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Abstract. At Crypto ’07, Fouque, Leurent and Nguyen presented full
key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5, by ex-
tending the partial key-recovery attacks of Contini and Yin from Asi-
acrypt ’06. Such attacks are based on collision attacks on the underlying
hash function, and the most expensive stage is the recovery of the so-
called outer key. In this paper, we show that the outer key can be re-
covered with near-collisions instead of collisions: near-collisions can be
easier to find and can disclose more information. This improves the com-
plexity of the FLN attack on HMAC/NMAC-MD4: the number of MAC
queries decreases from 288 to 272, and the number of MD4 computations
decreases from 295 to 277. We also improved the total complexity of the
related-key attack on NMAC-MD5. Moreover, our attack on NMAC-
MD5 can partially recover the outer key without the knowledge of the
inner key, which might be of independent interest.

Keywords: HMAC, NMAC, key-recovery, MD4, MD5, differential at-
tack, near-collision.

1 Introduction

Many cryptographic schemes and protocols use hash functions. Their actual
security might need to be reassessed, in light of the seminal work by Wang et
al. [12,13,14,15] on finding collisions on hash functions from the MD4 family. This
paper deals with key-recovery attacks on HMAC and NMAC using differential
techniques. HMAC and NMAC are hash-based message authentication codes
proposed by Bellare, Canetti and Krawczyk [1]. HMAC has been implemented in
widely used protocols including SSL, TLS, SSH, and IPsec. The construction of
HMAC/NMAC is based on a keyed hash function. Let H be an iterated Merkle-
Damg̊ard hash function, which defines a keyed hash function Hk by replacing
the IV with the key k. Then HMAC and NMAC are defined as:

HMACk(M) = H(k̄ ⊕ opad||H(k̄ ⊕ ipad||M));
NMACk1,k2(M) = Hk1(Hk2(M)),

where M is the input message, k and (k1, k2) are the secret keys of HMAC and
NMACrespectively, k̄meanskpaddedtoasingleblock, ||meansconcatenation,and
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opad and ipad are two one-block length constants. NMAC is the theoretical foun-
dation of HMAC: HMACk is essentially the same as NMACH(k̄⊕opad),H(k̄⊕ipad),
except with a change in the length value included in the padding. In [1,2], the se-
curity proof was first given for NMAC, and then extended to HMAC. Attacks on
NMAC can usually be adapted to HMAC, except in the related-key setting. Here-
after, k1 and k2 (for HMAC: H(k̄ ⊕ opad) and H(k̄ ⊕ ipad) with the appropriate
changes in the padding) are referred to as the outer key and the inner key, respec-
tively. The corresponding hash functions of k1 and k2 are referred to as the outer
hash function and the inner hash function, respectively.

The security of HMAC and NMAC
The security of HMAC /NMAC has been carefully analyzed by its designers [1,2].
It has been proved that NMAC is a pseudo-random function family (PRF) under
a single assumption: (1) compression function of the keyed hash function is
a PRF. The proof for NMAC has been extended to HMAC by an additional
assumption: (2) the key derivation function in HMAC is a PRF. However, if the
underlying hash function is weak (such as MD4 and MD5), the above proofs
may not apply.

There are three types of attacks [4,5,6,8,9] on HMAC/NMAC:

-Distinguishing attacks: distinguish HMAC/NMAC from a random function.
-Existential forgery attacks: compute a valid MAC for a random message.
-Universal forgery attacks: compute a valid MAC for any given message.

We focus on universal forgery attacks, by trying to recover the secret keys k1
and k2, like in previous work [4,5,9]. Contini and Yin [4] proposed partial key-
recovery attacks on HMAC/NMAC instantiated with MD4, MD51, SHA-0 and
step-reduced SHA-1. Their attacks can only recover the inner key k2, which is
insufficient for a universal forgery attack. Fouque, Leurent and Nguyen [5] pre-
sented the first full-key attack on HMAC/NMAC-MD4, by proposing an outer-
key recovery attack. They also extended the attack of [4] into a full key-recovery
attack on NMAC-MD5 in the related-key setting: this attack was independently
found by Rechberger and Rijmen [9], who also proposed a full key-recovery at-
tack in the related-key setting on NMAC with SHA-1 reduced to 34 steps. These
full key-recovery attacks first apply the attack of [4] to recover the inner key k2,
then use additional MAC queries to derive several bits of the outer key k1, and
finally the rest of the outer key is obtained by the exhaustive search using offline
hash computations. Recovering the outer key is so far the most expensive stage.

