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Abstract. This paper presents a linear cryptanalysis for reduced round
variants of CAST-128 and CAST-256 block ciphers. Compared with the
linear relation of round function with the bias 2−17 by J. Nakahara et al.,
we found the more heavily biased linear approximations for 3 round func-
tions and the highest one is 2−12.91. We can mount the known-plaintext
attack on 6-round CAST-128 and the ciphertext-only attack on 4-round
CAST-128. Moreover the known-plaintext attack on 24-round CAST-256
with key size 192 and 256 bits has been given, and the ciphertext-only
attack on 21-round CAST-256 with key size 192 and 256 bits can be
performed. At the same time, we also present the attack on 18-round
CAST-256 with key size 128 bits.
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1 Introduction

CAST-128 is a block cipher designed by C. Adams and S. Tavares in 1996[1], and
is used in a number of products notably as the default cipher in some versions
of GPG and PGP[2,3]. It has been approved for Canadian government use by
the Communications Security Establishment. CAST-256 is one of the fifteen
candidate algorithms of the first AES Candidate Conference[4,5].

One way to reduce the size of the largest entry in the XOR table is to use
injective substitution layer(S-boxes) such that the number of output bits from
the S-box is sufficiently larger than the number of input bits. In this way, it is
very likely that the entries in the XOR distribution table of a randomly chosen
injective S-box will have only small values, making the block cipher resistant to
differential cryptanalysis.

In order to resist to differential cryptanalysis, CAST-128 and CAST-256 use
injective substitution S-boxes with 32-bit output and 8-bit input. Moreover, S-
boxes are designed from bent functions to resist linear cryptanalysis. Therefore,
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the cryptanalysis for them will be very difficult. As far as we know, the differential
cryptanalysis of 9 quad-rounds CAST-256 and 5-round CAST-128 under weak-
key assumption and the impossible differential cryptanalysis for 20-round CAST-
256 have been given respectively in [6] and [7]. In addition, Wagner presented
the boomerang attack on 16-round CAST-256[11].

Nakahara and Rasmussen presented the first concrete linear cryptanalysis on
reduced-round CAST-128 and CAST-256. They can recover the subkey for 4-
round CAST-128 with 237 known plaintexts and 272.5 times of 4-round CAST-128
encryption. The distinguishing attack for 12-round CAST-256 with 2101 known
plaintexts and 2101 times of 12-round CAST-256 encryption has been given[8].

In this paper, we give the linear cryptanalysis for 6-round CAST-128 with
253.96 known plaintexts and 288.51 times of 6-round CAST-128 encryption, and
give the linear cryptanalysis for 24-round CAST-256 with 2124.10 known plain-
texts and 2156.20 times of 24-round CAST-256 encryption. Moreover, we present
the ciphertext-only attack on 4-round CAST-128 and 21-round CAST-256.

The paper is organized as follows. Section 2 introduces the description of
CAST-128 and CAST-256. In Section 3, we present how to find the more heav-
ily biased linear approximations of three round functions in these two block
ciphers. In Section 4, we give the linear cryptanalysis for reduced-round CAST-
128. In Section 5, we give the linear cryptanalysis for reduced-round CAST-256.
In Section 6, we conclude this paper.

2 Description of CAST-128 and CAST-256

2.1 Description of CAST-128

As a Feistel block cipher, CAST-128 uses a block size 64 bits, and the key size
can vary from 40 bits to 128 bits, in 8-bit increments. For key sizes up to and
including 80 bits, the number of round is 12. For key sizes greater than 80
bits, the cipher uses the full 16 rounds[1]. The overall operation of CAST-128 is
similar to DES[9], which is described in Fig.1. CAST-128 splits the plaintext into
left and right 32-bit halves L0 and R0. In the key schedule process, 16 pairs of
subkeys Kmi and Kri for the user key K are computed, with one pair of subkeys
per round. A 32-bit key-dependent value Kmi is used as a ”masking” key and
a 5-bit Kri is used as a ”rotation” key of the ith round. Our cryptanalysis is
not related to the key schedule, so we don’t present it in detail. The encryption
process is defined as follows,

– For 1 ≤ i ≤ 16, compute Li and Ri as follows:

Li = Ri−1

Ri = Li−1 ⊕ Fi(Ri−1, Kmi, Kri)

where Fi is the round function(Fi is of Type 1, Type 2, or Type 3) described
later.

