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New ladder operators are constructed for a rational extension of the harmonic os-
cillator associated with type III Hermite exceptional orthogonal polynomials and
characterized by an even integer m. The eigenstates of the Hamiltonian separate into
m + 1 infinite-dimensional unitary irreducible representations of the correspond-
ing polynomial Heisenberg algebra. These ladder operators are used to construct
a higher-order integral of motion for two superintegrable two-dimensional systems
separable in cartesian coordinates. The polynomial algebras of such systems pro-
vide for the first time an algebraic derivation of the whole spectrum through their
finite-dimensional unitary irreducible representations. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4823771]

I. INTRODUCTION

In the vast domain of quantum nonlinear oscillators, those constructed by supersymmetric quan-
tum mechanical (SUSYQM) techniques play an important role (see, e.g., Refs. 1–5 and references
therein). In particular, a model that appeared in the early 1990s6, 7 and was re-discovered several
times later on (see, e.g., Refs. 8–11) is of special interest because its eigenstates can be written in
terms of exceptional orthogonal polynomials (EOP), a field that has received a lot of attention during
the last few years.12–21 The polynomials involved in such a problem are indeed type III Hermite
EOP.22, 23

Ladder operators for harmonic oscillator supersymmetric partners are usually constructed by
combining the oscillator creation and annihilation operators with the supercharges3, 4, 8 or com-
binations of the latter.5, 24, 25 Together with the Hamiltonian, such operators close a polynomial
Heisenberg algebra (PHA), which may have infinite-dimensional, as well as finite-dimensional uni-
tary irreducible representations (unirreps).3, 24 This construction was carried out for the rationally
extended oscillator model referred to above and the corresponding PHA was shown to have two
unirreps, an infinite-dimensional one spanned by all excited states and a one-dimensional unirrep
spanned by the ground state.8

Apart from their own interest, ladder operators are also very useful in other contexts such as
nuclear physics, quantum chemistry, or condensed matter. They have also applications in the context
of mathematical physics and more particularly in the field of superintegrable higher-dimensional
systems. Considering more specifically the case of two-dimensional Hamiltonians, when one leaves
the realm of well-studied quadratically superintegrable ones, i.e., those allowing two second-order
integrals of motion (see, e.g., Refs. 26–30 and references therein), the direct approach for determining
the integrals of motion becomes more and more difficult as the order of the integrals increases. This is
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clearly shown in recent works on systems with third-order integrals of motion.31–34 For such a reason,
some other approaches, based on ladder operators,35 recurrence relations,36 or SUSYQM,37, 38 have
been proposed.

In two recent studies, the recurrence relation39 and the ladder operator40 methods have been
applied to construct new superintegrable systems connected with EOP families. In the latter work,
in particular, some two-dimensional systems related to type III Hermite EOP, as well as to type
I, II, or III Laguerre EOP, were analyzed by means of standard ladder operators constructed by
supersymmetric techniques. If the results proved entirely satisfactory for type I or II, this was not
the case for type III because it was then not possible to derive the whole energy spectrum from the
representations of the polynomial algebra generated by the integrals of motion.

The purpose of the present paper is to show that an adequate approach to the superintegrable
systems connected with type III EOP may also be found provided some novel ladder operators
are constructed for the constituent one-dimensional Hamiltonians. Here we plan to consider more
specifically the two superintegrable systems built in Ref. 40 from the above-mentioned rationally
extended harmonic oscillator related to type III Hermite EOP.

In Sec. II, some new ladder operators are constructed for such a nonlinear oscillator and their
action on the Hamiltonian eigenstates is determined. In Sec. III, they are applied to construct
integrals of motion for the two superintegrable two-dimensional systems considered in Ref. 40. The
polynomial algebras generated by such integrals of motion are then shown to lead to an algebraic
derivation of the spectra. Finally, Sec. IV contains the conclusion.

