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ABSTRACT

The Capacitated Arc Routing Problem (CARP) captures important aspects of real-
life problems and has been studied extensively over the past two decades. Based on
a waste collection project, we introduce a number of new CARP variations. We first
present three multi-compartment CARP variations of different levels of complexity
regarding compartments and where one incorporates a time horizon. We then present
a variation that seeks to coordinate vehicles over a planning horizon such that the
vehicles that collect different waste fractions from the same households do so on
the same day of the week. Finally, the semi-periodic CARP takes into account that
the households on a street, providing the demand of the edge, may not request
waste collection at the same interval. We present large-scale instances both for the
classical CARP and for the five new problems. The instances are based on real-life
networks and waste data from five areas in Denmark and cover rural as well as
urban areas. The largest instances contain more than 10 thousand nodes. We give
detailed information about the construction of the instances from the real-life data,
and explain how they can be used to perform scenario analyses.

KEYWORDS

Capacitated arc routing problem; Waste collection; Real-life benchmark instances;
New variations.

1. Introduction

The motivation for writing this paper is twofold: Firstly, through collaboration with a
number of waste responsible units, we have become aware of a number of CARP varia-
tions which are highly relevant in practice, but have not been studied in the academic
literature. We therefore take this opportunity to present these problems, their rele-
vance, and how they can be used for comparison of different waste collection strategies.
Secondly, it is well known in the arc routing community that the classical benchmark
instances, the largest being the instances presented in Brandão and Eglese (2008) with
255 nodes and 375 edges, are significantly smaller than most real-life instances of arc
routing. We therefore present new large-scale real-life data (with thousands of nodes)
both for the CARP and for the new variations, and make this data available for the
research community as benchmark data.

CONTACT: sanw@econ.au.dk



Figure 1.: The counties underlying the data.

This paper is part of a larger project on transportation problems within waste col-
lection. In the project, we collaborate with a number of counties and partially state-
owned companies responsible for waste collection. They provide us with knowledge of
the problems they encounter and with valuable data. Figure 1 provides a graphical
overview of our collaborators as regards curbside collection. Starting from the top left,
Reno Djurs I/S (the counties of North Djurs (N) and South Djurs (S)) (Reno Djurs
2017) and Renosyd I/S (the counties of Skanderborg and Odder (K)) (Renosyd 2017)
are relatively rural areas with towns and villages of various sizes. Odense Renova-
tion A/S (Odense county (O)) (Odense Renovation A/S 2017) operates in the third
largest city in Denmark that contains an urban mixture of single-family houses and
apartment block areas. Finally, Frederiksberg county (F) (Frederiksberg county 2017)
is an independent county covering part of central Copenhagen and has a more tradi-
tional city-like structure. Letters in brackets refer to the naming of our data, which is
described in Section 4.

In this paper, we present a total of five new CARP variations that can be grouped
into three types. These are represented by the columns in Figure 2, and a shaded
box indicates a problem which includes a time perspective. The lines in the figure
represent extensions of the problems, where the simplest problem is the classical CARP
at the top. All five variations are based on real-life situations encountered by our
collaborators. Even though the areas do include some one-way streets, we have agreed
that an undirected version of the problems will suffice.

The first type of problems are multi-compartment problems. With the increasing
level of waste sorting, multiple waste fractions must be collected from each household.
The first variation of multi-compartment problems arises from the situation where each
household has a single bin with a number of compartments for sorted waste fractions.
The bin is emptied by a multi-compartment vehicle that has a number of compartments
matching those of the bin. Practical applications within waste collection contain up
to four compartments. The same problem also arises when separate bins are collected
by a single vehicle with the compartments pre-assigned to waste fractions. We refer to
this problem as No-Split Multi-Compartment CARP (No-Split MC-CARP) and it is
studied in Section 3.1.1.

When the number of waste fractions to be collected from each household exceeds
the number of compartments in the vehicle or when additional flexibility is wanted, the

2



CARP

No Split
MC-CARP

C-Split
MC-CARP

Multi-Day
C-Split

MC-CARP

Coordinated
CARP

Semi-Periodic
CARP

Figure 2.: Overview of the problems.

Commodity-Split Multi-Compartment CARP (C-Split MC-CARP) is more relevant.
This problem is presented in Section 3.1.2 and involves, besides the routing aspect,
the choice of waste fraction to be collected in each compartment of each vehicle. This
also means that each household may be serviced by multiple vehicles.

Collection of waste is, in fact, a multi-day problem. While this is but an unim-
portant issue when each household is serviced by a single vehicle and compartments
are pre-assigned to waste fractions (because the set of routes can be distributed over
the days), it does become important when multiple vehicles service each household
and the compartment assignment is part of the decision process. To avoid having
to thoroughly clean every compartment at the end of each day, the same compart-
ment should be used for collection of the same waste fraction every day in practice.
The Multi-Day Commodity-Split Multi-Compartment CARP (Multi-Day C-Split MC-
CARP) presented in Section 3.1.3 takes this timing perspective into consideration.

The time perspective is also included in the next type of problem, the coordinated
CARP, which is considered in Section 3.2. When multiple vehicles collect different
fractions of waste from each household, the services should be coordinated to take
place on the same set of days. In the Coordinated CARP (C-CARP), this is considered
in a setting with single compartment vehicles.

The last type of problem, the Semi-Periodic CARP, is relevant in cases where the
households on a street segment may not request the same service frequency, even for
the same waste fraction. For instance, some of our collaborators have customers who
require collection of general waste twice a week, once a week, or every second week.
This results in a periodic-like problem, which we call Semi-Periodic CARP (SP-CARP)
which is studied in Section 3.3.

When the fleet of vehicles is constructed, cost of the individual vehicles could be
considered, these include investment costs and maintenance. This implies that the
fleet size and choice of vehicle have a direct impact on the cost of servicing demand.
Problems that include a time horizon should therefore preferably have the routes
spread evenly on all days in the planning horizon and not clustered on a few days.
As the cost of a vehicle is often large compared to the routing costs, it might even
be preferred to create the routes in such a way that the cost of needed vehicles is
minimized. We therefore formulate a bi-criteria problem in cases where a planning
horizon is included. This bi-criteria problem first seeks to minimize the cost of vehicles
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used and secondarily the routing costs.
Compression is an important aspect of waste collection and we therefore discuss

this issue before presenting the models. Compression relates to the fact that 100 liters
of waste in a waste bin do not require 100 liters of space in the waste truck. If we take
a mixed waste fraction that contains glass, paper and organic waste to be delivered
to an incineration plant, the waste can actually be compressed by a factor of 5 to 6
and therefore only requires 17-20 liters in the vehicle. The compression comes from
a combination of load of the other waste in the vehicle and mechanical compression.
On the other hand, a waste fraction containing a mix of glass, metal, and plastic to
be brought to a sorting facility is not being compressed beyond natural compression
because it complicates the subsequent sorting. From a modeling perspective, these
differences in compression factors for different waste fractions mean, in effect, that
the actual compartment capacity depends on the waste fraction it is assigned to.
Furthermore, different vehicles has different compression abilities. The compression
factor, and thereby the effective compartment size, will therefore depend on both the
waste fraction and the vehicle. This is reflected in all models in Section 3.

The main contributions of this paper are:

(1) We introduce five new CARP variations, all of which are encountered in real-life
waste collection.

(2) We provide new large-scale instances for these five variations as well as for the
CARP. The instances are based on real-life waste data from five areas in Den-
mark.

(3) We describe how the new instances can be used for comparison and scenario
analyses.

The remainder of this paper is organized as follows. In Section 2, we review the
related literature and in Section 3, we describe the five new CARP variations. Section
4 is devoted to a description of the new instances and how they are generated, and
Section 5 explains how scenario analysis can be performed across the instances. Finally,
Section 6 offers some concluding remarks, and the appendices give detailed information
about the instances.

2. Related Literature

The CARP was introduced by Golden and Wong (1981) and has a wide range of
applications. The one in focus in this article is urban waste collection. As different
countries and cities handle waste collection in many different ways, the original CARP
has been extended to several more complicated versions that seek to model the practice
of waste handling. This section will give a brief introduction to these extensions. For a
thorough review of studied arc routing problems until 2014 in this context see Corberán
and Laporte (2015, chapter 19).

In many real-world applications it is not possible to traverse a street in both direc-
tions or to collect waste from both sides of the road when traversing in one direction.
This has led to the use of Directed CARP (Amponsah and Salhi 2004; McBride 1982;
Mourão and Almeida 2000), where the graph contains arcs rather than edges. A ver-
sion where the network contains arcs and edges that can be completely serviced when
traversing in one direction (zigzag service) is denoted Mixed CARP (Bautista et al.
2008; Belenguer et al. 2006; Constantino et al. 2015; Coutinho-Rodrigues et al. 1993;
Ghiani et al. 2005; Gouveia et al. 2010; Mourão and Amado 2005; Mourão et al. 2009;
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Santos et al. 2011). A third version that relates to specific characteristics of the road
network is denoted windy CARP, here the cost of traversing an edge depends on the
direction in which it is traversed. This can be used to model hills and wind direction,
for instance (Corberán et al. 2011). A further complication in real-world waste col-
lection is forbidden or unwanted turns such as U-turns or left turns (Bautista et al.
2008; Coutinho-Rodrigues et al. 1993; McBride 1982; Mourão et al. 2009; Santos et al.
2011).

In the real-world, the dump site and the vehicle depot might not be at the same
location or there may be several dump sites of which the depot is one. This presents
a CARP with intermediate facilities in which the vehicles can be unloaded at any of
these nodes (Amponsah and Salhi 2004; Ghiani et al. 2005, 2010; Polacek et al. 2008;
Santos et al. 2011).