Our contributions
We propose new outer-key recovery attacks on HMAC/NMAC-MD4 and NMAC-
MD52, which leads to full key-recovery attacks by using the inner-key attacks
of [4]. Compared to previous work by Fouque et al. [5], the main novelty is the
use of near-collisions instead of collisions. Recall that a near-collision is a pair

1 The attack on NMAC-MD5 is a related-key attack, and therefore does not apply to
HMAC-MD5.

2 Our attack on NMAC-MD5 is in the related-key setting, like [5,9].
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of distinct messages whose hash values are almost the same, differing only by
a few bits (see [7]): our near-collisions are based on a local collision at some
intermediate step of the compression function, which significantly simplifies the
difference propagation in the last few steps. Our attacks can be sketched as
follows. We call the MAC oracle on exponentially many messages chosen in such
a way that we can expect to find near-collisions in the outer hash function. By
observing the shape of the near-collisions obtained, we are able to derive certain
bits of the final values of the four 32-bit intermediate values a, b, c, d of the outer
hash function. This discloses a few bits of the outer key k1, since each 128-bit
MAC value is exactly (ka+a, kb+b, kc+c, kd+d) because MD4 and MD5 use the
Davies-Meyer mode, where k1 is decomposed as four 32-bit variables ka, kb, kc

and kd.
The cost of our attacks is summarized in Table 1. In the case of HMAC/NMAC-

MD4, near-collisions are easier to find and disclose more information, which allows
to considerably improve the FLN attack [5] in both the number of MAC queries
and the number of offline MD4 computations. In the case of NMAC-MD5, com-
pared to the FLN-RR attack [5,9], total complexity is decreased. Moreover, we
note that our attack can partially recover the outer key without the knowledge of
the inner key k2, which might be of independent interest.

Table 1. Comparison with previous work

Universal forgery attack previous result our new result
HMAC-MD4 Online queries 288 [5] 272

NMAC-MD4 Offline MD4 computations 295 [5] 277

Total complexity 295 277

NMAC-MD5 Online queries 251 [5,9] 275

related-key setting Offline MD5 computations 2100 [5,9] 275

Total complexity 2100 276

Organization of the paper
Section 2 reviews background and related work. In Section 3, we explain the
advantages of our attacks compared to previous work. In Sections 4 and 5, we
present in details our attacks on HMAC/NMAC-MD4 and NMAC-MD5. Finally,
we conclude and give open problems in Section 6.

2 Background and Notation

2.1 Description of MD5 and MD4

There is no standard notation for the description of MD5 and MD4. In this
paper, we adopt a notation similar to that of [4].

MD5 and MD4 have the Merkle-Damg̊ard structure and output a 128-bit
hash value. First, the input message is padded to be the multiple of 512 bits:
add ‘1’ in the tail of the input message; add ‘0’s until the bit length becomes
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448 modulo 512; add the length of input message (before padding) to the last
64 bits. Then the padded message M is divided into 512-bit messages M =
(M0, M1, . . . , Mn−1). The 128-bit IV is represented as H0 (which is the secret
key in the keyed hash function). The compression function is first applied on
M0 and H0 as input, which outputs a 128-bit value H1. By iterating over all the
message blocks Mi, we obtain a final 128-bit value Hn, which is defined to be
the hash value of M .

Compression function of MD5
The compression function takes a 512-bit message block m and a 128-bit value
H as input. First, m is divided into sixteen 32-bit values (m0, . . . , m15), and
H is divided into four 32-bit variables (a0, b0, c0, d0). The compression function
consists of 64 steps, regrouped into four 16-step rounds. Each step is defined as
follows:

ai = di−1, ci = bi−1, di = ci−1,
bi = bi−1 + (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is one of (m0, . . . , m15), the index k being given by a permutation of
{0, . . . , 15} depending on the round, t is a constant defined in each round, ≪ si

means a left-rotation by si bits, and f is a Boolean function depending on the
round.

1R: f(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
2R: f(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
3R: f(X, Y, Z) = X ⊕ Y ⊕ Z
4R: f(X, Y, Z) = (X ∨ ¬Z) ⊕ Y

The final output is (a0 + a64, b0 + b64, c0 + c64, d0 + d64), which means that MD5
uses the Davies-Meyer mode.

Compression function of MD4
The differences between MD5 and MD4 are the following:

- MD4 consists of 48 steps regrouped into three 16-step rounds.
- Each step is defined as: bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is given by different round permutations.
- In the 2nd round: f(X, Y, Z) = (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z).

2.2 Pseudo-collision of MD5

In [3], den Boer and Bosselaers found a pseudo-collision on the compression
function of MD5 of the following form:

MD5(IV , M)=MD5(IV ′, M)

Here, the one-block message M is the same, and only the IVs are different. The
total probability of their pseudo-collision is 2−46, provided that IV and IV ′

satisfy the following relations:
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- ∆IV = (IV ⊕IV ′) = (0x80000000, 0x80000000, 0x80000000, 0x80000000);
- If we decompose the IV as four 32-bit variables (a0, b0, c0, d0), then the
MSBs of b0, c0 and d0 must be the same.

In the rest of this paper, the difference ∆IV of their pseudo-collision will be
denoted by ∆MSB , and this pseudo-collision will be referred to as the dBB
pseudo-collision.

2.3 Recovering the Inner Key of HMAC/NMAC-MD4

We recall the differential attack of Contini and Yin [4] to recover the inner key:

1. Determine a message difference ∆M and a differential path DP for a collision
attack on MD4. Let n be the number of sufficient conditions.

2. Generate a random one-block message M , and send both M and M+∆M to
the HMAC/NMAC oracle until one pair of messages (M1, M1+∆M) collides.
Since the number of sufficient conditions is n, such a pair (M1, M1 + ∆M)
will be obtained after roughly 2n pairs of messages are queried.

