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Abstract 

Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis.  

It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced 

hepatocellular carcinoma (HCC) in 2007.  Sorafenib can significantly extend the median survival time of patients but only by 3–5 
months.  Moreover, it is associated with serious adverse side effects, and drug resistance often develops.  Therefore, it is of great 

importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping 
with these problems.  Recent studies have revealed that in addition to the primary resistance, several mechanisms are underlying 

the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible 
pathways, and epithelial-mesenchymal transition.  Here, we briefly describe the function of sorafenib, its clinical application, and the 
molecular mechanisms for drug resistance, especially for HCC patients.
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Introduction
Since the molecular revolution of the 1980s, knowledge of 

the etiology of cancer has increased dramatically, leading to 

the discovery and development of targeted therapies tailored 

to inhibit cancer-specific pathways.  Among the numerous 

molecular targeted drugs, sorafenib, an oral multi-target 

kinase inhibitor that is also known as Nexavar, was developed 

by the Bayer and Onyx companies.  Due to its effect on renal 

cell carcinoma and hepatocellular carcinoma, sorafenib has 

been clinically approved for the treatment of advanced renal 

cell carcinoma and hepatocellular carcinoma (HCC)[1].  More-

over, several clinical trials, including those for NSCLC[2], meta-

static thyroid cancer[3], steroid-refractory prostate cancer[4], 

and metastatic breast cancer[5], with sorafenib as the potential 

therapeutic strategy are now ongoing.

Being a multi-target kinase inhibitor, sorafenib can block 

tumor cell proliferation by inhibiting the activity of Raf-1, 

B-Raf and kinases in the Ras/Raf/MEK/ERK signaling path-
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way.  Additionally, sorafenib can inhibit angiogenesis through 

targeting of the hepatocyte factor receptor (c-Kit), Fms-like 

tyrosine kinase (FLT-3), vascular endothelial growth factor 

receptor (VEGFR)-2, VEGFR-3, platelet-derived growth factor 

receptor (PDGFR-β) and other tyrosine kinases[6, 7] (Figure 1).  

Preclinical studies have also found that sorafenib is effective 

in various tumor cells, such as breast cancer MDA-MB-231 

(containing G463V b-raf and k-ras gene mutations), melanoma 

LOX, and pancreatic BxPC3 cells, as well as colon cancer 

HCT116, DLD-1 and Colo-205 cells[8, 9] and other tumor cell 

lines.

Although sorafenib has opened a window of hope after 

decades of searching for effective agents to treat HCC, the 

overall outcomes are far from satisfactory.  Its side effects have 

hampered its use; adverse events that have been reported[10] 

in patients receiving sorafenib are predominantly gastroin-

testinal, constitutional, or dermatologic in nature, including 

diarrhea, weight loss, and hand–foot skin reactions.  In severe 

cases, it can lead to hypertension, abdominal pain and even 

discontinuation of therapy.  In addition, due to the genetic 

heterogeneity of HCC, some patients are initially resistant 

to sorafenib, which has led to the identification of predictive 
biomarkers for primary resistance to sorafenib.  It has recently 

been reported that basal pERK levels, JNK and VEGFA may 
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be candidate predictors of sorafenib response in HCC.  The 

acquired resistance to sorafenib has also drawn attention.  

Several mechanisms are involved in the acquired resistance 

to sorafenib, such as crosstalk involving the PI3K/Akt and 

JAK-STAT pathways, the activation of hypoxia-inducible 

pathways and epithelial-mesenchymal transition, as well as 

others.  Here, we attempt to describe the function of sorafenib, 

its clinical application, and molecular mechanisms for drug 

resistance, especially for HCC patients.

Clinical application in HCC 
Monotherapy

Hepatocellular carcinoma (HCC) is the most common primary 

malignant tumor of the liver; its annual diagnosis rate ranks 

fifth in cancers around the globe, and it is also the third major 
leading cause of cancer-related death[11].  With nearly 700 000 

new cases every year, China accounts for over 50% of newly 

diagnosed HCC worldwide[12].  Because the number of HBV 

carriers (>120 000 000) in China is large, chronic hepatitis-

induced cirrhosis and hepatocyte malignant transformation is 

the major pathogenic factor for HCC.  Due to the lack of effec-

tive targeted drugs, there are no standard adjunct therapies 
following surgical resection at present.  According to previ-

ous clinical trials, sorafenib displays significant efficacy in the 
treatment of advanced HCC patients.

