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One popular learning algorithm for feedforward neural networks is the backpropagation (BP) algorithm
which includes parameters, learning rate (η), momentum factor (α) and steepness parameter (λ). The
appropriate selections of these parameters have large effects on the convergence of the algorithm. Many
techniques that adaptively adjust these parameters have been developed to increase speed of convergence.
In this paper, we shall present several classes of learning automata based solutions to the problem of
adaptation of BP algorithm parameters. By interconnection of learning automata to the feedforward
neural networks, we use learning automata scheme for adjusting the parameters η, α, and λ based on the
observation of random response of the neural networks. One of the important aspects of the proposed
schemes is its ability to escape from local minima with high possibility during the training period. The
feasibility of proposed methods is shown through simulations on several problems.

1. Introduction

Backpropagation algorithm is a systematic method

for training multilayer neural networks. Despite the

many successful applications of backpropagation, it

has many drawbacks. For complex problems, it may

require a long time to train the networks, and it may

not train at all. Long training time can be the re-

sult of the non-optimum values for the parameters of

the training algorithm. It is not easy to choose ap-

propriate values for these parameters for a particular

problem. The parameters are usually determined by

trial and error and using past experiences. For exam-

ple, if the learning rate is too small, convergence can

be very slow; if too large, paralysis and continuous

instability can result. Moreover, the best value at

the beginning of training may not be so good later.

Thus, several researches have suggested algorithms

for automatically adjusting the parameters of train-

ing algorithm as training proceeds.

Arabshahi et al.2 proposed an error back-

propagation algorithm, in which the learning-rate

is adapted. In this algorithm, learning-rate is a

function of error and changes in the error. They

proposed that the learning-rate to be adjusted us-

ing a fuzzy logic control system, in which the error

and changes in error are the inputs and changes in

learning-rate is the output of fuzzy logic controller.

Kandil et al.3 used optimum, time-varying learning-

rate for multi-layer neural network by linearizing the

neural network around weight vector at each itera-

tion. Parlos et al.4 proposed an accelerated learn-

ing algorithm for supervised training of multi-layer

neural networks named adaptive error back-propaga-

tion algorithm. In their proposed algorithm, the

learning-rate is a function of the error and the
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error gradient. Cater,5 Franzini,6 Vosl et al.,7

Tesnuro and Janssens,8 Deros and Orban,22 Darken

and Moody,9 Solmon,9 Tolleraere,23 Fallside and

Chan,9 Jacobs,20 and Riedmiller and Heinrich10 have

proposed other schemes for adaptation of learning

rate. Sperduti and Starita11 proposed an error back-

propagation algorithm in which the steepness param-

eter is adapted using gradient descent algorithm.

Several learning automata (LA) based proce-

dures have also been developed.12–17 In these meth-

ods, variable structure learning automata (VSLA) or

fixed structure learning automata (FSLA) have been

used to find the appropriate values of parameters for

the BP training algorithm. In these schemes, either

a separate learning automata is associated to each

layer of the network or a single automata is asso-

ciated to the whole network to adapt the appropri-

ate parameters. It is shown that the learning rate

adapted in such a way that not only increases the

rate of convergence of the network but it increases

the likelihood of bypassing the local minimum. In

this paper, we propose two new classes of LA based

schemes for adaptation of appropriate learning rate

or steepness parameters for BP algorithms. Unlike

the existing LA based schemes, one learning automa-

ton is assigned to every link or every neuron in the

network for determining the parameters for that link

or neuron is there schemes. As the characteristics

of the error surface may be unique in every dimen-

sion, different learning rate or steepness parameter

may be required for every link and/or every neuron.

Using learning automata as the adaptation tech-

nique, the search for optimum is carried out in prob-

ability space rather than in parameter space as in

the case with other adaptation algorithms. In the

standard gradient method, the new operation point

lies within a neighborhood distance of the previous

point. This is not the case for adaptation algorithm

based on stochastic principles, as the new operat-

ing point is determined by probability function and

is therefore not considered to be near the previous

operating point. This gives the algorithm a higher

ability to locate the global optimum. The simulation

results show the feasibility of the proposed meth-

ods and their superiority to the existing LA based

schemes. The proposed schemes have two impor-

tant aspects: higher speed of convergence and higher

probability of escaping from the local minima. In

order to evaluate the performance of proposed

schemes, simulations are carried out on eight learning

problems: digit recognition, odd parity, encoding,

symmetry, classification of sonar signals, vowel recog-

nition, printed Farsi digit recognition, and printed

Farsi character recognition problems and the results

are compared with results obtained from standard

BP and some of the learning methods for adapta-

tion of BP parameters. These problems are chosen

because they possess different error surfaces and col-

lectively present an environment that is suitable to

determine the effect of the proposed methods.

8 × 8 Dot Numeric Font Learning: There are

numbers 0.9, and each represented by an 8 × 8 grid

of black and white dot as shown in Fig. 1. The net-

work must learn to distinguish these numbers. The

training set consists of 10 patterns. The network ar-

chitecture used for this problem consists of 64 input

units, which are connected to 6 hidden units which

are connected to 10 output units.

Three-Bit Odd-Parity Problem: In this problem,

a string of three inputs is applied to the network, the

output of network is zero (one) if the number of ones

in the input is odd (even).1 The training set consists

of 8 patterns. This network has three input units,

three hidden units, and one output unit.

Encoding Problem: In this problem, a set of

orthogonal input patterns is mapped to a set of

orthogonal output patterns through a small set of

hidden units.1 The training set consists of 8 patterns.

The network architecture used for solving this prob-

lem consists of 8 input units, 3 hidden units, and 8

output units.

Fig. 1.
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Symmetry Problem: This problem classifies input

string as to whether or not they are symmetric about

center.1 The training set consists of 64 patterns. The

network architecture used consists of 8 input units,

2 hidden units, and 1 output unit.

Classification of Sonar Signals: The task is

to train a neural network to discriminate between

sonar signal bounced off a metal cylinder and those

bounced off a roughly cylindrical rock.29 The train-

ing set consists of 104-member 60-dimensional pat-

terns. The network that must learn to distinguish

mine from rock has 60 input units, 24 hidden units,

and 2 outputs, one indicating a cylinder and the

other a rock.

Vowel Recognition: In this problem, we have

eleven steady state vowels of British English. These

vowels are from 15 different speakers. Each vowel

is represented by a set of LPC derived log area ra-

tios. The training set consists of 110 patterns. The

network architecture used for recognition of vowels

have 10 input units, 22 hidden units, and 11 output

units.33

Printed Farsi Digit Recognition: The ten

printed Farsi digits are shown in Fig. 2. There is

a page of 170 printed Farsi digits, 17 samples for

every digit.32 160 samples are used to train the net-

work and the remaining samples are used for testing

purpose. This page is digitized with a resolution of

300dpi. The momentum constants M1 through M7

are extracted from digitized images and submitted

as inputs to the neural network. The network that

must learn to classify these digits has 7 input nodes,

30 hidden units, and 10 output units, one for each

digit.

digit 0 digit 1 digit 2 digit 3 digit 4 digit 5 digit 6 digit 7 digit 8 digit 9

Fig. 2.