3. Recover the intermediate chaining variables (ICV) in step t of 1RofH(k2, M1).
This technique is onemain contributionof the inner-key recoveryattackofCon-
tini and Yin [4]. For details, please refer to [4].

4. Derive the inner key k2 by inverse calculation from the obtained ICV. This
is easy since each step of MD4 is invertible. For instance, with MD4, if mt−1
and ICV in step t are known, ICV in step t − 1 can be calculated as follows.

bt−1 = ct, ct−1 = dt, dt−1 = at,

at−1 = (bt ≫ s0) − mt−1 − f(ct, dt, at).

The related-key attack on NMAC-MD5 [4] is based on the same ideas. The
attack exploits the freedom over the input messages, which explains why this
attack is the most efficient attack known to recover the inner key k2. However,
for the outer hash function of HMAC/NMAC, the input message is the output
of the inner hash function, for which there is much less freedom. This attack is
therefore not well-suited to recover the outer key.

2.4 Recovering the Outer Key of HMAC/NMAC-MD4

We recall the differential attack of Fouque, Leurent and Nguyen [5] to recover
the outer key:

1. Determine a message difference ∆M and a differential path DP for a collision
attack on MD4 in such a way that the differential path has one sufficient
condition depending on one bit of k1. Let n be the number of sufficient
conditions without counting the one on k1.

2. Generate pairs of messages (M, M ′) satisfying Hk2(M ′) = Hk2(M) + ∆M .
This technique is detailed in Appendix A, which will be utilized in our own
attack.
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3. Send M and M ′ to the HMAC/NMAC oracle. Once roughly 2n pairs of
messages (M, M ′) are queried, if a collision is obtained, the outer key k1
satisfies the sufficient condition. Otherwise, k1 is very unlikely to satisfy the
sufficient condition. So with 2n+1 queries, we will recover one bit of k1.

4. Change ∆M and DP , and recover other bits of k1.

The first two steps are the most important steps of the attack [5]. The main idea
is to find a differential path with one sufficient condition on the outer key k1.
If k1 satisfies the condition, a collision will be found with a suitable number of
queries. Otherwise, no collision is likely to be found after the same number of
queries. This will disclose bits of k1.

However, if we divide the outer key k1 as (ka, kb, kc, kd) for the computation
of the outer MD4, then it turns out that such conditions can only be set on kb

and kc, so the attack can not recover any of the bits of ka and kd.

3 Attacks on HMAC/NMAC with Near-Collisions

In this section, we give an overview of our new attacks on HMAC/NMAC based
on near-collisions. A detailed description of the attacks will be given in respec-
tively Section 4 for the MD4 case, and Section 5 for the MD5 case.

3.1 Overview

We first give an overview in the case of MD4. Thanks to [4], we can already
assume that we know the inner key k2 of HMAC/NMAC-MD4, and we want
to recover the outer key k1, which will be decomposed as four 32-bit variables
ka, kb, kc and kd. Because MD4 uses the Davies-Meyer mode, we know that the
128-bit value of HMAC/NMAC-MD4 is exactly (ka + a, kb + b, kc + c, kd + d),
where a, b, c, d denote the final values of the four 32-bit intermediate values of
the outer MD4.

The FLN attack [5] used an IV-dependent differential path for MD4 colli-
sions, and derived bits of k1 by observing whether or not collisions for the outer
MD4 occurred. We will use a differential path for MD4 near-collisions which is
independent of the IV, and we will collect near-collisions. These near-collisions
are based on a local collision at some intermediate step of the MD4 compression
function. Thanks to special properties of our differential path, we will be able to
extract certain bits of (a, b, c, d), depending on the shape of the near-collision.
Because of the Davies-Meyer mode, this will disclose certain bits of k1.

Thus, the structure of our attack on HMAC/NMAC-MD4 is the following:

1. Determine a message difference ∆M and a differential path DP for a near-
collision attack on MD4. Let n be the number of sufficient conditions.

2. Generate pairs of messages (M, M ′) satisfying Hk2(M ′) = Hk2(M) + ∆M .
We can use the FLN technique [5], described in Appendix A.

3. Send M and M ′ to the HMAC/NMAC-MD4 oracle. Once roughly 2n pairs
of messages (M, M ′) are queried, we obtain a near-collision.
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4. Once a near-collision with (M, M ′) is obtained, we look at the shape of the
near-collision: due to choice of our differential path, we know that certain
shapes of near-collisions can only arise if certain bits of (a, b, c, d) are equal
to 1 at the end of the computation of NMAC-MD4(M). This discloses bits
of k1 thanks to the Davies-Meyer mode.

5. Change ∆M and DP , and recover other bits of k1.

Our related-key attack on NMAC-MD5 is based on similar ideas. We use
the differential path of [3] associated to the dBB pseudo-collision. This dif-
ferential path also gives rise to near-pseudo-collisions, that is, MD5(IV , M)
and MD5(IV ′, M) only differ by a few bits. Of course, instead of calling the
NMAC-MD5 oracle on random messages M and M ′ such that Hk2(M ′) =
Hk2(M) + ∆M , we will call the NMAC-MD5 oracle on a randomly chosen M
with two related keys corresponding to ∆MSB . Because this does not use the
inner key k2, we will thus be able to recover bits of k1 without knowing k2.