II. NEW LADDER OPERATORS FOR A RATIONALLY EXTENDED
HARMONIC OSCILLATOR

Let

H (±) = − d2

dx2
+ V (±)(x) − Em, V (±)(x) = W 2(x) ∓ W ′(x) + Em, W (x) = −(

φm(x)
)′

(2.1)
be a pair of partner Hamiltonians in first-order SUSYQM,41 where V (+)(x) = x2 ( − ∞ < x < ∞)
is the harmonic oscillator potential, while the factorization function and energy (such that H( + )φm

= 0) are chosen as φm(x) = Hm(x) exp(x2/2), Em = − 2m − 1, with m even.11 Here Hm(x) is a
pseudo-Hermite polynomial, defined by Hm(x) = (−i)m Hm(ix) in terms of a standard Hermite one.
The two Hamiltonians intertwine with

A = d

dx
+ W (x), A† = − d

dx
+ W (x), W (x) = −x − H′

m

Hm
, (2.2)

as AH( + ) = H( − )A, A†H( − ) = H( + )A†, and the partner potential

V (−)(x) = x2 − 2

[
H′′

m

Hm
−

(H′
m

Hm

)2

+ 1

]
(2.3)

is a rationally extended harmonic oscillator considered in many works.6–11, 22, 23

Since, for even m, Hm(x) is strictly positive on the whole real line, the partner H( − ) has an
extra bound state below the oscillator spectrum, whose eigenfunction is proportional to φ−1

m (x). As
a consequence, the bound-state energies and wavefunctions of the two partners are given by11, 40, 42

E (+)
ν = 2(ν + m + 1), ν = 0, 1, 2, . . . ,

E (−)
ν = 2(ν + m + 1), ν = −m − 1, 0, 1, 2, . . . ,

(2.4)

and

ψ (+)
ν (x) = N (+)

ν Hν(x)e− 1
2 x2

, ν = 0, 1, 2, . . . ,

ψ (−)
ν (x) = N (−)

ν

e− 1
2 x2

Hm(x)
y(m)
ν+m+1(x), ν = −m − 1, 0, 1, 2, . . . ,

(2.5)
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with

y(m)
0 (x) = 1, y(m)

ν+m+1(x) = −Hm(x)Hν+1(x) − 2mHm−1(x)Hν(x), ν = 0, 1, 2, . . . , (2.6)

and

N (+)
ν = (√

π2νν!
)−1/2

, ν = 0, 1, 2, . . . ,

N (−)
−m−1 =

(
2mm!√

π

)1/2

, N (−)
ν = [√

π2ν+1(ν + m + 1)ν!
]−1/2

, ν = 0, 1, 2, . . . .

(2.7)

The polynomials y(m)
n (x), n = ν + m + 1, ν = − m − 1, 0, 1, 2, . . . , are known as the (type III)

Hermite EOP.22, 23 They form an orthogonal and complete set with respect to the positive-definite
measure exp(−x2)

(
Hm(x)

)−2
dx .

In Ref. 40, we considered ladder operators b† = Aa†A†, b = AaA† for H( − ) obtained from
the creation and annihilation operators a† = − d/dx + x, a = d/dx + x, valid for H( + ), and the
supercharge operators A†, A in the standard way.3, 4, 8 Here we plan to build some alternative ladder
operators c†, c.

For such a purpose, let us first show that one can go from H( + ) to H( − ) (up to some addi-
tive constant) by another path using m first-order SUSYQM transformations characterized by the
supercharges

Âi = d

dx
+ Ŵi (x), Â†

i = − d

dx
+ Ŵi (x), Ŵi (x) = x + H′

i−1

Hi−1
− H′

i

Hi
, i = 1, 2, . . . , m.

