exists a /~< co such that

It(x ~) = ~ , for all t = 1 to p.

JOTA: VOL. 72, NO. 1, JANUARY 1992 179

Therefore,

lira dp (x k) = O. []
k--* oo

For the sake of simplicity, the following finite convergence proofs will
be based on the assumption that vt are all equal for all t = 1 to p, that is,

rt = 1/p, for all t.

In practice, a different choice may yield better computational performance.
This has to be determined in a computational experiment.

Theorem 5.3. Let E>0 be a specified error tolerance, i f K ¢ ~ , and we
define

F(x k) = {i: .4~xk-b;> ~}

in this algorithm. Then, it converges to a point x e K , in a finite number of
steps.

Proof. We proceed as in the proof of Theorem 3.3. From Theorem
5.1, we know that, if xkCK~, then

tlx-xk+~ll < IIx-x~ll, for all xeK.

Define ek=xk--X. Since { Ile~ll} is monotonically decreasing and bounded
below, it converges. This implies that

lim tle~+llt = lim Iteklt.
k~cx~ k--* co

But this happens only if there exist a /~< ~ such that, at the ~ h iteration,

I t(x ~) = ~ , for all t = 1 to p.

Otherwise for all k, there exists at least one subsystem t such that I ' (x k) ~ ~ ,
then rctAtx k - trtbt > e. Since

P

fl e k + 1ff2-< II ek II 2 + (22 _ 22) E rt(Tc'A'x k - 7r'b')2/II rYAtl[2,
t=l

this implies that

lim Ilekll ~ lim llek+'ll,
k - * ~ k - - ~

a contradiction. So, this version of the algorithm must converge to a point
in K, in a finite number/~ of steps.

180 JOTA: VOL. 72, NO. 1, J A N U A R Y 1992

From Lemma 2.1, it follows that

Ile°ll <2L-a/,f~.

If I ' (x k) ~ ~ for at least one subsystem, say, the tth subsystem, then from
(10) we get

P
i[ek+ 1[]2 < ilekl[2 _ • (2 -- Z) E V/(~r'Atxk- jrtbt)2/[I zfWII 2

t= l

< Ilegl[2 - ~, (2 - ~,) r,(zr'A'x k - zfbt)Z/II zrtAtll 2.

Since vt = 1/p< 1/m; we have

rctAtxk- rctbt> (y ', 1ri) . e= e,

IllrtA'll--II~rtlhllAqh-< 1[Tr'll=llAtllF<m.

It follows that

Ilek+ 1112 < II e~ll 2 - Z (2 - ~,)e2/rn 3.

Therefore, this version of the algorithm converges to a point in K, within/~
steps, where

/~_< m322L- 2/(nX (2 - A.) ~2). []

In the parallel method discussed above, we obtained for the tth sub-
system a surrogate constraint

ztAt x < ~r'b' (12)

and a point P,(x k) by projecting x k onto this surrogate hyperplane, for each
t = 1 top such that It(x k) ~ ~ . The new point x k+ a is derived from a weighted
average of these Pt(xk). So, this method can be viewed as a Cimmino-type
method using groups of constraints, instead of individual constraints, and
surrogation within each group. Another parallel method would just obtain
the surrogat6 constraint (12) for each subsystem t such that I t (x k) ~ .
Then, it would take a positive combination of all such surrogate constraints
generated, leading to a surrogate constraint for the entire original system
(1). If the weight assigned to t is 6, > 0, this constraint will be

(~t(p2tAtx: over t such that P(x k) 4:~)

< ~ S,(~rtbt: over t such that It(x k) ~ ~) . (13)

The point P(x k) is then defined to be the orthogonal projection of x k onto
(13) treated as an equation, and the next point x ~ is obtained as in (9) using

JOTA: VOL. 72, NO. t, JANUARY 1992 181

this P(x~). This method is essentially the algorithm of Section 3 using a
parallel implementation for identifying all the violated constraints, with a
different processor examining the constraints in each subsystem.

6, Comparisons with Earlier Methods

Let us compare the surrogate constraint methods with the relaxation
method for solving linear inequalities as well as Cimmino's method. In the
relaxation method, at each iteration an orthogonal projection is made from
the current point x k onto an individual K,. for some i. However, KI only
contains the information in one constraint. Sometimes, the projection on Ki
offers little improvement in reducing the distance from the current point x k
to the set K. On the other hand, the surrogate hyperptane contains informa-
tion from more than one violated constraint, so it is expected to generate a
better new point than the relaxation method. See Fig. 3.