3.2 Features

We summarize the main features of our attacks, compared to [5,9]:

The HMAC/NMAC-MD4 case:
- Generating a near-collision requires much less queries than a collision.

Compared to the FLN attack [5], the number of MAC queries is reduced
to 272 from 288,

- Our MD4 near-collisions disclose more information than collisions. In-
deed, we can recover bits of kb, kc and kd, rather than just bits of kb

and kc. Compared to the FLN attack [5], this discloses 51 bits of the
outer key k1, instead of only 22 bits. Hence, the number of offline MD4
computations is reduced to 277 from 295 (FLN attack decreased their
offline complexity to 295 from 2106 using some speeding up technique.
Please refer to [5] for details.).

The NMAC-MD5 case:
- our attack does not require any control over the input messages, so our

attack can partially recover the outer key k1 without knowing the inner
key k2, unlike previous work. This might be of independent interest.
We increase the number of online queries, but we can derive more in-
formation on the outer key: 63 bits of k1 can be recovered, instead of
only 28 bits [5,9]. There is no standard calculation method of the total
complexity. We will follow that of [9]: the sum of the online complexity
and the offline complexity. Finally we recovered 53 bits of k1 in order
to make the online and the offline complexity be equal: 275. The total
complexity of MD5 computations is reduced to 276 from 2100.

4 New Key Recovery Attack on HMAC/NMAC-MD4

We now precisely describe our new outer-key recovery attack on HMAC/NMAC-
MD4. Recall that the outer key k1 is decomposed as (ka, kb, kc, kd).
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Denote the final values (after 48 steps) of the 32-bit intermediate values of the
outer MD4 as (a48, b48, c48, d48). Then the output of HMAC/NMAC-MD4 is:
(ha, hb, hc, hd)=(ka + a48, kb + b48, kc + c48, kd + d48). So we have the following
relations when comparing two outputs of HMAC/NMAC-MD4:

∆ha=∆a48, ∆hb=∆b48, ∆hc=∆c48 and ∆hd=∆d48.3

As a result, we can detect the difference propagation in the last four steps of
the outer MD4 from the final output values of HMAC/NMAC. Based on this
weakness of HMAC/NMAC-MD4 due to the Davies-Meyer mode, we will obtain
bit-values of a48, c48 and d48. This, in turn, will disclose bits of ka, kc and kd.

Our attack has both online work and offline work. We will first describe our
near-collision on MD4. Then, we will explain details of online work and offline
work.

4.1 Near-Collisions on MD4

The main contribution of this paper is the use of near-collisions. Our near-
collisions on MD4 are based on a local collision at step 29. We determine the
message differences ∆M as ∆m3=2i, that is, the messages only differ in m3.
The corresponding differential path is given in Appendix D. This differential
path works for the cases i = 3 ∼ 5, 7 ∼ 17, 20 ∼ 25: other values of i fail because
of carry expansion.

The above near-collisions have the following properties:

- m3 is used in step 45 of 3R. If the local collision in step 29 happens, the
differences propagation in the last four steps will be significantly simplified.

- Because we use a local collision in step 29, we only need to consider the dif-
ferential path until step 29. This reduces the number of sufficient conditions,
and therefore the number of queries to obtain a near-collision.

4.2 Online Work: Obtaining Bit-Values of a48, c48 and d48

The procedure is as follows, where the message difference ∆M is ∆m3 = 2i:

1. Generate pairs of messages (M, M ′) such that MD4(k2, M ′)=MD4(k2, M)+
∆M . We adapt the technique proposed in [5], which is given in Appendix A.

2. Send such messages M and M ′ to the HMAC/NMAC-MD4 oracle to obtain
any of the following three kinds of near-collisions:

- Pairs (M i
a, M i

a’) such that ∆ha=2i+3, ∆hd=∗2i+12 and ∆hc=∗2i+23 ±
2i+14 ± 2i+15; 4

- Pairs (M i
c, M

i
c’) such that ∆ha=2i+3, ∆hd=∗2i+12, ∆hc=∗2i+23 ∗ 2i+14,

and expected ∆hb;5

3 If two values differ at the MSBs, there will exist error probability. We will ignore
such situations because they do not happen in our attack.

4 ∗ means that the sign does not matter, and ±2i+14 ± 2i+15 means that the signs of
these two differences are the same.

5 ∆hb consists of ±2i+6 ± 2i+7.
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- Pairs (M i
d, M i

d’) such that: ∆ha=2i+3, ∆hd=∗2i+12 and ∆hc=∗2i+14 ±
2i+23 ± 2i+23.

3. Change the index i, and repeat steps 1 and 2 until all values of i are used.

First, let us observe that the above near-collisions are very likely to come from
our differential path. Indeed, the shape of our near-collisions impose fixed differ-
ences on three 32-bit words, so a pair (M, M ′) chosen uniformly at random would
give such a near-collision with probability 2−96. However, our pairs (M, M ′) cho-
sen in step 1 have a much higher probability 2−64 to near-collide.6

We now claim that the messages obtained above with near-collisions satisfy
the following conditions on the final values of the intermediate values of the
outer MD4:

M i
a: a48,i+3 = 1; M i

c : c48,i+3 = 1; M i
d: d48,i+3 = 1.