ALEF BE PE TE SE JIM TCHE HE

KHE DAL ZAL RE ZE JE SIN SHIN

SAD ZAD TA ZA EYN GHEYN FE GHAF

KAF GAF LAM MIM NON WAW HE YE

Fig. 3.
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ISOLATED TAIL MIDDLE HEAD

Fig. 4.

Printed Farsi Character Recognition: The Farsi

alphabet consists of 32 basic characters shown in

Fig. 3. These characters differ from other systems

of characters in their structure and in the way they

connect to form words. The same character may

take different shapes according to its position in

the word. For example, the character “GHEYN”

has four different shapes according to its appearance

at the head, the middle, the tail, or the isolated.

This feature increases the number of Farsi charac-

ters to more than 90 different shapes, including all

forms of 32 basic characters, numeric characters,

and punctuation characters.32 A page of 32 isolated

Farsi characters is scanned with resolution of 300dpi.

Each character has 5 samples. The momentum

constants M1 through M7 are used as inputs to the

neural network. The network architecture used for

this problem consists of 7 inputs which are connected

to 31 hidden units and 32 output units.

The rest of the paper is organized as follows:

Sec. 2 briefly presents the basic backpropagation

algorithm and learning automata. Application of

learning automata for adaptation of learning rate,

momentum factor, and steepness parameter is

given in Sec. 3. Section 4 presents the proposed

learning automata based schemes. The simulation

results are given in Sec. 5. Section 6 concludes the

paper.

2. Backpropagation Algorithm and

Learning Automata

In this section, in all brevity, we discuss the funda-

mentals of backpropagation learning algorithm and

learning automata.

Backpropagation Algorithm: Error backpropaga-

tion training algorithm, which is an iterative gradient

descent algorithm, is a simple way to train multilayer

feedforward neural networks.5 The BP algorithm is

based on the gradient descent rule:

W (n+1)=W (n)+ηG(n)+α[W (n)−W (n−1)],

(1)

where W is the weight vector, n is the iteration num-

ber, η is the learning rate, α is the momentum factor,

and G is the gradient of error function that is given

by:

G(n) = −∇Ep(n) . (2)

Ep is the sum of squared error given by:

Ep(n) =
1

2

#outputs∑
j=1

[Tp,j −Op,j ]2

for p = 1, 2, . . . , #patterns (3)

where Tp,j and Op,j are desired and actual outputs

for pattern p at output node j. A major problem en-

countered during implementation of the BP learning

rule is proper choice and update of the learning rate

η to allow convergence, while keeping the number of

required iterations at a reasonable number. One of

the main reasons for investigating the possibility of

the adaptive learning rate rule is the desire to reduce

the sensitivity of the learning on the learning rate,

without adding more tuning parameters.
In the BP algorithm framework, each computa-

tional unit computes the same activation function.

The computation of the sensitivity for each neuron

requires the derivative of activation function, there-

fore this function must be continuous and differen-

tiable. The activation function is normally a sigmoid

function chosen between 1/1 + exp(−λnet) and tanh

(λnet). The coefficient of the exponent of the expo-

nential term determines the steepness of linearity of

that function. The steepness parameter λ is often set

to a constant value and not changed by the learning

algorithm. We gain much flexibility, if we move the

net inputs of the sigmoidal functions near to their

active regions, where the associated gradient is not

very close to zero. This makes the BP algorithm to

not be trapped to some points in the network param-

eters space where the BP algorithm would effectively

stop, even though it is not close to a local minima

point. This will cause the gradient of the error func-

tion to be small if the sigmoidal is shifted far outside

the active region of the input to the function. There-

fore, it is better to center each sigmoid to be inside

the active region of the sigmoidal function.
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The momentum term in weight adaptation equa-

tion (1) causes large changes in the weight if the

changes are currently large, and will decrease as the

changes become less. This means that the network is

less likely to get stuck in local minima early on, since

the momentum term will push the changes over local

downward trend. Momentum is of a great assistance

in speeding up convergence along shallow gradients,

allowing the path the network takes towards the solu-

tion to pick up speed in the downhill direction. The

error surface may consist of long gradually sloping

ravines, which finish at minima. Convergence along

these ravines is slow, and usually the algorithm os-

cillates across the ravine valley as it moves towards

a solution. This is difficult to speed up without in-

creasing the chance of overshooting the minima, but

the addition of the momentum term is fairly success-

ful. This difficulty could be removed if we select the

momentum factor to be small nearer the minima and

to be large further from minima.

Learning Automata: Learning automata (LA) can

be classified into two main families, fixed and vari-

able structure learning automata.18,26–28 Examples

of the FSLA type that we use in this paper are Tset-

line, Krinsky, TsetlineG, and Krylov automata. A

fixed structure learning automaton is a quintuple

(α, φ, β, F, G) where:

• α = (α1, . . . , αR) is the set of actions that it must

choose from.

• Φ = (Φ1, . . . , Φs) is the set of states.

• β = {0, 1} is the set of inputs where 1 represents

a penalty and 0 represents a reward.

• F : Φ× β → Φ is a map called the transition map.

It defines the transition of the state of the automa-

ton on receiving input, F may be stochastic.

• G: Φ → α is the output map and determines the

action taken by the automaton if it is in state Φj .

The selected action serves as an input to

the environment which in turn emits a stochastic

response β(n) at the time n. β(n) is an element of

β = {0, 1} and is the feedback response of the envi-

ronment to the automaton. The environment penal-

izes (i.e. β(n) = 1) the automaton with the penalty

ci, which is the action dependent. On the basis of

the response β(n), the state of the automaton Φ(n)

is updated and a new action chosen at time (n+ 1).

Note that {ci} is unknown initially and it is desired

that as a result of interaction with the environment,

the automaton arrives at the action which presents it

with the minimum penalty response in an expected

sense. If the probabilities of the transition from one

state to another and probabilities of correspondence

of action and state are fixed, the automaton is said

to be fixed-structure automata and otherwise the au-

tomaton is said to be variable-structure automata.

We summarize some of the fixed-structure learning

automaton and variable structure automaton in the

following paragraphs.

The two-state automata (L2,2): This automata

has two states, φ1 and φ2 and two actions α1 and

α2. The automata accepts input from a set of {0, 1}
and switches its states upon encountering an input

1 (unfavorable response) and remains in the same

state on receiving an input 0 (favorable response).

