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Abstract We show efficient algorithms for edge-coloring planar graphs. Our main
result is a linear-time algorithm for coloring planar graphs with maximum degree Δ

with max{Δ,9} colors. Thus the coloring is optimal for graphs with maximum degree
Δ ≥ 9. Moreover for Δ = 4,5,6 we give linear-time algorithms that use Δ + 2 col-
ors. These results improve over the algorithms of Chrobak and Yung (J. Algorithms
10:35–51, 1989) and of Chrobak and Nishizeki (J. Algorithms 11:102–116, 1990)
which color planar graphs using max{Δ,19} colors in linear time or using max{Δ,9}
colors in O(n logn) time.

Keywords Edge-coloring · Linear-time · Algorithm · Planar graph

1 Introduction

In the problem of edge-coloring the input is an undirected graph and the task is to
assign colors to the edges so that edges with a common endpoint have different col-
ors. This is one of the most natural graph coloring problems and arises in a variety
of scheduling applications. Throughout the paper Δ(G) will denote the maximum
degree in graph G; we write Δ for short when there is no ambiguity. Trivially at least
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Δ colors are needed to color the edges of any graph. Vizing [3] proved that Δ+1 col-
ors always suffice. Unfortunately it is NP-complete even for cubic graphs to decide
whether a given graph is Δ- or (Δ + 1)-colorable. We say that a graph is in Class 1
if it is Δ-colorable, and otherwise we say it is in Class 2.

Background Vizing’s proof yields an O(mn) time algorithm for (Δ + 1)-edge-
coloring a graph with n vertices and m edges. It has been improved by Gabow
et al. [4] to O(Δm logn) and O(m(n logn)1/2). However, it seems natural to look
for more efficient or simpler algorithms for particular classes of graphs. For exam-
ple, for the case of bipartite graphs there is an O(m logΔ) algorithm due to Cole
et al. [5] and a very simple O(m logm) algorithm due to Alon [6] (both algorithms
use Δ colors). There is also a linear-time algorithm for 4-coloring cubic graphs due
to Skulrattanakulchai [7].

Planar Graphs In this paper we investigate edge coloring of planar graphs. This
problem is well studied. Vizing [8] showed that planar graphs with Δ ≥ 8 are in
Class 1. He also noted that there are Class 2 planar graphs for Δ ∈ {2,3,4,5}. Re-
cently Sanders and Zhao [9] showed that planar graphs with Δ = 7 are Δ-colorable.
The Δ = 6 case remains open. There are more cases to report when one considers
algorithmic efficiency. The case Δ ≤ 2 is trivial. In 1878 Tait [10] showed that a
cubic planar graph with no bridges is 3-edge-colorable if and only if it is 4-face col-
orable. It follows that optimally coloring graphs of maximum degree 3 is as hard
as 4-coloring planar graphs for which the best algorithm known, due to Robertson
et al. [11], takes O(n2) time. For Δ ∈ {4,5} Chrobak and Nishizeki [2] state that it
has been conjectured that the problem of Δ-coloring is NP-hard. For Δ ≥ 7 we can
color graphs with Δ colors. When Δ = 7 we believe as does Sanders [12] that the
proof of Sanders and Zhao could be turned into a polynomial time algorithm. When
Δ ≥ 8 one can use the O(n2) algorithm of Gabow et al. [4]. For any Δ ≥ 9 the com-
plexity decreases to O(n logn) due to Chrobak and Nishizeki [2]. Finally for Δ ≥ 19
Chrobak and Yung [1] gave an O(n) algorithm. There is also an O(n) algorithm for
Δ ≥ 33 by He [13].

Our Results Our main result is a linear-time algorithm for coloring planar graphs
with maximum degree Δ with max{Δ,9} colors. Thus the coloring is optimal for
graphs with maximum degree Δ ≥ 9. Moreover for Δ = 4,5,6 we show linear-time
algorithms that use Δ + 2 colors. Our results are presented in Table 1.

Our Approach Our approach combines two ideas. The first is the notion of reduc-
tions, which allow a suitable edge to be removed from a given planar graph, where
the edge is chosen so that it can be colored in O(1) time following a recursive color-
ing of the reduced graph, possibly with some recoloring of the rest of the graph. The
reductions are identified by means of a collection of configurations, constant size sub-
graphs, one of which is always present in a planar graph. The challenge is to identify
configurations and to provide the corresponding constant time recoloring procedures.
We illustrate this technique in Sect. 2, which gives a simple algorithm to color planar
graphs using max{Δ,12} colors.
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Table 1 Currently most efficient algorithms for edge-coloring planar graphs

Δ Number of colors Time Paper

2 optimal O(n) easy

3 optimal O(n2) Robertson et al. [11]