In 2008, the SHARP (Sorafenib HCC Assessment Random-

ized Protocol) trial, a randomized controlled phase III trial 

for the treatment of HCC in international multi-centers was 

published in the New England Journal of Medicine[1].  In total, 

602 advanced HCC patients who had not received systematic 

treatment were randomly divided into two groups: one with 

sorafenib treatment of doses of 400 mg, bid and the other as 

placebo.  The results showed that sorafenib was significantly 
associated with a higher median OS (10.7 versus 7.9 months; 

P=0.0006) and a higher median TTP (5.5 versus 2.8 months; 

P=0.000007) compared with the placebo group.  This showed 

that sorafenib as a first-line drug for advanced HCC could pro-

long the median OS and radiological progression by 3 months 

compared with the placebo[13] (Figure 2). Interestingly, Cheng 

et al[13] reported that the Asian-Pacific portion of the phase III 

Figure 1.  Cellular targets of sorafenib.  Sorafenib blocks receptor tyrosine kinase signaling (VEGFR, PDGFR, c-Kit and RET) and inhibits downstream Raf 
serine/threonine kinase activity to prevent tumor growth by anti-angiogenic, antiproliferative and/or pro-apoptotic effects[10] (from Bayer website).

Figure 2.  Kaplan-meier analysis of overall survival in the SHARP trial[1].
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double-blind, randomized, controlled clinical trial of sorafenib 

treatment also demonstrated that sorafenib could prolong 

the OS of advanced HCC patients by 2.3 months, consistent 

with the SHARP trial (Figure 3).  Based on this result, the FDA 

approved sorafenib for the treatment of unresectable HCC.

Combination with other drugs

Although single-agent sorafenib has an effect on HCC, its 

adverse effects, such as rash, diarrhea, high blood pressure, 

and hand-foot syndrome, limit high-dosage use of sorafenib[14].  

Therefore, it is necessary to combine sorafenib with other 

drugs to lower its onset concentration.  Additionally, although 

sorafenib is a multi-targeted agent, it has a relatively single 

mechanism compared with the complex growth mechanism 

of tumors and needs to be used with other anti-tumor agents.  

Both basic and clinical studies suggest that sorafenib in com-

bination with other medicines has a favorable effect and pro-

vides a new approach for clinical tumor treatment.  

Capecitabine is an oral cytotoxic agent that has selective 

activity against tumor cells and can be transformed to a cyto-

toxic drug called 5-fluorouracil by adenylate in tumor tissues 
to inhibit the phosphorylation of Akt and induce the expres-

sion of RKIP.  Due to the over-expression of multi-resistant 

and P-glycoprotein genes in HCC cells, they may have potent 

resistance to capecitabine[15].  Sui et al[16] randomly divided 42 

HCC patients into 2 groups, one subjected to a combination 
of sorafenib and capecitabine at doses of S200 mg bid+C1500 

mg/(m2
·d) and the other subjected to monotherapy with 

capecitabine at the same dose.  Those results showed that the 

combination therapy could prolong the TTP (6.8 versus 4.3 

months) and MST (10.9 versus 7.2 months) without additional 

toxic reactions.  In addition, Awada et al[17] designed a series 

of combined therapies with sorafenib and capecitabine and 

found that the combination of sorafenib and capecitabine at 

doses of 400 mg bid and 850 mg/d bid, respectively, achieved 

a higher tumor inhibition rate with fewer adverse effects in the 

treatment of advanced solid tumors, including HCC.

Doxorubicin, a type of anthracycline, can intercalate into 

DNA and inhibit the synthesis of nucleic acids, and it has 

broad-spectrum activity against tumors.  Abou-Alfa et al phase 

II clinical trial[18] suggested that the combination of sorafenib 

with doxorubicin could synergistically inhibit the prolifera-

tion of tumor cells and the formation of new blood vessels in 

tumor nodules through the “hyperchromic effect.”  Further-

more, it is necessary to properly optimize the dose intensity of 

doxorubicin because the AUC (the area under the curve) and 

Cmax (maximum concentration) of doxorubicin in the human 

body are limited[19].  