An automaton that uses this strategy is refered as

L2,2 where the first subscript refers to the number

of states and the second subscript is the number of

actions.

The two-action automata with memory

(L2N,2): This automaton has 2N states and two ac-

tions and attempts to incorporate the past behav-

ior of the system in its decision rule for choosing

the sequence of actions. While the automaton L2,2

switches from one action to another on receiving a

failure response from the environment, L2N,2 keeps

an account of the number of successes and failures

received for each action. It is only when the num-

ber of failures exceeds the number of successes, or

some maximum value N ; the automaton switches

from one action to the other. The procedure de-

scribed above is one convenient method of keeping

track of performance of the actions α1 and α2. As

such, N is called memory depth associated with each

action, and automaton is said to have a total mem-

ory of 2N . For every favorable response, the state

of automaton moves deeper into the memory of cor-

responding action, and for an unfavorable response,

moves out of it. This automaton can be extended

to multiple action automata. The state transition

graph of L2N,2 automaton is shown in Fig. 5.

The Krinsky automata: This automaton behaves

exactly like L2N,2 automaton when the response of

turehe environment is unfavorable, but for favorable

response, any state φi (for i = 1, . . . , N) passes to

the state φ1 and any state φi (for i = N + 1, 2N)

passes to the state φN+1. This implies that a string
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1 2 N - 1 N 2N N + 2 N + 1

F a v o r a b l e   R e s p o n s e     (β = 0)

1 2 N - 1 N 2N N + 2 N + 1

U n f a v o r a b l e   R e s p o n s e     (β = 1)

Fig. 5. The state transition graph for L2N,2.

1 N 2N N + 1 

F a v o r a b l e    R e s p o n s e    (β = 0) 

1 N 2N N + 1 

U n f a v o r a b l e   R e s p o n s e   (β = 1) 

Fig. 6. The state transition graph for Krinsky Automaton.

2N 

1 N 2N N + 1 

F a v o r a b l e    R e s p o n s e   (β = 0) 

1 N N + 1 

U n f a v o r a b l e   R e s p o n s e   (β = 1) 

1/2 1/2 1/21/2

Fig. 7. The state transition graph for Krylov Automaton.

of N consecutive unfavorable responses are needed

to change from one action to another. The state

transition graph of Krinsky automaton is shown in

Fig. 6.

The Krylov automaton: This automaton has state

transition that is identical to the L2N,2 automa-

ton when the output of the environment is favor-

able. However, when the response of the environ-

ment is unfavorable, a state φi (i 6= 1, N, N+1, 2N)

passes to a state φi+1 with probability 0.5 and to

a state φi−1 with probability 0.5. When i = 1 or

i = N + 1, φi stays in the same state with probabil-

ity 0.5 and moves to φi+1 with the same probability.

When i = N , automaton state moves φN−1 to φ2N

and with the same probability 0.5. When i = 2N ,

automaton state moves φ2N−1 to φN with the same

probability 0.5. The state transition graph of Krylov

automaton is shown in Fig. 7.

In this paper, we refer to an automaton by the

name of automaton followed by the list of parame-

ters for that automaton. The first parameter refers

to the number of actions and the second parameter

refers to the depth for each action.
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Variable-structure Automata: Variable-struc-

ture automaton is represented by sextuple 〈β, φ,
α, P ,G, T 〉, where β a set of inputs actions, φ is

a set of internal states, α a set of outputs, P denotes

the state probability vector governing the choice of

the state at each stage k, G is the output mapping,

and T is the learning algorithm. The learning algo-

rithm is a recurrence relation and is used to modify

the state probability vector.

It is evident that the crucial factor affecting

the performance of the variable structure learning

automata is learning algorithm for updating the

action probabilities. Various learning algorithms

have been reported in the literature.18 Let αi be the

action chosen at time k as a sample realization from

distribution p(k). The linear reward-inaction algo-

rithm (LR−I) is one of the earliest schemes. In an

LR−I scheme, the recurrence equation for updating

p is defined as

pj(k) =

{
pj(k) + a(1− pj(k)) if i = j

pj(k)(1− a) if i 6= j
(4)

if β is zero and P is unchanged if β is one. The

parameter a, which is called step length, determines

the amount of increases (decreases) of the action

probabilities. In linear reward-penalty algorithm

(LR−P ) scheme, the recurrence equation for updat-

ing p is defined as

pj(k) =

{
pj(k) + a(1− pj(k)) if i = j

pj(k)(1− a) if i 6= j
(5)

if β(k) = 0 and

pj(k) =


pj(k)(1− b) if i = j

b

r − 1
+ (1− b)pj(k) if i 6= j

(6)

if β(k) = 1. The parameters a and b represent

reward and penalty parameters, respectively. The

parameter a(b) determines the amount of increase

(decreases) of the action probabilities.

Learning automata have been used in many

applications such as: solving NP problems,34,35

optimization of structure of neural networks,36,37

queuing theory,38 game theory,39,40 telephone traf-

fic control,44 pattern recognition,45 control of ATM

networks,41–43 to mention a few. For more infor-

mation about learning automata, refer to Refs. 18,

26–28, 41, 46 and 47.

3. LA Based Schemes for

Adaptation of BP Parameters

In this section, first we briefly describe previous LA

based schemes12–17 for adaptation of BP parame-

ters and then introduce two new classes of LA based

schemes. In all of the existing schemes, one or more

automata have been associated to the network. The

learning automata (or automata) based on the obser-

vation of the random response of the neural network,

adapted one or more of BP parameters. The inter-

connection of learning automata and neural network

is shown in Fig. 8. Note that the neural network

is the environment for the learning automata. The

learning automata according to the amount of the

error received from neural network adjust the param-

eters of BP algorithm. The actions of the automata

correspond to the values of the parameters being cal-

culated and input to the automata is some functions

of the error in the output of neural network.

A function of error between the desired and

the actual outputs of network is considered as the

response of the environment. A window on the

past values of the errors is swiped and the average

Neural network

Learning automata

α(n)

β(n)

Value of parameter
being adjusted

Response of
neural

network

Fig. 8. The interconnection of learning automata and neural network.
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value of the error in this window computed. If the

difference of the average value in the last two steps is

less than a predefined threshold value, the response

of the environment is favorable and if this difference

is greater than the threshold value, the response of

the environment is unfavorable.

The existing LA based procedures for adapta-

tion of BP parameters can be classified into two

classes, which we call class A and class B. In class

A schemes, one automaton is used for the whole

network12,14 whereas in class B schemes, separate

automata, such is one for each layer (hidden and out-

put), are used.13,15–17 Classes A and B depending on

the type of automaton being used (fixed or variable

structure) each can be classified into two subclasses.

