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New land-use-change emissions indicate a 
declining CO2 airborne fraction

Margreet J. E. van Marle1,2,7, Dave van Wees1,7, Richard A. Houghton3, Robert D. Field4,5, 
Jan Verbesselt6 & Guido. R. van der Werf1 ✉

About half of the anthropogenic CO2 emissions remain in the atmosphere and half are 
taken up by the land and ocean1. If the carbon uptake by land and ocean sinks becomes 
less efficient, for example, owing to warming oceans2 or thawing permafrost3, a larger 
fraction of anthropogenic emissions will remain in the atmosphere, accelerating 
climate change. Changes in the efficiency of the carbon sinks can be estimated 
indirectly by analysing trends in the airborne fraction, that is, the ratio between the 
atmospheric growth rate and anthropogenic emissions of CO2 (refs. 4–10). However, 
current studies yield conflicting results about trends in the airborne fraction, with 
emissions related to land use and land cover change (LULCC) contributing the largest 
source of uncertainty7,11,12. Here we construct a LULCC emissions dataset using 
visibility data in key deforestation zones. These visibility observations are a proxy for 
fire emissions13,14, which are — in turn — related to LULCC15,16. Although indirect, this 
provides a long-term consistent dataset of LULCC emissions, showing that tropical 
deforestation emissions increased substantially (0.16 Pg C decade−1) since the start of 
CO2 concentration measurements in 1958. So far, these emissions were thought to be 
relatively stable, leading to an increasing airborne fraction4,5. Our results, however, 
indicate that the CO2 airborne fraction has decreased by 0.014 ± 0.010 decade−1 since 
1959. This suggests that the combined land–ocean sink has been able to grow at least 
as fast as anthropogenic emissions.

Carbon–climate feedbacks constitute a key uncertainty in predicting 
future climate change17,18. Over the past decades, the functioning of 
carbon sinks has therefore undergone increased scrutiny from the 
scientific community. However, partly owing to large spatio-temporal 
variability, direct estimates of the sink strength, its annual variability 
and trends remain uncertain11. Analysing trends in the airborne frac-
tion (AF) provides an independent estimate of the functioning of all 
sinks combined. Several studies observed an increase in AF4,5 in line 
with findings of a decline in CO2 uptake efficiencies of parts of the 
land19–21 and ocean sinks2,22. Other studies suggested that the trend 
is too small to be statistically significant6, warned against misinter-
preting the trend in AF7 or argued that multiple trends are needed to 
describe the AF pattern over the past 60 years (refs. 8,9). These conflict-
ing results highlight the underlying uncertainties in this approach, 
partly related to uncertainties in datasets used, in particular, those 
of LULCC emissions.

The uncertainty in the magnitude of LULCC emissions stems, for a 
large part, from uncertainties in tropical forest losses, especially before 
satellite observations became available. Although these and other 
fluxes related to LULCC emissions are nowadays only about 10–20% 
of fossil fuel emissions, their uncertainty is larger, even in absolute 
terms11. The uncertainty in LULCC emissions has an especially large 
contribution to the overall uncertainty in anthropogenic emissions 

during the mid-twentieth century, when LULCC and fossil fuel emis-
sions were more similar in magnitude than they are now.

One avenue that is not exploited in the context of better constraining 
LULCC emissions is the close link between fire and deforestation15,16,23. 
Fire is the cheapest tool to convert forest to other land uses. In moist 
tropical rainforests, fires thus signal human presence and deforesta-
tion24. Even though not all LULCC emissions are associated with fire 
— logging is a prime example — a better handle on trends in fire emis-
sions in key LULCC regions could provide independent information 
on temporal dynamics of LULCC emissions.