The characteristics of the allowed routes may differ this lead to the following ex-
tensions. Sometimes vehicles can be filled several times. In this case a route consists
of more than one visit to a dump site. This is often the case if there are several dump
sites, but it is also relevant in cases where demand is relatively large compared to
capacity of the vehicle (Amponsah and Salhi 2004; Ghiani et al. 2001; Mourão and
Almeida 2000; Mourão et al. 2009; Polacek et al. 2008; Santos et al. 2011). The wish to
be able to make the workers who are assigned to a route responsible for the quality of
their work is another issue that influences route planning. Therefore, non-overlapping
routes may be desirable. This implies that the serviced edges of a route should be
somehow connected and the graph has to be divided up into areas that should be
serviced by one vehicle (Constantino et al. 2015). Another desired constraint on the
routes is that they are somehow balanced. When working with districts this is ob-
tained by making the districts balanced (Constantino et al. 2015). A less restrictive
way of ensuring some balance among routes is to constrain the allowed length or time
duration of the routes. This could also be relevant if the routes are to be serviced
within one work shift (Ghiani et al. 2005, 2010; Mourão et al. 2009; Polacek et al.
2008; Santos et al. 2011).

The vehicles available for waste collection are not necessarily identical. This gives
rise to a CARP version with heterogeneous vehicles (Ghiani et al. 2005; Del Pia and
Filippi 2006). When vehicles differ, it might be the case that some streets cannot be
serviced by all vehicle types, either because the vehicle cannot traverse the given edge
or due to technical reasons that prevent bins on the edge to be emptied by some
vehicle types. These cases are also investigated in Ghiani et al. (2005); Del Pia and
Filippi (2006). In Del Pia and Filippi (2006) the small vehicles that can service narrow
edges denoted satellite vehicles, are emptied into large vehicles. This implies that both
vehicles have to be at the same location for the period of time it takes to empty the
small vehicle into the large one. Another complication regarding service is when some
edges can only be serviced during a given time window, for instance in order to avoid
traffic congestion on busy streets during rush hour (Ghiani et al. 2005).

Two versions modify the objective function in order to take real-world complications
into consideration. The first contains a punishment for uncollected waste (Amponsah
and Salhi 2004) and arises when the available vehicles cannot service all demand and
uncollected waste implies both health risk and annoyance for the citizens affected.
The second version is when the waste collection is maintained by a private company
that does not have to service all demand. Then the company will be more interested
in profit than cost. We can model this using a prize collecting arc routing problem
with the constraint that if one edge is serviced, then all edges in its connected demand
component should be serviced by the same vehicle (Aráoz et al. 2013; Corberán et al.
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2011).
The last extension takes into account that waste is not collected every day and that

the frequency between service is not necessarily the same on all edges. This gives rise
to Periodic CARP (PCARP), where demand occurs every day and is accumulated
until service of the edge. This version is studied in a waste collection setting in Mei
et al. (2011), Dos Santos et al. (2016), and Zhang et al. (2016).

3. New CARP Variations

All models are based on the first model for the CARP, presented in Golden and Wong
(1981). However, we use slightly different variable definitions. We state the model for
the CARP below for future reference and for clarification.

The CARP is defined on an undirected connected graph G = (N , E), where N is
the set of nodes and E is the set of edges. The edges are defined as ordered pairs
(i, j) with i, j ∈ N and i < j. The graph is assumed not to contain loops or multiple
edges between the same pair of nodes. With every edge, (i, j) ∈ E is associated a
traversal cost cij > 0. A subset of the edges, ER ⊆ E are required. For these edges,
qij > 0 denotes the demand of edge (i, j) ∈ ER. A special depot node, dep ∈ N , holds
a homogeneous set of vehicles K. Each vehicle has a capacity of W and a compression
factor of γ. To model the CARP, we define two types of variables. For every required
edge (i, j) ∈ ER, we define a binary service variable ykij as follows:

ykij =

{

1 if edge (i, j) ∈ ER is serviced by vehicle k ∈ K,
0 otherwise.

For every edge (i, j) ∈ E , we define two binary traversal variables xkij and xkji as follows:

xkij =

{

1 if edge (i, j) ∈ E is traversed from i to j by vehicle k ∈ K,
0 otherwise

and

xkji =

{

1 if edge (i, j) ∈ E is traversed from j to i by vehicle k ∈ K,
0 otherwise.
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With this, the CARP is described as

min
∑

k∈K

∑

(i,j)∈E

cij(x
k
ij + xkji)

st.
∑

k∈K

ykij = 1 ∀(i, j) ∈ ER (1)

∑

(i,j)∈E

qijy
k
ij ≤ γW ∀k ∈ K (2)

xkij + xkji ≥ ykij ∀k ∈ K, (i, j) ∈ ER (3)
∑

j∈N :(i,j)∈E

(xkij − xkji) = 0 ∀ k ∈ K, i ∈ N (4)

Subtour elimination constraints (5)

xkij , x
k
ji ∈ {0, 1} ∀k ∈ K, (i, j) ∈ E (6)

ykij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ ER. (7)

The objective function states that we seek to minimize the total traversal cost.
Constraints (1) ensure that all required edges are serviced by exactly one vehicle and
(2) are the vehicle capacity constraints. Constraints (3) are coupling constraints forcing
a vehicle to traverse any edge that it services. Jointly, the route continuity constraints
(4), the subtour elimination constraints (5) ensure that every route starts and ends in
the depot node, and the domain constraints for the traversal variables (6) comprise the
route topology constraints, and finally, (7) define the domain of the service variables.

3.1. Multi-Commodity CARP

In this section, we describe the three versions of MC-CARP in more detail. As the
notation is quite extensive, it is summarized in Table 1. Throughout the section, we
consider a set of waste fractions F . These will also be denoted commodities. For each
required edge (i, j) ∈ ER, we denote by qfij the demand of the edge for waste fraction
f ∈ F . Note that a required edge need not request service for all waste fractions,

i.e. qfij ≥ 0, ∀f ∈ F , ∀(i, j) ∈ ER, but each required edge must request service for at

least one of the waste fractions such that we have
∑

f∈F qfij > 0, ∀(i, j) ∈ ER. We use

Ef
R ⊆ ER to denote the set of required edges with respect to waste fraction f ∈ F , i.e.

Ef
R = {(i, j) ∈ ER : qfij > 0}. With this, we can formulate the three versions of the

MC-CARP.

3.1.1. No-Split Multi-Commodity CARP

In the No-Split version of MC-CARP, all waste fractions from an edge must be collected
by a single vehicle, or equivalently, all commodities demanded by an edge must be
serviced by a single vehicle. In this problem, the vehicles are identical, each having |F|
compartments. We define W f to be the capacity of the vehicle compartment for waste
fraction f ∈ F and denote the compression factor for fraction f ∈ F by γf . Because
it is not allowed to split the service of a single edge between several vehicles, we can
use the same service variables as for the CARP.
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Index Sets and Indices

N The set of nodes, indexed by i and j.
E The set of edges, indexed by the ordered pair (i, j) with i < j.
ER The set of required edges, i.e. ER = {(i, j) ∈ E : qij > 0}.

Ef
R The set of required edges wrt. f ∈ F , i.e. ER = {(i, j) ∈ E : qfij > 0}.

K The set of vehicles, indexed by k.
Mk The set of compartments in vehicle k ∈ K.
F The set of waste fractions, indexed by f .
T The set of days in the time horizon, indexed by t.

Parameters

W ; W f Capacity of vehicle; Capacity of vehicle compartment for waste fraction f ∈ F .
W km Capacity of compartment m ∈ Mk of vehicle k ∈ K.
Ck Cost of including vehicle k ∈ K in the fleet.
cij Traversal cost of edge (i, j) ∈ E , cij > 0.

qij ; q
f
ij Demand of edge (i, j) ∈ E , qij ≥ 0; Demand for waste fraction f ∈ F .

of edge (i, j) ∈ E.
γf Compression factor for waste fraction f ∈ F .
γfk Compression factor for waste fraction f ∈ F when collected by vehicle k ∈ K.

Binary Variables

vk 1 if vehicle k ∈ K is used in solution, and zero otherwise.
xkij 1 if vehicle k ∈ K traverses edge (i, j) ∈ E in direction from i to j,

and zero otherwise. xkji is 1 if vehicle k ∈ K traverses the same edge (i, j) in the

direction from j to i, and zero otherwise.
xktij Extension of xkij to every day t ∈ T .

ykij 1 if vehicle k ∈ K services edge (i, j) ∈ ER, and zero otherwise.

yfkij 1 if k ∈ K services waste fraction f ∈ F of (i, j) ∈ ER, and zero otherwise.

yfktij Extension of yfkij to every day t ∈ T .

zfkm 1 if vehicle k ∈ K uses compartment m ∈ Mk for waste fraction f ∈ F .

Table 1.: Overview of notation for the three MC-CARP variations.
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The No-Split MC-CARP can then be modeled as follows.

min
∑

k∈K

∑

(i,j)∈E

cij(x
k
ij + xkji)

st.
∑

(i,j)∈E

qfijy
k
ij ≤ γfW f ∀f ∈ F , k ∈ K (8)

Constraints (1), (3)− (7). (9)

Compared to the CARP, the only difference in this model is that for the No-Split MC-
CARP, we must ensure that the vehicle capacity is respected for every compartment
of the vehicle.