Fluorouracil has the ability to inhibit metabolites.  It is 

transformed into 5F-dUMP in tumor cells and can inhibit 

thymidylate synthase (TS), disturb the synthesis of DNA, and 

attenuate the proliferation of tumor cells.  Petrini et al initi-

ated a study to evaluate the clinical potential of a combination 

drug of sorafenib and low-dose fluorouracil in the treatment 
of 38 HCC patients, which showed that the mPF and OS were 

9.6 and 12.2 months, respectively[20].  The drug had a positive 

response and could effectively lower the dose intensity of fluo-

rouracil and therefore reduce adverse effects.

Additionally, studies of the combination of sorafenib and 

uracil-tegafur[21] or octreotide[22] reported a better curative 

effect when they are used as a combination therapy than when 

they are used as a monotherapy, which could reduce the dos-

age of sorafenib and the rate of side effects.  

Combination with traditional treatment

According to recent studies, combining sorafenib with tradi-

tional treatment also has potential clinical utility.  Sorafenib 

can inhibit the synthesis of VEGF and the formation of new 

blood vessels in tumors after surgical resection of HCC.  It 

also has been used to prevent the recurrence of tumors after 

liver transplantation for HCC beyond the Milan criteria and 

prolong the OS of patients with recurrent tumors.  RFA (radio-

frequency ablation) is the most common clinical treatment for 

localized physical ablation therapy of HCC, and it has several 

advantages such as minimal invasion, quick recovery rate, 

wide application and better repeatability[23].  Sun and his col-

leagues[24] found that the combination of RFA and sorafenib 

could extend the median progression-free survival time fur-

ther than mono-RFA treatment for advanced-stage HCC (7.8 

versus 4.6 months).  Furthermore, patients receiving the drug 

combination experienced an improvement in survival rate 

within 6 months (80.0% versus 61.2%) and 12 months (53.3% 

versus 30.4%) compared with the monotherapy.  TACE (tran-

sarterial chemoembolization) is a well-used technique to treat 

advanced HCC patients with no opportunity for surgical 

resection.  Chao et al[25] conducted a phase II clinical trial with 

combination treatment of sorafenib and TACE for unresectable 

HCC and found that the disease control rate was up to 91.2% 

and that the combination treatment considerably increased the 

survival time for moderate- and late-stage HCC patients.

However, one international study published recently in Lan-

cet Oncology concerning a randomized phase III clinical trial 

(STORM)[26] surprised scholars both domestically and abroad.  

This trial involved 1114 HCC patients who had already under-

Figure 3.  Kaplan-meier analysis of overall survival in the Asian-Pacific 
trial[13].
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gone resection and ablation.  The STORM trial randomized 

them into groups taking sorafenib or the placebo at 400 mg as 

adjuvant therapy twice a day for 4 years.  The result showed 
that the RFS rates of the two groups were 33.4 and 33.8 

months, which were considered statistically non-significant.  

Their OS also demonstrated no difference.  Thus, sorafenib 

cannot improve the RFS and OS of HCC patients who have 

already undergone resection and ablation.  Additionally, as 

patients have different hepatic injuries, adjuvant therapy with 
sorafenib would cause frequent toxic reactions and intoler-

ance.  

The results of the STORM trial challenged a wide range of 

oncologists and raised many questions regarding the spe-

cific efficiency and target patients of sorafenib.  The SHARP 

and Asian-Pacific trials were all targeted at advanced HCC 

patients who had not received systematic treatment to evalu-

ate the efficiency of sorafenib.  However, the STORM trial 

targeted patients who intended to receive curative resection or 

localized ablation and those who were at an intermediate or 

high risk of recurrence to evaluate the efficiency of sorafenib 
as an adjuvant therapy to prevent the recurrence of HCC.  The 
results showed that sorafenib as an adjuvant treatment did not 
improve the RFS and OS of HCC patients who had previously 

received curative treatment.  Those three trials suggested that 

more clinical trials with different subpopulations of HCC 

patients and potential molecular classification markers are 

needed to further explore the practical effect of sorafenib on 

HCC.  Additionally, there are ongoing studies investigating 

the combination of sorafenib and TACE; the efficacy of this 

treatment has not yet been demonstrated[27, 28] (Table 1).  Alter-

natively, clinical trials of adjuvant treatment with sorafenib 
in combination with ECOG1208 (NCT01004978), TACE-2 

(NCT01324076) and TACTICS (NCT01217034) are still ongoing 

(Table 1).  Further research and joint efforts from clinicians are 
also needed to implement combination therapy with sorafenib 

and traditional treatment for advanced HCCs.

