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ABSTRACT

Aims. The knowledge of how the specific intensity is distributed over the stellar disk is crucial for interpreting the light curves
of extrasolar transiting planets, double-lined eclipsing binaries, and other astrophysical phenomena. To provide theoretical inputs for
light curve modelling codes, we present new calculations of limb-darkening coefficients for the spherically symmetric phoenixmodels.
Methods. The limb-darkening coefficients were computed by covering the transmission curves of Kepler, CoRoT, and Spitzer space
missions, as well as the passbands of the Strömgren, Johnson-Cousins, Sloan, and 2MASS. These computations adopted the least-
square method. In addition, we also calculated the linear and bi-parametric approximations by adopting the flux conservation method
as an additional tool for estimating the theoretical error bars in the limb-darkening coefficients.
Results. Six laws were used to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and
a more general one with 4 terms. The computations are presented for the solar chemical composition, with log g varying between 2.5
and 5.5 and effective temperatures between 1500−4800 K. The adopted microturbulent velocity and the mixing-length parameters
are 2.0 km s−1 and 2.0, respectively.
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1. Introduction

Limb-darkening coefficients (LDC) are an important tool for in-
terpreting the light curves of double-lined eclipsing binary sys-
tems, as well as in the studies of the stellar diameters and of
the line profiles in rotating stars. An additional application is
to investigate of the gravitational micro-lensing, or optical in-
terferometry. These coefficients are also needed to investigate
the extrasolar planets properties. Although the empirical data for
limb-darkening is still too scarce to perform a robust compari-
son with the theoretical predictions, the situation is clearly im-
proving thanks to the increase in high-quality light curves from
double-lined eclipsing binaries obtained with automatic tele-
scopes (Claret 2008), light curves of planetary transits (including
observations obtained with space telescopes (Claret 2009; Sing
2010; Howarth 2011), or microlensing events (Zub et al. 2011).

Almost all models of stellar atmosphere used to derive the
LDC were computed assuming plane-parallel geometry, and the
investigations of the effects of sphericity on the intensity distri-
bution were still scarce, such as those by Orosz & Hauschildt
(2000) and Claret & Hauschildt (2003). However, in the past
few years, Wittkowski et al. (2004, 2006a,b), Neilson & Lester
(2008), and Haubois et al. (2009) used interferometric observa-
tions to investigate the influence of the sphericity, increasing the
amount of information on the subject. Microlensing events are

� Tables 2–25 are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A14

also being used to study the effects of sphericity (Fields et al.
2003; Rattenbury et al. 2005). More recently, Neilson & Lester
(2011) have used a modified version of atlas to investigate the
properties of limb-darkening in spherically-symmetric stellar at-
mospheres. The present series of papers aims to study the influ-
ence of the sphericity of the models in the distribution of inten-
sities and to provide new LDC to be used in these fields. Here
we investigate the specific intensities of spherical models gen-
erated with the PHOENIX code for 1500 K ≤ Teff ≤ 4800 K,
with log g varying between 2.5 and 5.5, appropriate for late-type
stars. In Sect. 2 we briefly describe the properties of the spherical
models. Next, we introduce the numerical methods used to com-
pute the LDC and reintroduce the concept of a quasi-spherical
model (Claret & Hauschildt 2003). Finally, we analyse the re-
sulting LDC and compare them with previous calculations. A
short summary is given at the end of the paper.

2. Brief description of the PHOENIX models

The utilised models correspond to the spherical geometry
1D mode of version 16 of the phoenix code. The most im-
portant of the recent improvements over preceding 1D phoenix
models is the new EOS, which permits a much more accu-
rate chemical equilibrium determination and expands the possi-
ble temperature-pressure range significantly thanks to extended
consistent chemical data. Furthermore, the line lists have been
expanded and updated, notably for molecular species. As in
previous publications (e.g., Claret & Hauschildt 2003), the
model grid is based on the parameters Teff, log g, and [M/H],
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where g is defined as the gravity at the altitude corresponding to
optical depth τ1.2 μm = 1.0, while the stellar radius R is defined
by g = GM/R2, with the gravitational constant G. Convection
is treated via mixing-length theory, involving a mixing-length
parameter of 2.0 that has been calibrated on M type stars
with Teff = 2800 K. Microturbulence is considered via a velocity
dispersion of 2.0 km s−1.

The atmospheres for Teff > 3000 K are sampled at 64 lay-
ers of the photosphere, i.e., 64 different optical depths, while
the lower temperature models contain 256 layers in order to sta-
bilise cloud calculations. Current models do not consider chro-
mospheric layers, hence, corresponding emission and absorption
are ignored. However, we do not expect that disregarding the
chromosphere will have a substantial influence on the colours
that are calculated for this paper. At each atmospheric layer,
the specific intensities were calculated for 78 different μ values.
The calculations involve about half a million wavelength points
between 10 and 107 Å with a stepwidth of 0.1 Å between the
optical and mid-infrared range, and increasing for higher wave-
lengths. All this information requires around 1.1 GB per model
radiation field spectrum.

