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Abstract. In many instances we find it advantageous to display a quantum optical 
density matrix as a generalized statistical ensemble of coherent wave fields. The 
weight functions involved in these constructions turn out to belong to a family of distri- 
butions, not always smooth functions. In this paper we investigate this question 
anew and show how it is related to the problem of expanding an arbitrary state in terms 
of an overcomplete subfamily of the overcomplete set of coherent states. This pro- 
vides a relatively transparent derivation of the optical equivalence theorem. An 
interesting by-product is the discovery of a new class of discrete diagonal representa- 
tions. 
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1. Introduction 

The play of  light has been of  great interest in physics. The discovery that  light has 
an essential quantum mechanical nature does imply that  we have to be careful in the 
rendering of its behaviour in familiar classical terms. For the most  par t  the pheno- 
mena of optics dealt with photometry  and other methods of the study of intensity of  
light. In wave optical processes, the intensity of  light on one surface is not  fully 
determined by  the intensity of  light on an ' ear l ie r '  surface: the two-slit interference 
pattern is the most  familiar example in this context. Within the context of  wave 
optics, one is led to introduce the notion of degree of  coherence which is then sub- 
sumed under the notion of the two-point correlatiort function. This function is 
additive for incoherent beams and thus provides a generalization of  the notion of  
intensity; yet in terms of the two-point correlation function, the general propagat ion 
can be described. As far as conventional optics is concerned, a field of  illumination 
may be described as a statistical ensemble of  wavefields; but how general is such 
a description of  a field of illumination when the full quantum nature of  light is 
included ? Remarkably enough a general field of  illumination may be described by 
a classical statistical ensemble as far as the two-point correlation function is concerned 
(Sudarshan 1969). 

There are, however, measurements that  can be carried out in an optical field which 
reflect the full quantum character of  light. Photocounting, intensity interferometry, 
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and non-linear optics are examples of such measurements. The question naturally 
arises as to the extent to which an ensemble description in terms of statistical wave 
fields appropriate to this general context is possible. The diagonal coherent state 
representation of quantum mechanical density operators (Sudarshan 1963) addresses 
itself to this question. 

The essential characteristic difference of quantum physics from classical statistical 
physics is the existence of off-diagonal correlation terms which reflect the phase- 
definite superposition of quantum states. The success of any attempt to produce a 
classical ensemble picture of a quantum optical field would depend upon the method 
of eliminating or transforming away such ' off-diagonal ' terms. This is not to be 
confused with classical limits and classical approximations; on the contrary, the effort 
is to produce an exact picture. This paper is concerned with the study of this problem 
and the discovery of a new family of representations. 

The diagonal coherent state representation of quantum mechanical density operators 
is of great heuristic as well as practical value in the quantum description of optical 
phenomena (Sudarshan 1963). It enables one to express the correlation functions 
of quantum optics in a form remarkably similar to classical correlation functions de- 
fined as averages over classical statistical ensembles. This happens because of two 
reasons. First, the former correlation functions are defined as expectation values of 
normal-ordered operator functions of the quantized electromagnetic field. Second, 
the diagonal representation asserts that any density operator p for a system with one 
degree of freedom is expressible in the form 

if p = _  4, (z) I z > < z l 
.gg 

Here the vectors I z ) are eigenvectors of the annihilation operator for complex 
eigenvalues z, the coherent states, 4, is a c-number weight function, and the integration 
is over the entire complex plane. The application to quantum optics involves generalis- 
ing this representation to systems with several degrees of freedom, but for simplicity 
we restrict ourselves to the case of one degree of freedom. 