Cimmino's method for linear inequalities identifies all violated con-
straints at each iteration. Orthogonal projections are made simultaneously
onto all violated constraints from the current point, and the new point is a
convex combination of those projection points. See Fig. 3.

Computational experiments have been carried out to compare the
sequential surrogate constraint method with the version of the relaxation
method that processes the inequalities in cyclical order. We give below our

Surrogate

Fig. 3. Comparison of the surrogate constraint method (SCM) with other methods, For A =
1, the relaxation method yields either the point yl or y2; Cimmino's method yields a
point on the line segment joining y~ and y2; SCM yields the point y3.

182 JOTA: VOL. 72, NO. 1, JANUARY 1992

preliminary computational results on randomly generated large sparse prob-
lems carried out on the IBM 3090-400/VM mainframe computer at the
University of Michigan. The problems are generated in such a way that the
system would have an interior feasible solution. The sequential surrogate
constraint method i s implemented using the following weights for generating
the surrogate constraint. When operating on subsystem t with the current
point x k, if I t(x k) ~ ~ , we take

where

z ' = (z~: ieI'(xk)),

t_ '/(E' (x~)) +0.8/Ir(xk)l, z i - 0 . 2 r , , ri: o v e r i r I t

r~ = A~x k - b~, for all ielt(xk).

The value of A for both methods was taken to be 1.7.
The results are listed in Table 1. Five test problems were generated in

each dimension and solved to the accuracy 10 -9 . The speedup of the surro-
gate constraint method over the relaxation method ranged from 30 to 60.
The speedup increases as the problem size increases.

In the relaxation method, in each sweep, all the constraints are examined
once from top to bottom. The average number of sweeps before termination
varied from 5 to 10 among the problem sizes. Since the current point changes
after each projection, it is not possible to implement a sweep in this method
in a parallel fashion.

Table 1. C o m p a r i s o n o f the re laxat ion m e t h o d an d the sequential surrogate

cons t ra in t method.

Sequential surrogate
Problem size Relaxation method constraint method

Sparsity
Rows Columns % NP NS T NSS NR T NC

5,000 2,500 2.0 10,500 4.9 17.04 2 2500 0.511 3.4
5,000 5,000 1.0 10,675 5.2 23.49 2 2500 0.544 3.2

10,000 2,500 1.0 22,375 6.3 45.11 5 2000 0.806 2.7
10,000 5,000 0.4 20,985 5.9 54.06 5 2000 1.146 3.7
10,000 10,000 0.4 23,125 7.1 84.22 5 2000 1.371 2.8
18,000 5,000 0.5 41,125 8.4 213.00 9 2000 3.332 3.4
18,000 9,000 0.2 44,750 9.3 255.13 9 2000 4.002 3.8

NP = average number of projections; NSS = number of subsystems;
NS = number of sweeps; NR = number of rows in each subsystem;
T = average CPU time (sec); NC = number of major cycles.

JOTA: VOL. 72, NO. 1, JANUARY 1992 183

In the sequential surrogate constraint method, in each major cycle, the
number of projections made is at most equal to the number of subsystems.
In each major cycle, each constraint is examined once, but as explained
earlier, this work can easily be parallelized. Also, the number of major cycles
needed in the surrogate constraint method is much less than the number of
sweeps needed in the relaxation method to achieve the same accuracy.

These computational results are very encouraging. More extensive
experimentation is necessary to determine the strategies to implement the
surrogate constraint methods for obtaining the best performance, things
such as the best choice for the weight vector in each step, etc.

7. Extensions to Linear Equations

It is easy to modify the surrogate constraint methods to solve a system
of linear equations,

Ax=b, (14)

by applying these methods on the following equivalent systems of linear
inequalities

Ax<_b,

- A x < - b . (15)

Many of the classical iterative methods (such as the successive approxi-
mation method, the Gauss-Seidel method, the SOR method, and the steepest
descent method) may not always converge for an arbitrary coefficient matrix
A. Some methods require A to be positive definite or diagonally dominant,
otherwise those methods would have to be applied to the system

ArAx=Arb.

In the case of successive approximations, convergence requires that the
spectral radius of an approximation matrix be less than one.

The surrogate constraint methods only require that the system (14) be
feasible. This is one advantage of the surrogate constraint methods over the
classical iterative methods.