(2.8)
On defining

Ĥi = − d2

dx2
+ x2 − 2

[
H′′

i−1

Hi−1
−

(H′
i−1

Hi−1

)2
]

− 3, i = 1, 2, . . . , m + 1, (2.9)

we indeed get Â†
i Âi = Ĥi and Âi Â†

i = Ĥi+1 + 2 for i = 1, 2, . . . , m, which implies that Âi Ĥi =(
Ĥi+1 + 2

)
Âi and Â†

i

(
Ĥi+1 + 2

) = Ĥi Â†
i . Since

H (+) = Ĥ1 + 2m + 4, H (−) = Ĥm+1 + 2m + 2, (2.10)

we infer that

Âm · · · Â2 Â1 H (+) = (H (−) + 2m + 2) Âm · · · Â2 Â1,

H (+) Â†
1 Â†

2 · · · Â†
m = Â†

1 Â†
2 · · · Â†

m(H (−) + 2m + 2),
(2.11)

which proves the above assertion. It is worth observing here that the operators Âi , Â†
i , i = 1, 2, . . . ,

m, and Ĥi , i = 2, 3, . . . , m, are only auxiliary operators, some of which are singular at x = 0. This
means that we actually have a dressing chain of Hamiltonians.25, 43

This chain of m first-order SUSYQM transformations from H( + ) to H( − ) + 2m + 2 can be
combined with the transformation from H( − ) to H( + ) to provide some raising and lowering operators
for H( − ),

c† = AÂ†
1 Â†

2 · · · Â†
m, c = Âm · · · Â2 Â1 A†, (2.12)

which are (m + 1)th-order differential operators. From the set of intertwining relations satisfied by
A† and Âi , i = 1, 2, . . . , m, it is indeed easy to prove that cH( − ) = (H( − ) + 2m + 2)c or

H(−)

c

A†
H(+) Âm···Â2Â1

H(−) + 2m + 2 (2.13)
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FIG. 1. Energy spectrum of H( − ) and action of c† on the eigenstates for m = 2. The ν values are indicated on the right.

The operators H( − ), c†, and c fulfil the commutation relations

[H (−), c†] = (2m + 2)c†, [H (−), c] = −(2m + 2)c,

[c, c†] = Q(H (−) + 2m + 2) − Q(H (−)),
(2.14)

where

Q(H (−)) = H (−)
m∏

i=1

(H (−) − 2m − 2 − 2i) (2.15)

is a (m + 1)th-order polynomial in H( − ). They therefore form a PHA of mth order.3, 24

The action of the raising operator c† on the eigenfunctions ψ (−)
ν (x) of H( − ), defined in (2.5)–

(2.7), can be easily calculated and is given by

c†ψ
(−)
−m−1 = [

2m+1(m + 1)!
]1/2

ψ
(−)
0 ,

c†ψ (−)
ν = −[

2m+1(ν + m)(ν + m − 1) · · · (ν + 1)(ν + 2m + 2)
]1/2

ψ
(−)
ν+m+1,

ν = 0, 1, 2, . . . .

(2.16)

For that of c, we get

cψ (−)
ν = 0, ν = −m − 1, 1, 2, . . . , m, (2.17)

as well as the Hermitian conjugate of Eq. (2.16). We conclude that the PHA generated by H( − ), c†,
and c has m + 1 infinite-dimensional unirreps spanned by the states {ψ (−)

i+(m+1) j | j = 0, 1, 2, . . .}
with i = − m − 1, 1, 2, . . . , m, respectively.

The spectrum of H( − ) and the action of c† on the eigenstates is displayed in Fig. 1 for the m =
2 example, in which case the PHA has three infinite-dimensional unirreps.

III. APPLICATION OF THE NEW LADDER OPERATORS TO SOME SUPERINTEGRABLE
TWO-DIMENSIONAL SYSTEMS

Let us consider some two-dimensional Hamiltonians allowing separation of variables in carte-
sian coordinates,

H = Hx + Hy = − d2

dx2
− d2

dy2
+ Vx (x) + Vy(y), (3.1)
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and let us assume that there exist ladder operators (a†
x , ax ) and (a†

y, ay) in both axes that are differential
operators of order k1 and k2, respectively, and satisfy the defining relations of two PHA’s,

[Hx , a†
x ] = λx a†

x , [Hx , ax ] = −λx ax , [ax , a†
x ] = Q(Hx + λx ) − Q(Hx ),

[Hy, a†
y] = λya†

y, [Hy, ay] = −λyay, [ay, a†
y] = S(Hy + λy) − S(Hy).