3.1.2. C-Split Multi-Commodity CARP

The C-Split version of the problem is significantly more flexible than the No-Split.
In this problem, we allow each edge to be serviced by more than one vehicle. In

fact, it may not be possible to service all demand of an edge by a single vehicle.
In some areas, 6 or more waste fractions must be collected from a single edge even
though the most advanced waste collection vehicle that we know of only collects 4
separated waste fractions. This adds an extra dimension of complexity as it must now
be determined which waste fractions should be collected by which vehicle and in which
compartment, besides determining which vehicle should service each edge and which
subset of commodities of the edge. We still require the full amount of each waste
fraction of the edge to be collected by a single vehicle.

The vehicle fleet K is heterogeneous and for each vehicle k ∈ K we define Mk to be
the set of compartments. The capacity of compartment m ∈ Mk in vehicle k ∈ K is
given by W km and vehicle k ∈ K can compress fraction f ∈ F by a factor γf .

To relate the compartments of the vehicles to the waste fractions, we define a com-
partment variable for each waste fraction and compartment combination as follows:

zfkm =

{

1 if vehicle k ∈ K collects waste fraction f ∈ F in compartment m ∈ Mk,
0 otherwise.

The service variables are redefined to include information on the waste fraction and
are defined ∀f ∈ F , (i, j) ∈ Ef

R, and ∀k ∈ K.

yfkij =

{

1 if waste fraction f ∈ F on edge (i, j) ∈ Ef
R is serviced by vehicle k ∈ K,

0 otherwise.
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Then the model becomes

min
∑

k∈K

∑

(i,j)∈E

cij(x
k
ij + xkji)

st.
∑

k∈K

yfkij = 1 ∀f ∈ F , (i, j) ∈ Ef
R (10)

∑

(i,j)∈E

qfijy
fk
ij ≤

∑

m∈Mk

zfkmγfkW km ∀f ∈ F , k ∈ K (11)

∑

f∈F

zfkm ≤ 1 ∀k ∈ K,m ∈ Mk (12)

|Mk|(x
k
ij + xkji) ≥

∑

f∈F

yfkij ∀ k ∈ K, (i, j) ∈ ER (13)

Constraints (4)− (6) (14)

yfkij ∈ {0, 1} ∀f ∈ F , k ∈ K, (i, j) ∈ Ef
R (15)

zfkm ∈ {0, 1} ∀f ∈ F , k ∈ K,m ∈ Mk. (16)

Constraints (10) ensure that all waste fractions are collected from every edge. Com-
pared to the similar constraint (1) for the No-Split MC-CARP, it is now necessary
to ensure service for each commodity by separate constraints. The vehicle capacities
are respected by constraints (11). Here, the left hand side denotes the total amount
of waste fraction f collected by vehicle k and the right hand side is the total capacity
assigned to fraction f in the vehicle. If several compartments of a vehicle are used
for the same waste fraction, the right hand side provides their joint capacity. If waste
fraction f is not collected by vehicle k, the right hand side becomes zero, not allow-
ing the vehicle to collect f . Constraints (12) ensure that each compartment of each
vehicle is only used for one waste fraction. Constraints (13) are the counterparts of
(3), ensuring that a vehicle traverses an edge if it services any of the demand of that
edge. Finally, the route topology constraints (4)-(6) are unchanged from the CARP,
and (15) and (16) define the domains of the service and compartment variables.

3.1.3. Multi-Day Commodity-Split MC-CARP

With this third MC-CARP, we move closer to the problem observed in the real-world
and further away from the classical CARP. When we look at a daily problem involving
multiple waste fractions, we are faced with either a No-Split MC-CARP or a C-Split
MC-CARP, but over time, this is not necessarily the case. In fact, if a given compart-
ment of a certain vehicle is used to collect one waste fraction today, that vehicle should
then collect the same waste fraction in that compartment tomorrow and the next day
an so on. So, when we set free the assignment of waste fractions to compartments as
done through the zfkm variables for the C-Split MC-CARP, the decision needs to be
permanent over the planning horizon. This is what we consider in the model in this
section. Alternatively, a two phase strategy can be applied; first assigning waste frac-
tions to vehicles and compartments at a tactical level and secondly solving a number
of independent No-Split MC-CARP at the operational level.

To include the time perspective, we define the time horizon as a set of days T ,

indexed by t. Each edge must be serviced once during the time horizon and qfij denotes
the demand for waste fraction f . In Sections 3.2 and 3.3, we consider problems where
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the time perspective results in multiple services of each edge during the time horizon.
Let Ck, k ∈ K be the cost of including vehicle k in the fleet.

To model the Multi-Day Commodity-Split MC-CARP, we add a time index to the
traversal and the service variables. As the assignment of waste fractions to compart-
ments is fixed over the time horizon, the compartment variables are unchanged. For
∀(i, j) ∈ E , k ∈ K, and ∀t ∈ T , we have

xktij =

{

1 if edge (i, j) ∈ E is traversed from i to j by vehicle k ∈ K at day t,
0 otherwise,

xktji =

{

1 if edge (i, j) ∈ E is traversed from j to i by vehicle k ∈ K at day t,
0 otherwise,

and ∀f ∈ F , (i, j) ∈ Ef
R, k ∈ K, and ∀t ∈ T , we have

yfktij =

{

1 if fraction f ∈ F on (i, j) ∈ Ef
R is serviced by vehicle k ∈ K at day t,

0 otherwise.

Finally, to model the use of vehicles, we define the following for every vehicle k ∈ K.

vk =

{

1 if vehicle k ∈ K is used on any route,
0 otherwise,

The problem can then be described by the following model

lexmin





∑

k∈K

Ckvk ,
∑

k∈K

∑

t∈T

∑

(i,j)∈E

cij(x
kt
ij + xktji )
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st.
∑

k∈K

∑

t∈T

yfktij = 1 ∀f ∈ F , (i, j) ∈ Ef
R (17)

∑

(i,j)∈Ef

R

qfijy
fkt
ij ≤

∑

m∈Mk

zfkmγfkW km ∀f ∈ F , k ∈ K, t ∈ T (18)

∑

f∈F

zfkm ≤ vk ∀k ∈ K,m ∈ M (19)

|Mk|(x
kt
ij + xktji ) ≥

∑

f∈F :qfij>0

yfktij ∀ k ∈ K, t ∈ T , (i, j) ∈ ER (20)

∑

j∈N :(i,j)∈E

(xktji − xktij ) = 0 ∀ k ∈ K, t ∈ T , i ∈ N (21)

Subtour elimination constraints (22)

xktij , x
kt
ji ∈ {0, 1} k ∈ K, t ∈ T , (i, j) ∈ E (23)

yfktij ∈ {0, 1} ∀f ∈ F , k ∈ K, t ∈ T , (i, j) ∈ Ef
R (24)

zfkm ∈ {0, 1} ∀f ∈ F , k ∈ K,m ∈ Mk (25)

vk ∈ {0, 1} ∀k ∈ K, (26)

where lex min refers to minimizing in lexicographical order, i.e. the objective functions
are sequentially minimized in the order in which they are stated.

The objective function ensures that the number of vehicles is minimized at first
and then secondly, the total travel distance is minimized. Constraints (17) ensure that
every required waste fraction of every edge is serviced once during the time horizon.
(18) extends (11) from the C-Split MC-CARP and ensures that the compartment
capacities are respected every day, and (19) is an extension of (12) and assigns waste
fractions to vehicle compartments for vehicles that are included in the solution. These
constraints ensure that each compartment is used for the same fraction every day of
the time horizon. Finally, (20)-(23) are direct extensions of the coupling constraints
(3) and topology constraints (4)-(6) to every day, and (24) to (26) define the domains
of the service, compartment, and used vehicle variables, respectively.

3.2. Coordinated CARP

In the previous section, we considered a number of problems related to the collec-
tion of multiple waste fractions. Given the increasing demand for waste sorting, each
household may very likely need to have multiple waste bins. During our discussions
with counties, waste collecting companies, and waste organizations in Denmark, we
have learned that having up to four waste bins at a household, each with separate
collection schedule, is a realistic scenario for the future. For a given citizen, this could
mean that general and organic waste is collected every Monday, paper and cardboard
every fourth Tuesday, glass and metal every third Thursday, and finally plastic every
second Friday. This citizen thus faces the 12-week schedule seen in Figure 3 (in which
weekends are removed).

Due to different demand sizes, vehicle capacities, etc. the schedule shown in 3 might
be a likely result of solving four CARP problems independently. It could, however,
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Figure 3.: Example of an inconvenient schedule for the citizen.

be very inconvenient for the citizen, in particular when the citizen is responsible for
moving the waste bins from the back yard to the curbside and back. Consider now
the schedule shown in Figure 4 in which the collection is coordinated to take place on
the same weekday. The frequencies and the collection weeks have not been changed.
Nonetheless, this schedule is significantly more attractive for the citizen than the one
in Figure 3.

Figure 4.: Example of a more convenient schedule for the citizen.

In this section, we define the Coordinated CARP (C-CARP) in which a number
of individual CARPs with time perspectives are coordinated to provide service to the
same edges on the same weekday. We consider the problem where each vehicle collects
one waste fraction only.

The additional notation needed in this section is summarized in Table 2. In order to
coordinate, we need to define a concept of a week. Define τ to be the number of days
in a week. Let again T = {1, 2, 3, . . .} be the set of days in the planning horizon and
define T0 ⊂ T to be the set of days on which service is not provided (e.g. weekends).
T and τ are further discussed below. Define subsets of T as follows: Dd = {t ∈ T |(t
mod τ) = d} ∩ T0 for all d = 1, · · · , τ − 1 and Dτ = T \ {T0 ∪

⋃τ−1
d=1 Dd}. These sets

are sets of weekdays: D1 contains all Mondays, D2 Tuesdays, etc. and are sets used to
enforce the coordination described above.