The two regions with the largest LULCC emissions are South America 
and Southeast Asia. Fires are routinely measured from satellite, but the 
longest continuous burned-area dataset starts in 1982 (ref. 25) and the 
global emissions record only in 1997 (ref. 26). However, fires influence 
visibility and visibility records go back further in time. In this study, we 
take advantage of the reasonable to good correspondence between fire 
and visibility in key deforestation regions for the overlapping period13,14 
and use this to convert the visibility record to fire emissions. This allows 
for the first consistent estimate of fire and related LULCC emissions 
for the period when direct CO2 measurements also became available. 
We use visibility observations as a proxy for fire in the Arc of Defor-
estation (ARCD), including Brazil and Bolivia, and for Equatorial Asia 
(EQAS), where most emissions originate from Indonesia, to create a 
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consistent estimate of LULCC emissions from these regions since 1958. 
The two regions account, on average, for 60% of net LULCC emissions 
over 1959–2019 (ref. 27). For the other regions, covering the remaining 
40%, we relied on improved bookkeeping estimates27. Non-fire LULCC 
emissions were computed on the basis of ancillary data or as a fraction 
of fire emissions (see Methods).

Our observation-based estimates suggest that fire emissions were 
relatively low until the early 1980s for EQAS and the late 1980s for 
the ARCD, after which they increased (Fig. 1). In EQAS, this change 
reflects more muted fire episodes in Sumatra in the 1960s and 1970s, 
the absence of severe fire episodes in Borneo until the 1980s and an 
increase in severity of fire episodes in the 1990s in both regions owing to 

three strong drought years and intensified deforestation. In the ARCD, 
it reflects the transition of smallholder to industrial-scale deforesta-
tion in the 1980s with an increase in large-scale agriculture28. Earlier 
LULCC estimates also report fire emissions but at a much higher level, 
especially in the early part of our study period.

Our resulting total LULCC emissions show an increasing trend that 
resembles the fire reconstruction but at an elevated level owing to the 
inclusion of other processes and regions (Figs. 1 and 2a). By contrast, 
LULCC estimates that were used in previous studies assessing the AF 
had emissions already substantially elevated in the 1960s29, despite 
much lower population densities, restricted access to machinery that 
nowadays facilitates industrial-scale deforestation and the absence of 
international trade of commodities related to deforested land (Figs. 1 
and 2b). More recent versions of the Houghton and Nassikas (2017)27 
dataset (from here on referred to as H&N) support our findings (Fig. 2). 
Differences with earlier versions as used previously in the Global Carbon 
Project (from here on referred to as GCP) stem from revised historical 
data for Latin America, Europe and China, resulting in lower net emis-
sions over 1950–2000 in these regions.

On the basis of our approach, LULCC emissions were, on aver-
age, 0.88 Pg C year−1 over 1959–2019, slightly lower than H&N 
(1.04 Pg C year−1, Fig.  2b). By contrast, GCP estimates were 
1.41 Pg C year−1, mostly because of higher emission rates between 1960 
and 1990 (Fig. 2b). Furthermore, as a result of visibility-based estimates, 
our dataset shows larger interannual variability than the other two 
datasets, which may help explain some of the substantial interannual 
variability in the CO2 growth rate30.

We used our new LULCC emission datasets to calculate linear trends 
in the AF, to identify changes in the strength of the combined land–
ocean CO2 sink. Besides our LULCC emission estimates, we used the 
average of CO2 concentrations measured at the Mauna Loa (MLO) and 
South Pole Observatory (SPO) stations31 and annual estimates of fossil 
fuel and cement production emissions32. We calculated the trend for: 
(1) the raw data (‘raw’), (2) smoothed data including filtering for the 
effects of the El Niño–Southern Oscillation (ENSO) and volcanic activity 
(‘filter’) and (3) a bootstrapping approach (‘bootstrap’) (see Methods). 
In this study, we focused on a single long-term trend, following Raupach 
et al. (2014)5.
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Fig. 1 | Visibility-derived LULCC emissions for two key deforestation 
regions. Emissions over the period 1959–2019 are shown for ARCD (a) and 
EQAS (b). Fire emissions are directly derived from visibility measurements, 
tuned to match satellite-derived estimates for the overlapping period  
(1997–2015). These and other emission pathways are described in Methods. 
Dashed lines depict time series of key commodities derived from deforested 
areas on the basis of FAOSTAT44.
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Fig. 2 | Global LULCC emissions and other time series required for 
computing the AF. a, Global LULCC emissions over the period 1959–2019 from 
various sources for the Arc of Deforestation (ARCD), Equatorial Asia (EQAS) and 

other regions. b, Global fossil fuel emissions, the atmospheric CO2 growth rate 
and LULCC emissions from three datasets, namely, the Global Carbon Project 
(GCP), Houghton and Nassikas (2017) (H&N) and this study.