The parameter adapted by class A schemes will be

used by all the links or neurons of the networks

and therefore these schemes fall in the category of

global parameter adaptation method, whereas class

B schemes by adapting the parameter for each layer

independently may be referred to as quasi-global

parameter adaptation methods. For the sake of

convenience in presentation, we use the following

naming conventions to refer to different LA based

schemes in class A and class B. Without loss of gen-

erality, we assume that in class A and class B, the

neural network has one hidden layer.

Automata-AV (γ): A scheme in class A for ad-

justing parameter γ, which uses variable structure

learning automaton Automata.

Automata-AF (γ): A scheme in class A for adjust-

ing parameter γ, which uses fixed structure learning

automaton Automata.

Automata1-Automata2-BV (γ): A scheme in

class B for adjusting parameter γ which uses vari-

able structure learning automaton Automata1 for

hidden layer and variable structure learning automa-

ton Automata2 for output layer.

Automata1-Automata2-BF (γ): A scheme in

class B for adjusting parameter γ which uses fixed

structure learning automaton Automata1 for hid-

den layer and fixed structure learning automata

Automata2 for output layer.

The letters F and V in the above names de-

note FSLA and VSLA, respectively. For all the LA

based schemes reported, it is shown through sim-

ulation that the use of LA for adaptation of BP

parameters increases the rate of convergence by a

large amount. Figure 9 borrowed from Ref. 17 com-

pares the effectiveness of different LA based schemes

in class A for adaptation of learning rate for the

8× 8-dot numeric font recognition problem. In this

simulation, the threshold of 0.01 and window size

of 1 is chosen. For linear reward-penalty automa-

ton, the reward and penalty coefficients 0.001 and

0.0001 are chosen. It has been reported that FSLA

based schemes have performance much higher than

the VSLA based schemes.15 Also simulation studies

have shown that by using LA based scheme for adap-

tation of learning rate or momentum factor, we can

compute a new point that is closer to the optimum

than the point computed by BP algorithm which uses

c 

d 

e 

b 

a 

Fig. 9. Performance of different class A based schemes. (a) Standard BP (b) Tsetline(4, 4)-AF(η) (c) Krinsky(2, 4)-AF(η)
(d) Krylov(2, 4)-AF(η) (e) LR-P-AV(η).
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a fixed predetermined learning rate or momentum

factor.15,16

4. New Classes of Schemes for

Adaptation of BP Parameters

In this section, we propose two new classes of LA

based schemes called class C and class D. In a class

C scheme, one automaton is associated to each link

of the network in order to adjust the parameter for

that link. In class D scheme, one automata is as-

sociated to each neuron of the network in order to

adjust the parameter for that neuron. Class C and

D schemes may be referred to as the local parame-

ter adaptation methods. We use Automata-CV(γ)

and Automata-CF(γ) to refer to the schemes in

class C and Automata-DV(γ) and Automata-

DF(γ) to refer to the schemes in class D. The

letters F and V in the above names denote FSLA

and VSLA, respectively.

We use class C schemes for adaptation of learning

rate and class D schemes for adaptation of steepness

procedure C_Scheme_BP (Automata)
Initialize the weights to small random values.
initialize the parameters for automaton Automata.
repeat

for all training patterns (X, T) in the training set do
call FeedForward
call ComputeGradient
for  all layers in the network do

for  all nodes in lth layer do
for  all weights w for nth node in lth layer do

if  Sign = Sign 
∂

∂
∂

∂
Ep k

w

Ep k

w

( ) ( )









−









1
then

  //The sign at iteration k and k-1 is the same
η = call Automata (0)        // β is 0

else
η = call Automata (1)       // β is 1

end if
end for

end for
end for

end for
call UpdateWeights
// Batch weights updating is used

until k > N.   // N is maximum training epoch number
end procedure

Fig. 10. BP with a class C scheme.

procedure D_Scheme_BP (Automata)
Initialize the weights to small random values.
initialize the parameters for the automaton Automata.
repeat

for all training patterns (X, T) in the training set do
call FeedForward
call ComputeGradient
for  all layers in the network do

for  all steepness parameters β in lth layer do

if  Sign  =  Sign 
∂

∂λ
∂

∂λ
Ep k Ep k( ) ( )









−









1
 then

//The sign at iteration k and k-1 is the same
λ =call Automata (0)              // β is 0

else
λ =call Automata (1)              // β is 1

end if
end for

end for
end for
eall UpdateWeights
 // Batch weights updating is used

until k > N   // N is maximum training epoch number
end procedure

Fig. 11. BP with a class D scheme.

parameter. In class C and class D schemes, the au-

tomaton receives favorable response from the envi-

ronment if the algebraic sign of derivative in the two

consecutive iterations is the same and receives unfa-

vorable response if the algebraic sign of the derivative

in the two consecutive iterations alternates. The al-

gorithms given in Figs. 10 and 11 describe class C

and class D schemes, respectively.
In the following algorithms, in order to compute

the partial derivative of error with respect to steep-

ness parameter (
∂Ep(n)
∂λ

), we minimize the error given

by Eq. (3). Assume that netLI represents the net out-

put of Ith neuron in Lth layer, which is given by

netLI =

NL−I∑
k=0

WL
K,I ×OL−1

K (7)

OLK is the output of kth neuron in Lth layer given

by OLK = fLK(netLK), where fLK shows the activation

function of kth neuron in Lth layer that is one of

sigmoidal or tanh functions. Differentiation of E

with respect λLK yields:

∂Ep(n)

∂λLK
= −δLK ×

∂f

∂λLK
(8)
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1 2 N N+1 KN 

U n f a v o r a b l e    R e s p o n s e 

β = 1 

1 2 N (K-1)N+1 KN 

F a v o r a b l e    R e s p o n s e 

β = 0 

N+1 

Fig. 12. The state transition graph for JKN,K .

where

δLK =


(TK −OK) if L is output layer

NL+1∑
J=1

δL+1
J ×WL+1

K,J ×
∂f

∂netL+1
J

if L is hidden layer
. (9)

A deterministic fixed structure learning

automaton: In what is to follow, we introduce a

new fixed structure learning automaton called J-

automata. This automaton can be used by class C

and class D schemes to achieve a higher degree of

performance comparing to the other known schemes

in class C or class D. The proposed automaton which

we denote it by JKN ,K has KN states and K ac-

tions. This automaton attempts to incorporate the

past behavior of the system in its decision rule for

choosing the sequence of actions. States with num-

bers (k − 1)N + 1 through kN correspond to action

k. State transition graph of this automaton for fa-

vorable response and unfavorable response is shown

in Fig. 12.

The environment produces the favorable response

if the algebraic sign of the derivative in two consecu-

tive iterations is the same and unfavorable response

is produced by the environment if the algebraic sign

of the derivative in two consecutive iterations alter-

nates. When this automaton is used to adjust the

learning rate (steepness parameter), each action cor-

responds to one of the values of the learning rate

(steepness parameter). The automaton, on reward

moves to the higher number state (hoping to even-

tually increase the value of the parameter) and on

penalty moves to the lower number state (hoping to

eventually decrease the value of the parameter).