Let again F be the set of all waste fractions to be collected and define for each
f ∈ F , the number of days between two consecutive collections of f on an edge as
lf . In order for full coordination to be possible, τ must be defined such that for every
f ∈ F , either (lf mod τ) = 0 or (τ mod lf ) = 0. In other words, lf must take values
in {. . . , τ3 ,

τ
2 , τ, 2τ, 3τ, . . .}. We illustrate this with a few examples. Setting τ = 6 gives

us 6 working days a week (omitting e.g. Sundays). This is the natural choice in many
cases, because it allows for service 3 times a week, twice a week, weekly, biweekly, every
three weeks, etc. without violating above requirements. We can keep the same options
for frequencies in a five-working day setting, by keeping τ = 6, but including days of
weekday 6 in T0. If a 7-day workweek is needed, we can set τ = 8 (operating with a
8 day week) and let T0 contain all weekday 8 days. This will allow service 4 times a
week, twice a week, weekly, biweekly, every three weeks, etc. If some frequencies do not
match the choice of τ , they can still be included by manually modifying the frequency
constraints (28) below. This way of using T0 means that a fraction that is collected
twice a week will have the four-day interval over the weekend if τ = 6, and similarly
for other combinations.

Define the subset F̃ ( F to be the set of waste fractions needing service multiple
times per week, i.e. lf < τ ∀f ∈ F̃ . We refer to these as frequent waste fractions. The
non-frequent fractions are given as f ∈ F \ F̃ and have lf ≥ τ . In the coordination,
we require the service of all non-frequent fractions to take place on the same weekday
and we require that one of the weekly services of the frequent fractions also happens
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Index Sets and Indices

F̃ The subset of F containing waste fractions needing service multiple
times a week.

Kf The set of vehicles used to collect waste fraction f ∈ F .
T0 The set of days on which service can not be performed.
Dd The set of days defined as weekday d. Dd ⊆ T , d = 1, . . . , τ .

Parameters

W k Capacity of vehicle k ∈ Kf for fraction f ∈ F .
lf The average number of days between two consecutive collections of f ∈ F .
γk Compression factor for waste fraction f ∈ F when collected by k ∈ Kf .
τ The number of days in a week.

Binary Variables

yktij 1 if vehicle k ∈ Kf performs service on (i, j) ∈ Ef
R at time t ∈ T \ T0 and zero

otherwise. Note that k only services one of the waste fractions.

Table 2.: Overview of additional notation for Coordinated CARP.

on that day.
After defining the week length τ and all the frequencies, the planning horizon T must

be determined such that the plan can be repeated. Let |T | equal the least common
multiple of all lf values. In that way, we have (|T | mod lf ) = 0 ∀f ∈ F , resulting in
a cyclic plan.

The vehicles considered in this problem collect only a single waste fraction each.
We therefore partition the set of vehicles, K into |F| non-overlapping subsets such
that Kf is the set of vehicles used to collect waste fraction f ∈ F . Thus once the
vehicle is known, the waste fraction is given. The vehicles in each sets Kf may or may
not be identical. For each vehicle k ∈ Kf , we define W k to be the capacity and γk

to be the compression factor. For real-world practical reasons (e.g. for the crew to
feel ownership of their routes) we require the same vehicle to service a given fraction
on a given edge throughout the planning horizon. We keep the time concept from
section 3.1.3 and can therefore reuse the traversal and the vehicleused variables, but
new service variables are needed. We define the following for every time t ∈ T , every

vehicle k ∈ Kf servicing waste fraction f ∈ F , and every edge (i, j) ∈ Ef
R requiring

service of that waste fraction.

yktij =

{

1 if vehicle k ∈ Kf services edge (i, j) ∈ ER at time t ∈ T \ T0,
0 otherwise.

The C-CARP can now be described as follows.
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lexmin





∑

k∈K

Ckvk ,
∑

k∈K

∑

(i,j)∈E

cij(x
kt
ij + xktji )





st.
∑

k∈Kf

∑

t=1,...,lf

yktij = 1 ∀f ∈ F , (i, j) ∈ Ef
R (27)

yktij = yk,t+lf

ij ∀f ∈ F , k ∈ Kf ,

t = 1, . . . , |T | − lf , (i, j) ∈ Ef
R (28)

lf
∑

k∈Kf

∑

t∈Dd

yktij = lf
′
∑

k∈Kf′

∑

t∈Dd

yktij ∀f, f ′ ∈ F \ F̃ , f 6= f ′,

d = 1, . . . , τ, (i, j) ∈ Ef
R ∩ Ef ′

R (29)
∑

k∈Kf

∑

t∈Dd

yktij ≤
∑

k∈Kf̃

∑

t∈Dd

yktij ∀f ∈ F , f̃ ∈ F̃ ,

d = 1, . . . , τ, (i, j) ∈ Ef
R ∩ E f̃

R (30)
∑

(i,j)∈Ef

R

qfijy
kt
ij ≤ γkW kvk ∀f ∈ F , k ∈ Kf , t ∈ T (31)

(xktij + xktji ) ≥ yktij ∀ f ∈ F , k ∈ Kf , t ∈ T , (i, j) ∈ Ef
R (32)

Constraints (21)− (23) (33)

vk ∈ {0, 1} ∀f ∈ F , ∀k ∈ Kf (34)

yktij = 0 ∀f ∈ F , k ∈ Kf , t ∈ T0, (i, j) ∈ Ef
R (35)

yktij ∈ {0, 1} ∀f ∈ F , k ∈ Kf , t ∈ T , (i, j) ∈ Ef
R. (36)

The objective function is the same as for the Multi-Day Commodity-Split MC-CARP.
Constraints (27) ensure that every waste fraction f ∈ F is serviced within the first
lf days for every edge and (28) ensure that every subsequent service of the edge
occurs with the correct frequency. The latter also ensures that the same vehicle collects
waste fraction f from edge (i, j) every time collection of f is performed. (29) are the
coordination constraints for non-frequent waste fractions. Consider a waste fraction
f ∈ F and an edge (i, j). Because τ divides lf , (28) ensure that f is always collected
from (i, j) on the same weekday d. For this weekday, the left hand side of (29) is the
total number of collections of f from (i, j) during the time horizon times the frequency
of f , i.e. the left hand side is |T | for weekday d. In order to make the right hand side,
which is the same expression just for f ′ ∈ F , |T | as well, the collections of f ′ must
also take place on weekday d. As regards all other days, both sides of the equation are
zero because no collections take place. Constraints (30) consider the frequent waste
fractions that need service multiple times a week and ensure that at least one of those
days is the same as the day on which the non-frequent waste fractions on the edge are
serviced. On the weekday, d of service of the non-frequent waste fraction f ∈ F \ F̃ ,
the left hand side of (30) gives the number of times f is serviced during the time
horizon. By definition, this is no more than |T |/τ . The constraints state that any
frequent waste fraction f̃ ∈ F̃ must also be serviced at least that many times on this
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weekday. In fact, due to constraints (28), the right hand side will become |T |/τ in
this case, i.e. the frequent waste fractions will be serviced on day d in every week.
For any other weekdays, the left hand side is zero, and the frequent fractions may be
serviced or not depending on their frequency. Constraints (31) ensure that the vehicle
capacities are respected and that nothing is serviced by vehicles that are not used in
the solution. (32) force vehicles to traverse the edges they service. Finally, (33) are the
route topology constraints inherited from the Multi-Day Commodity-Split MC-CARP
model, and (34)-(36) define the domain for the service and vehicle-usage variables.

A natural extension of this problem would be to combine it with the No-Split
MC-CARP such that service by a number of multi-compartment (and possibly single
compartment) vehicles are to be coordinated over time. Another extension is to assign
the frequency of a fraction for each edge individually. This would imply that the single
fraction problems would become Periodic CARP instances instead of CARP instances
as they would be above.

3.3. Semi-Periodic CARP

When considering problems such as waste collection, where the demand of an edge is
the joint demand of the customers of a street segment, the service schedules of those
customers may not be the same. Consider, for example, a street segment where three
customers request collection once every two weeks (A), two customers every week (B),
and one customer twice a week (C), and assume for the sake of simplicity that the
demand of each customer is 1 unit. Then the demand of the edge will be 1 unit two
times a week plus two additional units once a week, plus three additional units every
second week. This is the problem considered in this section. It is referred to as the
Semi-Periodic CARP (SP-CARP). Alternatively, the problem could be modeled as
node routing, but by modeling it as arc routing, we preserve the concept of streets and
avoid an increase in the number of required units. A similar problem is encountered in
street sweeping applications, where the streets sometimes need more extensive cleaning
than other times (Eglese and Murdock 1991).

For this problem, let again T be the set of days in the planning horizon and T0 be
the set of days on which service is not possible (e.g. weekends). As for C-CARP, we use
τ to denote the number of days in a week. Define H to be the set of different service
schedules (i.e. 3 times a week, 2 times a week, weekly, bi-weekly, every 3 weeks, etc.).
For each h ∈ H, we let lh be the average number of days between two consecutive
collections of waste with service schedule h. In our example, lh = 14 for A, lh = 7
for B, and lh = 3.5 for C. We define ah, bh ∈ Z+ to be the minimum and maximum
number of days between two consecutive collections of waste with service schedule h.
These parameters define the spacing of the service and are given as ah = ⌊lh⌋ and
bh = ⌈lh⌉ In our example, this gives us ah = bh = 14 for A, ah = bh = 7 for B, and
ah = 3, bh = 4 for C.