Mechanisms of drug resistance 
Although sorafenib seems to be effective in prolonging median 

survival time with limited side effects in HCC patients, it may 

cause resistance in many patients, which has become an obsta-

cle to extending the overall survival time for HCC patients.  In 

addition, the results of the STORM trial suggest that sorafenib 

cannot prolong the survival of liver cancer patients who have 

accepted radical treatment, which posed a challenge to the 

application of sorafenib.  At present, there are studies on 

the mechanisms of drug resistance to sorafenib, which may 

include the following aspects.

Primary resistance

Because of the genetic heterogeneity of HCC, some HCC 

cells and patients are initially resistant to sorafenib, which is 

termed primary resistance[29].  However, the exact mechanism 

remains unclear.

EGFR is the expression product of the proto-oncogene 

c-erbB1, which resides on the surface of epithelial cells.  After 

binding with ligand, EGFRs can activate a series of down-

stream signaling pathways, thus regulating cell growth and 

proliferation.  More than half of HCC patients have EGFR 

over-expression and abnormal activation[30].  Studies have 

shown that the abnormal activation of EGFR/HER3 and the 

overexpression of both EGFR and its ligand (especially double 

adjustable ligand) can inhibit the antitumor effect of sorafenib.  
Nonetheless, when the phosphorylation of EGFR/HER-3 was 

inhibited by RNA interference and combined with sorafenib, 

the anti-tumor proliferation and pro-apoptotic abilities of 

sorafenib were improved[31].  Another report demonstrated 

that EGFR activation may be the potential determinant of pri-

mary resistance of HCC cells to sorafenib, suggesting that the 

overexpression of EGFR or ligand in HCC cells may lead to 

Table 1.  Clinical trial of sorafenib combined with TACE for intermediate stage HCC.  *The level of significance for the primary endpoint TTP was set at 
15%, which was a significant result for sorafenib. However, the period of time until TACE ineligibility was 95 d for sorafenib and 224 d for placebo [HR 
1.586 (95% CI 1.200–2.096), P=0.999], and as there was a good result with placebo, the efficacy of the TACE and sorafenib combination therapy was 
not promising.

                 Trials                                                           Design                                                Phase                                Primary endpoint 

 
SPACE[27]

Post-TACE[28]

NCT010004978 (ECOG1208)

NCT01324076 (TACE-2)

NCT01217034 (TACTICS)

TACE+sorafenib vs TACE+placebo (TACE; DEB/scheduled)

TACE+sorafenib vs TACE+placebo (TACE; conventional/1 or 
2 sessions)

TACE+sorafenib vs TACE+placebo (TACE; conventional or 

DEB/scheduled)

TACE+sorafenib vs TACE+placebo (TACE; DEB/on demand)

TACE+sorafenib vs TACE alone (TACE; conventional/on 
demand)

r-II

III

III

III

II

Median TTP 169 vs 166 d

HR 0.79, 95% CI 0.588–1.080, P=0.072

Median TTP 5.4 vs 3.7 months  
HR 0.87, 95% CI 0.70–1.09, P=0.252

PFS

PFS

Time to untreatable progression  

*

Negative

Ongoing

Ongoing

Ongoing
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sustained activation of EGFR downstream signaling and drug 

resistance to sorafenib[32].  

In addition to EGFR and its ligand, downstream signaling 

molecules, especially Ras/Raf/MEK/ERK, might contribute 

to sorafenib resistance.  In HCC, the Ras/Raf/MEK/ERK 

signaling pathway is often activated, and the MAPK level 

affects the sensitivity of HCC to sorafenib.  Studies have found 

that down-regulation of pERK may be associated with HCC 

sorafenib resistance[33].  It has recently been reported that the 

c-Jun N-terminal kinase (JNK), another member of the MAPK 

family, can serve as a biomarker to predict the sensitivity to 

sorafenib[34] .

VEGFR is also one of sorafenib’s cellular targets.  Stud-

ies have shown that VEGFA stimulates paracrine secretion 

of hepatocyte growth factor by stromal cells, which induces 

tumor progression[35].  HCC patients with VEGFA amplifi-

cation are distinctly sensitive to sorafenib, indicating that 

VEGFA might be a candidate predictor of sorafenib response 

in HCC.  