The two related problems of understanding the nature of the weights 4, that occur 
in the diagonal representation, and of computing 4' for a given p, have been 
extensively discussed in the literature (Mehta and Sudarshan 1965; Klauder et al 
1965; Kano 1965; Klauder 1966; Rocca 1966). It is known that 4, is, in general, 
a distribution. The Fourier transform of 4, is always a distribution on the test 
function space D~ (space of functions of two real variables which are infinitely 
often differentiable and have compact support), so that 4, itself is a distribution on 
the space Z 2 obtained by applying the Fourier transformation to D 2. Furthermore, 
it has been shown that a given p can be approximated to arbitrary accuracy in the 
trace-class norm by a sequence of density operators whose associated weight functions 
are infinitely often differentiable and vanish at infinity faster than any inverse powers 
of their arguments. (See for instance Klauder and Sudarshan 1968). As for comput- 
ing 4, for a given p, two methods have generally been adopted. The first uses the 
diagonal coherent state matrix elements of p, ( z ] p ] z ) for all z, for the construction 
of 4,, since it is known that these matrix elements do specify O uniquely. In the second 
method, one uses instead the antidiagonal coherent state matrix elements ( - -  z I P l z )  , 
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since that leads to a simpler equation for the determination of~ (Mehta 1967, Agarwal 
and Wolf 1970). 

It is clear that the use of coherent states and the diagonal representation involves 
analysis at two distinct levels, one at the level of vectors in the Hilbert space to which 
the coherent states themselves belong, and another at the level of operators on this 
Hilbert space. The existence and essential properties of the coherent states are 
directly related to one's having a solution of the canonical Heisenberg commutation 
relation at hand. One of the aims of this paper is to show that the discussion relating 
to operators has exactly the same underlying mathematical structure as the discussion 
relating to state vectors, because the operators can be viewed as a linear space support- 
ing a solution of Heisenberg commutation relations for two degrees of freedom. As 
a result, many of the questions that come up at the operator level have exact parallels 
at a simpler level. This is in particular true of the attempt to set up the diagonal 
representation, and of the two common ways of determining ~, for a given p. The 
second aim of this paper is to exploit this relationship and show that any density 
operator p can be approximated arbitrarily closely by discrete diagonal coherent 
state representations in which, essentially, the weight ff is concentrated on certain 
countable infinite sets in the complex plane. This remarkable possibility occurs 
because while the coherent states form an overcomplete set, certain countable subsets 
of them form complete sets in Hilbert space. 

The material of this paper is arranged as follows. In section 2 we recall briefly 
those essential properties of coherent states that will be needed later. Section 3 sets 
up the Weyl representation of operators on a Hilbert space and the two alternative 
methods of calculating the weight 4, in the diagonal representation. These two sections 
are intended mainly to settle notation and make this paper self-contained. In section 
4 we analyze the mathematical structure underlying the diagonal representation and 
show its complete equivalence to the structure used in the description of state vectors 
in terms of coherent states. This equivalence is then used in section 5 to prove the 
existence of new, discrete forms of the diagonal representation. Concluding remarks 
and questions comprise section 6. 

2. Basic properties of coherent states 

The canonical Heisenberg commutation relation, which underlies the construction of 
coherent states, involves two hermitian operators q, p obeying 

[q, p] =i.  (1) 

The unitary Weyl form of this relation is expressed in terms of two one-parameter 
families of operators U(a), V(-r) defined by 

They obey 

u(~)--exp ( i , ,q) ,  v(~)=exp (i~.p), - oo< ,~ ,  ~r< oo. 

v(~)u(o')=u(o+~'), v(~)vo.')=v(~+¢), 

u(~) vo,)= v(~)u(~)exp ( - i~) .  