452 | Nature | Vol 603 | 17 March 2022

Article

On the basis of our LULCC estimates, the best AF trend estimate 
(‘filter + bootstrap’) was −0.014 ± 0.010 decade−1 (P = 0.93, probability 
of negative trend) (Fig. 3 and Table 1). Using the H&N estimates led to a 
minor negative AF trend (−0.003 ± 0.009 decade−1). For the GCP data-
set, we found a positive AF trend of +0.005 ± 0.009 decade−1 (P = 0.74, 
probability of positive trend), in line with most earlier studies that con-
cluded that the combined land–ocean sink had become less efficient 
over time, implying a reduction in the capacity to take up anthropogenic 
CO2 emissions4,5. By contrast, the negative AF trend that results from 
our emission estimates may imply that the combined land–ocean sink 
has become more efficient over time. The key difference originates 

from the downward revision of the LULCC emissions in the first half of 
our study period, leading to higher AF estimates for that period and an 
overall downward slope (Fig. 3). High probabilities of trend direction 
(P, probability of positive or negative trend) did not necessarily mean 
significant trend values owing to large interannual variability in the 
AF time series (Table 1, columns three and four). However, all of the 
significant trends (p < 0.05) from a Monte Carlo simulation on the basis 
of our LULCC estimates were negative (Table 1, columns five and six).

The 1959–2019 average AF was 0.44, 0.47 and 0.49 when using GCP, 
H&N and our LULCC emissions, respectively (Fig. 3). The declining trend 
in AF when using our LULCC data constitutes a change in average AF 
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Fig. 3 | AF trend estimates on the basis of three different LULCC emission 
datasets. LULCC emissions are from the Global Carbon Project (GCP)  
(a, b), Houghton and Nassikas (H&N) (c, d) and this study (e, f). Left panels, the 
raw and filtered annual AF time series, with the transparent bands showing the 
1σ uncertainty range on the AF trend estimate. Solid trend lines show the mean 
trend in the filtered AF time series on the basis of a non-parametric Mann–
Kendall test and the dashed lines show the 1σ trend uncertainty after 
uncertainty propagation and bootstrapping (see Methods). The legends show 

the trend estimates for the raw, filtered and filter + bootstrap data treatments. 
Right panels, box plots (whiskers are 5% and 95% percentiles) of trend estimates 
for the raw, filtered, bootstrapped and filter + bootstrap data treatments. For 
our LULCC estimates, these are supplemented with trend estimates for three 
adjusted emission scenarios to test the sensitivity of our trend (see Methods). 
All shown trends and probabilities are on the basis of Monte Carlo simulation 
with n = 10,000 (see Methods). FF, fossil fuel.
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from 0.50 during the first decade (1959–1968) to 0.48 during the most 
recent decade (2010–2019). Given that LULCC estimates carry large 
uncertainty, we have assessed the sensitivity of the derived trend to 
changes in the absolute LULCC emissions and their trend (Fig. 4). An 
upward revision of LULCC emissions (for instance, owing to missing 
small fires33) would, in principle, increase the trend. However, if our 
temporal evolution of LULCC emissions is right, the LULCC emissions 
slope increases alongside to this, which — in turn — decreases the AF 
slope (Fig. 4). Our analysis shows that the latter effect is dominant and, 
as a result, the AF trend is mostly sensitive to the relative difference 
between LULCC emissions in the early and the late part of the study 
period. This provides further support for the robustness of the trend; 
each step in our estimation of the LULCC emissions is uncertain and 
there are very little validation data, but the overall increase in fire emis-
sions in deforestation zones over the study period is robust and is sup-
ported by proxies such as the increase in trade of deforestation-derived 
commodities (Fig. 1).

We provide evidence that the AF has declined over our study period. 
Our study also highlights again that uncertainties in LULCC emissions 
are large and need to be better constrained to fully understand the 
functioning of the global carbon cycle and aid future projections34. 
This would also benefit the assessment of the absolute sink strengths 
and is important for consistent country-level reporting of LULCC emis-
sions, which will only become more important for monitoring progress 
towards mitigation goals.