– The ciphertext is (R16, L16).
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Fig. 1. CAST-128 encryption algorithm

Decryption is identical to the encryption algorithm given above, except that the
subkey pairs are used in reverse order to compute (L0,R0) from (R16,L16).

Three different round functions are used in CAST-128. X is the input to the
round function and I is the input to 4 S-boxes where Ia and Id are the most
significant byte and the least significant byte of I respectively(I = Ia‖Ib‖Ic‖Id).
”+” and ”−” are addition and subtraction modulo 232. ”⊕” is bitwise XOR, and
”<<<” is the circular left-shift operation. The round functions are defined as
follows,

Type1 : I = ((Kmi + X) <<< Kri)
F1 = ((S1[Ia]⊕ S2[Ib])− S3[Ic]) + S4[Id]

Type2 : I = ((Kmi ⊕X) <<< Kri)
F2 = ((S1[Ia]− S2[Ib]) + S3[Ic])⊕ S4[Id]

Type3 : I = ((Kmi −X) <<< Kri)
F3 = ((S1[Ia] + S2[Ib])⊕ S3[Ic])− S4[Id]
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Fig. 2. CAST-256 encryption algorithm

Rounds 1, 4, 7, 10, 13, and 16 use F1 function. Rounds 2, 5, 8, 11, and 14 use
F2 function. Rounds 3, 6, 9, 12, and 15 use F3 function. In the above equations,
S1, S2, S3, and S4 are 4 S-boxes, which input is 8-bit and output is 32-bit.

2.2 Description of CAST-256

As a candidate for the first AES conference, CAST-256 is designed based on
CAST-128. The block size is 128-bit, and the key size can be 128-bit, 192-bit
and 256-bit. The round number is 48 for all key size. The structure for CAST-256
is generalized Feistel Network structure in Fig. 2.

We denote 128-bit block as β = (ABCD) where A,B,C and D are each 32
bits in length. Two types of round function, the ”forward quad-round” Q(·) and
the ”reverse quad-round” Q̄(·) are used in CAST-256.

The ”forward quad-round”β ←− Qi(β) is defined as the following four rounds,

C = C ⊕ F1(D, Kr1
(i), Km1

(i))

B = B ⊕ F2(C, Kr2
(i), Km2

(i))

A = A⊕ F3(B, Kr3
(i), Km3

(i))

D = D ⊕ F1(A, Kr4
(i), Km4

(i))



New Linear Cryptanalytic Results of Reduced-Round 433

And the ”reverse quad-round”β ←− Q̄i(β) is defined as the following four
rounds,

D = D ⊕ F1(A, Kr4
(i), Km4

(i))

A = A⊕ F3(B, Kr3
(i), Km3

(i))

B = B ⊕ F2(C, Kr2
(i), Km2

(i))

C = C ⊕ F1(D, Kr1
(i), Km1

(i))

where Kr
(i) = {Kr1

(i), Kr2
(i), Kr3

(i), Kr4
(i)} is the set of rotation keys for the ith

quad-round, and Km
(i) = {Km1

(i), Km2
(i), Km3

(i), Km4
(i)} is the set of masking

keys for the ith quad-round.
The encryption process for CAST-256 consists of 6 ”forward quad-rounds”

followed by 6 ”reverse quad-rounds”. Decryption is identical to encryption except
that the sets of quad-round keys Kr

(i) and Km
(i) are used in reverse order.

3 Linear Approximation for Round Functions

The S-boxes of CAST-128 have dimension 8× 32 bits and are non-surjective, so
their linear approximation tables are difficult to be constructed. The probability
of the linear approximations for these S-boxes with the form 0 → Γ is away
from 1

2 because of the non-surjective property of S-boxes, where ’0’ stands for a
zero 8-bit mask, and ’Γ ’ stands for a nonzero 32-bit mask. This kind of linear
approximation only represents that an exclusive-or of output bits selected by
Γ is zero. Especially if there is only one non-zero bit for Γ , the probability is
always equal to 1

2± 1
25 . In [8], in order to obtain the linear approximation for the

round function, only the linear approximation for S-boxes with the form 0→ 1
has been used where only the least significant output masking bit is non-zero.
Then the bias for the linear approximation of the round function with the form
0 → 1 in Fig.3 is 2−17 according to the Piling-Up lemma[10] because the least
significant output masking bit is not affected by the mixture operations with
modular addition, modular subtraction and XOR operations. In [8], authors
think the highest bias for the round function is 0→ 1 because the carry bits in
modular addition and the borrow bits in modular subtraction of round function
will reduce the bias to less than 2−17, so they use the linear relations for round
functions F1, F2 or F3 having the following forms,