(2) 

(3) 
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The annihilation operator a and its adjoint a t  are defined as 

a=(q+ip)/V'2, at:(q--ip)/V'2, (4) 

and then eq. (I) becomes 

D, a*]=l. (5) 

Coherent states are eigenvectors of the annihilation operator. There is one 
eigenvector I z~ corresponding to each complex number z as eigenvalue: 

a I z ) : z  I z >. (6) 

The Schrodinger wavefunctions of these eigenvectors are 

(q'l z > =, , -~ exp [--½(q'--z.v/2)Z--½z(z*--z)]. (7) 

Here q' is a general eigenvalue of the operator q and the corresponding eigenvectors 
I q'~ are subject to the usual delta function normalization. Coherent states form 
a non-orthonormal set since 

<z'lz > =exp ( -½ I z' 1'-½1 z I' +z'*z). (8) 

A general vector I ~b) is describable by its Schr0dinger wave function ~,(q') which is 
a square integrable function of q'. It can also be described by its projections on all 
coherent states. If  one writes 

<z* [~b> = exp (--½ I z [~)f(z), (9) 

then f (z)  is entire analytic and obeys a growth condition at infinity: 

If(z)  [ ~ It l~,) II exp (½[z Is). (10) 

Using eq. (7) we can relatef(z)  to ~b(q'): 

f (z)=rr-1/ 'exp(--½Z 2) ym m ~b(q') exp(--½q'9+q'z ve2) dq '. (11) 

The coherent states I z> taken for all z form an overcomplete set. One has a 
resolution of the identity expressed by the following equation valid for any I~> 
(Klauder 1960): 

I~> = ~_1 f I z> <z I ~> a2z. (12) 

Certain subsets of  the coherent states form complete sets in Hilbert space; the precise 
meaning of this and some examples will be given in section 5, though some cases will 
be used in section 4 as well. The complete equivalence of the SchriSdinger description 



Light on optical equivalence 231 

of the Hilbert space using square integrable wave functions ff(q') and the description 
using entire analytic functionsf(z), based on eq. (9), has been established by Bargmann 
(Bargmann 1961). 

3. The diagonal representation 

As stated in the introduction, the properties of the diagonal representation have been 
studied in the literature in the context of the trace-class norm for operators. Our 
discussion however will be based on the Hilbert-Schmidt norm. Let ~7£ denote the 
Hilbert space to which the discussion of the previous section refers. A linear operator 
A on 5~ is of Hilbert-Schmidt (H-S) class if 

Tr (A t A) < oo. (13) 

The collection of all such operators forms a linear set and in fact a Hilbert space, 3f  
say, if we define the inner product of two operators by 

(A, B) : Tr (A* B). (14) 

The density operators not only belong to the trace-class but also to the Hilbert- 
Schmidt class. So the density operators and their representations are automatically 
included in the present study. Analogous to the Schr;Sdinger wave function descrip- 
tion of vectors in ,~f, one has a Weyl representation for the elements of 3f  (Weyl 
1931). The basic operators used here are the so-called displacement operators 
n(~): 

D(a)  : ' / r  -1/~t exp (ll a t - -o ,  ~ a), (15) 

a is a complex number, and apart from the factor n-1/2, D(a) is unitary. These 
operators are improper elements of Y/', like eigenvectors of q in ~7£, and they obey 

(D(a'), D(a)) = 8(~'--a) _--__ 8(Re a ' - -Re a) 8(Im a '--Im ~). (16) 

The Weyl representation expands a general H-S operator T in terms of the displace- 
ment operators: 

r = f t(~) D(~) d'~, t(~) = (n(~), T), 

(T, T) = S It(a)I S d~,~. (17) 

Thus elements of 3f correspond one-to-one to square-integrable functions of two real 
variables, their Weyl weights. (For a rigorous discussion, see Pool 1966). The 
diagonal coherent state matrix elements of D(a) are needed later and are 

( z l  D ( ~ ) l z )  = ~_x,~ exp ( - ½  I~1 ~ + ~ z* - ~* z). ( i s )  
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Let ~ be the weight function appearing in the diagonal representation of  an element 
T in  :yf: 