Thus, it is urgent to identify predictive biomarkers for pri-

mary resistance to sorafenib, and then apply the concept of 

individualized treatment or seek therapeutic strategies such 

as combining sorafenib with other anticancer agents to treat 

HCC.

Acquired resistance

PI3K/Akt pathway and sorafenib resistance

PI3K/Akt is an important pathway involving cell apoptosis 

and chemotherapeutic drug resistance.  By inhibiting the 

expression of Akt, we can sensitive cells to sorafenib-induced 

apoptosis[36].  It has been reported that sorafenib can activate 

SHP-1 and then negatively regulate the expression of pSTAT3 

and inhibit the JAK/STAT signaling pathway.  In acquired 

drug-resistant HCC cell lines, we identified abnormal changes 
in the JAK/STAT pathway, such as high expression of pSTAT3 

and its downstream pro-apoptotic proteins, Mcl-1 and cyclin 

D1, and lowered the expression of SHP-1 and pSHP-1[37], sug-

gesting that sorafenib-related resistance may partly result 

from the abnormal activation of STAT3.

Autophagy and sorafenib resistance 

Autophagy is the body’s self-protective mechanism under var-

ious stress-induced signals, and currently, its role in HCC cells 

is quite controversial.  This mechanism may promote cancer 

growth because it enables cells to survive nutrient deprivation.  

Shimizu et al[38] found that sorafenib treatment led to accumu-

lation of autophagosomes and activation of autophagic flux, 

as evidenced by increased LC3 lipidation and a clear decline 

of the autophagy substrate p62 in Huh7, HLF and PLC/

PRF/5 cells, thus promoting HCC cell survival and limiting 

sorafenib efficiency.  However, by using chloroquine, 3-MA 

or RNA interference that targets autophagy-related genes, the 

anti-tumor effect of sorafenib was significantly improved.  In 
addition, studies have demonstrated that autophagy induced 

by PSMD10, also known as gankyrin or p28, promotes tumor 

progression[39].  PSMD10 augmented autophagic flux to resist 

sorafenib or conventional chemotherapy, and inhibition of 

autophagy suppressed PSMD10-mediated resistance.  Never-

theless, excessive stimulation may lead to programmed cell 

death instead of survival[40].  Several studies have also shown 

that excessive autophagy can promote apoptosis in tumor cells 

and decrease tumor size.  When sorafenib was combined with 

pemetrexed, a folate anti-metabolite that stimulates autoph-

agy, the treatment increased the rate of autophagy and cell 

death in vitro and suppressed tumor growth in vivo[41].  Thus, 

autophagy can either enable cell survival or promote cell 

death[42], and further in-depth research is necessary for clarifi-

cation.

Epithelial-mesenchymal transition and sorafenib resistance

Epithelial-mesenchymal transition (EMT) can occur in tumor 

cells under conditions of hypoxia and other stimulating 

factors.  In cancer, EMT is associated with poor patient sur-

vival[43, 44] because it is a key step in the development of metas-

tasis.  In EMT, cell adhesion molecules (such as E-cadherin) are 

lost, and mesenchymal cell markers such as vimentin (VIM) 

are gained, resulting in the loss of polarity and cell-to-cell con-

tacts and enhancement of tumor cell migration and invasion.  

Therefore, the tumor cells become more motile and insensitive 

to antitumor drugs, including sorafenib[45–47].  In HCC, differ-

ent studies have demonstrated that sorafenib resistance mech-

anisms may involve EMT[45, 48].  In a study conducted by van 

Malenstein and colleagues[45], five resistant human liver cell 

lines were developed through long-term exposure to sorafenib.  

The cells changed in appearance, lost E-cadherin and KRT19 

and showed high expression of vimentin, indicating epithelial-

to-mesenchymal transition.  Resistant cells showed reduced 

adherent growth, became more invasive and lost liver-specific 
gene expression.  However, the sensitivity to sorafenib after 

development of resistance can partially be restored using 

PI3K/Akt- or BCRP/Hedgehog-inhibitors in vitro.  In addition 

to hepatocytes, noncellular tumor components may also play 

a role[49].  They manipulate hepatocellular carcinoma invasion 

and metastasis by facilitating epithelial-mesenchymal transi-

tion, increasing the proteolytic activity of matrix metallopro-

teinases, and regulating antitumor immunity.  Although the 

exact mechanism between EMT and sorafenib resistance is still 

unknown, and it is uncertain whether EMT is the trigger or 

the result, further study investigating strategies for restoration 

of sensitivity to sorafenib are needed.