(3.2)

Here λx and λy are constants, while Q(Hx) and S(Hy) are polynomials.
The separation of variables in cartesian coordinates implies the existence of a second-order

integral of motion Hx − Hy, showing that the two-dimensional system (3.1) is integrable. From the
ladder operators, one can construct additional polynomial operators commuting with H, a†n1

x an2
y , and

an1
x a†n2

y , where n1, n2 ∈ Z+ are chosen such that n1λx = n2λy = λ.35 Hence system (3.1) possesses
three algebraically independent integrals of motion and is superintegrable. It is worth stressing that
from ladder operators of rather low order k1, k2, one generates integrals of motion of higher order
k1n1 + k2n2 in a nice factorized form that would be difficult to obtain in a direct approach.

The integrals of motion

K = 1

2λ
(Hx − Hy), I+ = a†n1

x an2
y , I− = an1

x a†n2
y (3.3)

generate the polynomial algebra of the system

[K , I±] = ±I±, [I−, I+] = Fn1,n2 (K + 1, H ) − Fn1,n2 (K , H ),

Fn1,n2 (K , H ) =
n1∏

i=1

Q

(
H

2
+ λK − (n1 − i)λx

) n2∏
j=1

S

(
H

2
− λK + jλy

)
,

(3.4)

which is of order k1n1 + k2n2 − 1. Such a polynomial algebra is a deformed u(2) algebra and its
finite-dimensional unirreps can be found by realizing it as a generalized deformed oscillator algebra
{bt, b, N}. The operators bt = I+ , b = I− , N = K − u, and �(H, u, N ) = Fn1,n2 (K , H ) indeed
satisfy the defining relations of such an algebra,44

[N , bt ] = bt , [N , b] = −b, bt b = �(H, u, N ), bbt = �(H, u, N + 1), (3.5)

where u is some constant and �(H, u, N) is called “structure function.” If the latter satisfies the
properties

�(E, u, 0) = 0, �(E, u, p + 1) = 0, �(E, u, n) > 0, n = 1, 2, . . . , p, (3.6)

then the deformed oscillator algebra has an energy-dependent Fock space of dimension p + 1 with
a Fock basis |E, n〉, n = 0, 1, . . . , p, fulfilling

H |E, n〉 = E |E, n〉, N |E, n〉 = n|E, n〉, b|E, 0〉 = 0, bt |E, p〉 = 0,

bt |E, n〉 =
√

�(E, u, n + 1)|E, n + 1〉, b|E, n〉 =
√

�(E, u, n)|E, n − 1〉.
(3.7)

These relations can be used to obtain the (p + 1)-dimensional unirreps of the polynomial algebra
(3.4) and the corresponding degenerate energy spectrum of the system.

Let us illustrate this method on two systems already considered in Ref. 40 by taking advantage
this time of the new ladder operators introduced in Sec. II.

A. Combination of a rationally extended oscillator with a standard one

Let us consider the two-dimensional system given by (3.1) with respectively in the x-axis the
superpartner of the harmonic oscillator considered in Sec. II and in the y-axis the harmonic oscillator
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itself,

Hx = H (−) − 2m − 1 = − d2

dx2
+ x2 − 2

[
H′′

m

Hm
−

(H′
m

Hm

)2

+ 1

]
, m even,

Hy = − d2

dy2
+ y2.

(3.8)

On taking for (a†
x , ax ) the operators (c†, c), defined in (2.12), and for (a†

y, ay) standard harmonic
oscillator creation and annihilation operators, it is obvious that Eq. (3.2) is satisfied with λx = 2m
+ 2, λy = 2, and

Q(Hx ) = (Hx + 2m + 1)
m∏

i=1

(Hx − 1 − 2i), S(Hy) = Hy − 1. (3.9)

The structure function �(E, u, x) is obtained from Eqs. (3.4) (with n1 = 1, n2 = m + 1, λ = 2(m
+ 1)) and (3.9) as

�(E, u, x)

=
(

E

2
+ 2(m + 1)(x + u) + 2m + 1

) m∏
i=1

(
E

2
+ 2(m + 1)(x + u) − 1 − 2i

)

×
m+1∏
j=1

(
E

2
− 2(m + 1)(x + u) + 2 j − 1

)
.