It is only when the sign of derivative remains the

same for N consecutive iterations or alternates for

N consecutive iterations will the automaton change

its action (switches from one value for the related

parameter to another value). Therefore, N is the

memory of the depth associated with each action

and automaton is said to have a total memory of

KN. If parameter µ can assume K values, then

µ1 ≤ µ2 ≤ · · · ≤ µK states (k − 1)N + 1 through

kN which corresponds to the value of µk. Clearly,

such an assignment of values of parameter µ to the

states of the automata causes the value used by BP

to increase if in N consecutive iterations, the sign

of the derivative does not change and decreases if

in N consecutive iterations, the sign of derivative

alternates.

Remark 1

Variable learning rate (VLR) scheme: In this remark,

first we explain the Variable learning rate (VLR)

scheme and then explain why J CF(η) performs bet-

ter than VLR scheme. Variable learning rate is a

scheme in which the learning rate is varied accord-

ing to the performance of the algorithm.19 If the er-

ror decreases after a weight update, then the learn-

ing rate is increased by some factor (e.g. 1.05). If

the error increases more than some set of percentage

(typically one to five percent), then the weight up-

date is discarded and the learning rate is decreased

by some factor (e.g. 0.7) and the momentum term

(if it is used) is set to zero. When a successful step

is taken, the momentum term is reset to its original
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value. If the algorithm is working well, and the error

continues to go down, then learning rate will increase

and convergence will speed up.

Assuming that the network has n adjustable

parameters π1, . . . , πn, the gradient of error function

with respect to π1, . . . , πn is defined as:

∇E =

[
∂E

∂π1
,
∂E

∂π2
, . . . ,

∂E

∂πn
,

]T
. (10)

Gradient vector ∇E extends in the direction of the

greatest rate of change of E but it does not mean

that all ∇kE (the kth element of ∇E) have the same

algebraic sign. In other words the greatest rate of in-

crease(decrease) of E does not imply the same sign

for projections of ∇kE along all axis.

VLR scheme decreases (increases) learning rate

as the result of increase (decrease) of E based on

gradient. In VLR scheme, a single learning rate will

be adapted and used by BP to walk along all direc-

tions, which may create oscillation along some axis

and leads to a lower rate of convergence. On the con-

trary in C(D) schemes, since each link (neuron) has

its own learning rate (steepness) (that is, the learning

rate (steepness parameter) for every axis is adapted

independently), oscillation may be decreased and as

a result a higher rate of convergence can be obtained.

Simultaneous adaptation of learning rate and

steepness parameters: The rate of convergence

can be improved if both learning rate and steepness

parameter are adapted simultaneously. The algo-

rithm given in Fig. 13 describes the simultaneous

use of class C and class D schemes for adaptation

of learning rate and steepness parameters. In this

algorithm, a class C scheme is used for adaptation

of learning rate and a class D scheme is used for

adaptation of steepness parameter. A scheme that

simultaneously adapts learning rate and steepness

parameter is denoted by Automata1-Automata2-

CDF(µ, λ), if FSLA is used and Automata1-

Automata2-CDV(µ, λ), if VSLA is used.

Simultaneous adaptation of learning rate and

momentum factor : A simple method of increas-

ing the learning rate and stability of training algo-

rithm is to modify the standard BP by including the

momentum factor 1 as given in Eq. (1). The changes

in the weight at iteration of n is given by:

∆W (n) = ηG(n) + α∆W (n− 1) (11)

procedure Simultaneous_C_D_BP (Automata1, Automata2)
Initialize the weights to small random values.
initialize the parameters for the  Automata1 & Automata2.
repeat

for all training patterns (X, T) in the training set do
call FeedForward
call ComputeGradient
for  all layers in the network do

for  all nodes in lth layer do
for  all weights w for nth node in lth layer do

if Sign = Sign 
∂

∂
∂

∂
Ep k

w

Ep k

w

( ) ( )









−









1
then

//The sign at iteration k and k-1 is the same
η = call Automata1 (0)          // β is 0

else
η = call Automata1 (1)          // β is 1

end if
end for

end for
for  all steepness parameters λ in lth layer do

if  Sign  =  Sign 
∂

∂λ
∂

∂λ
Ep k Ep k( ) ( )









−









1
 then

//The sign at iteration k and k-1 is the same
λ = call Automata2 (0)        // β is 0

else
λ = call Automata2 (1)        // β is 1

end if
end for

end for
end for
call UpdateWeights
 // Batch weights updating is used

until k > N.  // N is maximum training epoch number
end procedure

Fig. 13. Automata1-Automata2-CDF(η, λ) scheme.

Solving the difference equation (11) gives the

following time series equation

∆W (n) = η

n∑
t=0

αn−1G(t) . (12)

By inspection of Eq. (12), we may make the

following useful observations:

1. The current adjustment of ∆W (n) represents

the sum of an exponentially weighted time se-

ries. This equation converged if and only if

0 ≤ |α| < 1.

2. When G has the same algebraic sign on

consecutive iterations, |∆W | grows, and W is
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procedure Simultaneous_C_Scheme_BP (Automata1, Automata2)
Initialize the weights to small random values.
Initialize the parameters for automata Automata1 & Automata2.
repeat

for all training patterns (X, T) in the training set do
call FeedForward
call ComputeGradient
for  all layers in the network do

for  all nodes in lth layer do
for  all weights w for nth node in lth layer do

if  Sign = Sign 
∂

∂
∂

∂
Ep k

w

Ep k

w

( ) ( )









−









1
then

  //The sign at iteration k and k-1 is the same
η = call Automata1 (0)        // β is 0
α = call Automata2 (0)        // β is 0

else
η = call Automata1 (1)       // β is 1
α =call Automata2 (1)        // β is 1

end if
end for

end for
end for

end for
call UpdateWeights
// Batch weights updating is used

until k > N.   // N is maximum training epoch number
end procedure

Fig. 14. Automata1-Automata2-CF(η, α) scheme.

adjusted by a large amount. Hence, the inclu-

sion of momentum term accelerates the con-

vergence of algorithm. To accelerate more, the

momentum factor must have a value as large

as possible.

3. When the algebraic sign of G alternates in

consecutive iterations, |∆W | shrinks and W

is adjusted by a small amount. Hence, the in-

clusion of momentum term stabilizes the con-

vergence of algorithm. To accelerate more, the

momentum factor must have a value as small

as possible.

From the above observation, we may conclude

that the momentum factor could be adjusted by

JKN ,K automata in the same manner as the learning

rate. The algorithm given in Fig. 14 describes the

simultaneous adaptation of learning rate and

momentum factor. This scheme is denoted by

Automata1-Automata2-CF(η, α).