Tumor microenvironment and sorafenib resistance

The tumor microenvironment plays an important role in the 

occurrence and development of tumors.  Anti-angiogenic 

drugs can cause tumor blood vessel contraction and reduce 

blood flow, resulting in a lack of oxygen to the tumor.  It is 

widely accepted that hypoxia in solid tumors is associated 

with chemotherapy failure, selection of more invasive and 

resistant clones, and poor prognosis[50, 51].  Hypoxic cells inside 

solid tumors are extremely resistant to therapies, as their sur-

vival ability is increased due to the cellular adaptive response 

to hypoxia, which is primarily controlled by hypoxia induc-



619

www.chinaphar.com

Zhu YJ et al

Acta Pharmacologica Sinica

ible factor-1α (HIF-1α)[52].  HIF-1α is the upstream inducer of 
VEGF, which plays a key role in tumor angiogenesis.  It is also 

a transcription factor that mediates the adaptive responses 

of tumor cells to hypoxia by regulating a series of genes 

implicated in glucose uptake, metabolism, and cell prolifera-

tion, thereby limiting sorafenib efficiency and inducing drug 
resistance[53].  Studies have demonstrated that expression 

of these genes may result in the expansion of cells that may 

exhibit a drug-resistant phenotype due to altered biochemical 

pathways[53].  For example, HIF-1α protein was significantly 
stabilized in HCC cells under hypoxia, which led to activation 

of the MDR1 (multidrug resistance 1) gene[54].  MDR1 encodes 

for P-gp (P-glycoprotein), which can decrease the intracel-

lular concentration of chemotherapeutic drugs, including 

sorafenib[55].  HIF-1 costabilization can also be enhanced when 

ADRB2 signaling negatively regulates autophagy[56], leading 

to reprogramming of glucose metabolism in hepatocellular 

carcinoma cells and the acquisition of resistance to sorafenib.  

In addition to HIF-1α, HIF-2α may also play a role in 
sorafenib resistance.  Sorafenib inhibits HIF-1α synthesis, 
resulting in the hypoxic response switch from HIF-1α- to HIF-
2α-dependent pathways and providing a mechanism for more 
aggressive growth of tumors.  The present study has demon-

strated that up-regulation of HIF-2α induced by sorafenib con-

tributes to the resistance of hypoxic HCC cells by activating 

the transforming growth factor (TGF)-α/epidermal growth 
factor receptor (EGFR) pathway[57].  Hypoxia is also associated 

with up-regulation of the CXCL12/CXCR4/CXCR7 chemo-

kine axis, and the CXCL12/CXCR4/CXCR7 chemokine axis 

can activate the ERK/MAPK and JAK/STAT signaling path-

ways, promoting the progression of malignant tumors and 

inducing drug resistance to sorafenib[58].

Epigenetic regulation involved in drug resistance

Abundant evidence suggests that the occurrence and develop-

ment of HCC is closely related to epigenetics.  DNA methyla-

tion, histone modification, aberrant expression of miRNAs and 
dysregulated expression of many epigenetic regulatory genes 

occur in HCC.  

It has been suggested that histone modifications orchestrate 
with DNA methylation to regulate the expression of genes.  

Studies have demonstrated that the expression of some histone 

methyltransferases, such as EZH2[59], contribute to the epigen-

etic silencing of target genes that regulate cancer cell growth 

and survival, which have been associated with sorafenib 

resistance of HCC cells.  EZH2 knockdown or EZH2 inhibition 

treatment promoted sorafenib-induced hepatoma cell growth 

arrest and apoptosis.

MicroRNAs (miRNAs) are known to play a part in regulat-

ing important cellular processes.  They generally perform 

their regulatory function through binding with target mRNAs, 

ultimately leading to repression of target protein expression 

levels.  However, studies[60] have demonstrated that aberrant 

levels of miRNAs, including miR-181a, are found in hepatocel-

lular carcinoma (HCC).  Azumi et al[61] found that miR-181a 

directly targets RASSF1, a MAPK signaling factor, and knock-

down of RASSF1 increased sorafenib resistance. MiR-429[62] 

promotes liver tumour-initiating cell properties by targeting 

Rb binding protein 4, and the ectopic expression of miR-484[63] 

initiates tumourigenesis and cell malignant transformation 

through the synergistic activation of the transforming growth 

factor-β/Gli and nuclear factor-κB/type I IFN pathways to 
enhance chemotherapeutic resistance and increase tumorige-

nicity. 