For instance, consider the case of M i
a. Because of the near-collision, the difference

propagation in 3R only exists in the last four steps. At step 47, the variable
generated is c48. And input differences only exist in a48 and d48: ∆a48 = 2i+3

and ∆d48 = ∗2i+12. Since the number of the bits of the left rotation is 11, both
±2i+14 and ±2i+15 of ∆c48 must be caused by 2i+3 of ∆a48. Such a difference
propagation can not happen if there does not exist a carry during the calculation
a48+2i+3, so the probability of a48,i+3=1 is 1. With a similar reasoning, the
messages M i

c and M i
d satisfy c48,i+3 = 1 and d48,i+3 = 1, respectively.

Finally, we can obtained near-colliding messages M i
a such that a48,i+3=1 for

i=3 ∼ 5, 7 ∼ 15, 20 ∼ 25: other values of i fail because of carry expansion.
In total, there are 18 near-colliding messages M i

a, which can disclose values of
ka,i+3. Details are shown in section 4.3. So we can recover 18 bit-values of ka

by online work. Similarly, kc and kd are also partially recovered by online work.
Near-colliding messages M i

c and M i
d are obtained for i = 3 ∼ 5, 9 ∼ 17, 20 ∼ 23

and i = 3 ∼ 5, 9 ∼ 17, 21 ∼ 25 respectively. So 16 bit-values of kc and 17
bit-values of kd, corresponding kc,i+3 and kd,i+3 of M i

c and M i
d respectively, can

be recovered. In total, 51 bits of the outer key k1 are recovered by the online
work.

4.3 Offline Work: Recovering ka, kc and kd

The way to recover ka, kc and kd is the same. We will pick ka as an example to
explain the details:

1. Guess the values of ka,i for i = 0 ∼ 5, 9, 19 ∼ 22, 29 ∼ 31: the index i
that we fail obtaining M i−3

a . These bit-values of ka will be recovered by the
offline exhaustive search. The total number of possibilities is 214.

2. Calculate other bits of ka from the least significant to the most significant
bits using M i

a. First, the 6-th bit of ka will be calculated using M3
a .

- Recovering ka,6: compare ka,5∼0 with ha,5∼0. If ka,5∼0 > ha,5∼0, there
exists a carry from bit 5 to 6 during the computation of ka+a48. Oth-
erwise, there will be no carry from bit 5 to 6 during the computation of

6 Details are shown in section 4.4.
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ka+a48. Since a48,6=1, the carry influence is known, and the value ha,6
is known, so the value ka,6 can be calculated.

Then, the 7-th bit will be derived from M4
a . Then the 8-th bit, and so on.

Finally, all other bits of ka will be recovered.

By a similar process, all the bits of kc and kd will be recovered.

4.4 Complexity Analysis

As explained in section 4.2, we can obtain 18 bits, 17 bits and 16 bits of ka, kd

and kc using M i
a, M i

d and M i
c, respectively. Totally 51 bits of k1 are recovered by

the online work, so the complexity of the offline exhaustive search is 277 (2128−51)
MD4 computations.

Now we analyze the complexity of online work. This depends on the prob-
ability of the specified shape of near-collision, which can be regarded as two
parts: probability of near-collision and that of specified difference propagation
in the last four steps. The probability of our near-collisions is 2−60 since there
are in total 60 conditions of differential path. The probabilities of difference
propagation in the last four steps of outer MD4 are shown in Appendix B. One
pair (M i

a, M i
a’), (M i

c , M i
c’), and (M i

d, M i
d’) can be obtained with a probability

2−60 × 1 × 2
3 × 1

9 (greater than 2−64), 2−60 × 2
3 × 4

9 × 1
4 (greater than 2−64), and

2−60 × 2
3 × 1

9 (greater than 2−64) respectively: one above pair can be obtained
with roughly 266 queries. As a result, the total online complexity is 51×266 (less
than 272) queries.

Experiment
It is impossible to carry out the real experiment. Instead, we separate the ex-
periment to two parts:

- Confirm the correctness of DP: an example is shown in Appendix C.
- Confirm the correctness of key recovery technique by only focusing on the

last four steps of outer MD4: the intermediate variables at step 44 and the
message m3 are randomly generated.

5 New Key Recovery Attack on NMAC-MD5

Similarly with MD4 case, we can detect the difference propagation in the last
four steps of the outer MD5 from the final output values of HMAC/NMAC-MD5.
It seems that our near-collision attack can be extended to HMAC/NMAC-MD5.
However, we have not found suitable message difference and differential path
for near-collision on MD5. Thanks to dBB pseudo-collision, where the difference
propagation in the last four steps of the outer MD5 is very simple, we will be
able to obtain bit-values of the intermediate values (after 64 steps) in the outer
MD5 by detecting the shape of near-pseudo-collision or pseudo-collision. This,
in turn, will disclose the outer key k1.