For each i, the system (15) has both the constraints A~x < b~ and Aix > b~.
When x k is the current point, if Atx k = bj, both these constraints are satisfied.
Otherwise, A~xk#b~, and exactly one of the constraints in the above is vio-
lated, while the other one is satisfied. Thus, when x k is the current point, the
set of violated constraints in (15) includes at most one of the constraints
from the pair A~x <b~ and A~x >bt. Using this, simplifications can be made
in executing the surrogate constraint methods on the system (15).

184 JOTA: VOL. 72, NO. 1, JANUARY 1992

References

1. CENSOR, Y., and HERMAN, G. T., On Some Optimization Techniques in Image
Reconstruction from Projections, Appfied Numerical Mathematics, Vol. 3,
pp. 365-391, 1987.

2. FLEMING, H. E., Satellite Remote Sensing by the Technique of Computerized
Tomography, JournaI of Applied Meteorol0gy, VoL 21, pp. t538-1549,
1982.

3. ANDERSON, D. L., arid DZIEWONSKI, A. M., Seismic Tomography, Scientific
American, Vol. 251, pp. 58-66, 1984.

4. KARMARKAR, N., A New Polynomial Algorithm for Linear Programming, Com-
binatorica, VoI. 4, pp. 373-395, 1984.

5. MURTY, K. G., Linear Complementarity, Linear and Nonlinear Programming,
Heldermann-Verlag, Berlin, Germany, 1988.

6. AGMON, S, The Relaxation Method for Linear Inequalities, Canadian JournaI
of Mathematics, Vol. 6, pp. 382-392, 1954.

7. Moxz~zIN, T. S., and SCHOENBERG, I. Z., The Relaxation Method for Linear
Inequalities, Canadian JournaI of Mathematics, Vol. 6, pp. 393-404, 1954.

8. KACZMARZ, S., Angenherte Auflosung yon Systemn Linearer Gleichungen, Bulle-
tin de l'Academie Polonaise des Sciences et des Lettres, Classe des Sciences
Mathematiques et Naturelles, Serie A, Sciences Mathematiques, Vol. 35,
pp. 355-357, 1937.

9. BREGMAN, L. M., The Method of Successive Projection for Finding a Common
Point of Convex Sets, Soviet Mathematics Doklady, Vol. 6, pp. 688-692,
1965.

t0. BREGMAN, L. M., The Relaxation Method of Finding the Common Point of
Convex Sets and Its Application to the Solution of Problems in Convex Program-
ruing, USSR Computational Mathematics and Mathematical Physics, Vok 3,
pp. 200-217, 1967.

11. EREMIN, I. I , The Relaxation Method of Soloing Systems of Inequalities with
Convex Functions on the Left Side, Soviet Mathematics Doklady, Vol. 6, pp. 219-
222, 1965.

12. GUBIN, L. G., POLYAK, B. T., and RAIK, E. V, The Method of Projections for
Finding the Common Point of Convex Sets, USSR Compmational Mathematics
and Mathematical Physics, Vol. 6, pp. 1-24, 1967.

13. CIMMINO, G., Calcolo Approssimato per le Sotuzioni dei Sistemi di Equazioni
Lineari, Ricerca Scientifica, Vol. I, pp. 326-333, 1938.

14. CENSOR, Y., and ELFVlNG, T., New Method for Linear Inequalities, Linear Alge-
bra and Its Applications, Vol. 42, pp. 199-211, 1982.

15. DE PIERRO, A. R., and IUSEM, A. N., A Simultaneous Projections Method for
Linear Inequalities, Linear Algebra and Its Applications, Vol. 64, pp. 243--253,
1985.

16. GAcs, P., and LovAsz, L., Khachiyan's Algorithm for Linear Programming,
Mathematical Programming Study,-Vol. 14, pp. 61-68, 1981.

17. MURTY, K. G., Linear Programming, John Wiley and Sons, New York, New
York, 1983.

JOTA: VOL 72, NO. 1, JANUARY 1992 185

18. CENSOR, Y., Row-Action Methods for Huge and Sparse Systems and Their Appli-
cations, SIAM Review, Vol. 23, No. 4, pp. 444-466, t981.

19. TELGEN, J., On Relaxation Methods for System of Linear Inequalities, European
Journal of Operational Research, Vol. 9, pp. 184-189, 1982.