The lower temperature range (Teff = 1500−3000 K) has
been covered by the drift-phoenix models (Witte et al. 2009).
These models feature an additional and detailed computation of
high-temperature condensate clouds, which become vastly im-
portant in the respective atmospheres. Cloud calculations are
carried out via the dust moment method derived by Helling et al.
(2008). The rate equations involve processes such as nucleation,
collision-driven grain growth reactions, gas phase saturation-
regulated grain evaporation, dust precipitation, corresponding
gas phase depletion/enrichment, and turbulent element replen-
ishment. The resulting altitude-dependent gas phase abundances
determine the gas phase composition and, therefore, the local
gas phase opacities. Furthermore, the composite grains with
their altitude-dependent size distribution and composition yield
dust opacities far superior to simple approaches such as dusty-
phoenix (Witte et al. 2011), which improves the spectra both
directly and indirectly in the form of a more appropriate self-
regulation of the cloud through backwarming.

The dusty/cond-phoenix models rely on the phase equilib-
rium assumption. The result of forced phase-equilibrium is an
overestimated depletion of heavy element throughout most of
the cloud (Woitke & Helling 2004), i.e., the gas phase opac-
ities will be underestimated within corresponding atmospheric
layers. Furthermore, the dust opacity is oversimplified in cond
and dusty models since the former ignores it outright, assum-
ing that all condensible material has rained out, while the latter
fails to consider dynamic rain-out and gas-phase replenishment,
requires an artificial grain size distribution, and disregards the in-
fluence of composite materials by simply adding up the opacities
for pure species grains. Of course, this causes huge differences
in wavelength-dependent and altitude-dependent opacities and,
therefore, the angle-dependent optical depths responsible for the
limb darkening are very different between the different model
approaches.

3. The limb-darkening coefficients for PHOENIX

models

The most usual laws of limb-darkening are
the linear law

I(μ)
I(1)
= 1 − u(1 − μ), (1)

the quadratic law

I(μ)
I(1)
= 1 − a(1 − μ) − b(1 − μ)2, (2)

the square root law

I(μ)
I(1)
= 1 − c(1 − μ) − d(1 − √μ), (3)

the logarithmic law

I(μ)
I(1)
= 1 − e(1 − μ) − fμ ln(μ), (4)

the exponential law

I(μ)
I(1)
= 1 − g(1 − μ) − h

(1 − eμ)
, (5)

and a more general law with four terms (Claret 2000)

I(μ)
I(1)
= 1 −

4∑

k=1

ak(1 − μ k
2 ), (6)

where I(1) is the specific intensity at the centre of the disk,
and u, a, b, c, d, e, f , g, h, and ak are the corresponding LDCs.
The parameter μ is given by μ = cos(γ), where γ is the
angle between the line of sight and the emergent intensity.
The model atmosphere intensities were convolved with a re-
sponse function that considers the filter transmission curves for
Kepler, CoRoT, Spitzer(IRAC), uvby (Strömgren), UBVRIJHK
(Johnson-Cousins), Sloan, and 2MASS, double reflection from
an aluminium-coated mirror and detector sensitivity (see for ex-
ample Eq. (7) in Claret & Hauschildt 2003). All calculations
were performed by adopting the least-square method (LSM). In
addition, to help users of a tool for evaluating the theoretical
errors in the LDC, we also computed the coefficients by using
the flux conservation method (FCM) for bi-parametric and lin-
ear approximations. Such a method conserves – by definition –
the flux, but the corresponding fits give larger numerical scatter-
ing than the LSM.

The non-linearity of the specific intensity distribution
has been known for a long time (Kinglesmith & Sobieski
1970; Manduca et al. 1977; Díaz-Cordobés & Giménez 1992;
Van Hamme 1993). Such a non-linear characteristic is even more
pronounced in the case of spherical models due to the drop-offs
that are caused by the decreased matter-radiation interaction near
the extreme limb of the star. At first glance, the transfer equa-
tion for a spherically symmetric medium is significantly more
complex than the corresponding plane-parallel geometry since
it is a partial differential equation in r and μ. However, the use
of the characteristic paths reduces the spacial operator to a sin-
gle derivative with respect to the pathlength, and the spherical
symmetric equation is not structurally different from the plane-
parallel one (Mihalas 1978). Therefore, it is not surprising that
both geometries provide similar results for some ranges of μ’s.