In this section, we will explain the details of our outer-key recovery attack on
NMAC-MD5 in the related-key setting: the attacker obtains MD5k1(MD5k2(M))
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and MD5k′
1
(MD5k2(M)) denoted as NMAC and NMAC’ respectively hereafter;

k1 and k′
1 satisfy ∆MSB defined in section 2.2. Recall that k1 is decomposed as

(ka, kb, kc, kd). Denote the intermediate variables (after 64 steps) in the outer
MD5 as (a64, b64, c64, d64). Then the output of NMAC-MD5 is: (ha, hb, hc, hd) =
(ka + a64, kb + b64, kc + c64, kd + d64).

Our new outer-key recovery attack consists of online work and offline work.
The online work partially recovers ka and kc without knowledge of the inner
key k2, which might be of independent interest. The offline work is just the
exhaustive search, where the inner key is necessary. We will first describe near-
pseudo-collision on MD5. Then we will explain details of the online work. Since
the offline work is just the exhaustive search, we will omit it.

5.1 Near-Pseudo-collision on MD5

According to dBB pseudo-collision, once a local collision happens at step 63, the
shape of near-pseudo-collision will depend on a64,31 and c64,31:

- if a64,31 = c64,31: collision happens;
- if a64,31 �= c64,31: the final output differences are ∆ha = 0, ∆hb = ±220,

∆hc = 0 and ∆hd = 0.

So we can obtain the relation between a64,31 and c64,31 by detecting the shape
of near-pseudo-collision.7

5.2 Online Work: Recovering ka,31∼30 and kc,31∼30

The procedure is as follows:

1. Generate messages randomly and send them to NMAC and NMAC’ to obtain
near-pseudo-colliding messages {M}, regrouped depending on the values of
ha,30 and hc,30:

- {M0} : ha,30 = 0 and hc,30 = 0;
- {M1} : ha,30 = 0 and hc,30 = 1;
- {M2} : ha,30 = 1 and hc,30 = 0;
- {M3} : ha,30 = 1 and hc,30 = 1.

2. Determine relation between ka,31 and kc,31 based on each element of each
sub-group utilizing the following tool:

Tool: during ka +a64/kc +c64, if ha,30/hc,30 = 0, there exists a carry from
bit 30 to 31. Otherwise, there does not exist a carry from bit 30 to 31.

3. Check the results of step 2 for each sub-group. There should be only one sub-
group that all elements have the same result, which will disclose ka,31∼30 and
kc,31∼30 as follows:

the result of step 2 is the real relation between ka,31 and kc,31;
ka,30 = 1 − ha,30; kc,30 = 1 − hc,30.

7 Hereafter, we regard pseudo-collision as a special kind of near-pseudo-collision just
for simplicity.
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First we will explain why the relation between ka,31 and kc,31 can be deter-
mined at step 2: the above tool determines the carry influence from bit 30 to 31
during ka + a64/kc + c64; the shapes of near-pseudo-collisions show the relation
between a64,31 and c64,31; the relation between ha,31 and hc,31 is easy to check.
Pick one pseudo-colliding element m ∈ {M0} as an example. We can obtain that
a64,31 = c64,31; there exists a carry from bit 30 to 31 during ka + a64/kc + c64.
Consequently, the relation between ka,31 and kc,31 is determined as follows:

ha,31 = hc,31 ⇒ ka,31 = kc,31;
ha,31 �= hc,31 ⇒ ka,31 �= kc,31.

Then we will explain why only one sub-group does not have different results
at step 2. This is because of the utilized tool. The error probability of the tool
depends on the relation between ka/c,30 and ha/c,30.

- ka/c,30 = ha/c,30: error probability is 1
2 . For example, if both values are 0,

according to the tool, we will assume that there is always a carry from bit
30 to 31. However, in fact the carry influence depends on the value a/c64,31:
carry exists if a/c64,30 = 1, and no carry if a/c64,30 = 0. Since the value of
a/c64,30 is random, the error probability is 1

2 .
- ka/c,30 �= ha/c,30: error probability is 0. For example, if ka/c,30 = 0 and

ha/c,30 = 1, we can obtain that ka/c,30∼0 < ha/c,30∼0, so there will be no
carry with probability 1, which is the same with the tool.

So only the sub-group satisfying ka/c,30 �= ha/c,30 should be without error. In
other words, all elements of this sub-group have the same result at step 2. This
also explains the way we recover ka/c,31∼30 at step 3.

5.3 Online Work: Recovering Other Bits of ka and kc

Since the way of recovering ka is exactly the same with that of recovering kc, we
will pick ka as an example in this section. The value of ka is recovered from the
most significant to the least significant bit. Suppose bits ka,30∼(i+1) (0 ≤ i ≤ 29)
have been already obtained. The following procedure shows how to recover ka,i.

1. Randomly generate messages and send them to the two NMACs until one
message M1 obtained satisfying the following three conditions:

a) near-pseudo-collision happens;
b) ha,j=ka,j (i + 1 ≤ j ≤ 30);
c) hc,30 �= kc,30.

2. Determine the carry influence from bit i to i + 1 during ka + a64, where
a64 is the intermediate value (after 64 steps) of the outer MD5 of MD5k1(
MD5k2(M1)).