Fi : 00000000X → 00000000X

Fi : 00000000X → 00000001X

Based on the above line relations, 2 types of 2-round iterative linear relations
for CAST-128 depicted in Fig.4(a) and Fig.4(b) respectively have been given.
According to the Piling-Up lemma[10], the biases for the two 2-round iterative
linear relations are all 2−17[8].
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Fig. 4. 2 two-round iterative linear relations for CAST-128

However, we find an important fact that the carry-bit in the modular addition
and the borrow-bit in the modular subtraction don’t always decrease the bias of
linear approximation, sometimes they can further increase the bias. The crypt-
analysis in [8] only uses the bias for the single output bit(the least significant bit)
of S-boxes. In fact, we find that the non-random properties of the consecutive
output bits of S-boxes may result in the higher bias of the output bit of round
function with modular addition, modular subtraction and XOR operations com-
pared with the bias of S-boxes output. For example, two least significant bits
of S-box output have 4 possible values such as ’00’, ’01’, ’10’ and ’11’. If the
distribution for the 4 values are non-random(the probabilities are not equal),
the bias of the second least-significant bit of round function may be increased
after the mixture operations on them. So we searched the linear approximations
for the round functions F1, F2 and F3 which have the form 0 → Γ and only
one non-zero bit mask of Γ , and the bias for this kind of linear approximation
represents the unbalance property for each output bit of round function. The
results are presented in Table1. From Table1, we identified the highest bias is
not for linear approximation 0→ 1, but the highest biases for F1, F2 and F3 are
2−13.71, 2−14.41 and 2−14.26 respectively which are corresponding to the linear
approximation 0→ 00000010X, 0→ 00020000X, and 0→ 00000080X.
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Table 1. Linear approximation table for one non-zero bit mask of Γ

non-zero masking bit for Γ biasF1 = |Pr − 1
2
| biasF2 = |Pr − 1

2
| biasF3 = |Pr − 1

2
|

1 2−17.00 2−17.00 2−17.00

2 2−18.00 2−17.68 2−17.48

3 2−18.99 2−19.91 2−14.48

4 2−14.58 2−15.00 2−15.38

5 2−13.98 2−14.61 2−15.23

6 2−13.71 2−16.45 2−15.54

7 2−16.30 2−17.00 2−17.81

8 2−16.91 2−18.79 2−14.26

9 2−15.24 2−15.68 2−18.20

10 2−17.69 2−18.47 2−17.03

11 2−17.38 2−18.74 2−16.60

12 2−15.88 2−23.68 2−15.41

13 2−16.08 2−16.38 2−16.71

14 2−15.69 2−14.74 2−15.68

15 2−17.08 2−17.00 2−16.80

16 2−17.53 2−15.19 2−19.09

17 2−21.54 2−17.34 2−16.26

18 2−14.41 2−14.41 2−14.47

19 2−15.55 2−19.30 2−17.43

20 2−18.96 2−15.88 2−16.41

21 2−17.66 2−16.30 2−20.80

22 2−15.32 2−16.80 2−19.44

23 2−17.20 2−15.38 2−16.17

24 2−18.47 2−17.93 2−18.73

25 2−17.23 2−17.64 2−15.74

26 2−15.77 2−16.75 2−15.37

27 2−14.72 2−16.19 2−16.44

28 2−17.60 2−20.46 2−17.33

29 2−20.12 2−17.85 2−17.64

30 2−16.06 2−15.31 2−16.34

31 2−16.24 2−16.23 2−18.09

32 2−15.82 2−16.03 2−16.89

Additionally, the unbalance property of the single output bit of round function
will result in the heavily biased linear approximation with more non-zero output
masking bits. So we searched the linear approximations for 3 round functions
which have the form 0 → Γ with two and three non-zero masking bits of Γ .
Further four and five non-zero masking bits of Γ for F2 have been examined,
but we have not examined four or five non-zero masking bits of Γ for F1 and
F3 and more than five non-zero masking bits for 3 round functions because the
complexity of computation is very large. Their linear relations with the highest
bias we have found will be given in Table 2.