(3.10)

From this structure function and the first constraint of Eq. (3.6), we get three different types of
solutions for the parameter u,

2(m + 1)u1 = − E

2
− 2m − 1,

2(m + 1)u2 = − E

2
+ 2l + 1, l ∈ {1, 2, . . . , m},

2(m + 1)u3 = E

2
+ 2l − 1, l ∈ {1, 2, . . . , m + 1}.

(3.11)

The finite-dimensional unirreps are calculated from the two other constraints of Eq. (3.6) and come
from the first two types of solutions u1 and u2. They are associated with the energies

E1 = 2[(m + 1)p + 1 − k], (3.12)

E2 = 2[(m + 1)(p + 1) + l − k + 1], (3.13)

and with the structure functions

�1 = 22(m+1)(m + 1)x
m∏

i=1

[(m + 1)x − m − 1 − i]

×
m+1∏
j=1

[(m + 1)(p + 1 − x) − m + j − k],

(3.14)

�2 = 22(m+1)[(m + 1)x + m + 1 + l]
m∏

i=1

[(m + 1)x + l − i]

×
m+1∏
j=1

[(m + 1)(p + 1 − x) + j − k].

(3.15)
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Here p ∈ N, k ∈ {1, 2, . . . , m + 1}, and l ∈ {1, 2, . . . , m}. We conclude that there are altogether
(m + 1)2 unirreps characterized by the same p ∈ N.

Let us now show that, in contrast with the previous approach,40 the present one provides all the
levels of the physical energy spectrum with their corresponding degeneracy. From Eqs. (2.4) and
(3.8), the energy spectrum of H is indeed obtained as

E = Ex + Ey = 2(νx + νy + 1), νx = −m − 1, 0, 1, 2, . . . , νy = 0, 1, 2, . . . . (3.16)

On setting

EN = 2N , N = νx + νy + 1, (3.17)

we obtain

deg(EN ) =
{

1 if N = −m,−m + 1, . . . ,−1,

N + 1 if N = 0, 1, 2, . . ..
(3.18)

On defining then νx = (m + 1)nx + a1, νy = (m + 1)ny + a2, with nx , ny ∈ N, a1 ∈ {− m − 1,
1, 2, . . . , m}, and a2 ∈ {0, 1, . . . , m}, EN, as given in Eq. (3.17), can be rewritten as

EN = 2[(m + 1)(nx + ny) + a1 + a2 + 1]. (3.19)

It is then straightforward to see that E1 and E2, defined in (3.12) and (3.13), correspond to Eq. (3.19)
with nx + ny = p ∈ N, a2 = m + 1 − k ∈ {0, 1, . . . , m}, and a1 = − m − 1 or a1 = l ∈ {1, 2,
. . . , m}, respectively.

In the simplest m = 2 case, i.e., for Potential 1 in Ref. 33, which is one of Gravel’s systems,32

the polynomial algebra (3.4) has nine unirreps for each p ∈ N, associated with the energies
6p − 4, 6p − 2, 6p, 6p + 4, (6p + 6)2, (6p + 8)2, and 6p + 10, respectively. On the other hand,
the sequence of energy levels with their degeneracy is − 4, − 2, 0, 22, 43, 64, 85, 106, . . . . Only the
lowest ones belong to a single unirrep (for instance, − 4 is obtained from 6p − 4 with p = 0 and
p + 1 = 1), whereas the remaining ones belong to several unirreps (for instance, 106 is obtained
from 6p − 2 with p = 2 and p + 1 = 3, 6p + 4 with p = 1 and p + 1 = 2, and 6p + 10 with p
= 0 and p + 1 = 1).

In the general case, i.e., for an arbitrary even value of m, a detailed analysis from the two
solutions E1 and E2 enabled us to recover the degeneracies (3.18). On using

N = (m + 1)λ + μ, (3.20)

we found the number of unirreps per level given in Table I, where we also list the corresponding set
of p values with their number of occurrences and the total degeneracy.