3 Δ + 1 O(n) Skulrattanakulchai [7]

4,5,6,7 Δ + 1 O(n logn) Gabow et al. [4]

4,5,6,7 Δ + 2 O(n) This work

7 Δ polynomial Sanders and Zhao [9]

8 Δ O(n2) Gabow et al. [4]

8 Δ + 1 O(n) This work

≥ 9 Δ O(n) This work

≥ 19 Δ O(n) Chrobak and Yung [1]

The second issue is to show that the collection of configurations suffices. This is
done by means of discharging arguments. A charge is distributed to the faces and ver-
tices of the graph, with negative total value. The charge is then redistributed in such a
way that if none of the configurations are present, every face and vertex would have a
nonnegative charge, a contradiction. The challenge is to find a suitable collection of
configurations and the corresponding discharging argument. This technique is needed
for all but Sect. 2 algorithm.

The discharging technique as well as the idea of coloring planar graphs by pro-
viding a set of reducible configurations were originally developed to prove the Four-
Color Theorem. While applying this approach for finding an efficient edge-coloring
algorithm seems to be natural, the devising of suitable collections of configurations,
the coloring procedures, and the discharging arguments is non-trivial.

Terminology We assume the reader is familiar with standard terminology and nota-
tion concerning graph theory and planar graphs in particular. Let us recall here some
notions that are not so widely used. Let f be a face of a connected plane graph.
A facial walk w corresponding to f is the shortest closed walk induced by all edges
incident on f . Let |w| denote the length of walk w and let |f | denote the length of
face f ; we note that |f | = |w|. A k-path (k-cycle, k-face) refers to a path (cycle, face)
of length k. Analogously, d-vertex refers to a vertex of degree d , and D-graph to a
graph of maximum degree D. Let G be a graph and let S ⊆ E(G) be a set of edges.
Then G − S denotes the graph (V (G),E(G) − S).

Consider a partial coloring of edges of graph G = (V ,E). We say that color a is
free at vertex x when there is no edge colored a incident on x. We say that color a is
free at edge uv when it is free at both u and v. We say that color a is used by vertex
x (resp. edge uv) when it is not free at x (resp. uv).

2 A Simple Algorithm

In this section we present our approach via a simple algorithm which colors planar
graphs using max{Δ,12} colors. Let the weight of edge e = uv, denoted by w(e), be
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the sum of the degrees of its ends, i.e. w(e) = degG(u) + degG(v). We are inspired
by the following result due to Borodin.

Theorem 2.1 (Borodin [14]) Any simple planar graph with vertices of degree at least
3 contains an edge of weight at most 13.

We need a slightly generalized version of the above theorem.

Theorem 2.2 Let G be a simple planar graph with maximum degree Δ such that
G contains no vertices of degree 0 or 1, each vertex of degree 2 is adjacent to two
vertices of degree Δ, and each vertex of degree Δ is adjacent to at most one degree 2
vertex. Then G contains an edge of weight at most 13.

Proof We can assume that G contains at least one degree 2 vertex for otherwise we
just apply Theorem 2.1. Further we can assume that Δ ≥ 12 for otherwise any edge
incident on a 2-vertex has weight at most 13. Now consider graph G′ obtained from
G by replacing each path uxv such that deg(x) = 2 by an edge joining u and v.
Additionally, we replace double edges by single ones. Clearly G′ is a simple planar
graph with vertices of degree at least 3; further a vertex of degree d in G, 3 ≤ d ≤
Δ − 1, has degree d in G′, while vertices of degree Δ in G may have degree Δ − 1
or Δ in G′. By Theorem 2.1 G′ contains an edge of weight at most 13. Consider any
such edge e. Then each of e’s endpoints has degree at most 10 ≤ Δ−2 in G′ (as each
endpoint has degree at least 3) and so each of e’s endpoints has the same degree in G,
i.e. e has weight at most 13 in G. �

Clearly, edges of bounded weight are very useful in edge-coloring algorithms. As-
sume we want to color a graph using D colors (this notation will be used throughout
the paper). When our algorithm finds an edge e of weight at most D + 1 this edge is
removed and the resulting graph is colored recursively. Since there are at most D − 1
edges incident on e, these edges do not use all the colors and e can be colored with
one of the remaining colors.

In the coloring algorithm we describe in this section we will use the following
three types of edges of weight at most D + 1 (recall that D = max{Δ,12}), which
will be called reducible:

• edges of weight 13,
• edges incident on a 1-vertex, and
• edges incident on a 2-vertex and a vertex of degree at most Δ − 1.