5. Simulations

Typical simulations for four previously mentioned

problems for different parameter adaptation schemes

are shown in Figs. 15–20. Figure 15 compares the

a a 

g f 
d 

e 

c 
b 

Fig. 15. Digit problem. (a) Standard BP
(b) Tsetline(4,4)-AF(η) (c) Krinsky(2, 4)-AF(η)
(d) Krylov(2, 4)-AF(η) (e) LR−P -AV(η) (f) VLR
(g) J(2, 1)-CF(η).
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e 
c 

d 

b 
a 

Fig. 16. Digit problem. (a) Standard BP (b) Tset-
line(4, 4)-CF(η) (c) Krinsky(2, 4)-CF(η) (d) Krylov(2, 4)-
CF(η) (e) J(2, 1)-CF(η).

a 

c 
b 

Fig. 17. Digit problem. (a) Standard BP (b) Tset-
line(4, 6)-Tsetline(2, 4)-BF(η) (c) J(10, 1)-CF(η).

a 

b 
d 

c 

e 

Fig. 18. Parity problem. (a) Standard BP (b) VLR
(c) J(2, 1)-CF(η) (d) J(2, 1)-CF(η) (e) J(2, 1)-J(2, 1)-
CDF(η, λ).

performance of different class A schemes with J-

CF scheme. Figure 16 indicates that J-CF scheme

has a higher speed of convergence than any known

scheme in class C. Figure 17 compares the J-CF

scheme with the best scheme in class B. Figures 18–

20 indicate that if µ and λ are adapted simultane-

ously, the performance of the BP algorithm increases

by a large amount. Figures 21–23 compare the

a 

b 

c 

e 
d 

Fig. 19. Encoding problem. (a) Standard BP (b) VLR
(c) J(2, 1)-CF(η) (d) J(5, 6)-CF(λ) (e) J(2, 1)-J(5, 6)-
CDF(η, λ).

a a 

b 

c 

d 

e 

Fig. 20. Symmetry problem. (a) Standard BP (b) VLR
(c) J(5, 6)-CF(λ) (d) J(2, 1)-CF (η) (e) J(2, 1)-J(5, 6)-
CDF(η, λ).

a 
b 
c 
d 
e 

Fig. 21. Encoding problem. (a) SC Scheme (b) Stan-
dard BP (c) VLR Scheme (d) Fuzzy BP (e) J(2, 1)-J(5, 6)-
CDF(µ, λ).

performance of J-J-CDF (µ, λ) scheme with VLR

scheme and schemes proposed by Arabshahi

(FuzzyBP) and Darken and Moody (SC). For all sim-

ulations, we have taken the momentum factor (α) to

be zero and the parameters of different schemes are

chosen in such a way that the best performance will
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a 
b 
c 
d 
e 

Fig. 22. Symmetry problem. (a) SC Scheme (b) Stan-
dard BP (c) VLR Scheme (d) Fuzzy BP (e) J(2, 1)-J(5, 6)-
CDF(µ, λ).

a 
b 
c 
d 
e 

Fig. 23. Parity problem. (a) SC Scheme (b) Standard
BP (c) VLR Scheme (d) Fuzzy BP (e) J(2, 1)-J(2, 1)-
CDF(µ, λ).

a b  c 

Fig. 24. Digit problem. (a) J(5, 10)-CF(η) (b) J(5, 10)-
J(5, 10)-CF(η, α) (c) J(5, 10)-CF(η) with constant
momentum factor.

be obtained. The plot for each simulation is averaged

to be over 200 runs.

Figures 24–27 show the performance of different

schemes when both learning rate and momentum

factor are adapted. The plot for each simulation is

averaged to be over 200 runs.

a 
b 
c 

Fig. 25. Parity problem. (a) J(5, 10)-J(5, 10)-
CDF(η, λ) (b) J(5, 10)-J(5, 10)-CF(η, α) (c) J(5, 10)-
CF(η) with fixed momentum factor.

a 
c 
b 

Fig. 26. Encoding problem. (a) J(5, 10)-J(5, 6)-
CDF(η, λ) (b) J(5, 10)-J(5, 10)-CF(η, α) (c) J(5, 10)-
CF(η) with fixed momentum factor.

a 
b 
c 

Fig. 27. Symmetry problem. (a) J(15, 10)-
J(5, 4)CDF(η, λ) (b) J(15, 10)-J(15, 10)-CF(η, α)
(c) J(15, 10)-CF(η) with fixed momentum factor.

Remark 2

J-CF(η) scheme has a close relationship with

Jacobs heuristics. Jacobs20 has suggested the fol-

lowing heuristics as guidelines for accelerating the

convergence of BP learning algorithm through learn-

ing rate adaptation.
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1. Every adjustable network parameter of cost

function should have its own individual

learning-rate parameter.

2. Every learning-rate parameter should be al-

lowed to vary from one iteration to the next.

3. When the derivative of cost function with

respect to the synaptic weight has the same al-

gebraic sign for several consecutive iterations

of the algorithm, the learning-rate parameter

for that particular weight should be increased.

4. When the algebraic sign of the derivative

of cost function with respect to the synap-

tic weight alternates for several consecutive

iterations of the algorithm, the learning-rate

parameter for that particular weight should be

decreased.

Considering the fact that each link of the

neural network has its own automaton for adapta-

tion of learning parameter, and with the definition

of favorable and unfavorable response given before,

and also inspecting the transition graphs for these

automata, we can see that among different schemes

in class CF only, J-CF (η) scheme implements

all four heuristics of Jacobs. The other schemes

in class CF such as Krylov CF, Krinsky CF,

and Tsetline CF implement only three of the four

heuristics of Jacobs.

Remark 3

J-CF(η) and J-DF(λ) schemes become standard BP

when the memory depth for each action (N) ap-

proaches infinity. This is because of the fact that

when N is very large, it becomes improbable for the

JKN ,K automata to change action and as a result,

a a a a b a e e d c 

Fig. 28. Digit problem. (a) Standard BP (b) J(10, 10)-
CF(η) (c) J(10, 250)-CF(η) (d) J(10, 500)-CF(η)
(e) J(10, 750)-CF(η) (f) J(10, 1000)-CF(η).

a fixed value for the learning rate will be used

throughout the training period. Figure 28 shows the

effect of memory depth on the speed of learning.

Remark 4

J-CF(η) and J-DF(λ) schemes become standard BP

when the number of actions (K) approaches infinity.

This is because of the fact that when K is very large,

the changes in the BP parameters are very small and

for a certain amount of changes in the value of the

parameter, the automata needs to make large num-

ber of states change. This effect is similar to the

effect we observed for large memory depth and small

number of actions. Figure 29 shows the effect of the

number of actions on the speed of learning.