TABLE I. Set of p values with their number of occurrences, number N of unirreps per level, and total level degeneracy for
the polynomial algebra (3.4) corresponding to Hamiltonian (3.1), (3.8).

λ μ p N deg (EN )

− 1 1, 2, . . . , m 0 1 1
0 0 0 1 1
0 1, 2, . . . , m 1 μ N + 1

0μ − 1

1, 2, . . . 0 λ m + 1 N + 1
(λ − 1)m

1, 2, . . . 1, 2, . . . , m λ + 1 m + 1 N + 1
λμ − 1

(λ − 1)m − μ + 1
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B. Combination of two rationally extended oscillators

Let us now consider the case where

Hx = − d2

dx2
+ x2 − 2

[
H′′

m1

Hm1

−
(H′

m1

Hm1

)2

+ 1

]
,

Hy = − d2

dy2
+ y2 − 2

[
H′′

m2

Hm2

−
(H′

m2

Hm2

)2

+ 1

]
,

(3.21)

with m1 and m2 even and such that m1 ≥ m2. This includes another system obtained by Gravel32

(Potential 6 in Ref. 33) for m1 = m2 = 2.
On taking for (a†

x , ax ) and (a†
y, ay) operators of type (2.12) (with m → m1 and m → m2,

respectively) and on noting that Eq. (3.2) is satisfied with λx = 2m1 + 2, λy = 2m2 + 2, n1 = m2 +
1, n2 = m1 + 1, λ = 2(m1 + 1)(m2 + 1), and with both Q(Hx) and S(Hy) assuming a form similar
to Q(Hx) in (3.9) (with m → m1 and m → m2, respectively), we arrive at the following structure
function:

�(E, u, x)

=
m2+1∏
i=1

[(
E

2
+ 2(m1 + 1)(m2 + 1)(x + u) − (2m1 + 2)(m2 + 1 − i) + 2m1 + 1

)

×
m1∏

k=1

(
E

2
+ 2(m1 + 1)(m2 + 1)(x + u) − (2m1 + 2)(m2 + 1 − i) − 1 − 2k

)]

×
m1+1∏
j=1

[(
E

2
− 2(m1 + 1)(m2 + 1)(x + u) + (2m2 + 2) j + 2m2 + 1

)

×
m2∏
l=1

(
E

2
− 2(m1 + 1)(m2 + 1)(x + u) + (2m2 + 2) j − 1 − 2l

)]
.

(3.22)

On proceeding as in the previous case, it can be easily shown that among the four different types
of solutions for the parameter u, only the first two

2(m1 + 1)(m2 + 1)u1 = − E

2
+ (2m1 + 2)(m2 + 1 − q) − 2m1 − 1,

2(m1 + 1)(m2 + 1)u2 = − E

2
+ (2m1 + 2)(m2 + 1 − q) + 2r + 1,

(3.23)

with q ∈ {1, 2, . . . , m2 + 1} and r ∈ {1, 2, . . . , m1}, lead to appropriate finite-dimensional unirreps
of the polynomial algebra (3.4). The resulting energies are

E11 = 2[(m1 + 1)(m2 + 1)(p + 2) − (m1 + 1)q − (m2 + 1)s − (m1 + m2 + 1)],

E12 = 2[(m1 + 1)(m2 + 1)(p + 2) − (m1 + 1)q − (m2 + 1)s − m1 + t],

E21 = 2[(m1 + 1)(m2 + 1)(p + 2) − (m1 + 1)q − (m2 + 1)s − m2 + r ],

E22 = 2[(m1 + 1)(m2 + 1)(p + 2) − (m1 + 1)q − (m2 + 1)s + r + t + 1],

(3.24)
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with p ∈ N, q ∈ {1, 2, . . . , m2 + 1}, r ∈ {1, 2, . . . , m1}, s ∈ {1, 2, . . . , m1 + 1}, and t ∈ {1, 2,
. . . , m2}. The corresponding structure functions are given by