For each h ∈ H, we define a cycle period as l̃h = max{τ, lh}. In our example we have
l̃h = 14 for A, l̃h = 7 for B, and l̃h = 7 for C. The cycle period is repeated throughout
the planning period as regards the demand to be serviced on each street segment and
the vehicle to perform the service. This means that for service schedules with multiple
services per week, the weekly schedule will be repeated whereas less frequent service
schedules are only repeated as needed.

We use a homogeneous set of vehicles K, each with capacity W . As there is a time
aspect like in Multi-Day Commodity-Split MC-CARP, we use vk to denote whether a
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vehicle is included or not. Let qhij be the demand of edge (i, j) with service schedule

h ∈ H. For each h ∈ H, we define Eh
R = {(i, j) ∈ E : qhij > 0} and set ER =

⋃

h∈H Eh
R.

The traversal variables are unchanged compared to the previous models with a time
concept, and the service variables are defined ∀t ∈ T , ∀k ∈ K, ∀h ∈ H, ∀(i, j) ∈ Eh

R as
follows.

yhktij =







1 if the demand of service schedule h ∈ H of edge (i, j) ∈ Eh
R

is serviced by vehicle k ∈ K at time t ∈ T \ T0,
0 otherwise.

Note that yhktij is also defined for t ∈ T0, but that the below constraints (44) ensure
that no service can be performed on these days. The SP-CARP can now be modeled
as follows.

lexmin





∑

k∈K

Ckvk ,
∑

k∈K

∑

t∈T

∑

(i,j)∈E

cij(x
kt
ij + xktji )





st.
∑

k∈K

∑

t=1,...,l̃h

yhktij = max{1,
τ

lh
} ∀h ∈ H, (i, j) ∈ Eh

R (37)

∑

k∈K

yhktij =
∑

k∈K

yhkt+l̃h

ij ∀h ∈ H, t = 1, . . . , |T | − l̃h, (i, j) ∈ Eh
R (38)

∑

k∈K

∑

t′=t,...,t+bh

yhkt
′

ij ≥ 1 ∀h ∈ H, t = 1, . . . , |T | − bh, (i, j) ∈ Eh
R (39)

∑

k∈K

∑

t′=t,...,t+ah

yhkt
′

ij ≤ 1 ∀h ∈ H, t = 1, . . . , |T | − ah, (i, j) ∈ Eh
R (40)

∑

h∈H

∑

(i,j)∈Eh
R

qhijy
hkt
ij ≤ γWvk ∀k ∈ K, t ∈ T (41)

|H|(xktij + xktji ) ≥
∑

h∈H:qhij>0

yhktij ∀k ∈ K, t ∈ T , (i, j) ∈ ER, (42)

Constraints (21)− (23) (43)

yhktij = 0 ∀h ∈ H, k ∈ K, t ∈ T0, (i, j) ∈ Eh
R (44)

yhktij ∈ {0, 1} ∀h ∈ H, k ∈ K, t ∈ T \ T0, (i, j) ∈ Eh
R (45)

vk ∈ {0, 1} ∀k ∈ K. (46)

Constraints (37) ensure the correct number of services in the first cycle period for
each service schedule h and (38) ensure that the pattern is repeated throughout the
time horizon. (39) and (40) are the spacing constraints. Here, (39) ensure that requests
with service schedule h ∈ H are serviced at least every bh days, and (40) ensure that
they are serviced at most every ah day. (41) ensure that only vehicles used in the
solution are assigned demand and that vehicle capacity is respected. (42) ensure that
edges can only be serviced if they are traversed. Finally, (43) are the route topology
constraints and (44)-(46) define the domain of the service and vehicleused variables.
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The model ensures cyclic planning when the plan is repeated as long as τ and
lh divide |T |. If the problem at hand does not contain the concept of a week, the
above model can still be used with some modifications. In that case, we set τ = T .
The spacing parameters ah and bh can take any value bh ≥ ah to incorporate more
flexibility in the model, and the following two constraints must be added to ensure
that planning is periodic when the plan of the model is repeated.

∑

k∈K





∑

t′=t,...,|T |

yhkt
′

ij +
∑

t′=1,...,bh−(|T |−t+1)

yhkt
′

ij



 ≥ 1 ∀h ∈ H, (i, j) ∈ Eh
R

t = |T | − bh + 1, . . . |T | (47)

∑

k∈K





∑

t′=t,...,|T |

yhkt
′

ij +
∑

t′=1,...,ah−(|T |−t+1)

yhkt
′

ij



 ≤ 1 ∀h ∈ H, (i, j) ∈ Eh
R

t = |T | − ah + 1, . . . |T | (48)

Index Sets and Indices

Eh
R The set of required edges wrt. h ∈ H, i.e. Eh

R = {(i, j) ∈ E : qhij > 0}.
H The set of service schedules, indexed by h.

Parameters

ah Minimum number of days between two consecutive services of
h ∈ H on the same edge.

bh Maximum number of days between two consecutive services of
h ∈ H on the same edge.

lh The average number of days between two consecutive collections of waste
with service schedule h ∈ H.

l̃h max{τ, lh}. The cycle period for service schedule h ∈ H.
qhij Demand of edge (i, j) ∈ ER with service schedule h ∈ H.

Binary Variables

yhktij 1 if the demand of service schedule h ∈ H of edge (i, j) ∈ ER is serviced

by vehicle k ∈ K at time t ∈ T \ T0, and zero otherwise.

Table 3.: Overview of additional notation for the Semi-Periodic CARP.

In the SP-CARP described above, the demand to be collected remains the same
regardless of the duration between two consecutive services of an edge. This assumption
can be justified by the fact that our collaborators currently have a fixed duration
between service times and thereby fixed demand size. However, a natural extension
of this problem is to let the demand be time dependent as is the case in Dos Santos
et al. (2016). Furthermore, the semi-periodic nature of the demand studied here could
naturally be included in the MC-CARP and C-CARP variations.
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4. New Large-Scale Benchmark Data

Five new CARP variations were introduced in the previous section and in this section
we present large-scale benchmark instances for each of these problems as well as for
the CARP. All new data sets are available at http://www.optimization.dk, which also
contains electronic appendices showing characteristics of the data. In Section 4.1, we
describe the process of obtaining graphs for instances based on our raw data and in
Section 4.2, we briefly explain our use of the terminology of graphs, vehicle files, and
instances. The remaining four sections are devoted to the different CARP variations
presented in the paper and to a description of important characteristics of our new
benchmark instances.

The large-scale data presented in this paper is based on real-life road networks
as well as real-life demand from our five collaborators. To illustrate the structural
differences of the data of the five areas, Figure 5 shows the complete network of each.
Based on each of these five areas, we have created a number of graphs. This is further
described in Section 4.1.The figure clearly shows that the F-data has traditional city
center structure, in the O-data the city-and-suburb structure is dominating, whereas
the data related to K, N, and S are mainly rural in nature. The odd shape of the S-data
is mainly due to the sea, and the K-data represents a combination of two counties.

Figure 5.: The five data areas. From the top left: Frederiksberg (F), Odense (O),
Skanderborg and Odder (K), North Djurs (N), and South Djurs (S). Blue edges are
required and green edges are non-required. The depot is represented by a red square.

4.1. Data Treatment

This section is devoted to a short description of the way the original data was treated
in order to obtain the final graphs. Section 4.1.1 describes how the base graphs are
created and explains the naming convention. In Section 4.1.2, we describe how the
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demand was obtained and Section 4.1.3 outlines the graph structural modifications.

4.1.1. Creating the Graphs

In order to create the base graphs, i.e. the graphs underlying all our instances, we
received two types of files from KortCenter A/S (2017). The street file contained the
coordinates of the end points as well as the length of each street segment in meters
together with street name and zip code information. Based on this, we created a
network for each of the five areas. The household file contained the coordinates for
each household as well as complete address information.

We combined these files by using the address information to identify the subset
of street segments that might be relevant for each household, and then we projected
the household onto the nearest of these segments. After this process, each edge of the
network contained address information on all households assigned to it.

The next step in the process was to create the base graphs. All base graphs numbered
1 through 9, are based on the complete network as described above, and they differ
only in the demand assignment as described in Section 4.1.2. In order to also obtain
instances of smaller size, we created base graphs by selecting a center node and a
radius. Based on these, all nodes with a shortest path distance to the center node less
than the radius and the edges between them were gathered to create a base graph. We
manually selected two center nodes (instance numbers 10-13 and 14-17, respectively)
for each area. We then selected radius’ for each center node such that the number
of nodes would be approximately 50% (instance numbers 10 and 14), 25% (instance
numbers 11 and 15), 10% (instance numbers 12 and 16), and 3% (instance numbers 13
and 17) of the original number of nodes. The depot node is the original depot location
when included in the graph; when that is not the case, the depot is chosen to be the
center node used to create the smaller graph.

The naming of the instances is illustrated by the example CARP-F1 g, where the ’F’
refers to the area of Frederiksberg. Alternative values are ’K’, ’N’, ’O’, and ’S’. The ’g’
at the end of the name refers to the demand which originates from the mixed general
waste fraction. Alternatively, ’p’ is used when the demand originates from paper. This
is described in the next section. Finally, index numbers are as just described.

4.1.2. Demand

In order to assign demand to the edges of the graphs, we received a waste file for each
of the five areas from our collaborators. These files contained address information and
information about the waste fractions to be collected from each individual household,
the bin sizes, and the collection schedules. This information was coupled to the edges
of the base graphs using the address information. The edges of the base graphs thereby
hold non-aggregated and detailed demand information.

In addition, we received estimates regarding the historical average fill levels of the
bins, which we used to down-scale all amounts slightly compared to the bin sizes. Fur-
thermore, a few edges had very high demand originating from container-like bins. We
have down-scaled them further manually, but they remain among the largest demands.
This was done as they caused infeasibility issues, in particular for the separated waste
because the vehicle compartments are smaller.