Remark 5

J(5,2)-DF(λ)(J(5,2)-CF(η)) scheme is used for par-

ity problem and probability of each action for a

b    c   d    e   f   a 

Fig. 29. Digit problem. (a) Standard BP (b) J(10, 10)-
CF(η) (c) J(250, 10)-CF(η) (d) J(500, 10)-CF(η)
(e) J(750, 10)-CF(η) (f) J(1000, 10)-CF(η).

e 

a 

b 

c 

d 

Fig. 30. Action probability of J(5, 2) DF(λ) scheme for
parity problem. (a) Action 1 (b) Action 2 (c) Action 3
(d) Action 4 (e) Action 5.
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e 

d 

c 
b 
a 

Fig. 31. Action probability of J(5, 2) CF(η) scheme for
parity problem. (a) Action 1 (b) Action 2 (c) Action 3
(d) Action 4 (e) Action 5.

randomly selected neuron (weight) is plotted. As

shown in Figs 30 and 31, the system converges to

the action with the higher value. This effect has also

been observed in genetic algorithms for the determi-

nation of BP parameters.25 The values of actions are

0.4, 0.8, 1.2, 1.6, and 2.

Remark 6

Self-Adaptive BP (SAB) was developed indepen-

dently by Jacobs20 and Devious and Orban.22 SAB

is a local method in which every weight has its own

learning rate. In this method, every learning rate on

every dimension is adapted based on the error sur-

face independently. The learning rate is increased if

in two consecutive iterations, the gradient has the

same sign and is decreased if the sign of gradient in

two consecutive iterations alternates. SAB performs

better than the BP because it can adjust the learning

rate over a wide range but it has two drawbacks: (1)

the selection of initial value η is hard to determine

(2) if the sign of gradient alternates, the learning rate

a 
b 
c 
d 
e 

Fig. 32. Parity problem. (a) Standard BP (b) SAB
(c) SuperSAB (d) J(5, 3)-CF (η) (e) J(5, 3)-J(5, 3)-
CDF(η, λ).
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b 
c 
d 
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Fig. 33. Encoding problem. (a) Standard BP (b)
SAB (c) Super SAB (d) J(5, 3)-CF(η) (e) J(5, 3)-J(5, 3)-
CDF(η, λ).

Fig. 34. Farsi digit recognition. (a) Standard BP (b)
SAB (c) Super SAB (d) J(10, 10)-CF(η).

d
�
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Fig. 35. Digit problem. (a) Standard BP (b) SAB (c)
Super SAB (d) J(5, 3)-CF(η).

is reset to initial value. SuperSAB algorithm that is

proposed by Tollenaere23 overcomes these problems.

These two schemes are simulated on given prob-

lems and compared with the standard BP, SAB,

SuperSAB, J-CF, and J- CDF schemes. The simu-

lation results that are given in Figs. 32–40 show the

superiority of J-CF and J-CDF schemes. The plot

for each simulation is averaged to be over 200 runs.
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Fig. 36. Sonar signal recognition. (a) Standard BP
(b) SAB (c) Super SAB (d) J(4, 4)-CF(η).

Fig. 37. Sonar signal recognition. (a) J(4, 4)-
CF(η) (b) Krinsky(4, 4)-CF(η) (c) Tsetline (4, 4)-CF(η)
(d) Krylov(4, 4)-CF(η).

Fig. 38. Vowel recognition. (a) Standard BP (b) SAB
(c) Super SAB (d) J(2, 8)-CF(η).

Remark 7

Adaptive steepness (ASBP)11 method is a method

that uses gradient descent rule for adaptation of

steepness parameter. In this method, each neuron

k has steepness parameter λk, which is changed by

the following rule:

∆λk = −ε ∂E
∂λk

.

Figures 41–45 compare the performance of ASBP

and class D schemes for parity problem. To the

Fig. 39. Vowel recognition. (a) J(2, 8)-CF(η)
(b) Krinsky(2, 8)-CF(η) (c) Tsetline (2, 8)-CF(η)
(d) Krylov(2, 8)-CF(η).

Fig. 40. Vowel recognition. (a) Standard BP (b) SAB
(c) Super SAB (d) J(10, 20)-CF(η).

a�  

b
�
 c�  

Fig. 41. Parity problem. (a) Standard BP (b) ASBP
(c) J(2, 1)-DF(λ).

Fig. 42. Sonar signal recognition. (a) ASBP (b) J(5, 6)-
DF(λ) (c) J(10, 20)-J(5, 6)-CDF(η, λ).
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Fig. 43. Farsi digit recognition. (a) ASBP (b) J(5, 6)-
DF(λ) (c) J(10, 20)-J(5, 6)-CDF(η, λ).

Fig. 44. Farsi character recognition. (a) ASBP (b)
J(5, 6)-DF(λ) (c) J(10, 20)-J(5, 6)-CDF(η, λ).

Fig. 45. Vowel recognition. (a) ASBP (b) J(5, 6)-DF(λ)
(c) J(10, 20)-J(5, 6)-CDF(η, λ).

authors’ knowledge, ASBP method is the only

method for adaptation of steepness parameter,

reported in the literature. The plot for each sim-

ulation is averaged to be over 200 runs.

6. LA Based Schemes and Local Minima

In this section, we examine the ability of the learn-

ing automata based schemes to escape from local

minima. For this purpose, we chose a problem in

which local minima occurred frequently.30 This ex-

ample considers the sigmoidal network for the XOR

Boolean function with the quadratic cost function

and the standard learning environment. The train-

ing set of this problem is given in Table 1.

The network which is used has two input nodes

x and y, two hidden units, and one output unit.

In this problem, if the hidden units produce the

Table 1.

Pattern x y Desired output

A 0 0 0

B 1 0 1

C 1 1 0

D 0 1 1

E 0.5 0.5 0

Fig. 46. Lines produced by hidden units of neural net-
work.

Fig. 47. Error surface as a function of weights w2,1,1

and w1,1,1.
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Table 2.

Algorithm Class Not Converged Converged

BP 20 0

SAB 20 0

SuperSAB 20 0

VLR 18 2

FuzzyBP 18 2

ASBP 13 7

Tsetline-AF(µ) A 18 2

Krinsky-AF(µ) A 14 6

Krylov-AF(µ) A 17 3

LR-P-AF(µ) A 16 4

Tsetline-AF(λ) A 7 13

Tsetline-TsetlineG-BF(µ) B 18 2

Tsetline-Krylov-BF(µ) B 18 2

Tsetline-Krinsky-BF(µ) B 15 5

Tsetline-Tsetline-BF(µ) B 15 5

J-DF(λ) D 15 5

J-CF(µ) C 13 7

J-J-CDF(µ, λ) CD 8 12

(a) (b)

(c) (d)

Fig. 48. (a) J-J-CDF(µ, λ) (converged to global minima) (b) J-DF(λ) (stuck at local minima) (c) J-CF(µ) (converged
to global minima) (d) BP algorithm (stuck at local minima).
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lines a and b, the local minima has occurred and if

hidden units produce the lines c and d, the global

minima occurred.31 Figure 46 shows these configura-

tions. The error surface of the network as a function

of weights w2,1,1 and w1,1,1 is given in Fig. 47.