By Theorem 2.2 to complete our algorithm we need to describe what to do when
there are no reducible edges in the graph. Then, by Theorem 2.2, G contains a Δ-
vertex v with two adjacent 2-vertices. Let us denote these 2-vertices by x and y.
Let u and w be the other neighbors of x and y. Obviously, deg(u) = deg(w) = Δ,
for otherwise there is a reducible edge. There are two cases to consider: u = w and
u �= w. In the first situation uxvy is a cycle of length 4 with vertex degrees Δ,2,Δ,2,
respectively, which we name configuration (A). In the second case uxvyw is a 4-path
with vertex degrees Δ,2,Δ,2,Δ, respectively; we name this configuration (B).
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Our algorithm handles configuration (A) as follows. It first removes edge xv and
colors the remaining graph recursively. Let a denote the color of ux. If a is the color
free at v the algorithm swaps the colors of ux and uy and colors xv with a. Otherwise
it simply colors xv with the color free at v.

We call the above reasoning a reduction; we say that configuration (A) is reducible.
More formally:

Definition 1 A configuration F is called D-reducible if, for every planar graph G

which contains F , there is a corresponding configuration F ′ and a graph G′ contain-
ing F ′ such that

(i) |E(F ′)| < |E(F)|,
(ii) G − E(F) is isomorphic to G′ − E(F ′),

(iii) there is an algorithm which given any D-edge-coloring of G′ finds a D-edge-
coloring of G as an extension of the coloring of G′ − E(F ′).

As it is usually clear what is the number D of available colors, we will write that
a configuration is reducible, instead of D-reducible. Reducibility of all configura-
tions in this paper is proved in the following way. We consider a configuration F in
graph G. We remove a suitable edge from F or in some other way reduce the number
of edges in G. Then we color the resulting graph and show how to extend this col-
oring to the whole graph G (possibly recoloring some edges of F ). To complete our
description of the algorithm for coloring with max{Δ,12} colors it remains to show
the following lemma.

Lemma 2.3 Configuration (B) is reducible.

Proof Recall that u,x, v, y,w denote the successive vertices of the path in (B), where
degG(x) = degG(y) = 2 and degG(u) = degG(v) = degG(w) = Δ.

Case 1. G contains neither uv nor vw. Then form graph G′ by replacing the paths
uxv and vyw by edges uv, vw respectively. Now color G′. Let a and b be the colors
of uv and vw, respectively. G is colored as follows. Edges ux and vy are colored
using a, and edges xv and yw using b; the remaining edges of G inherit the colors
assigned in G′.

Case 2. G contains edge uv (or analogously, G contains vw). Edge vy is removed
and the remaining graph is colored recursively. Then G is colored as follows. Let a

denote the color of yw. We can assume that a is the free color at v for otherwise vy

is simply colored with the non-a free color.
Case 2.1. ux is not colored with a. vy receives xv’s color and xv is colored with a.
Case 2.2. ux is colored with a. vy receives uv’s color and the colors of uv and ux

are swapped. �

2.1 Implementation and Time Complexity

It remains to describe how to implement our algorithm efficiently.
All currently reducible edges are kept in queue Qe , all current instances of config-

uration (A) in queue QA and all current instances of configuration (B) in queue QB .
Our algorithm is recursive and works as follows.
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Step 1. (i) Remove a reducible edge from Qe, if any, and remove it from the
graph G.

(ii) Otherwise remove an instance of configuration (A) from QA, if any.
Remove the corresponding edge xv from G—see the discussion of how
to handle configuration (A).

(iii) Otherwise remove an instance of configuration (B) from QB (there must
me one).
(a) Check if each of the relevant two pairs of Δ-vertices in the config-

uration are adjacent. In Sect. 2.1.2 we show that it takes O(n) time
over all such adjacency tests.

(b) Depending on the adjacency tests, replace paths uxv and vyw by
edges uv and vw, or remove edge uv or vw—see the proof of
Lemma 2.3.

Step 2. Update Qe, QA and QB to take account of the changes in G. We explain
how this is done in Sect. 2.1.1.

Step 3. The recursive call.
Step 4. The edges or paths removed in Step 1 are reinserted into the graph, which

takes constant time. The reinserted edges are colored, possibly along with re-
coloring some of the O(1) edges in configuration (A) or (B) if this is the case
being handled. How to do this in constant time is explained in Sect. 2.1.3.

2.1.1 Finding Reducible Edges and Configurations

Finding reducible edges and configurations (A) and (B) can be done fast after linear-
time preprocessing. To this end each vertex stores its current degree; also, a queue Qe

of reducible edges is kept. This information can easily be maintained in linear time
over the course of the algorithm. Additionally, instances of configurations (A) and (B)
are stored in two corresponding queues, Q(A) and Q(B), which are initialized in linear
time with a maximal collection of edge-disjoint configurations.