Four of our five areas only separately collect paper and general (mixed) waste from
the households. In order to create instances for multiple separated fractions, we have
used information from Econet AS (2012) to determine the mix of the general waste.
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The report states the mix according to weight (not volume). Figure 6 shows the mix
when converted into volume and it forms the basis of our separation of waste for the
MC-CARP and C-CARP instances. In the F area there is a higher degree of sorting
at the households, and we have therefore not performed this separation, but instead
used their demand information directly.

Figure 6.: Mix of the general waste based on volume. Source: Econet AS (2012) in a
slightly modified form.

For the SP-CARP, we have used the actual service schedules for each edge, whereas
for all variations of MC-CARP as well as for the CARP, we have normalized the
demand to match a two-week schedule. For the C-CARP, the demand has been nor-
malized to the collection intervals of each set.

Three categories of households are present in our areas: Apartment buildings (A),
residential houses (R), and summer residences (S and s). Summer residences often
require service less frequently in the winter (s) than in the summer (S). All instances
based on subgraphs of the complete networks (10-17) use demand from all households
and summer schedules (ARS). For the large graphs (1-9), different demand combina-
tions are used. For instance, graph N4 g uses demand from regular houses and summer
residences with winter schedule (Rs). Details can be found for CARP and SP-CARP
in the electronic appendices. For C-CARP and the MC-CARP variations, only graph
numbers 1, 10-17, all using ARS demand are used. Finally, areas F and O do not
contain any summer residences, which causes a reduction in the number of graphs.

4.1.3. Structural Changes

The resulting graphs were then modified such that unwanted attributes were removed.
We did so to avoid edges that would never be used in an optimal solution and to provide
well-structured graphs for future algorithms. Below, the method used to remove each
of the attributes is described in the order in which the changes were done. The first
two modifications remove unnecessary deadheading edges whereas the purpose of the
last two are purely to ease the use of the graphs for solution algorithms. None of the
modifications have any effect on the optimal solutions.

To simplify the description, we denote edges as e = (i, j) where i and j are un-
ordered, and we use qe to denote any kind of demand on e. Let δ(i) be the degree of
node i ∈ N and δR(i) the degree with respect to required edges.

4.1.3.1. Remove empty areas:. Knowing that some parts of the graphs are with-
out demand, we first remove those parts that can be removed without altering the
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optimal solution. This is done as follows. For each node i ∈ N , initialize

ρ(i) =

{

1 if i is adjacent to at least one required edge,

0 otherwise.

Next, based on pre-calculated shortest path matrices, set ρ(i) = 1 for all nodes on the
shortest path between any pair of nodes adjacent to a demand edge. Finally, we delete
all nodes i ∈ N where ρ(i) = 0 from the graph along with any edges adjacent to node
i. This is illustrated in Figure 7.

a

b

c

d
e

f

⇒

a b

c

d

Figure 7.: Remove empty areas. Solid and dashed lines represent required and non-
required edges, respectively.

4.1.3.2. Shorten paths:. A node of degree two, where both adjacent edges are
in E \ ER, will only be traversed as part of a shortest path between two consecutive
services. Therefore, the adjacent edges will always be traversed together or not at all.
Hence, the node can be removed and the two adjacent edges can be concatenated. Let
i be such a node and let e = (i, j) and e′ = (j, i′) be the two adjacent edges in ER. We
delete j, e, and e′ from the graph, and add a new edge ê = (i, i′) with cê = ce+ ce′ and
qê = 0. This continues until no such adjacent edges exist. This is illustrated in Figure
8.

j′

i j

i′

⇒
j′ i′

Figure 8.: Shorten paths. Solid and dashed lines represent required and non-required
edges, respectively.

4.1.3.3. Remove loops:. In order to make the graphs easier to work with, we
first modify them by removing loops e = (i, i) ∈ E . We have to two different cases to
consider. Either the loop has no demand, qe = 0, in which case the loop will simply
be removed from the graph. Or we have a loop with demand qe > 0. In this case, the
loop cannot be removed. Instead, a new node is added somewhere on the edge. This
modification is illustrated in the left part of Figure 9. We create a new node j and add
this to the graph. The edge e = (i, i) is modified such that one of its endpoints is the
new node, i.e. e = (i, j) and the cost is reduced slightly ce = ce − 1. The demand of e
is unchanged. A new edge is added to the graph e′ = (j, i) with ce′ = 1 and qe′ = 0.
As the costs of every edge in the original graph are larger than 2, this creates a pair
of parallel edges of which the longest is required. Parallel edges are another unwanted
attribute handled in the procedure below.
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4.1.3.4. Remove parallel edges:. The last change is removal of parallel edges
e, e′ ∈ E where e = (i, j) and e′ = (i, j) for i, j ∈ N . Again two variations should
be considered. First, we have the scenario where the longest of the parallel edges is
not required. In this case, the edge can be removed as an optimal solution will always
choose to traverse the other edge when traversing between i and j. In the other case,
we must keep both edges as the longest of them has to be traversed by the route
servicing it, and the shorter is most favorable for deadheading. This case is illustrated
at the right hand side of Figure 9. Assume that ce < ce′ and qe′ > 0. A new node i′ is
added to the graph and the longest edge e′ is modified e′ = (i′, j) with cost c′e = c′e−1.
Furthermore, a new edge ê = (i, i′) is added to the graph with cost cê = 1 and demand
qê = 0. The shortest edge e is not changed.

i ⇒ ii

i′

i j ⇒ i ji

i′

Figure 9.: Left: remove loops. Right: Remove parallel edges. Solid and dashed lines
represent required and non-required edges, respectively.

4.2. Graphs, Vehicles, and Instances

We have based our benchmark instances for the five new problems and our new bench-
mark instances for the CARP on a special terminology that defines the terms ’graph’
and ’instance’ in the following way.

Graphs contain all the information related to the demand side of the problems: The
network, the depot, and cost information as well as the demand of each edge at the
level of detail needed for the problem, be it one or multiple fractions, normalized or
non-normalized. They also provide information on the number of waste bins at each
edge even though that information is not strictly necessary for the problems presented
in this paper. Furthermore, each graph file contains information regarding the origin
of the data; the county, radius, types of houses, etc.

Vehicle files contain information related to the service side of the problems: The
number of different vehicle types, and for each type, the number of available vehicles
and their number of compartments. They also contain information regarding compart-
ment sizes and compression factors. Furthermore, the vehicle files contain information
regarding T , T0, and τ for instances where these are relevant.

Finally, the vehicle files are prepared such as to provide information to be used for
inclusion of time duration constraints or a maximum number of bins per route. In the
present form, these parameters are given dummy values, but the standardized syntax
including that information eases future research.

We use the term ’instance’ to denote a combination of a graph and a vehicle file.
Thereby, each graph serve as the foundation for several instances. The separation of
the two eases any kind of analysis where the effect of servicing a graph (network and
demand) with different types of vehicles is to be studied.
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New large-scale instances Classical benchmark instances

F K N O S EGL GDB KSHS VAL BE
Number of instances 42 60 60 42 60 24 23 6 34 10
Number of graphs 14 20 20 14 20 24 23 6 34 10
Min number of nodes 26 375 268 228 322 77 7 6 24 255
Max number of nodes 812 11640 8537 10283 6149 140 27 10 50 255
Min number of edges 33 412 305 247 374 98 11 15 34 375
Max number of edges 1124 12675 9725 11863 7110 190 55 15 97 375
Av. percentage of edges being required 62.9 59.3 58.9 65.2 47.0 76.9 100 100 100 96.3
Av. # of req. edges per demand component 8.0 3.0 3.4 6.0 2.2 58.3 29.4 15 63.3 361
Av. node degree 2.7 2.3 2.3 2.4 2.4 2.6 5.0 3.8 3.5 2.9
Av node degree wrt. required edges 1.7 1.3 1.4 1.6 1.1 2.0 5.0 3.8 3.5 2.8
Av. Percentage of nodes with degree 1 11.2 27.5 22.1 26.8 23.0 16.0 1.1 3.3 0 6.3
Av. Percentage of nodes with degree 2 16.6 23.4 27.1 13.8 19.5 19.8 5.3 11.6 16.4 10.2

Table 4.: Summary of the CARP graphs.

Throughout the assignment of vehicles, we have sought to use realistic vehicles and
meaningful compression factors for each fraction. However, in order to obtain inter-
esting instances for multiple fractions that do not simply reduce to single commodity
instances, we have adjusted compartment size and compression to the limit of what
would be realistic. Furthermore, the smallest instances in particular have been assigned
very small vehicles to ensure that they require more than a single vehicle to be used.

4.3. Data for the CARP

Based on the five areas, we have created five sets of data, containing a total of 88
graphs. Each graph is associated with three different vehicles, which gives us 264
CARP instances. Table 4 provides a short summary of the graphs and Appendix ??

provides details of each graph together with the vehicles associated with it. In the
summary table, we have provided the coresponding characteristics for the four sets
of classical benchmark instances for comparison: EGL (Li and Eglese 1996), GDB
(Golden et al. 1983), KSHS (Kiushi et al. 1995), VAL (Benavent et al. 1992), and BE
(Brandão and Eglese 2008).

The majority of the new graphs are huge, containing thousands of nodes, but some
are smaller. This is particularly the case for the F instances that originate from a
small county. 243 (210) of the 264 new instances are larger than the largest existing
benchmark instances when considering the number of nodes (required edges), and 177
(138) of the instances contain more than 1000 nodes (required edges). This illustrates
the large-scale of the new data.