Although the main result of our study stems from lower than previ-
ously reported LULCC emissions in the early part of our study period, 
it does affect carbon dynamics in the later period as well. For example, 
observed CO2 concentrations in 2020 were roughly 2 ppm below those 
projected in the Representative Concentration Pathway 8.5 (RCP8.5) 
scenario (Extended Data Fig. 1, see Methods). This is often attributed 
to the levelling off of fossil fuel emissions after 2013 (ref. 35). The differ-
ence between RCP8.5-projected and observed fossil fuel emissions is 
indeed increasing with time, but over the 2010–2019 period, this was 
partly compensated for by increased LULCC emissions36 (Extended 
Data Fig. 2). Over the same period, the lower observed AF than the 
RCP8.5-projected AF (0.48 compared with 0.51) was another key reason 
for the lower-than-projected CO2 concentration in 2020, contribut-
ing about 40% of the 2-ppm difference (Extended Data Fig. 1). This 
result, however, is very sensitive to the LULCC dataset used, which 
governs the degree to which declining fossil fuel emissions are offset 
by higher-than-expected LULCC emissions (Extended Data Fig. 3) and 
reiterates the need for better-constrained LULCC emissions.

Although our results shed new light on the functioning of the global 
carbon cycle over the past six decades, the declining trend cannot 
be extrapolated to the future. The AF is affected by the trajectory of 
fossil fuel emissions7,37, and non-linearities in climate–carbon inter-
actions8 may reverse the trend. In fact, the declining trend is mostly 
apparent when the full study period is taken into account; over the 
past two to three decades, the AF was stable or even increasing (Fig. 3). 
Process-based studies are needed to reconcile these patterns and to 

Table 1 | Airborne fraction trend probabilities

LULCC 
dataset

Positive Negative Positive 
(p < 0.05)

Negative 
(p < 0.05)

p < 0.05 
(fraction 
positive)

p < 0.05 
(fraction 
negative)

GCP 0.74 0.26 0.07 0.00 0.95 0.05

H&N 0.36 0.64 0 0.03 0.09 0.91

This study 0.07 0.93 0 0.25 0 1.00

Trend probabilities were calculated for the three different land use and land cover change 
(LULCC) emission datasets analysed, namely, the Global Carbon Project (GCP), Houghton and 
Nassikas (H&N) and this study, on the basis of a Monte Carlo simulation with n = 10,000 fol-
lowing the filter + bootstrap data treatment. The first two columns give the fraction of Monte 
Carlo iterations that resulted in a positive or negative trend. The middle two columns indicate 
what fraction of these trends was significant at the p < 0.05 confidence level. The last two 
columns give the fraction of significant trends that was positive or negative.
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Fig. 4 | Sensitivity of the AF trend to average annual LULCC emissions and 
its slope. The labelled dots represent the AF trends for 1959–2019 using our 
LULCC emissions (‘This study’), the GCP estimates based on Friedlingstein et al. 
(2020)11 and estimates based on Houghton and Nassikas (2017)27. The time 
series were corrected for the effect of ENSO and volcanoes and subjected to 

bootstrapping, following the filter + bootstrap data treatment (see Methods). 
The solid black line is the zero AF trend line and the dashed lines show the 
standard deviation of the slope around zero. Slope mean and standard 
deviation were on the basis of a Monte Carlo simulation with n = 1,000 
(see Methods).
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also be in a better position to make informed predictions about future 
sink behaviour.

The underlying sink mechanisms have been widely explored and 
include enhanced oceanic carbon uptake related to increasing biologi-
cal activity38, increasing terrestrial carbon uptake owing to enhanced 
nutrient deposition39, CO2 fertilization8, changes in diffuse radiation 
resulting in increasing canopy photosynthesis40 and, more recently, 
reduced respiration during the warming hiatus41. Our results imply that 
these mechanisms as a whole may be more effective than previously 
thought. One line of evidence supporting this comes from revised 
interpretation of the ocean carbon sink, which may be substantially 
higher than often assumed42, potentially offsetting a declining land 
sink strength43. However, it is crucial to recognize that the estimation 
of the combined sink strength by analysis of the AF cannot explain the 
underlying mechanisms that cause the increased efficiency. Nonethe-
less, our analysis using the most recent insights in LULCC variability 
over time implies that the carbon–climate system as a whole has been 
remarkably stable and may have even become more efficient when 
considering the full period of CO2 measurements.
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Methods