T = 1 i  ¢(z) I z> <z I d2z. (19) 
,ff 

One way to find ~ is to take the diagonal coherent state matrix element of this relation. 
It turns out that then the Fourier transform of ff gets determined in terms of  the Weyl 
weight of  T. From eqs (8), (17), (18) and (19) we get: 

f t (a) exp (--½l a [~ -k az'* - -  a*z') d2a 

= ~_1,~ f ~(z) exp ( -  I z - ~ '  I ~) d2z. (20) 

If  ~ is the Fourier transform of ff: 

if(z) = 1 f ~(a) exp (az* - -  a 'z)  d2a, (21) 
¢t  

then from eq. (20) we get the result 

~ ( a )  = rr x/~" t(a) exp (½1 a I z). (22) 

Since t(a) is square-integrable, it is the exponential factor here that forces one to 

interpret ~, and so ~ as well, as a distribution. 
The alternative method of finding 4' uses the antidiagonal coherent state matrix 

elements ofeq .  (19). When eq. (8) is used, this reads: 

< - z ' l T l z '  > = 

1 f if(z) exp ( --  [ z I '  - -  I z ' l  ~ + z ,  z' - zz'*) d~z. (23) 

The right hand side has the form of a Fourier transformation which can be inverted 
to yield ~b: 

~(z) = (1/~,)exp ( I z12) f < - z '  Izlz" > 

exp ( I z' 12 + zz'* - z*z') d2z '. (24) 

An alternative derivation of  eq. (22) is obtained by taking the expectation value of  
both sides of eq. (17) using eq. (18) to obtain 

zr -1'2 f t (a) exp ( - -  ½ ] a }~ -k az* - -  a* z) d2a : ( z ] TI z ) .  

Taking Fourier inverse we get 

t (a) = ~r -1/' exp (½ 1 a 12) f ( z IT[ z > exp (a* z - -  a z*) d2z. 
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Since the Fourier transform of ~(z) is exp ( I a [ 9 ) times the Fourier transform of 
( z I T [ z ) (Mehta and Sudarshan 1965), eq. (22) follows. 

4. Reinterpretation of the diagonal representation 

In this section we intend to show that the mathematical structure underlying the 
diagonal representation is identical in essential respects to the structure present at the 
level of the state vector space ,7/. To do this we first show that, using the Weyl 
system of operators U(cr), V(r) of  eq. (2) acting on ,7£, we can in a natural way set up 
two commuting Weyl systems acting on Of'. With A denoting a general element of  
oY', we define operators fig(a), Y/'j(~-), j = l ,  2, on Of" thus: 

adl(tr)a = U (a/~/2)  a V (--*/V2),  ~t..(~) A = v (a/V2)A v (--,~/x/2-), 

,¢:~(,)a = v ( , / V ~ ) / 1  v (~-/V~.), .e',(~-)A = t: (-~-/v'~-) a u ( -~ - /V25 .  (25) 

It is straightforward to check first that these linear operators on oY" do preserve the 
inner product (14), and to verify next using eq. (3) that ~/1 (~), Y/'I(~') and ~/2(a), 
Y/~(-r) form two mutually commuting Weyl systems. That is, one has 

~tl (a) ~tl (a') = ~tl (a + ~'), . r l  ( . )  ~ ( . ')  = ~ (~ + . ') ,  

~/1 (a) Y/'I (-r) = Y/'I ('r) ~//x ((r) exp (--&r~'), (26) 

and exactly similar equations for ~/2(a), Y/',.0"); and operators with subscript 1 commute 
with those with subscript 2. The infinitesimal generators of  the one-parameter 
families defined in eq. (25) are found to be 

Qx A = [q, al/v'2,, Q2 A = [p, al  / v'2, 

P I A =  {p, A]-/V'2, P~A = - -  {q ,A}/Vr2.  (27) 

The operators Q~, Pj are hermitian with respect to the inner product on y{', and obey 
Heisenberg commutation relations 

[Q~, Q,,] = [Pj, ek] = 0, [Qj, e d  = isjk. (28) 