When we look across the five sets of instances, it is particularly apparent that in
the two sets that originate from cities, O and particularly F, the percentage of the
edges being required is significantly higher than in the more rural areas where only
about half of the edges are required. For comparison, in the GDB, KSHS, and VAL
instances, all edges are required and the EGL instances lie somewhere in-between. We
also note the low number of nodes in each connected component when only required
edges are considered. The last part of the table treat the node degree. Compared to the
GDB, KSHS, and VAL instances, the average node degree, in particular with respect
to required edges, is significantly smaller in the new instances. In fact, 20-25 percent of
the nodes (less for the F instances) are deadends. Furthermore, the graphs contain a
significant amount of nodes with degree 2. Since the graphs have already been cleaned
up as described in Section 4.1, at least one of the adjacent edges of these nodes is
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required. For comparison, the existing benchmark instances are much more dense and
many of them contain only one connected component when considering required edges.
This is particularly the case for those instances that have been constructed rather than
originating from real-life street networks.

4.4. Data for Multi-Commodity CARP

We used 5 graphs from each area and combined these with different demand com-
positions to create a total of 260 graphs. We then combined graphs and vehicles in
reasonable ways and created 400 instances for the No-Split MC-CARP, 800 for the C-
Split MC-CARP, and 464 instances for the Multi-Day C-Split MC-CARP. We explain
the procedure in two steps below. First, we focus on the demand in each subset and
on the resulting graphs and then we focus on the assignment of vehicle files, which
altogether provide instances for the three variations of the problem. Details of both
graphs and instances are given in the electronic appendix related to MC-CARP. We
use the term MC-CARP to cover all three variations.

Set General Organic Plastic Metal Glass Paper Cardboard
A Mixed X
B Mixed Mixed X
C X X X X
D X X Mixed X
E X X X X X X
G X X X X X X X

Table 5.: Overview of the fractions included in each set of MC-CARP instances.

Four of our five areas only collect paper and general (mixed) waste separately from
the households. In the F area, there is a higher degree of sorting at the households.
As our study was initiated by the fact that a higher degree of recycling and thereby
sorting is desired, we have created the MC-CARP instances based on a number of
likely sorting scenarios. Table 5 provides an overview of the waste fractions included
in each set. Each set contains 25 graphs (except set G). Set A is the current setup with
a separate paper fraction and a mixed general fraction containing everything else. As
the general fraction is sent for incineration in this case, high compression can be used.
In set B, the so-called waste resources (plastic, glass, and metal) are separated from
the general waste with the purpose of subsequent sorting. The resources can only be
compressed slightly to enable sorting, whereas the general waste can still be compressed
maximally. Skipping to set D, the general waste has been separated into organic waste
and general waste. The data instances are created such that they allow comparison
of these three scenarios. This is explained in more detail in Section 5. Set C contains
the four fractions that are directly reusable (paper, plastic, glass, and metal), which
in some areas (not contained in our data) are collected by a 4-compartment vehicle.
Finally, in set E, all six fractions are separated, and set G includes the additional
fraction (cardboard) currently collected in area F, thereby containing seven separate
fractions.

Since only two fractions are currently being collected separately (except in area
F), we have used Econet AS (2012) to obtain an estimate of the composition of the
mixed general waste as explained in Section 4.1. Subsequently, because citizens are not
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A R-A B R-B C R-C D R-D E R-E G R-G
# instances for No-Split MC-CARP 50 50 50 50 50 50 50 50
# instances for C-Split MC-CARP 100 100 100 100 100 100 100 100
# instances for Multi-Day C-Split MC-CARP 72 72 72 72 72 72 16 16
# graphs 25 25 25 25 25 25 25 25 25 25 5 5
# fractions 2 2 3 3 4 4 4 4 6 6 7 7
Av. number of req. fractions per edge 1.1 0.9 1.8 1.6 2.3 1.7 2.3 1.9 3.5 2.6 3.1 2.3
Av. number of req. fractions per req. edge 1.8 1.4 2.7 2.4 3.6 2.7 3.6 3.0 5.4 4.1 4.8 3.6
Av. percentage of edges not req. service 36.2 36.2 36.2 36.3 36.5 37.0 36.2 36.2 36.2 36.2 35.1 35.1
Av. percentage of edges req. 1 fraction 14.0 26.7 1.2 3.8 1.2 6.7 1.2 4.3 1.2 1.9 4.8 6.2
Av. percentage of edges req. 2 fractions 49.8 37.1 13.7 27.3 0.4 18.5 0.6 13.9 0.2 4.3 0.8 7.2
Av. percentage of edges req. 3 fractions 48.9 32.6 22.7 26.0 17.9 28.0 0.8 12.2 2.9 14.9
Av. percentage of edges req. 4 fractions 39.2 12.4 44.1 18.4 4.3 20.5 3.5 20.8
Av. percentage of edges req. 5 fractions 18.8 18.0 40.3 12.4
Av. percentage of edges req. 6 fractions 38.5 6.8 10.2 3.3
Av. percentage of edges req. 7 fractions 2.3 0.1
Av. percentage of edges req. general

63.6 63.4

63.1 58.0
63.1 47.4 63.1 47.4 62.3 46.7

Av. percentage of edges req. organic 57.3 43.1 57.3 43.1 33.2 26.1
Av. percentage of edges req. plactic

62.2 60.7
62.2 46.8

62.2 60.8
61.9 46.4 56.0 42.8

Av. percentage of edges req. metal 62.1 46.9 61.8 46.5 55.5 42.0
Av. percentage of edges req. glass 52.2 39.3 52.2 39.2 7.7 5.4
Av. percentage of edges req. paper 50.0 37.5 50.0 37.4 50.4 37.9 50.0 37.5 50.0 37.5 59.4 44.2
Av. percentage of edges req. cardboard 34.2 23.9

Table 6.: Summary of the MC-CARP graphs.

perfect at sorting and in order to obtain true multi-commodity instances, a random
amount of each of the waste fractions plastic, glass, metal, and organic at each edge
is moved from that fraction to general waste. The procedure leads to the A, B, C, D,
and E instances for areas K, N, O, and S. For the F area, the data is directly available,
and we have not used this process.

To provide instances with even more variation, we have created an ’R-’ version of
each graph as follows. Based on each E instance, we have, for each edge, deleted the
full amount of each fraction with a probability of 25 percent. However, in the process,
we have ensured that not all waste fractions are deleted, i.e. required edges are still
required. All these deletions are subsequently adapted to the R-A, R-B, R-C, and R-D
instances. This ensures that comparison is still possible across the R-A, R-B, and R-D
instances and that required edges remain the same. As the C instances is the only set
that do not contain all fractions this modification imply that all required edges in the
C instances are not necessarily required in the R-C instances.

Table 6 summarizes the characteristics of the 12 resulting sets, each containing 25
graphs (except G and R-G, each containing 5 graphs). The center part of the table
provides information on the average number of fractions required per edge and about
the average percentage of the edges requiring a given number of fractions, whereas the
last part of the table states the average percentage of edges requiring each fraction.
The last part of the table is structured in the same way as Table 5. The table clearly
shows that the ’R-’ instances contain less demand than the original ones. Details of the
graphs are given in Tables 1 through 6 in the electronic appendix related to MC-CARP.

Because it is not realistic to have waste collection vehicles with more than four
compartments, only sets A-D have been used for No-Split MC-CARP. For each of
these graphs, we have assigned two vehicle files and thereby obtained a total of 400
No-Split MC-CARP instances. Details of the assignment can be seen in Tables 7 and
8 in the appendix.

For the C-Split MC-CARP and the Multi-Day C-Split MC-CARP, we have consid-
ered graphs where all waste is collected and where it is separated into at least three
bins, i.e. sets B, D, E, and G. For both variations, each graph is combined with four
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vehicle files, resulting in 800 C-Split MC-CARP instances and 464 Multi-Day C-Split
MC-CARP instances after removal of irrelevant instances. The instances are detailed
in Tables 9-10 and Tables 11-14 in the appendix, respectively.

4.5. Data for Coordinated CARP

A B C D E
Number of instances 43 39 39 39 39
Number of graphs 25 25 25 25 25
Time horizon, days 42 42 36 84 12
Week length 7 7 6 7 6
Number of intervals 2 3 3 4 4
Intervals 14, 21 7, 14, 21 3, 12, 18 7, 14, 21, 28 2, 3, 6, 12
Number of service days 30 30 30 60 10
Av. percentage of edges not req. service 36.2 36.2 36.2 36.2 36.2
Av. percentage of edges req. 1 fraction 14.0 1.2 1.2 1.2 1.2
Av. percentage of edges req. 2 fractions 49.8 13.7 13.7 0.6 0.6
Av. percentage of edges req. 3 fractions 48.9 48.9 17.9 17.9
Av. percentage of edges req. 4 fractions 44.1 44.1

Table 7.: Summary of the C-CARP graphs

For the C-CARP, we have created five sets of instances, containing a total of 125
graphs and 199 instances. Set A contains two fractions to be collected every two and
every three weeks, respectively. Sets B and C have three fractions to be coordinated.
They use the same graphs and demand data, but differ in the service intervals. Finally,
sets D and E coordinate four fractions. Again, they use the same graphs and demand
data, but differ in the service intervals. Sets C and E contain frequent fractions, whereas
sets A, B, and D do not. The instances with frequent fractions use a week length of
six days with one weekly non-service day, whereas the other instances use seven day
weeks with two non-service days. Hence, all instances have five weekly service days.
A summary of the instances is given in Table 7 and complete information about the
instances can be found in the electronic appendix related to C-CARP.