Calculation of the airborne fraction
The CO2 flux mass balance in the global atmosphere can be written as:

A t E E S Sd /d = + − − (1)CO2 FF LU O L

in which ACO2 is the atmospheric CO2 concentration and its derivative, 
dACO2, is the atmospheric growth rate, EFF is the fossil-fuel-emissions 
flux, ELU is the LULCC emissions flux and SO and SL are the ocean and land 
sinks, respectively. In turn, the AF can be calculated as:

E E S S
E E

A t
E E

AF =
+ − −

+
=

d /d
+

= 1 − SF (2)LU FF O L

LU FF

CO2

LU FF

The AF is the fraction of anthropogenic CO2 that accumulates in 
the atmosphere, dependent on the balance between anthropogenic 
emission fluxes and sink fluxes (sink fraction; SF). The AF and its trend 
were determined and compared for three different LULCC emission 
scenarios: GCP, H&N and our estimates (referred to as ‘this study’). For 
all three scenarios, the datasets used for atmospheric CO2 concentra-
tions and fossil fuel emissions were kept the same and on the basis of the 
data sources described below. We first describe the datasets, followed 
by a description of uncertainties and trend sensitivity.

Atmospheric CO2 concentrations
Atmospheric CO2 concentrations were on the basis of mean monthly 
observations taken under the Scripps CO2 programme at MLO (in situ 
and flasks) and SPO (flask measurements) for 1958–2019 (ref. 31). This 
dataset was adjusted by removal of the quasi-regular seasonal cycle 
and missing values were filled using a smooth fit. Our atmospheric 
CO2 time series is composed as the average over the MLO and SPO con-
centrations. Concentrations of CO2 in ppm were converted to Pg C by 
multiplication with a conversion factor of 2.134.

Fossil fuel combustion and cement production
We used fossil fuel emission estimates (EFF) from the GCP, which were 
based on national energy statistics45. Although uncertainty in EFF is, 
in general, lower than ELU (see below) and is taken into account in our 
trend analyses, we tested the sensitivity of our results by replacing 
EFF in China as reported in the GCP with an alternative study based on 
revised energy statistics and more representative emission factors46. In 
that study, EFF from China for 1959–2013 were lower than in the GCP. We 
extended the data beyond 2013 on the basis of GCP EFF values for China 
over 2013–2019 and the relative difference between Liu et al. (2015)46 
and the GCP for the overlapping 2010–2013 period. Given that EFF from 
China grew more rapidly than global EFF over our study period, lower 
EFF from China could offset part of the increase in ELU. This observation 
could lead to a higher AF towards the end of our study period, with a 
more positive AF trend as a result. However, using these lower EFF for 
China instead of the GCP values did not appreciably change the robust-
ness of found trends (Fig. 3f, ‘Lower FF emissions China’).

LULCC data based on Houghton and Nassikas
The revised bookkeeping model is a seamless historical country-level 
dataset of LULCC emissions from the period 1850–2015, which we 
extended for 2016–2019 on the basis of the 2011–2015 average emis-
sions, as other datasets showed relatively little change during this 
period11. This model uses country-based statistics of rates of defor-
estation and reforestation from FRA 2015 (Global Forest Resources 
Assessment) and annual changes in croplands and pastures from the 
Food and Agriculture Organization Statistics Division (FAOSTAT)47. 
Furthermore, the H&N dataset also considers carbon emissions from 
the draining and burning of peatlands in Southeast Asia48. The book-
keeping model accounts for carbon initially held in areas affected by 

LULCC and subsequently tracks changes in four pools (living above-
ground and belowground biomass; dead biomass, including coarse 
woody debris; harvested wood products; and soil organic carbon). 
The amount of CO2 emitted into the atmosphere is based on emissions 
released during deforestation, logging and degradation, as well as con-
version of forest into agricultural or degraded land owing to logging, 
forest fires, or soil and vegetation decay. The bookkeeping model tracks 
how much carbon is sequestered from the atmosphere and thereafter 
stored in biomass and soil, also during regrowth and soil build-up after 
land use change. It considers transitions between forests, pastures and 
cropland; shifting cultivation; degradation of forests where a fraction 
of the trees is removed; abandonment of agricultural land; and forest 
management, such as wood harvest and, in the USA, fire management.