Other possible mechanisms

Cancer stem cells may also play an important role in sorafenib 

resistance.  Label-retaining cancer cells (LRCCs) are a subset of 

cancer stem cells.  Xin et al[64] found that after sorafenib treat-

ment, LRCCs are highly enriched in hepatocellular carcinoma 

cells, which displayed more resistance to sorafenib-induced 

cell toxicity and apoptosis through continuous activation of 

ERK or Akt signaling.

Shp2 (Src homology 2 domain-containing phosphatase 2), 

a tyrosine phosphatase previously known as a pro-leukemo-

genic molecule, is also known to promote liver cancer pro-

gression and to suppress sorafenib treatment response.  Stud-

ies[65] have demonstrated that Shp2 promotes HCC growth 

and metastasis by coordinately activating the Ras/Raf/Erk 

pathway and PI3K/Akt/mTOR cascade.  Moreover, down-

regulation of Shp2 enhanced the sensitivity of hepatoma cells 

to sorafenib treatment, and patients with low Shp2 expression 

exhibited a superior response to sorafenib’ treatment, imply-

ing that Shp2 might be a potential biomarker for sorafenib 

response.  

Sorafenib resistance mechanisms may also be associated 

with the up-regulation of FGF signaling pathways.  There are 

three signal transduction pathways in tumor angiogenesis: 

VEGFR (vascular endothelial growth factor receptor), PDGFR 

(platelet-derived growth factor receptor), and FGF (fibroblast 
growth factor) tyrosine kinase receptor-related pathways.  

Allen et al[66] established a biological pancreatic tumor model 

and found that the use of a VEGFR antibody inhibited tumor 

growth in the initial stage.  Then, a VEGF-independent angio-

genic signaling pathway was significantly up-regulated, 

which led to the occurrence of drug resistance.  However, at 

this time, dual inhibitors of FGF/VEGF can still control pro-

gression and reduce recurrence and metastasis of tumors.  In 

addition, screening for liver cancer genes showed that FGF19 

is an oncogene in HCC[67].  Therefore, it is necessary to conduct 

more in-depth studies to determine whether the sorafenib 

drug-resistance mechanism is associated with the up-regula-

tion of FGF signaling pathways.

Emerging theory

An emerging theory to explain the resistance to anti-angio-

genic drugs, including sorafenib, is ‘vessel co-option,’ ie, 

the ability of tumors to hijack the existing vasculature in 
organs such as the lungs or liver, thus limiting the need for 

angiogenesis[68].  Vessel co-option has been reported in liver 

metastases[69].  Kuczynski and colleagues[70] used an orthotopic 

human HCC model and found that up to 75% (610.9%) of the 
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total vessels were provided by vessel co-option in resistant 

tumors relative to 23.3% (610.3%) in untreated controls.  This 

is the first documentation of vessel co-option as a mechanism 
of acquired resistance to anti-angiogenic therapy and could 

have important implications, including potential therapeutic 

benefits derived from targeting vessel co-option in conjunction 
with vascular endothelial growth factor receptor signaling.

Conclusion and future development
The overall treatment outcomes for liver cancer are far from 

satisfactory.  The use of sorafenib has been hampered by side 

effects.  Adverse events that were reported for patients receiv-

ing sorafenib were predominantly gastrointestinal, constitu-

tional, or dermatologic in nature, including diarrhea, weight 

loss, hand–foot skin reaction, alopecia, anorexia, and voice 

changes.  In severe cases, it can lead to hypertension, abdomi-

nal pain and even discontinuation of therapy.  In addition, due 

to the genetic heterogeneity of HCC, some patients are initially 

resistant to sorafenib, which has led to research to identify 

predictive biomarkers for primary resistance to sorafenib.  It 

has recently been reported that basal pERK levels, JNK and 

VEGFA may be candidate predictors for sorafenib response 

in HCC.  Moreover, several mechanisms are involved in the 

acquired resistance to sorafenib, such as crosstalk involving 

PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-

inducible pathways, and epithelial-mesenchymal transition.  

(Figure 4).  
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