Each graph has been associated with either one or two vehicle files. In the first
file, only one type of vehicles is available for each fraction, whereas in the second file,
two types are available for each fraction, and the larger of the two is only available in
limited amounts. In the smaller instances, the demand is so small that the second type
is not a reasonable choice. Therefore, these graphs only have one vehicle file assigned.

4.6. Data for Semi-Periodic CARP

For the SP-CARP, we have created a total of 249 instances based on 83 graphs. We
have used the same base graphs as for the CARP, and the slight reduction in the
number of graphs for the SP-CARP is caused by the fact that some graphs turned out
to have only a single collection interval, making them in fact a CARP instance. The
instances are partitioned into five sets, one for each area. Table 8 provides a summary
of the five sets, whereas details of the graphs and instances are found in the electronic
appendix related to SP-CARP.

All demand intervals are directly adapted from the original service schedule of each
household associated with each street segment of each area. Therefore, not all collection
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intervals are present in every set. In Table 8, we use a ’-’ to indicate when an interval (or
a combination of intervals) is not present at all, whereas a percentage of 0.0 indicates
that the availability is too small to be noticed with one digit of precision. It is clear
from the table that areas N, O, and S are relatively streamlined in their collection
intervals, whereas K and in particular F are much more flexible. For each graph, the
available service intervals jointly determine the time horizon. Each graph has been
associated with three vehicles, where the difference lies in the capacity of the vehicle
after compression.

The instances provided here assume a fixed collection interval. If the interval be-
tween collections should be decided by the model (periodic dependent demand) instead

each demand should be divided by lh so that demand per day would be
qhij
lh
.

F K N O S
Number of instances 42 57 54 39 57
Number of graphs 14 19 18 13 19
Min number of nodes 26 375 268 228 322
Max number of nodes 812 11640 8537 10283 6149
Min number of edges 33 412 305 247 374
Max number of edges 1124 12675 9725 11863 7110
Av. percentage of edges being required 62.9 60.4 59.9 64.7 47.8
Av. percentage of edges req. service 3 times a week 8.6 0.0 - - -
Av. percentage of edges req. service 2 times a week 25.9 0.3 0.1 0.2 0.1
Av. percentage of edges req. service weekly 34.8 5.2 29.4 1.9 29.3
Av. percentage of edges req. service every 2 weeks 14.2 50.8 44.2 50.7 29.8
Av. percentage of edges req. service every 3 weeks 0.6 - - - -
Av. percentage of edges req. service every 4 weeks 45.5 5.3 4.5 13.2 5.1
Av. percentage of edges req. service every 8 weeks 20.9 2.5 - - -
Av. percentage of edges not req. service 37.1 39.6 40.1 35.3 52.2
Av. percentage of edges req. 1 service interval 15.8 56.8 41.6 63.5 31.3
Av. percentage of edges req. 2 service intervals 16.9 3.5 18.3 1.2 16.5
Av. percentage of edges req. 3 service intervals 21.7 0.1 0.0 0.0 0.0
Av. percentage of edges req. 4 service intervals 7.1 - - - -
Av. percentage of edges req. 5 service intervals 1.3 - - - -
Av. percentage of edges req. 6 service intervals 0.2 - - - -
Longest time horizon, weeks 8 8 4 4 4

Table 8.: Summary of the SP-CARP graphs.

5. Comparisons and Scenario Analysis

From a waste collection point of view, several scenario comparisons within and among
the instances are interesting. We have had this in mind throughout the data generation
process and the options are described below.

The first and most obvious question is whether to make separate or joint collection
from all types of households. As apartment blocks generate waste much faster than
residential or summer houses, they often have different types of bins that have to be
handled by specialized vehicles. This difference makes an analysis of joint or separate
collection an interesting issue from a waste point of view. This can be analyzed based
on the CARP graphs by comparing the solution of an instance containing all three
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types (ARS), e.g. S1 g to the two solutions obtained by separating the apartment
blocks. In this case, it would correspond to the sum of the costs of S9 g and S3 g. This
is illustrated in the first row of Table 9. In total, there are seven such possibilities for
scenario comparison for each of the areas K, N, and S as shown in the table, whereas
there is only one option for each of the F and O sets: AR versus A and R. In total,
this gives 23 comparison options within the CARP as regards the graphs. For each
option, vehicles should be assigned depending on the scenario to be analyzed.

Within the SP-CARP, we can perform the same kind of scenario analysis for the
same combinations of household types, leading again to 23 comparison options within
the SP-CARP.

Household types Example files
Scenario 1 Scenario 2 Scenario 1 Scenario 2

ARS RS + A S1 g S3 g + S9 g
ARs Rs + A S2 g S4 g + S9 g
ARS AR + S S1 g S5 g + S7 g
ARS A + R + S S1 g S9 g + S6 g + S7 g
AR A + R S5 g S9 g + S6 g
RS R + S S3 g S6 g + S7 g
Rs R + s S4 g S6 g + S8 g

Table 9.: Scenario comparison within the CARP and the SP-CARP K, N, and S sets.

Secondly, it is interesting to compare the scenario where each household is free to
choose the collection interval that suits best to a scenario in which all households are
forced to have the same collection interval. This comparison can be performed directly
by using the SP-CARP instances that contain the original flexible demand and the
CARP graphs where all demand is normalized to bi-weekly service. There is a unique
correspondence between the graphs for the two problems, which is indicated by the
names. Furthermore, the capacities and compression factors of the vehicles for the two
problems are matched such that vehicle 1 for the CARP matches vehicles 1-2, 1-4, and
1-8 for the SP-CARP, the only difference being that the number of vehicles used in
the CARP (which is infinite for our instances) should be reduced to fit the availability
from the SP-CARP. Thereby, 249 scenario comparisons are directly available across
the two problems.

Thirdly, an interesting issue within waste collection is whether to sort and then
collect or to collect and then sort. This can be analyzed using the No-Split MC-CARP
instances, where sets A, B and D are directly comparable, collecting 2, 3, and 4 sepa-
rated fractions, respectively. Similarly, instances R-A, R-B, and R-D are comparable.
These instances provide comparison across 100 instances each. The vehicles assigned
to each graph can be directly used by noting that vehicles 1-1-A, 1-1-B, and 1-1-D are
identical, except from the way in which they are partitioned into compartments and
the fact that compression factors are adjusted when fractions are split. This naming
system is repeated throughout the vehicles.

Fourthly, for the C-CARP instances, it is quite highly relevant to compare the
scenario with enforced coordination to the scenario with free choice of weekdays. Here,
the latter reduces to solving a number of separate CARPs for the waste fractions using
the vehicles assigned to that fraction. A comparison of these two scenarios can provide
the cost of coordination which is interesting from a managerial perspective.
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Another interesting issue for analysis is the effect of vehicle size change. This can
be done directly for the CARP, the SP-CARP, and the No-Split MC-CARP by noting
the scaling of the vehicles. For the CARP (and thereby for the SP-CARP), vehicle 1
(1-2, 1-4, and 1-8 for the SP-CARP) is the smallest, and vehicle 6 (6-2, 6-4, 6-8, and
6-24 for the SP-CARP) is the largest. For the No-Split MC-CARP, the vehicle files
have been named e.g. 1-2-D, where the letter refers to the set for which it was created.
The first number in the name is related to the relative size of the compartments of the
vehicle and the compression, and no comparison should be made across them (unless
one purposely wants to do so, of course). The second number in the name relates to
the size of the vehicle (1 being the smallest) such that for instance vehicles 1-1-D,
1-2-D, 1-3-D, and 1-4-D are similar except from a scaling factor (not exactly, but close
enough), providing total capacities of 21.8m3, 26.1m3, 31.3m3, and 40.0m3. Similarly
for all other vehicles used for this problem.

Finally, a frequent issue of debate is that of separate or joint collection with single
and multi-compartment vehicles, respectively. In all three MC-CARP versions, the E,
R-E, F, and R-F graphs contain all 6 (or 7) waste fractions completely separated.
Based on those graphs, any analysis of collection jointly or separately in any desired
combination can be performed. Similarly, an analysis of joint collection of general
waste and paper in the two-compartment vehicles versus separate collection of the two
fractions versus collection of the two fractions in a mix can be performed directly on
set A by assigning vehicles that fits the analysis.

6. Concluding Remarks

Five new variations of the CARP problem have been presented in this paper. Among
these are three multi-commodity problems with multiple compartments in the vehicles:
No-Split, Commodity-Split, and Multi-Day Commodity-Split. These three variations
model a multi-commodity version of the CARP but include different degrees of com-
plexity in order to model real-world waste collection problems in increasing detail.
We also introduced a fourth multi-commodity version in which each commodity is to
be collected by separate vehicles that have to coordinate collection. The final varia-
tion presented is a Semi Periodic CARP in which demand on edges is to be collected
with a given interval and each edge may have demand with several different collection
intervals simultaneously.

In addition, we have introduced large-scale test instances for each of these new
CARP variations and for the original CARP. These instances originate from real-
world data on waste collection in 5 areas in Denmark. The test instances have been
created in a way that enables the decision maker to test various alternatives within
waste collection. Different scenarios can be compared by solving at least two instances.
Many of the graphs contain more than 1000 nodes and required edges. This implies
that they are much larger than the classical CARP instances.

The focus in this paper has been on presenting the new problems and on providing
large-scale instances for each of them based on real-life data. Therefore, an obvious
next step would be to find solution methods that are able to solve these problems,
both as regards the added complexity of the problem compared to the classical CARP
and as regards the size. The size of the problems makes construction of meta heuristics
and optimized districting approaches natural choices for future research. The paper
thus provides a sound basis that can be used in future research that aims at closing
the gap between academic research and the real-life challenges of large complex arc
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routing problems.
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