3. Determine the value of ka,i by the result of step 2.
-Carry: ha,i=1 ⇒ ka,i=1;

ha,i=0 ⇒ repeat steps 1 and 2.
-No carry: ha,i=0 ⇒ ka,i=0;

ha,i=1 ⇒ repeat steps 1 and 2.
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First, we can easily obtain the carry influence from bit 30 to 31 during ka +
a64 based on conditions a) and c): condition a) guarantees that the relation
between a64,31 and c64,31 can be determined; condition c) guarantees that the
carry influence from bit 30 to 31 can be determined during kc + c64.

Then, we will obtain the carry influence from bit i to i+1 based on condition
b): condition b) guarantees that the carry influence from bit i to i + 1 and that
from bit 30 to 31 are the same during ka + a64.

Finally, we will recover the value of ka,i: if there exists a carry from bit i to
i+1 and ha,i = 1, then ka,i = 1with probability 1; if there does not exist a carry
from bit i to i + 1 and ha,i = 0, then ka,i = 0with probability 1;

5.4 Complexity Analysis

Near-pseudo-collision is with a rough probability 2−45 since there are in total 45
conditions until step 63 according to dBB pseudo-collision on MD5.
Complexity of recovering ka,31∼30 and kc,31∼30
As explained in section 5.2, the error probability of other sub-groups is 1

2 . So we
need to generate four elements for each sub-group. To guarantee the attack will
succeed, we will totally generate 32 elements for {M}. The complexity will be
32 × 246 = 251 queries.
Complexity of recovering ka,i and kc,i (0 ≤ i ≤ 29)
Considering the complexity of recovering ka,i is the same with that of recovering
kc,i, we will pick ka,i as an example.

In section 5.3, it needs 246 × 230−(i+1)+1 × 2 = 277−i queries to obtain one
message satisfying conditions a), b) and c) in step 1. According to steps 2 and
3, we might repeat step 1 twice. So totally the complexity is 2 × 277−i = 278−i

queries.
There is no standard calculation method of the total complexity. We will

follow that of [9], which is the sum of the online and the offline complexity.
If we will recover bits of ka,30∼i and kc,30∼i, with roughly 280−i queries, the
value of i should make the online and the offline complexity be equal: 280−i =
2128−(31−i)×2−1 ⇒ i = 5. As a result, we will recover ka,30∼5, kc,30∼5 and the
relation between ka,31 and kc,31. The online complexity is less than 275 queries,
and the offline complexity is 275 MD5 computations.8

Experiment
It is impossible to carry out the real experiment. Similarly with HMAC/NMAC-
MD4 case, we only focus on the last 4 steps of outer MD5, so we will randomly
generate the intermediate variables at step 60 and messages m2 and m4.

6 Conclusion

This paper proposed new outer-key recovery attacks on HMAC/NMAC-MD4
and NMAC-MD5 (with related-key setting).
8 For the offline MD5 computations, we will assume the inner key k2 has been obtained

by the inner-key recovery attack of Contini and Yin [4].
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So far, no key-recovery attack has been published on HMAC/NMAC-MD5
without related-key setting. There are two reasons: (1) the inner-key recovery
attack of Contini and Yin [4] can not succeed because all differential paths
published so far have more than 128 sufficient conditions; (2) Wang et al.’s
collision attack on MD5, multi-block collision, can no be used for the outer-key
recovery attack, because the input message of the outer MD5 is the hash values
of the inner MD5, just one-block length.

Our near-collisions may solve the second problem, since our near-collisions
are only one-block length. Here we focus on the outer-key recovery attack, and
assume that the inner key has been obtained. Moreover, our near-collisions are
easier to be obtained than collisions, only counting sufficient conditions until
some intermediate step where a local collision happens.

As explained above, once the number of sufficient conditions of near-collision is
less than 128, outer-key recovery attack might be a real attack on HMAC/NMAC-
MD5 without related-key setting.
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A FLN Attack: Generating Pairs of Messages (M, M ′)
That Hk2(M ′)=Hk2(M)+∆M Efficiently

In [5], Fouque et al. proposed an efficient way to generate pairs of messages
(M, M ′) satisfying Hk2(M ′)=Hk2(M)+∆M .9 This technique works on hash
functions that have the Merkle-Damg̊ard structure. The procedure is as follows:

1. Generate one pair of one-block length messages (M1, M
′
1) satisfying Hk2(M ′)

= Hk2(M)+∆M by birthday attack, where padding is not considered. Since
the output of MD4 is 128-bit length, (M1, M

′
1) will be obtained after roughly

264 MD4 computation.
2. (M1, M

′
1) will be extended to a family of two-block pair messages such that

Hk2(M1||M2) = Hk2(M ′
1||M ′

2)+∆M . The length of M2 and M ′
2 must be no

longer than 447 bits because of the padding rule.