A 2-vertex adjacent to two degree Δ vertices is called extremal. Observe that any
degree Δ vertex, which is not a part of configuration (A) or (B), can be adjacent to at
most one extremal 2-vertex. To enable fast update of queues Q(A) and Q(B) after an
edge removal, each degree Δ vertex which is not part of a configuration (A) or (B)
stores its sole neighboring extremal 2-vertex, if any.

Our algorithm performs two operations which modify the input graph. The first
operation is replacing a 2-path with an edge (which occurs only if Δ ≥ 12). As the
ends of the 2-path have degree Δ there is no queue to update. The second operation
is removing an edge. Then the degrees of its ends are reduced and some queues may
require updating, as follows.

If one of the degree Δ vertices in a configuration (A) or (B) instance is reduced
to degree Δ − 1 then this is no longer an instance of configuration (A) or (B). In
such situation the configuration is removed from the relevant queue in constant time
(we assume that every edge that is part of a configuration stores a pointer to the
corresponding entry in relevant queue).

Whenever the degree of a vertex is reduced to 1, the edge incident on this vertex is
added to the queue Qe . Each time the degree of a vertex is reduced to 2, any incident
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edges containing a vertex of degree Δ−1 are added to the queue Qe. However, when
both neighbors have degree Δ the 2-vertex is extreme and hence either an instance of
a configuration is found (and stored in queue Q(A) or Q(B)) or the degree 2 vertex is
stored with each of its two neighbors. Similarly, whenever the degree of some vertex
is reduced to 11 or less, incident edges which now have weight at most 13 are added
to the queue Qe. Each of these updates takes O(1) worst-case time. There is one
more update to describe. Each time the degree of some Δ-vertex is reduced to Δ − 1
the algorithm adds to Qe all the incident edges whose other endpoint has degree 2.
Although one such update takes O(Δ) time, altogether they take O(m) time, since
there are only O(m/Δ) vertices originally of degree Δ in G.

2.1.2 Checking Adjacency of Δ-Vertices

As we mentioned before, each time a configuration (B) is taken from queue Q(B)

two pairs of Δ-vertices are tested for adjacency. Each test takes O(Δ) time. Fortu-
nately, Lemma 2.4 shows that the algorithm finds only O(n/Δ) instances of configu-
ration (B) and hence all the adjacency tests take only O(n) time.

Lemma 2.4 Our algorithm finds O(n/Δ) instances of configuration (B).

Proof It suffices to show that during the execution of the algorithm there are O(n/Δ)

degree 2 vertices adjacent to two degree Δ neighbors. Let nΔ denote the number of
degree Δ vertices in the initial graph G. Since 2|E(G)| = ∑

v deg(v) ≥ ΔnΔ and
|E(G)| ≤ 3n we see that nΔ = O(n/Δ). Let I ∗ = (V ∗,E∗) be a graph such that
V ∗ contains all degree Δ vertices of graph G. Two vertices u and v are adjacent
in I ∗ if and only if at some moment of execution of the coloring algorithm they
have a common neighbor of degree 2 in G. Observe that our goal is to show that
|E∗| = O(|V ∗|).

By the Four-Color Theorem the vertices of every planar graph can be colored using
4 colors in such a way that the ends of each edge are colored differently. Let us take
an arbitrary 4-vertex-coloring of graph G. Then I ∗ can be partitioned into four edge-
disjoint subgraphs: I ∗

1 , I ∗
2 , I ∗

3 , I ∗
4 so that for each j = 1,2,3,4 graph I ∗

j contains
edge uv when uv ∈ E(I ∗) and uv corresponds to a 2-path uxv in G with x colored
j (if the edge corresponds to multiple 2-paths we choose one of them arbitrarily).
Clearly, for each j , replacing each edge in I ∗

j by a 2-path yields a subgraph of the
initial graph G (observe that this need not be true for graph I ∗). Thus the graphs I ∗

j

are planar and each of them has at most 3|V ∗| edges so |E∗| ≤ 12|V ∗| = O(|V ∗|). �

2.1.3 Finding Free Colors

Here we describe how the algorithm finds a free color in constant time. For each
vertex v we maintain a list FreeSub(v) of the colors free at v among the colors
{1, . . . ,min{degG(v) + 1,Δ}}—observe that as long as v has an uncolored incident
edge this set always contains at least one color free at v and when degG(v) < Δ at
least two such colors. It follows that the lists FreeSub(v) are sufficient for finding
free colors when reducing configurations (A) and (B) or an edge incident on a 1-
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or 2-vertex. On the other hand, when the algorithm reduces an edge uv of weight
at most 13 it may happen that lists FreeSub(v) and FreeSub(u) do not store a com-
mon color. Fortunately, in this case the algorithm can simply check the colors of all
incident edges and find an unused color in constant time.