LULCC data from the Global Carbon Project
Within the GCP (www.globalcarbonproject.org), emissions related to 
LULCC (ELU) include carbon fluxes from deforestation, afforestation, 
logging and forest degradation (including harvest activity), shifting 
cultivation and regrowth of forests following wood harvest or abandon-
ment of agriculture11. These emissions are quantified on the basis of 
three bookkeeping approaches; the bookkeeping of land use emissions 
model (BLUE)49, Houghton and Nassikas (2017)27 and the estimate pub-
lished by Gasser et al. (2020)50 using the compact Earth system model 
OSCAR. The number used in the GCP is the average of the three models. 
Although all three models are based on the bookkeeping approach of 
Houghton (2003)47, they differ with respect to the land-use-change 
data used, spatial resolution and a myriad of other factors11.

Visibility-based fire emissions
Fire-emitted aerosols lower visibility, enabling visibility observations 
to be used as a proxy for fire emissions13,14. We used visibility-based 
fire emissions for the two largest deforestation regions; EQAS and the 
ARCD in South America. Observations for these regions started in 1960 
and 1973, respectively (Extended Data Fig. 4). Visibility data originate 
from weather station records from the NOAA National Centers for 
Environmental Information (NCEI) Integrated Surface Database (ISD). 
Visibility was transformed into an extinction coefficient (Bext), which 
shows sharp increases during sustained periods of fire emissions. The 
visibility observations showed a close link between fire emissions and 
population dynamics, droughts and deforestation13,14. In Indonesia, the 
link between visibility and fire is very good: total particulate matter 
estimates from the Global Fire Emissions Database (GFED) correspond 
with Bext for both Sumatra (R2 = 0.91) and Kalimantan (R2 = 0.85) for the 
1997–2006 period13 and there is also good agreement in subsequent 
years51. The correlation between Bext and fire in the ARCD is reasonable 
to good. On a local scale with one station, this resulted in an R2 of 0.84 
between monthly Bext observations and surface measurements of PM10 
(ref. 14). On a more regional scale, the R2 between both datasets was 
0.61 during the dry season only (covering 95–98% of all emissions in 
that region).

From fire emissions to LULCC emissions
The visibility observations were converted to a time series of fire emis-
sions using satellite-based estimates of the GFED version 4s (GFED4s) 
for the overlapping 1997–2015 period26. In the ARCD, no visibility obser-
vations were available between 1959 and 1973. Emissions for this period 
were kept constant at the lowest decadal average. This dataset was 
published as the historic global biomass burning emissions for the 
CMIP6 (BB4CMIP) database52, consisting of visibility-based emissions 
before 1997 and GFED4s emissions since 1997.

In this study, these fire emissions were used to develop estimates 
of ELU (‘this study’). Emissions for the ARCD were supplemented with 
a decomposition component on the basis of the average annual fire 
emissions over that year and the nine preceding years, assuming an 
equal contribution of fire and other loss pathways to total emissions53. 

http://www.globalcarbonproject.org
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A similar approach was used for EQAS but only for non-peat fire emis-
sions. These emissions were supplemented with emissions coming from 
oxidation related to peat drainage48. Extended Data Figure 4 provides 
an overview of the input data used, what time periods they are avail-
able for and how they were combined to reconstruct ELU (‘this study’).

To account for uncertainty in the ratio between emissions by means of 
fire versus decomposition and other pathways, we included a scenario in 
which the fire contribution increased in a linear fashion from 25 to 50% 
over our study period. This boosts emissions early in our study period, 
making the AF trend more positive. However, this scenario did not cause 
a substantial change in trend estimates (Fig. 3f, ‘Increasing role of fire’).