Selecting M2 and M ′
2

Denote Hk2(M) and Hk2(M ′) as h1 and h′
1, respectively. we will obtain that

Hk2(M1||M2) = Hh1(M2) and Hk2(M ′
1||M ′

2) = Hh′
1
(M ′

2). Denote intermedi-
ate chaining variables after 48 steps as ICV48. MD4h1(M2)= h1 + ICV48.
Similarly, MD4h′

1
(M ′

2)= h′
1 + ICV′

48. Since h′
1=h1+∆M , if ICV′

48 = ICV48,
MD4h′

1
(M ′

2)=MD4h1(M2) + ∆M , so MD4k2(M1||M2)=MD4k2(M ′
1||M ′

2) +
∆M . As explained above, M2 and M ′

2 should satisfy that ICV48 = ICV′
48.

Such pair M2 and M ′
2 can be obtained utilizing Wang et al.’ collision attack

on MD4. Please refer to [5] for more details.

9 As shown in section 2.4, ∆M is determined differences of inner hash values instead
of M ′ − M .
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B Probabilities of Difference Propagation in 3R

If near-collision happens, and the message difference ∆M is ∆m3 = 2i.

-∆a48=2i+3: the probability is 1 except that bit i or i + 3is MSB. During our
attack, i ≤ 25, so i + 3 ≤ 28.

-∆d48=∗2i+12: the probability can be regarded as 2
3 . ∆d48 depends on the bit

carry expansion of ∆a48 because f works bit-independently. f is XOR.
No carry with probability 1

2 : ∆d48=∗2i+12 with probability 1.
1-bit carry with probability 1

4 : ∆d48=∗2i+12 with probability 1
2 .

2-bit carries with probability 1
8 : ∆d48=∗2i+12 with probability 1

4 .
...

So the probability is almost 1/2
1−1/4= 2

3 .
∆c48=∗2i+23 ± 2i+14 ± 2i+15: Similarly with analysis above, ∗223 of ∆c48 is

with probability 2
3 . ±2i+14 ±2i+15 of ∆c48 is with probability 1

6 . Totally, the
probability is 2

3 × 1
6 = 1

9 .
∆c48=∗2i+23 ∗ 2i+24: similarly with analysis above, the probability is 2

3 × 2
3= 4

9 .
∆c48=∗2i+14 ± 2i+23 ± 2i+24: similarly with analysis above, the probability is

2
3 × 1

6 = 1
9 .

±2i+6 ± 2i+7 of ∆b48: the probability of ∆c48 with a carry is 1
2 , and the

probability that ∆f consists of ±2i+23±2i+24 is 1
2 . Totally, the probability

is 1
4 .

C An Example of Near-Collision on HMAC/NMAC-MD4

In order to confirm the correctness of our differential path of near-collision on
MD4, we will provide an example in Table 2. The messge difference is ∆m3 = 23.

Table 2. An example of near-collision

Outer key k2 ka = 0xae23667d; kb = 0x9ae8ba3c; kc = 0x3775447e; kd = 0x9614f6dc

Near-colliding messages m0 = 0x4bb5f397; m1 = 0x9a645f8a; m2 = 0x7f3529c4; m3 = 0x1e7b8317̄
(output of the inner MD4) m′

0 = 0x4bb5f397; m′
1 = 0x9a645f8a; m′

2 = 0x7f3529c4; m′
3 = 0x1e7b831f̄

Step 29 of the outer MD4 a29 = 0x84f021a1; b29 = 0x89f4c2d8; c29 = 0x62dbbc57; d29 = 0x76bdb3a6

D DP and SCs of Near-Collision on MD4

The shown DP and SC is for ∆m3=23. DP and SC for other cases can be
derived from this one by rotating all the bit differences and bit conditions. Cases
i = 3 ∼ 5, 7 ∼ 17, 20 ∼ 25 succeeds.
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Table 3. DP and SCs

Step Shift ∆bi

i si ∆mi−1 Numerical difference Sufficient conditions
1 3
2 7
3 11 b3,22 = b2,22

4 19 23 222 b4,22 = 0
5 3 b5,22 = 0
6 7 b6,22 = 1
7 11 b7,9 = b6,9

8 19 29 b8,9 = 0
9 3 b9,9 = 0
10 7 b10,9 = 1
11 11 b11,28 = b10,28

12 19 228 b12,28 = 0
13 3 b13,28 = 0
14 7 b14,28 = 1
15 11 b15,15 = b14,15

16 19 215 b16,15 = 0
17 3 b17,15 = b15,15

18 5 b18,15 = b17,15

19 9 b19,28 = b18,28, b19,29 �= b18,29, b19,30 = b18,30

20 13 228 (28 ∼ 30) b20,0 = b19,0, b20,28∼29 = 1, b20,30 = 0
21 3 −20 b21,0 = 1, b21,28∼30 = b19,28∼30

22 5 b22,0 = b20,0, b22,28∼30 = b21,28∼30

23 9 b23,0 = b22,0, b23,9 = b22,9

24 13 29 b24,3∼8 = b23,3∼8, b24,9 = 0
25 3 −23 (3 ∼ 9) b25,3∼8 = 0, b24,9 = 1
26 5 b26,3∼8 = b24,3∼8

27 9 b27,3∼8 = b26,3∼8, b27,9 �= b26,9

28 13
29 3 23

30 5

The symbol i ∼ j for numerical difference means difference propagates from bit i to j.
The symbol i ∼ j for sufficient conditions means all bits from i to j.
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