It is now natural to ask for a Schrrdinger type description of the space 3f', which 
diagonalises Qj while the Pj are operators of partial differentiation. One finds that 
the Weyl representation (17) does exactly this. The displacement operators D(a) 
of eq (15) are in fact sinmltaneous ' eigenvectors ' of Q1 and Q2. Writing a = r + i s  
with r and s real, one finds 

Q1 D(a) = rD(a), Q, D(cL) = s D(a), 

P1 D(a) = i ~-- D (a), P2 D (a) : i 0- D (a). (29) 
Or Os 
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Therefore, the association of the Weyl weight t(a) with an element Tin Off is exactly 
similar to the association of a Schr6dinger wave function q,(q') with a vector [ q') in ,TL 

The next natural step is to carry over the description of ,~f using coherent states, to 
the level of oT. We now have two independent annihilation operators .g~, .if2 and 
their adjoints, defined in terms of Qj and Pj in the manner of eq (4): 

M1A -~ (aA - -  Aat)lV'2, M2A : - -  i(aA + Aa t) 1~/2, 

~f tA : (a t A - -  Aa)/V/2, M2tA = i(atA + An) / ~2S (30) 

The simultaneous 'eigenvectors' of .~'1 and ~ are those elements of fit" that are 
formed from coherent states in 5~f and their adjoints as outer products: 

Z1--Z2*) 
. ~ l z l ) ( z 2 1 -  ~/~ I z l ) ( z 2 1 ,  

(zl+z2*) 
. ~ ' 2 1 z ~ > < z 2 1 = - /  ~/~ I z ~ ) < z 2 1  • (31) 

One finds that these elements of 3f" have inner products with one another that are 
a direct generalization of eq. (8) to two degrees of freedom: 

= e x p ( - - ¼ t z l - - z 2 * [  3 - ¼ l z a - z , * i  3 + ½ ( z a * - z , ) ( z  1 - z 2 .  ) 

- ¼ I zl + z2* 12 - ¼ 1 z~ + z4* 13 + ½ (z~* + z,) (zl + z,*)). (32) 

The result thatf(z)  in eq. (9) is entire analytic, and the resolution of the identity in eq. 
(12), both generalise easily to 3f'. (For the former, see Mehta and Sudarshan 1965). 

In the light of the above construction, the diagonal coherent state representation 
(19) finds a new interpretation. The elements of Y/" used in it are ' eigenvectors ' of  
Mt and .if2 with pure imaginary eigenvalues for both: 

~ l z ) < z l : ( i v ' 2 I m z ) l z ) / x z l ,  

M2 [ z ) ( z l = ( - -  i v ~ f  Re z) I z ) ( z [ .  (33) 

Therefore the problem of setting up the diagonal representation for operators on ,-~ 
is exactly the same as that of replacing the expansion (12) for a vector [ 4, ) in 5~ with 
one in which only coherent states with pure imaginary eigenvalues of a are used. 
Such an expansion for I 4J ) has the form 

14, > = ~ - ~ o ~  (r) l i~/2r > dr. (34) 

One can hope that this representation for any t ~b ) is possible because the subset of 
coherent states appearing here is complete (actually overcomplete--see the next 
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section). The need to permit the occurrence of distributions as weight functions 
in eq. (19) arises from a corresponding need to permit distributions to appear as 
' wave functions ' v(r) in the simpler situation presented by eq. (34). 

The analogue, at the vector level, of the first method of obtaining ¢ (z) is the 
following. We take the inner product of both sides of eq. (34) with a coherent 
state l i V'2 s > where s is real, and then use eqs (7) and (8): 

f~_~ ~ (q') exp (--½ q'~ + 2isq') dq' 

= ~r-1/' f ~  oo v (r) exp [--(r--s) ~] dr. (35) 

This corresponds to eq. (20); we then follow eq. (21) and set up a Fourier 
representation for v(r) 

v (r) = 7r -1/2 foo_~ ~ (q,) exp (2irq') dq'. (36) 

On combining eqs (35) and (36) we get 

"~ (q') = ~rl/4 ¢ (q') exp (½ q,2), (37) 

which corresponds exactly to eq. (22) since the Schr6dinger wave function and the 
Weyl weight are analogous quantities. In view of the last factor in eq. (37), the inverse 
Fourier transform v (r) and hence the representation (34) may involve distributions 
rather than functions. Unlike the overcomplete family of states [ z)  with z complex, 
the family I i X/] r )  with r real requires possibly more singular combinations. 