Uncertainties in the datasets
For dACO2, we used the globally determined standard error from 
Dlugokencky and Tans (2021)54, which translates to a 1σ uncertainty 
of roughly 0.6 Pg C year−1 in the first two decades until 1979 and an 
uncertainty of about 0.2 Pg C year−1 from then onwards. For EFF, the 
uncertainty was estimated at σ = 5% (ref. 32). However, biases in the 
emissions of China could lead to higher uncertainties than reported46,55. 
Therefore, the EFF uncertainties for China were on the basis of found 
biases46, with a minimum uncertainty of σ = 10% (ref. 55). In addition, 
we performed a sensitivity analysis with lower emissions for China, 
in which we took the data source with the largest difference with the 
GCP to assess the robustness of our trend (see section ‘Emissions from 
fossil fuel combustion and cement production’). Uncertainties in ELU 
emissions are often poorly characterized. Houghton and Nassikas 
(2017)27 reported a σ of 10.4%, whereas this is 50% in the GFED26. We 
assumed that the satellite-derived GFED estimates are more accurate 
than estimates partly based on country-level statistics and adopted a 
50% uncertainty for the whole time period. On annual scales, uncer-
tainties could be higher but the most relevant characteristic for our 
study is the long-term temporal evolution (Fig. 1), which we consider 
to be less uncertain, as it is rooted in a uniform approach. Uncertain-
ties reported in the GCP ELU are 0.7 Pg C year−1, which corresponds to 
a relative uncertainty of about 40–60% over the study period27. For 
consistency, we have therefore adopted an uncertainty of 50% for all 
ELU data. Uncertainties in AF in terms of 1σ were calculated by propaga-
tion of the reported standard errors through equation (2) using Monte 
Carlo simulation (see section below).

Estimation of trends in AF and trend uncertainty
Trends in AF were estimated on the basis of the annual time series over 
the full time period of available data (1959–2019). Trends were deter-
mined using the non-parametric Mann–Kendall test and Sen’s slope esti-
mator for the robustness of trends. Trends and trend uncertainty ranges 
were calculated as the median and standard deviation, respectively, 
of the trend results from a Monte Carlo simulation (n = 10,000). The 
simulation used normally distributed input errors on the basis of the 
1σ uncertainty ranges of the various emission datasets (dACO2, EFF, ELU).

Monte Carlo simulations were performed for several data treatments, 
to test for AF trend robustness, largely following Raupach et al. (2014)5. 
These data treatments were: the raw AF time series (‘raw’), smoothing 
and filtering of the atmospheric CO2 monthly time series to reduce 
within-year variability and the influence of the ENSO and volcanic activ-
ity (‘filter’), bootstrapping to test robustness dependency on the time 
series start and end points (‘bootstrap’) and combined filtering and 
bootstrapping (‘filter + bootstrap’). For the filtered data treatment, the 
monthly atmospheric CO2 flux time series was first smoothed using a 
15-month moving average filter to reduce variability within years5,56. 
Next, interannual variability related to the ENSO and volcanic activity 
was reduced by subtraction of the part of the atmospheric CO2 flux 
signal that was correlated to a combined ENSO–volcanic variability 
index (EVI). The ENSO index (ENSO) was based on anomalies in Niño3 
sea surface temperatures (SSTs), with a lag of four months between 
concentrations and SSTs (SSTs leading). This index was combined with 

the volcanic aerosol index (VAI)57 into the EVI. The relative contribution 
of the VAI in relation to the ENSO was determined by maximizing the 
correlation between:

t t τ λ tEVI( ) = ENSO( − ) + VAI( ) (3)

and the CO2 growth rate. Here λ is the relative weight of the VAI com-
pared with the ENSO, for which we found a value of –17.3. For conveni-
ence and to remain consistent with Raupach et al. (2008)56, a value of 
λ = –16 was used. The EVI noise removal was performed by minimization 
of the variance in:

U t A t μ t( ) = (d )/d − EVI( ) (4)CO2

in which U is the noise-reduced atmospheric growth rate (the uncor-
related part), τ is the four-month time lag and μ is the sensitivity fac-
tor, with values around 0.9 and 0.6 for time series with or without a 
15-month moving average, respectively.

For the bootstrapping data treatment, a continuous segment of 
the AF time series with random length and start and end points was 
picked with replacement, carried out for each Monte Carlo iteration. 
The minimum segment length was constrained to be at least a fraction 
fBts = 0.8, following Raupach et al. (2014)5.