A spherical 1D model can be considered as having a core
and an envelope. The core behaves very roughly like a plane-
parallel structure and the envelope delivers the fully spherical
part. Therefore, using only the core part is very similar to using
a plane-parallel model. If we consider only the μ points previous
to the drop-offs, the resulting shape of the intensity distribution is
similar to those with the same Teff, log g, log [M/H] and mixing-
length parameter but computed with plane-parallel geometry
(see for example, Figs. 5 and 6 by Claret & Hauschildt 2003).
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Fig. 1. The specific intensity distribution for a [4800, 4.5] spherical symmetric model. Continuous line represents the actual intensities while
crosses denote the fit by adopting Eq. (6). Calculations for Strömgren and Johnson-Cousins photometric systems.

Thus, a quasi-spherical model is defined as the one computed
with spherical symmetry but without considering the drop-off
region. The quasi-spherical models can be used, for example, in
those situations for which the small intensities near the limb pre-
dicted by spherical models cannot be observationally detected
or when the effects of sphericity are not important. The set
of μ values in phoenix code depends on the characteristics of
each model. After an inspection of the intensities profiles for
each passband used here, we select as cut-off μ ≥ 0.1.

Another important point that must be considered and also
justifies the use of quasi-spherical models is related to the obser-
vational difficulty of detecting the low intensities predicted by
spherical models near the limb. Often, observations of extrasolar
planet transits or double-lined eclipsing binaries, for example,
are not yet able to detect these low intensities. In very favourable

cases, only bi-parametric semi-empirical LDC are derived, at
best. Nevertheless, the profiles of the intensities of the spheri-
cal models are complicated and cannot be described well by bi-
parametric laws, thus hampering such a comparison. The use of
the quasi-spherical models may also be useful in these situations
given that bi-parametric laws such as Eqs. (2)−(5) can be ap-
plied with good results to these models. Of course, the spherical
models are more physically relevant than quasi-spherical ones.
As mentioned before, this concept is very useful when the low
intensities near the limb cannot be detected and compared with
the theoretical predictions.

Figure 1 shows the results for the uvbyUBVRIJHK pho-
tometric systems where the integrated intensity distribution
is compared with the fits provided by Eq. (6) for a model
with Teff = 4800 K and log g = 4.5. We denote a given model
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Fig. 2. The same as in Fig. 1 but for the case quasi-spherical. Crosses indicate the fit using Eq. (6). Calculations for Strömgren and Johnson-Cousins
photometric systems.

as [Teff, log g]. The drop-offs are much more pronounced for
longer effective wavelengths, say, for the passbands RIJHK.
Despite the complicated shape of the curves, it is clear that
Eq. (6) represents the integrated intensity distributions very well.
However, the agreement is not very good for longer effective
wavelengths due to the corresponding steep behaviour of the
drop-offs, although they are still acceptable.

When we consider quasi-spherical models, the agreement
between the integrated intensities and the fits provided by Eq. (6)
is still better than for pure spherical models due to the smooth-
ness of profiles (Fig. 2). The bi-parametric approximations and
even the linear one give fits similar to those obtained with plane-
parallel models, as for example, those illustrated in Fig. 3 for
the six passbands of Kepler, CoRot, and Spitzer (quadratic law).

Comparisons between the quasi-spherical models generated by
the phoenix code and those generated by the plane-parallel atlas
(Kurucz, priv. comm.) confirm the utility of the mentioned con-
cept (see below). On the other hand, the exponential equation fits
the actual integrated intensities for all photometric systems well
for spherical models. Therefore, Eq. (5) is useful for those users
who wish to incorporate the effects of sphericity but using a law
with only two terms, instead of with four terms as in Eq. (6).
However, such a law should be used with caution as representa-
tive of pure spherical models because the corresponding fits are
much more worse than those obtained with Eq. (6).

If we compare the present LDC with those previously com-
puted using phoenix spherical models (Claret & Hauschildt
2003), we find good interagreement, except for the passbands u
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Fig. 3. The same as in Fig. 1 but for the case quasi-spherical. Crosses indicate the fit using Eq. (2). Calculations for Kepler, CoRot, and Spitzer
(IRAC) photometric systems.

and U. However, this comparison was only possible for models
with Teff ≈ 5000 K, given the ranges of effective temperatures
of the two studies.

The linear fit, as mentioned, is not a good approximation
for the intensity distributions. However, its simplicity makes it
appropriate to comparing the present results for quasi-spherical
models (cond-phoenix and drift-phoenix) with those generated
with the atlas code. This is shown in Fig. 4 for the Strömgren
and Johnson-Cousins systems. In general, the differences are
smaller for higher Teff, except for the passbands v and U. More
remarkable is the abrupt variation in the linear coefficients for
effective temperatures around 2000 K for cond-phoenix models.
This decrease is more pronounced for 5500 Å < λ < 8000 Å,
i.e., for the filters y,V,R, and I. For wavelengths outside the
mentioned interval, such variations are attenuated and practi-
cally disappear. These variations also depend on the local grav-
ity, being less steep for lower log g. For the models drift-
phoenix such variations disappear but we detected discontinu-

ities around Teff ≈ 3000 K, which is inversely proportional
to the wavelength. The aforementioned discontinuities proba-
bly are connected with the switch between cond-drift models.
In general, the LDC computed using drift-phoenix models are
greater than those derived by adopting cond-phoenix ones.