From Table 1 and Table 2, the best bias for single round function we found
is 2−12.91 corresponding to the linear relation 00000000X → 03400000X for F2.
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Table 2. Best linear approximation for more non-zero bits of Γ

Function Type Γ Number of non-zero bits of Γ bias = |Pr − 1
2
|

F1 0000000CX 2 2−14.07

F2 80004000X 2 2−13.06

F3 02400000X 2 2−13.71

F1 02600000X 3 2−13.37

F2 03400000X 3 2−12.91

F3 00030020X 3 2−14.05

F2 00600300X 4 2−13.64

F2 32000900X 5 2−13.48

4 Linear Cryptanalysis for Reduced-Round CAST-128

4.1 Known-Plaintext Attack for Reduced-Round CAST-128

Based on the above linear approximations of the 3 round functions, we can obtain
the 5-round linear relation in Fig 5.a. The output mask Γ in round 2 and round
4 is non-zero, but zero in round 1, 3 and 5. The input mask from the first round
to the fifth round are all zero. So the probability of the linear relation in round
1, 3 and 5 are all 1. The bias of the linear relation 00000000X → 03400000X for
F1 is 2−13.57, and the bias of the linear relation 00000000X → 03400000X for
F2 is 2−12.91. Based on ”the Piling-Up lemma”, the bias for the 5-round linear
approximation is 2−25.48.

The linear relation in Fig 5.a is a 5-round distinguisher from the random
permutation, which can be presented as follows,

(PR ⊕ CR) · 03400000X = 0

where PR is the right 32-bit of the plaintext, and CR is the right 32-bit of
the ciphertext for 5-round. As a known plaintext attack, the number of known
plaintext N required in linear cryptanalysis is proportional to ε−2[10], where ε
is the bias for the linear relation. If N is taken as 8 · ε−2, the attack will be
successful with very high probability. So we can distinguish 5-round CAST-128
with 8 · 225.48·2 = 253.96 known plaintexts.

We can recover 37-bit subkey of 6-round using the above 5-round distinguisher
in Fig 5.a. As the distinguishing attack for 5-round, the attack also requires
253.96 known plaintexts and 253.96 · 237 = 290.96 one-round encryptions, which is
equivalent to 288.51 6-round encryptions.

4.2 Ciphertext-Only Attack for Reduced-Round CAST-128

If the plaintext is ASCII encoded English text, we can attack reduced-round
CAST-128 only with ciphertexts. We use the linear approximation for 3-round
CAST-128 where only F2 is active,

(PR ⊕R3) · 00008000X = 0
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Fig. 5. Two linear relations for CAST-128

where R3 is the right 32-bit output for round 3, and the bias for the above
linear approximation is 2−15.19, so we can construct the distinguisher of 3-round
CAST-128 with only 8 · 215.19·2 = 233.38 ciphertexts in Fig 5.b. Moreover we
can recover 37-bit subkey of 4-round using the above 3-round distinguisher. The
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attack also requires only 233.38 ciphertexts and 233.38 · 237 = 270.38 one-round
encryptions, which is equivalent to 268.38 4-round encryptions.

5 Linear Cryptanalysis for Reduced-Round CAST-256

5.1 Known-Plaintext Attack for Reduced-Round CAST-256

As described in Section 3, the highest bias for single round function we found is
2−12.91 corresponding to the linear relation 0→ 03400000X for F2. So we arrive
the iterative linear approximation for one quad-round CAST-256 in Fig6.a. Only
F2 in each quad-round is active, but other 3 round functions are all non-active.
We can derive the linear approximation for r quad-rounds of CAST-256 which
can be used as a distinguisher, which can be represented as follows,

(B ⊕ F ) · 03400000X = 0

where (A, B, C, D) and (E, F, G, H) denote the plaintext block and the cipher-
text block for r quad-rounds respectively. Based on ”the Piling-Up lemma”, the
bias for the linear approximation is 2r−1 · 2−12.91·r.

We can distinguish 21 rounds CAST-256 from a random permutation with
2124.1 known plaintexts. By the 21 rounds distinguisher, we can recover 37-bit
subkey of round 22 for 24-round CAST-256 with the key size 192 or 256 bits.
The time complexity is 2124.1 · 237 = 2161.1 one-round CAST-256 encryptions
which is equivalent to 2156.2 24-round CAST-256 encryptions.

For CAST-256 with key size 128 bits, we use the linear approximation 0 →
02600000X for F1 with the bias 2−13.37 to construct the iterative quad-round
linear approximation in Fig 6.b. So the iterative linear approximation for 3 quad-
round CAST-256 can be derived. Only F1 of the 4th round in each quad-round
is active, but other 3 round functions are all non-active. The bias for the linear
approximation is 2−38.11 and we can recover 37-bit subkey of round 16 with
279.22 known plaintexts and 2111.98 times of 18-round CAST-256 encryption.