Additionally, each vertex v stores an array Colors[1, . . . ,degG(v)] where
Colors[c] is a pointer to color c in list FreeSub(v). Observe that the initialization
of lists FreeSub and arrays Colors in the preprocessing phase takes O(

∑
v deg(v)) =

O(m) = O(n) time. Arrays Colors are used to maintain lists FreeSub(·). More pre-
cisely, assume that the algorithm colors an edge uv with a certain color c. Then it
verifies whether c is not greater than the degree of u in the initial graph (it proceeds
similarly for the other endpoint v). If so, pointer Colors[c] stored with u is used to
remove c from FreeSub(v) in constant time. Analogous changes occur when an edge
is recolored (which can happen when handling configuration (A) or (B)).

Corollary 2.5 Our algorithm colors every planar graph with maximum degree Δ

using max{Δ,12} colors in linear time.

3 General Approach

The approach presented in Sect. 2 is used in all our coloring algorithms. In order to
describe a D-coloring algorithm we need to:

• specify a set of configurations,
• show that the configurations are D-reducible,
• show unavoidability, i.e. that every planar graph contains a configuration.

Since the algorithm from Sect. 2 is optimal for graphs of degree at least 12, we can
assume that the other algorithms are applied only to bounded degree graphs. Since
all the configurations in this paper have bounded size it is straightforward to find
configurations in constant time. To this end we maintain a queue which stores edge-
disjoint configurations. Let d be the largest of the configuration diameters. Whenever
the degree of any vertex v is changed the algorithm searches for configurations in the
subgraph induced by the vertices at distance at most d from v. Since all vertices in
the input graph have bounded degrees this subgraph has bounded size and the search
takes only constant time. Each new configuration is added to the queue.

In the sequel we show a number of reducibility proofs. It can be easily verified that
each of these proofs can be transformed into an algorithm which consists of bounded
number of operations such as edge deletion, edge insertion, finding a free color and
assigning a color. Each of these operations can easily be implemented to work in
constant time provided that the input graph has bounded degree. Thus for bounded
degree input graphs our configurations are reducible in constant time.

Hence we claim that the algorithms we present in the following sections work in
linear time for bounded degree graphs.
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4 Coloring Low Degree Graphs

4.1 6-Coloring Graphs with Maximum Degree Δ = 4

As before, D denotes the number of available colors; here D = 6. As before, the basic
reducible configuration is an edge of weight at most 7. Configuration (Ck) denotes
a triangle with vertices of degrees at most D − 1,2 + k,D − k for any k ≥ 1; it is
reducible.

Lemma 4.1 Configuration (Ck) is D-reducible for any k ≥ 1 and D − k ≥ 2.

Proof Let us denote the vertices of the triangle by x, y,w so that degG(x) ≤ 2 + k,
degG(y) ≤ D−k and degG(w) ≤ D−1. We remove edge xy and color the remaining
graph recursively. Now we show how to color G. Let a and b be the colors of xw and
wy, respectively. Observe that x has at most k +1 used colors and y has at least k +1
free colors. We can assume that the colors used by x are free at y, for otherwise there
is a free color at both x and y which can be used to color xy. There are two cases to
consider. If one of the colors free at y is also free at w, then we color wy with this
free color and xy with b. Otherwise, every free color at w is not free at y, and hence
free at x; then we color wx with a color free at w and xy with a. �

Clearly for D = 6 and Δ = 4 any triangle is in configuration (C2). In this case
unavoidability is easy to show, as follows.

Theorem 4.2 Any planar graph with maximum degree 4 contains a triangle or an
edge of weight at most 7.

Proof Let G = (V ,E) be a planar graph with maximum degree 4. Assume that
both ends of each edge in G have degree 4. It follows that G is 4-regular. Then
2|E| = ∑

v deg(v) = 4|V |; thus |E| = 2|V |. Now assume that G contains no trian-
gles. Let F be the set of faces of graph G. Then 2|E| = ∑

g∈F |g| ≥ 4 · |F |. Substi-

tuting into Euler’s Formula |V | − |E| + |F | = 2 yields |E|
2 − |E| + |E|

2 ≥ 2, which is
a contradiction. �

4.2 7-Coloring Graphs with Maximum Degree Δ = 5

Now, D = 7. By configuration (P) we mean two triangles, xuy and zuy, sharing a
common edge, with deg(u) ≤ 5, deg(x),deg(y),deg(z) ≤ D − 2.

Lemma 4.3 Configuration (P) is reducible.