As for the second method for finding $ (z), we realize that the left hand side of eq. 
(23) can be written as 

<-z '  I rl  z'> = ( I - z ' >  <z' I, r), (38) 

and that the eigenvector of M1 and M2 occurring here corresponds to real eigenvalues 
for both. The analogous procedure to determine v (r) at the state vector level is then 
to take the inner product of both sides of eq. (34) with a coherent state I V~ s)  where 
s is real: 

(~/~ s I ~> = 'r-1/2 f°°o o v (r) exp (--s~--r ~ + 2its) dr. (39) 

This corresponds to eq. (23). Inversion of the Fourier transform then gives the 
analogue to eq. (24): 

v (r)=rr -1/2 ¢xp (r 2) f~oo <V'2 s I ~b> exp (s~--2irs) ds. (40) 

This discussion shows that, at least for H-S operators, the diagonal representation 
and questions connected with it are two-dimensional versions of simpler questions at 
a one-dimensional level. 
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5. Discrete diagonal representations 

The fact that the coherent states, and even the subsets of  states I i V'2 r )  or [ V'2 s )  
with r, s real are overcomplete implies that not every value of  the weight function in 
expanding or approximating an arbitrary state [~b) contains 'information'. It 
would be interesting to know what 'information' is contained in arbitrary statistical 
states. To evaluate the information content we should get the state in a classical 
like ensemble with no non-diagonal terms and, that, in terms of  the fewest number 
of  states. Clearly the state should be overcomplete: otherwise we could not get a 
diagonal form for every statistical state expanded with the same set of states. 
We should thus reconcile two opposing tendencies. 

We now use the results of  the last section to exhibit new forms of  the diagonal 
representation. For this, recall from section 2 that every vector [~b) stands in 
one-one correspondence with an entire analytic function f (z)  according to eq. (9). 
We now say a subset S of the complex plane is a characteristic set if the vanishing 
of  f at all points of S implies the identical vanishing of  f .  Equivalently, S is a 
characteristic set if 

(: I all z I (41) 

(Bargmann 1961). Examples of  such sets that do not specifically refer to the large z 
behaviour o f f ,  eq (10), are: (1) any set of points in the complex plane with a finite 
limit point; (ii) the set of all real numbers; (iii) the set of  all imaginary numbers, etc. 
(Sets (ii) and (iii) were used in the previous section in reconstructing l ~ )  from 

(ix/'2 s I ~b) or (~ /2  s[ if) for all real s). Examples of  characteristic sets that do 
reflect the large z behaviour o f f ( z )  are (Bargmann 1961): arty sequence {a.} of  
distinct nonzero complex numbers such that 

~ ?  la .  I - a - ' = o o  (42) 

for some ~7>0. 
For simplicity, we consider only countable characteristic sets. Let the points of  S 

be zn, n ----- 1, 2, . . . .  Then the set of (distinct) coherent states I zn) has the property 

(z,  I ~b)=0, all n ~, I ~b)-----0. (43) 

This implies that the set of states { Izn)} is complete in the following precise sense: 
(i) every finite subset of  this set is linearly independent; (ii) the linear manifold of all 
finite linear combinations of  vectors drawn from {[ z ,)} is dense in ,-~. In detail, 
(ii) means: a given vector I ~b) in 5~f can be approximated to any desired accuracy by a 
suitable finite linear combination of vectors l z.).  So, given any E>0, one can 
find an integer N(~)<  oo and coefficients a.(c) such that 