5.2 Ciphertext-Only Attack for Reduced-Round CAST-256

If the plaintext is ASCII encoded English text, we can attack reduced-round
CAST-256 only with ciphertexts. We use the linear approximation 0→00000080X

for round function F3 with bias 2−14.26, so we obtain the iterative linear approx-
imation for one quad-round CAST-256 in Fig6.c. Only F3 in round-3 is active,
but other 3 round functions are all non-active. We can derive the linear approx-
imation for r quad-rounds of CAST-256 which can be used as a distinguisher,
which can be represented as follows,

(A⊕ E) · 00000080X = 0

where (A, B, C, D) and (E, F, G, H) denote the plaintext block and the cipher-
text block for r quad-rounds respectively. Based on ”the Piling-Up lemma”, the
bias for the linear approximation is 2r−1 · 2−14.26·r.
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We can distinguish 4 quad-rounds CAST-256 from a random permutation
with only 2111.08 ciphertexts. Using 4 quad-rounds distinguisher with only 2111.08

ciphertexts, we can recover the round 19 subkey for 21-round CAST-256 with
the key size 192 or 256 bits. The time complexity is 2111.08 · 237 = 2148.08 one-
round CAST-256 encryptions which is equivalent to 2143.50 21-round CAST-256
encryptions.

For CAST-256 with key size 128 bits, we use the linear relation 0→80000000X

for F1 with the bias 2−15.82 to construct the iterative linear approximation for
a quad-round CAST-256 in Fig6.d. So the iterative linear approximation for 3
quad-rounds CAST-256 can be derived. Only F1 of the 4th round in each quad-
round is active, but other 3 round functions are all non-active. The bias for the
linear approximation is 2−45.46 and we can recover the subkey of round 16 with
293.92 only-ciphertexts and 2126.28 times of 18-round CAST-256 encryption.

6 Summary

In this paper, we found that the unbalance for the consecutive bits from S-
boxes output may further increase the unbalance of the output from the round
function which performs modular addition, modular subtraction and XOR op-
erations on the outputs of 4 S-boxes, This observation led us to find the heavily
biased linear relation for the round functions of CAST-128 and CAST-256. After
that, we present the best known linear attack on reduced-round CAST-128 and
CAST-256. Our attacks are by far the best known attacks on the two ciphers
without weak-key assumption. Moreover we give the first ciphertext only attack
for reduced round variants of the two ciphers.

We attack 6-round CAST-128, which works for the key size more than 88 bits,
with data complexity of 253.96 known plaintexts, the time complexity of 288.51

times of 6-round encryption. Moreover we mount a ciphertext-only attack on
4-round CAST-128 for the key size more than 68 bits, and the attack uses only
233.38 ciphertexts and 268.38 times of 4-round encryption. Then we present an
attack on 24-round CAST-256 requiring 2124.10 known plaintexts, 2156.20 times
of 24-round encryptions. In addition, we mount a ciphertext-only attack on 21-
round CAST-256 with only 2111.08 ciphertexts and 2143.50 21-round encryptions.

Table 3. Summary of linear attacks on reduced-round CAST-128

Rounds Key Size Data Complexity Time Complexity Type Source

2 all 237 KPs 237 Distinguishing [8]

3 all 237 KPs 237 Distinguishing [8]
>72 bits 237 KPs 272.5 Key Recovery [8]

4 >72 bits 237 KPs 272.5 Key Recovery [8]
>68 bits 233.38 COs 268.38 Key Recovery This Paper

6 >88 bits 253.96 KPs 288.51 Key Recovery This Paper

1

KPs:Known Plaintexts, COs:Ciphertexts only
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Table 4. Summary of linear attacks on reduced-round CAST-256

Rounds Key Size Data Complexity Time Complexity Type Source

9 all 269
KPs 2103 Key Recovery [8]

12 all 2101
KPs 2101 Distinguishing [8]

18 all 279.22
KPs 2111.98 Key Recovery This Paper

all 293.92
COs 2126.28 Key Recovery This Paper

21 192-bit or 256-bit 2111.08
COs 2143.50 Key Recovery This Paper

24 192-bit or 256-bit 2124.1
KPs 2156.20 Key Recovery This Paper

2
KPs:Known Plaintexts, COs:Ciphertexts only

Table 3 and Table 4 give the comparison of our results with the previous linear
attacks on CAST-128 and CAST-256.
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