Proof We name the vertices of the configuration as shown in Fig. 1. Assume that
degG(u) = 5 and degG(x) = degG(y) = degG(z) = D − 2 (if the degrees are smaller
reducing is easier). We remove edge uy and color the remaining graph recursively.
Now we show how to color G. We denote the edge colors as in Fig. 1. Additionally,
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Fig. 1 Configuration (P).
Labels in the left picture denote
upper bounds on degrees

let a and b be the colors of the two other edges incident on u. We can assume that
Free(y) ⊆ {a, b, c, d} for otherwise we simply color uy with a free color. We can
also assume that both c and a are free in y (by symmetry). Next, we assume that
Free(x) ⊆ {a, b, d} for otherwise we can color uy with c and xu with a free color.
Hence at least one of a, b is free at x.

Case 1. e = b. Then Free(y) = {a, c, d} and Free(x) = {a, d}. We color yz and xu

with d , uz with f and uy with c.
Case 2. a ∈ Free(x) and e /∈ {b, d}. Then color uy with e and xy with a.
Case 3. a ∈ Free(x) and e = d . Then Free(x) = {a, b} and Free(y) = {a, b, c}. If

Free(z) contains a or b or c color yz with this color and yu with f . Otherwise Free(z)
contains color h, h /∈ {a, b, c}. Then color uz with h, uy with d and xy with a.

Case 4. Free(x) = {b, d}. Then b or d is free in xy and e �= d . Color uy with e and
xy with a free color. �

Besides configuration (P) we use also reducible edges (i.e. edges of weight at
most D + 1) and configuration (C2), described before. The unavoidability proof is
particularly interesting in this case, because it provides a gentle introduction to the
next section, which gives the main result of this paper.

Lemma 4.4 Any planar graph with maximum degree 5 contains an edge uv of weight
at most 8 or one of configurations (C2) or (P) for D = 7.

Proof We use the discharging technique. Let G be a planar graph with Δ(G) = 5.
Each vertex v of G receives a charge of degG(v) − 4 units and each face q of G

receives a charge of |q| − 4 units. Let n,m,f denote the number of vertices, edges
and faces of graph G, respectively, and let V and F be the sets of vertices and faces
of G, respectively. Using Euler’s formula we can easily bound the total charge on G:

∑

v∈V

(degG(v) − 4) +
∑

q∈F

(|q| − 4) = 2m − 4n + 2m − 4f = −8 < 0.

We assume for a contradiction that G contains no edge of weight ≤ 8 and neither
of the configurations (C2), (P). Now we move charges in graph G so that it will be
clear that the total charge in G is nonnegative, which is a contradiction. Specifically,
degree 5 vertices send 1

3 of a unit of charge to each incident triangle. We can assume
that there are no triangles with a vertex of degree 4 for such a triangle would be a
(C2). Hence triangles end up with nonnegative charges. The other faces do not alter
their allocated charge, which was already nonnegative. Clearly there are no vertices
of degree lower than 4 since each such vertex would be an endpoint of an edge of
weight at most 8. Degree 4 vertices do not alter their charge which was 0. Since
configuration (P) is excluded, each 5-vertex is incident on only two triangles so it ends
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up with at least 1
3 of a unit of charge. It follows that the total charge is nonnegative—

a contradiction. �

4.3 8-Coloring Graphs with Maximum Degree Δ = 6

This case is similar to the preceding one. We use the same configurations and
also (C3). Below we give the unavoidability proof.

Lemma 4.5 Any planar graph with maximum degree 6 contains an edge of weight
at most 9 or one of configurations (C2), (C3) or (P) for D = 8.

Proof We use discharging again and assign initial charges as before. Then degree 5
vertices send 1

5 of a unit to each incident triangle. Degree 6 vertices send 2
5 of a unit

to each incident triangle with at least one 5-vertex and 1
3 of a unit to every other

incident triangle. We can assume that there are no triangles with a 4-vertex for such a
triangle would be in configuration (C2). Similarly, using (C3), we note that there are
no triangles with two 5-vertices. The other triangles have degrees sequence 5,6,6
or 6,6,6 and in both cases end up with nonnegative charges. Nontriangular faces
do not change their allocated charge, which was nonnegative. Clearly there are no
vertices of degree lower than 4 since each such vertex would be an endpoint of an
edge of weight at most 9. Degree 4 vertices do not change their allocated charge
which was 0. Degree 5 vertices send at most 5 · 1

5 = 1 unit and retain nonnegative
charge.