[] ~b) --  ~ N ( ~ ) a n ( , ) l z .  ) II < "  (44) 

However, because the [ z.) do not form an orthonormal set, their completeness does 
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not imply the existence of a definite set of expansion coefficients a. for a given I ~') 
such that the finite sums 

converge to I $) in the norm as N-->oo. In other words, with a nonorthonormal 
complete set, it is in general not possible to ' actually' write a given vector [ $) as a 
linear combination of the vectors in the set, though with finite linear combinations one 
can get as close to I $) as one wishes. Essentially this same problem occurs in the 
subject of nonharmonic Fourier series (Paley and Wiener 1934, Levinson 1940). 

The discrete diagonal representations now arise as follows. Take two characteri- 
stic sets S 1 and S~, both countable and both consisting of points on the imaginary axis 
only. Let them consist of the points {ix/2 y . )  and {--i~/2 x.]- respectively, with 
x, and y~ real. It follows that the set of simultaneous 'eigenvectors' of ~fl and ~f~ 

corresponding to the respective eigenvalues ix/2y~ and --ix/2 xm is complete in 3f" in 
the precise sense defined above. Here m and n go independently from 1 to co. 
Comparison with eq (33) shows immediately that this set of elements in 3f is 

I Zm~)(Zm~ 1, z,nn=Xm+iy~, m, n, -~1, 2 . . . .  (45) 

This again is countable. We conclude therefore that any density operator p can be 
approximated to arbitrary accuracy in the H-S norm by finite discrete diagonal 
coherent state expressions of the form" 

:=.><z..I (46) 
FF/, /'/ 

where {z=,} is a preassigned countable set of complex numbers built up as described 
above. Such approximations to p share with the usual diagonal representation (19) 
the property that when quantum correlation functions are calculated using them, one 
gets classical-looking forms. But the main difference is that in general there is no 
definite sequence of expansion coefficients {~=0" associated with a given p, whereas 
there is a definite weight function $(z), albeit a distribution. 

5. Concluding remarks 

In this paper we have presented a new way of understanding the structure of the 
diagonal representation in quantum optics. When the state vector space corresponds 
to a system with one degree of freedom, the representation of operators is most 
naturally discussed in the language appropriate to a system with two degrees of free- 
dom. This makes the form of the diagonal representation as well as its explicit 
determination very transparent. 

We have also seen some of the subtle consequences of the overcompleteness property 
of coherent states. The most striking is that one can replace the usual continuous 
form of the diagonal representation (19) by the discrete form (46). At first sight this 
seems to present a paradox because the weight function $(z) of eq. (19) does appear to 
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be unambiguously determined by the given operator T. One sees no room for all the 
freedom present in representations of  the form (46), which naively speaking arise 
f rom a ~(z) which is a sum of  delta functions concentrated at  a given sequence of  
points {Zm,} in the complex plane. But the paradox is avoided by the subtle distinct- 
tion between the completeness of  a given sequence of coherent states, and the possibil- 
ity of  actually expanding a general vector in terms of these states. I t  is of  interest to 
examine this question more closely and find out which characteristic sets produce 
complete sets of  coherent states that also possess the expansion possibility. 

The algebraic approach of  this paper  led naturally to the Hilbert-Schmidt norm for 
operators on the Hilbert space ,~,  and the convergence of various operator repre- 
sentations is understood to be in the sense of  this norm. However, for applications 
one would prefer that any sequence of  operators converging to a given density opera-  
tor p do so in the trace-class norm, so that  the sequence cart be used for calculating 
expectation values. The existing proofs of  the diagonal representation, with if(z) 
a distribution, do work with the trace-class norm (Klauder and Sudarshan 1968). 
I t  would be interesting to extend the methods of  this paper  in that direction. We 
hope to examine these questions elsewhere. 
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