Depending on the initial weights, the gradient can

get stuck in points where the error is far from being

zero. The presence of these local minima is intu-

itively related to the symmetry of the learning envi-

ronment. Experimental evidence of the presence of

local minima is given in Fig. 47.

To show the superiority of LA based adapta-

tion algorithm in terms of escaping from local min-

ima, we test twelve different LA based algorithms,

4 from class A, 4 from class B, 1 from class C,

1 from class D, and 1 from class CD, and com-

pare their results with standard BP and five other

known adaptation methods: SAB,20 SuperSAB,23

VLR method,19 ASBP method,11 and fuzzy BP.2 In

all simulations, each learning automaton has K ac-

tions equally spaced in interval (0,1]. Window size,

threshold value, and maximum number of epochs

are chosen to be 10, 0.01, and 32000, respectively.

The result of simulation for 20 runs is summarized

in Table 2. Note that for standard BP and also

for standard BP when SAB or SuperSAB method

is used to adapt the learning rate, none of the 20

runs converges to the global minima. Among the

non-LA based methods, the ASBP method performs

the best. For this scheme, 7 out of 20 runs converges

to global minima which is comparable to some of the

LA based schemes we have tested. The best result

is obtained for algorithm Tsetline-AF(µ) for which

13 out of 20 runs converges to global minimum. The

next best result belongs to J-J-CDF(µ, λ) scheme.

Figures 48(a)–(d) show some typical runs. Each run

uses a random initial point near the local minima.

In these figures, the initial point is denoted by letter

“B” and the converged point is denoted by “A”. The

curves in these figures are obtained by projecting the

error surface on axis w1,1,1.

The reason for such a good performance of LA

based schemes is that in the standard gradient

method, the new operation point lies within a neigh-

borhood distance of the previous point. This is not

the case for adaptation algorithm based on stochas-

tic principles, as the new operating point is deter-

mined by probability function and is therefore not

considered to be near the previous operating point.

This gives the algorithm a higher ability to locate the

global optimum. In general, the LA approach for op-

timization has two distinct advantages over the clas-

sical hill climbing methods: (1) the parameter space

need not be metric and (2) since the search space is

conducted in the path probability space than param-

eter space, a global rather than a local optimum can

be found.

7. Time and Space Complexity of

LA-Based Adaptation Schemes

In this section, we discuss the time and storage

overhead imposed on BP algorithm when LA based

adaptation schemes are used. For the implementa-

tion of FSLA, three memory locations are needed in

order to keep track of the state, number of actions,

and memory depth of the automata. Changing state

and also realizing the action associated with the state

of the automata at each epoch requires few compari-

son, integer subtraction and addition. Therefore, the

storage and time overhead imposed by each FSLA is

θ(1). This leads to θ(M) storage and θ(M) time over-

head for CF type schemes and θ(N) storage and θ(N)

time overhead for DF type schemes, where M and N

are the number of weights and number of neurons in

the network, respectively. For these schemes, in ad-

dition to storage needed to implement FSLA, storage

for previous sign of gradient, adapted parameter, and

reinforcement signal β for each neuron are needed.

When VSLA with K actions are used, the storage

needed by CV and DV type schemes are θ(KM) and

θ(KN), respectively. This is because of the storage

required by each automaton to store its action proba-

bility vector P. Due to updating the action probabil-

ity vector P by the automata at each epoch, the time

Table 3. The time and space overhead of proposed schemes.

Algorithm Storage Overhead Time Overhead

AV θ(K) θ(K)

AF θ(1) θ(1)

BV θ(K) θ(K)

BF θ(1) θ(1)

CV θ(KM) θ(KM)

CF θ(M) θ(M)

DV θ(KN) θ(KN)

DF θ(N) θ(N)

SAB θ(M) θ(M)

SuperSAB θ(M) θ(M)
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Table 4. Ratio of execution time of different
schemes to standard BP.

Algorithm Ratio of Execution Time

SAB 1.66

SuperSAB 1.58

VLR 1.79

CLASS C 1.56

CLASS D 1.55

CLASS CD 1.56

overhead for CV and DV type schemes are θ(KM)

and θ(KN), respectively. Class A and B schemes

have an overhead of θ(1) for both time and stor-

age if FSLA is used and overhead of θ(K) for both

time and space if VSLA is used. Table 3 summarizes

the storage and time overhead imposed by different

schemes.
In order to justify the overheads imposed by the

proposed schemes, the ratio of execution time of

SAB, SuperSAB, QPROP, RPROP, VLR, and dif-

ferent LA based schemes to the execution time of

standard BP algorithm for parity problem are mea-

sured and given in Table 4.

8. Conclusion

Learning rate can be adjusted directly or indirectly.

Momentum, conjugate gradient, and class D are

examples of indirect methods. Since the indirect

methods haven’t been satisfactory enough in many

cases, the direct adjustment of learning rate have

been proposed. Direct methods can be classified

in three classes: global method, local method, and

quasi-global method. In global methods such as Bold

Driver and Class A schemes, one learning rate is

used for all weights. In quasi-global methods such

as class B schemes, one learning rate is used for a

set of weights, and in local methods such as SAB,

SuperSAB, and class C schemes, one learning rate is

used for each weight in the network.

With the introduction of these new classes of

schemes, we propose a new classification tree for

learning rate adjustment methods. Figure 49 shows

this new classification.

In this paper, a new class of direct methods called

class C and a new class of indirect method called

class D are presented. All the schemes in these

classes use learning automata of fixed or variable

structure type to adapt BP parameter. The adap-

tation is based on the error surface behavior. To

evaluate the performance of these methods, simu-

lation studies were carried out on several learning

problems with different error surfaces. Simulations

indicate that dynamic adaptation of BP parameters

using the proposed methods increase the speed of

convergence of the standard BP and are superior to

most previous schemes reported for adaptation of BP

parameters.

Global
Class A
VLR
Fuzzy BP
ABP
SC

Dynamic Learning Rate Adjustment

Indirect Methods

Direct Methods

Momentum
Method

Conjugate
Gradient
Methods

Steepness
Methods

Local
Class D

Quasi-Global
Class B

Global
Class A
ASBP

Local
SAB
Super SAB
Class C

Quasi-Global
Class B

Fig. 49. Classification tree for dynamic learning rate adjustment schemes.
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