Finally consider a 6-vertex v. It starts with 2 units of charge. We will show that
it sends at most 2 units. First, suppose that v is incident on a nontriangular face. It
follows that it sends charge to at most 5 triangles. Hence it sends at most 5 · 2/5 = 2
units as required. Now, suppose that v is incident on 6 triangles. Then v is not adjacent
to a 5-vertex for otherwise there would be two incident triangles sharing a 5-vertex,
i.e. configuration (P). Hence v is incident only on triangles with no 5-vertex. v gives
each such triangle at most 1/3 of a unit, so v sends at most 6 · 1/3 = 2 units as
required.

It follows that the total charge is nonnegative—a contradiction. �

5 Coloring With max{Δ,9} Colors

In this section we show the main result of the paper—a linear time algorithm for col-
oring planar graphs with D = max{Δ,9} colors. Although it can be implemented to
work in linear time for any planar graph, to simplify the presentation we use the algo-
rithm from Sect. 2 for coloring graphs with maximum degree at least 12; thus we can
assume that Δ ≤ 11 and hence it suffices to describe a set of reducible configurations
and show that any planar graph contains one of them. Let us note that one can also use
the algorithm of Chrobak and Yung [1] for coloring graphs with maximum degree at
least 19 and the algorithm arising from this section for graphs with maximum degree
from 9 to 18.
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Fig. 2 Reducible configurations. Labels denote upper bounds on vertices’ degrees. No label denotes any
degree. A dashed arrow means that the designated pair of vertices may be a single vertex

5.1 Discharging

A critical path is a path abc such that deg(b) = 2, deg(a) = deg(c) = D, and there is
no edge joining a and c.

Theorem 5.1 Let G be a simple planar Δ-graph and let D = max{Δ,9}. Suppose
that G contains neither a critical path nor any of configurations (A)–(F). Then G

contains a reducible edge, i.e., an edge of weight at most D + 1.

Proof We use discharging again and we assign charges in exactly the same way as
in the proof of Lemma 4.4; here too the total charge is negative. We assume for a
contradiction that G contains no reducible edge. Thus there is no edge with both end-
points of degree at most 5, and consequently each triangle has at most one vertex with
degree 5 or less. Our goal is to move charges in graph G (using so-called discharging
rules) in such a way that it will be clear that the total charge in G is nonnegative,
which is a contradiction. Now we specify the discharging rules.
Rule 1. Each 5-vertex sends 1

5 of a unit of charge to each incident triangle.
Rule 2. Each 6-vertex sends 1

3 of a unit to each incident triangle.
Rule 3a. Each 7-vertex sends 1

2 of a unit to each incident triangle containing a vertex
of degree at most 4.
Rule 3b. Each 7-vertex sends 2

5 of a unit to each incident triangle with all vertices of
degree at least 5.
Rule 4a. Each vertex of degree at least 8 sends 1

2 of a unit to each incident triangle
containing a vertex of degree at most 5.
Rule 4b. Each vertex of degree at least 8 sends 1

3 of a unit to each incident triangle
with all vertices of degree at least 6.
Rule 5. Each vertex of degree at least D − 1 sends 1

3 of a unit of charge to each
incident 3-vertex.
Rule 6. Each vertex of degree D sends 1 unit of charge to each incident 2-vertex.
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A triangle with a vertex of degree at most 4 has two vertices of degree at least
D − 2 ≥ 7, hence it gets 1 unit of charge by Rules 3a and 4a so it ends up with
charge 0. Now consider a triangle with a 5-vertex. If the triangle contains a vertex x

of degree at least 8 it receives 1
5 from the 5-vertex by Rule 1, 1

2 from x by Rule 4a and
at least 1

3 from the remaining vertex which is of degree at least 6 (see Rules 2, 3b, 4a
and 4b). Hence triangles with a 5-vertex and a vertex of degree at least 8 have positive
final charge. Triangles with a 5-vertex and with both remaining vertices of degree at
most 7 do not contain a vertex of degree 6, as (C3) is excluded. Hence each such
triangle receives 1

5 + 2 · 2
5 = 1 unit of charge by Rules 1 and 3b. Finally, a triangle

with all vertices of degree at least 6 receives at least 1 unit of charge by Rules 2, 3b
and 4b. Nontriangular faces do not alter their charge, which stays nonnegative. Thus
all faces end up with nonnegative charge.

Let c∗(v) denote the final charge at vertex v. Now we will show that for each
vertex v, c∗(v) ≥ 0. We can assume that there are no 1-vertices, since this would
imply the existence of a reducible edge. Each 2-vertex is adjacent to two D-vertices
so it receives 2 units by rule 6 and c∗(v) = 0. Similarly, each 3-vertex ends up with
charge 0 by rule 5. Vertices of degree 4 do not alter their charge, which was 0. 5-
and 6-vertices retain nonnegative charge. It suffices to examine vertices of degree at
least 7.