�11 = 22(m1+1)(m2+1)
m2+1∏
i=1

[
(m1 + 1)

(
(m2 + 1)x − q + i

)

×
m1∏

k=1

(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q − 1) − k

)]

×
m1+1∏
j=1

[
(m2 + 1)

(
(m1 + 1)(p + 1 − x) + j − s

)

×
m2∏
l=1

(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s − 1) − l

)]
,

(3.25)

�12 = 22(m1+1)(m2+1)
m2+1∏
i=1

[
(m1 + 1)

(
(m2 + 1)x − q + i

)

×
m1∏

k=1

(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q − 1) − k

)]

×
m1+1∏
j=1

[(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s + 1) + t

)

×
m2∏
l=1

(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s) + t − l

)]
,

(3.26)

�21 = 22(m1+1)(m2+1)
m2+1∏
i=1

[(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q + 1) + r

)

×
m1∏

k=1

(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q) + r − k

)]

×
m1+1∏
j=1

[
(m2 + 1)

(
(m1 + 1)(p + 1 − x) + j − s

)

×
m2∏
l=1

(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s − 1) − l

)]
,

(3.27)

�22 = 22(m1+1)(m2+1)
m2+1∏
i=1

[(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q + 1) + r

)

×
m1∏

k=1

(
(m1 + 1)(m2 + 1)x + (m1 + 1)(i − q) + r − k

)]

×
m1+1∏
j=1

[(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s + 1) + t

)

×
m2∏
l=1

(
(m1 + 1)(m2 + 1)(p + 1 − x) + (m2 + 1)( j − s) + t − l

)]
,

(3.28)
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respectively. This time, there are altogether (m1 + 1)2(m2 + 1)2 unirreps characterized by the same
p ∈ N.

On the other hand, from Sec. II we know that the physical energy spectrum is given by

E = Ex + Ey = 2(νx + νy + 1), νx = −m1 − 1, 0, 1, 2, . . . , νy = −m2 − 1, 0, 1, 2, . . . .

(3.29)
With an equation similar to Eq. (3.17), this leads to the degeneracies

deg(EN ) =

⎧⎪⎨
⎪⎩

1 if N = −2m − 1,

2 if N = −m,−m + 1, . . . ,−1,

N + 2 if N = 0, 1, 2, . . ..

(3.30)

On setting now νx = (m1 + 1)[(m2 + 1)nx + a3] + a1, νy = (m2 + 1)[(m1 + 1)ny + a4] +
a2, with nx , ny ∈ N, a1 ∈ {− m1 − 1, 1, 2, . . . , m1}, a2 ∈ {− m2 − 1, 1, 2, . . . , m2}, a3 ∈ {0, 1,
. . . , m2}, a4 ∈ {0, 1, . . . , m1}, EN can be rewritten as

EN = 2[(m1 + 1)(m2 + 1)(nx + ny) + (m1 + 1)a3 + (m2 + 1)a4 + a1 + a2 + 1]. (3.31)

We then immediately see that E11, E12, E21, and E22 correspond to EN with nx + ny = p ∈ N, a3 =
m2 + 1 − q ∈ {0, 1, . . . , m2}, a4 = m1 + 1 − s ∈ {0, 1, . . . , m1}, and a1 = − m1 − 1, a2 =
− m2 − 1, or a1 = − m1 − 1, a2 = t ∈ {1, 2, . . . , m2}, or a1 = r ∈ {1, 2, . . . , m1}, a2 = − m2 −
1, or a1 = r ∈ {1, 2, . . . , m1}, a2 = t ∈ {1, 2, . . . , m2}, respectively. The polynomial algebra of the
system therefore provides the whole energy spectrum.

We checked on several examples that it also accounts for the level degeneracies (3.30), which
are in general obtained through the use of several unirreps. For m1 = m2 = m, for instance, we got
the number of unirreps per level given in Table II, where

N = λ(m + 1)2 + μ, μ = ρ(m + 1) + σ. (3.32)

TABLE II. Set of p values with their number of occurrences, number N of unirreps per level, and total level degeneracy for
the polynomial algebra (3.4) corresponding to Hamiltonian (3.1), (3.21) in the m1 = m2 = m case.