An interesting and important question concerning the com-
parison between theoretical and observational LDC is whether
the cond and drift models are distinguishable with our actual
level of observational accuracy. Figure 4 can be useful to help us
shed some light on this point. The mean average error bars for
semi-empirical linear LDC is approximately of 0.1, while for the
quadratic approach they are around 0.2 for a and b (see for ex-
ample, Southworth 2008; Claret 2009). In the linear case, the
discrimination between cond and drift models seems to be pos-
sible, depending on the effective temperature and the adopted
passband. It would be desirable that observers could perform
such tests with the objective of providing some clues to the
stellar atmosphere modellers in order to improve the theoretical
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Fig. 4. Linear LDC for quasi-spherical calculations using drift-phoenix models (continuous lines, crosses), cond-phoenix (dashed lines), and atlas
plane-parallel models (points). Log g = 4.0, solar composition, microturburlent velocity =2.0 km s−1, uvbyUBVRIJHK passbands.

models. Mutatis mutandis, the same applies to the bi-parametric
approach.

As we have seen, no law describes the distribution of inten-
sities perfectly. We have calculated the merit function for each
fit that will help users decide which law to use. This function
is given for all passbands (multiplied by the number of points μ
used in each fit which is around 78). For interested users, we can
also provide the actual intensity distribution (in normal μ points).

4. Summary and final comments

We present the LDC for the spherical symmetric phoenix mod-
els atmosphere spanning a log g range between 2.5 and 5.5, solar
metallicity, and effective temperatures 1500 K ≤ Teff ≤ 4800 K.
Our coefficients cover the transmission curves of the Kepler,

CoRoT, and Spitzer space missions and the usual Johnson-
Cousins, Strömgren, Sloan, and 2MASS passbands.

We have adopted six equations to describe the specific
intensities (linear, quadratic, root-square, logarithmic, exponen-
tial, and the one containing four terms). In case of pure spherical
models, only the exponential equation and that containing four
terms were used, while the bi-parametric and linear laws were
used to describe the quasi-spherical. In the last cases, we also
computed the LDC by adopting FCM to help estimate the theo-
retical error bars.

Table 1 summarises the results for the LDC calculations
(Tables 2−25). These tables can be retrieved electronically at
CDS. Finally, we are also able to provide LDC for additional
photometric systems on request (for Walraven and Geneva pho-
tometric systems, we refer to Claret 2003).
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Table 1. Limb-darkening coefficients for the Kepler, CoRoT, Spitzer, UBVRIJHK, uvby, Sloan, and 2MASS photometric systems.

Name Source Range Teff Range log g log [M/H] Vel Turb. Filter Fit/equation/model

Table 2 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/FCM/Eq. (1) quasi-spherical
Table 3 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/FCM/Eq. (2) quasi-spherical
Table 4 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/FCM/Eq. (3) quasi-spherical
Table 5 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/FCM/Eq. (4) quasi-spherical
Table 6 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/Eq. (5) quasi-spherical
Table 7 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/Eq. (6) quasi-spherical
Table 8 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/Eq. (5) spherical
Table 9 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Kepler, CoRot, Spitzer LSM/Eq. (6) spherical
Table 10 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/FCM/Eq. (1) quasi-spherical
Table 11 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/FCM/Eq. (2) quasi-spherical
Table 12 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/FCM/Eq. (3) quasi-spherical
Table 13 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/FCM/Eq. (4) quasi-spherical
Table 14 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/Eq. (5) quasi-spherical
Table 15 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/Eq. (6) quasi-spherical
Table 16 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/Eq. (5) spherical
Table 17 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 uvbyUBVRIJHK LSM/Eq. (6) spherical
Table 18 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/FCM/Eq. (1) quasi-spherical
Table 19 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/FCM/Eq. (2) quasi-spherical
Table 20 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/FCM/Eq. (3) quasi-spherical
Table 21 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/FCM/Eq. (4) quasi-spherical
Table 22 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/Eq. (5) quasi-spherical
Table 23 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/Eq. (6) quasi-spherical
Table 24 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/Eq. (5) spherical
Table 25 phoenix 1500–4800 K 2.5–5.5 0.0 2 km s−1 Sloan, 2MASS LSM/Eq. (6) spherical
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