Sensitivity of the AF trends
As a further investigation of the sensitivity of trends in AF to the ELU 
dataset used, we calculated the trend in AF for a range of linear ELU time 
series with different combinations of average value and slope (Fig. 4). 
We varied the 1959–2019 average of the linear approximation of ELU from 
0.8 to 1.5 Pg C year−1 and the slope from −0.005 to 0.025 Pg C year−2, 
encompassing the range of average and slope values covered by the 
three ELU datasets studied. A Monte Carlo simulation (with n = 1,000) 
was used for each of the slope-averaged combinations in a 51 × 51 grid, 
to calculate trend sensitivity to ELU. This Monte Carlo simulation was 
identical to the one previously described, with the ‘filter + bootstrap’ 
data treatment applied. AF trend estimates on the basis of the actual 
ELU time series as compared with their linear approximations showed 
a maximum difference in trend estimate of 3% for the filtered data 
treatment and 26% for the filter + bootstrap data treatment. This shows 
that the use of a linear approximation of ELU gives a relatively robust 
first-order indication of the AF trend.

Comparison against RCP8.5
We compared the observed evolution of ACO2, EFF and ELU with that of 
the highest RCP scenario as used in the Intergovernmental Panel on 
Climate Change (IPCC) Fifth and Sixth Assessment Reports (AR5 and 
AR6), the RCP8.5 scenario58. This was done for cumulative EFF and ELU 
for 2010–2019 bounded by ACO2 for 2010 and 2020 to have 10 years of 
emissions and a 10-year atmospheric evolution period. Sink strength 
was calculated as the residual. To make for a fair comparison, ACO2 for 
2010 from RCP8.5 was aligned with observed values for 2010. Given 
that this time period was almost ENSO neutral as a whole and that the 
observed AF mimicked ENSO-corrected values within 0.2%, we have 
used the raw observations for Extended Data Figs. 1 and 3.

Data availability
GCP data are publicly available at https://www.globalcarbonproject.
org/carbonbudget. The ENSO index was based on anomalies in Niño 3 
SSTs, which are publicly available at https://psl.noaa.gov/gcos_wgsp/
Timeseries /Data/nino3.long.anom.data. Gridded visibility-based fire 
emissions can be found at the CMIP6 forcing data repository (https://
esgf-node.llnl.gov/search/input4mips/). All input data, including the 
Houghton and Nassikas dataset27, have been made available at https://
doi.org/10.5281/zenodo.5617953.
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Code availability
The Python code that was used to assimilate the raw data and perform 
the analyses is available at https://doi.org/10.5281/zenodo.5617953.
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Extended Data Fig. 1 | RCP8.5-projected and observed evolution of 
atmospheric CO2 growth using our LULCC data. RCP8.5-projected 
(background) and observed (forefront) atmospheric CO2 growth over  
2010–2020 on the basis of observed concentrations, sources from fossil fuel 

burning, cement manufacturing and LULCC based on this study. Sink strength 
is computed as the residual. AF is short for airborne fraction and the numbers 
indicate what the difference is between observed values and RCP8.5 
projections for each component.



Extended Data Fig. 2 | Evolution of RCP8.5-projected and observed anthropogenic emissions and atmospheric CO2 growth rate over 2000–2019. Fossil fuel 
emissions increased less than projected in RCP8.5 after 2012, but this was partly compensated for by higher-than-projected LULCC emissions in most years.
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Extended Data Fig. 3 | RCP8.5-projected and observed evolution of 
atmospheric CO2 growth on the basis of other LULCC datasets. 
RCP8.5-projected (background) and observed (forefront) evolution of 
atmospheric CO2 growth over 2010–2020 on the basis of observed 
concentrations, sources from fossil fuel burning, cement manufacturing and 

LULCC on the basis of the GCP (a) and H&N (b). Sink strength is computed as the 
residual. AF is short for airborne fraction and the numbers indicate what the 
difference is between observed values and RCP8.5 projections for each 
component.



Extended Data Fig. 4 | Schematic overview for production of LULCC 
emissions. This overview shows our method to construct LULCC emissions on 
the basis of fire emissions in key deforestation zones of GFED4s (1997–2019) 

and visibility-based Bext anchored to GFED4s for the preceding period. These 
were supplemented by non-fire emissions including those stemming from peat 
dynamics in EQAS.
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