λ ρ σ p N deg (EN )

− 1 m − 1 1 0 1 1
− 1 m 1, 2, . . . , m 02 2 2
0 m 1, 2, . . . , m 12 μ N + 2

0μ − 2

0 m − 1 1 1 μ + 1 N + 2
0μ

0 0, 1, . . . , m 0 0μ + 2 μ + 2 N + 2
0 0, 1, . . . , m − 2 1 0μ + 2 μ + 2 N + 2
0 0, 1, . . . , m − 1 2, 3, . . . , m 0μ + 2 μ + 2 N + 2
1, 2, . . . 0, 1, . . . , m 0 λμ + 2 (m + 1)2 N + 2

(λ − 1)(m+1)2−μ−2

1, 2, . . . 0, 1, . . . , m − 2 1 λμ + 2 (m + 1)2 N + 2

(λ − 1)(m+1)2−μ−2

1, 2, . . . 0, 1, . . . , m − 1 2, 3, . . . , m λμ + 2 (m + 1)2 N + 2

(λ − 1)(m+1)2−μ−2

1, 2, . . . m − 1 1 λ + 1 (m + 1)2 N + 2
λμ

(λ − 1)(m+1)2−μ−1

1, 2, . . . m 1, 2, . . . , m (λ + 1)2 (m + 1)2 N + 2
λμ − 2

(λ − 1)(m+1)2−μ
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Here we have taken the convenient and uniform choice n1 = m2 + 1 and n2 = m1 + 1.
However, it is worth observing that whenever m1 + 1 and m2 + 1 have a common factor, i.e., m1

+ 1 = μν1 and m2 + 1 = μν2, there exists a simpler choice for n1 and n2, namely, n1 = ν2 and
n2 = ν1, which would lead to a lower-order polynomial algebra. In any case, it is well known that if
ladder operators provide an easy method for constructing integrals of motion, the resulting algebraic
structures are not necessarily the simplest ones that can be obtained.35

IV. CONCLUSION

In the present work, the construction of ladder operators for a well-known rational extension of
the harmonic oscillator, associated with type III Hermite EOP and characterized by an even integer
m, has been reconsidered. Novel operators closing a PHA of mth order have been built and it has
been shown that the eigenstates of this rational extension separate into m + 1 infinite-dimensional
unirreps of the PHA.

Such ladder operators have then been applied to construct a higher-order integral of motion for
two superintegrable two-dimensional systems separable in cartesian coordinates. It has been proved
that the polynomial algebras of these systems provide an algebraic derivation of the whole energy
spectrum through their (p + 1)-dimensional unirreps. The degeneracy of the energy levels in general
results from the union of several unirreps.

In conclusion, we have shown that as it was already the case for superintegrable systems
connected with type I or II EOP, a full algebraic treatment may also be found for those related to
type III ones provided some appropriate ladder operators are constructed.

The integrals we constructed with these new ladder operators are of higher order than the
ones generated by standard ladder operators. These results point out that beyond quadratically
superintegrable systems the lowest-order integrals do not necessarily provide the whole energy
spectrum with its degeneracies and that to get the latter one might need integrals of higher order.

In a future work, we hope to be able to carry out a similar study for the systems40 built
from extended radial oscillators,16, 17 as well as for those that might be built from other extended
potentials.42, 45, 46
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(2011).
6 S. Y. Dubov, V. M. Eleonskii, and N. E. Kulagin, “Equidistant spectra of anharmonic oscillators,” Sov. Phys. JETP 75, 446

(1992).
7 S. Y. Dubov, V. M. Eleonskii, and N. E. Kulagin, “Equidistant spectra of anharmonic oscillators,” Chaos 4, 47 (1994).
8 G. Junker and P. Roy, “Conditionally exactly solvable problems and non-linear algebras,” Phys. Lett. A 232, 155 (1997).
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