Let v be a vertex of degree d , 7 ≤ d ≤ D−2. Since configuration (D2) is excluded,
v is incident on at most two triangles with a 4-vertex. Then by Rules 3a and 3b,
c∗(v) ≥ d − 4 − 2 · 1

2 − (d − 2) · 2
5 = 3d−21

5 ≥ 0.
Now let v be a vertex of degree D − 1. Before moving charges, v had D − 5 units

of charge. We will show that it always sends at most D − 5 units. As there are no
reducible edges v is adjacent only to vertices of degree at least 3. First consider the
situation where no 3-vertex is a part of a triangle containing v. Let k3 be the number of
3-neighbors of v. Then c∗(v) ≥ D−1−4−k3 · 1

3 − (D−1−k3) · 1
2 = D−9

2 + k3
6 ≥ 0.

Now assume that there is a triangle containing both a certain 3-vertex, x say, and v.
Consider the k3 − 1 degree 3 neighbors of v distinct from x. Since (D1) and (E1)
are excluded each of them belongs to two nontriangular faces containing v. Hence v

is incident on at least k3 nontriangular faces. Then v sends charge only to the other
D − 1 − k3 faces. It follows that c∗(v) ≥ D − 1 − 4 − (D − 1 − k3) · 1

2 − k3 · 1
3 =

D−9
2 + k3

6 ≥ 0.
Finally we consider a vertex v of degree D. Since G contains neither configuration

(A) nor (B), v can have at most one neighbor of degree 2. Assume that v has such
a neighbor. Since critical paths are excluded, this neighbor is incident on a triangle
and a nontriangular face. Since (D0) and (E0) are excluded, each 3-neighbor of v is
adjacent to two nontriangular faces containing v. Hence there are at least k3 + 1 such
faces. It follows that v sends at most 1 + k3 · 1

3 + [D − (k3 + 1)] · 1
2 ≤ D+1

2 , which
does not exceed D − 4 for D ≥ 9. This proves that v sends at most D − 4 units of
charge when there are 2-vertices among the neighbors of v.

It remains to show that v retains nonnegative charge when each of its neighbors has
degree at least 3. Suppose that k3 ≤ 2 and let q denote the number of nontriangular
faces. Then c∗(v) ≥ D − 4 − 2

3 − D−q
2 = 3D+3q−28

6 . We see that c∗(v) ≥ 0 when
D ≥ 10 or D = 9 and q ≥ 1. Consider the remaining case D = 9, q = 0. Then there
are only triangles incident on v. Thus there is no pair of consecutive neighbors of
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degree at most 5, for such a pair would be joined by a reducible edge. Hence there
are at most 4 neighbors of degree at most 5 and consequently there is a triangle with
all vertices of degree at least 6. Such a triangle receives only 1

3 from v by Rule 4b.
Thus c∗(v) ≥ 5 − 2

3 − 1
3 − 8

2 = 0.
We are left with the case k3 ≥ 3. First assume that there is a 3-neighbor which

belongs to two triangles incident on v. Then, since (F) is excluded, there is at most
one more 3-neighbor which belongs to a triangle incident on v. Then there are k3 − 2
degree 3 neighbors which belong to two nontriangular faces incident on v. It follows
that v is incident on at least (k3 − 2) + 1 nontriangular faces. Then c∗(v) ≥ D − 4 −
1
3 · k3 − [D − (k3 − 1)] · 1

2 = D−9
2 + k3

6 ≥ 0.
Finally assume that each 3-neighbor belongs to at most one triangle incident on v.

Let k′
3 and k′′

3 denote the number of 3-neighbors which respectively belong and do not

belong to a triangle incident on v. Then there are at least
k′

3
2 + k′′

3 nontriangular faces.

It follows that c∗(v) ≥ D −4− (k′
3 +k′′

3 ) · 1
3 −[D − (

k′
3
2 +k′′

3 )] · 1
2 = D

2 −4− k′
3

12 + k′′
3
6 .

Since each 3-neighbor belongs to at most one triangle incident on v, among arbitrary
three consecutive faces incident on v there are at most two triangles containing a 3-
vertex. It follows that there are at most 2

3 · D such triangles. Consequently k′
3 ≤ 2

3 · D
and c∗(v) ≥ D

2 − 4 − 2
3D · 1

12 + k′′
3
6 = 8D−72

18 + k′′
3
6 ≥ 0. This settles the proof. �

Theorem 5.2 Let G be any planar graph with maximum degree Δ and let D =
max{Δ,9}. If G contains none of the configurations (A)–(H) then G contains a re-
ducible edge, i.e., an edge uv such that deg(u) + deg(v) ≤ D + 1.

Proof Let Ĝ be the graph obtained from G by replacing each critical path joining u

and v by a single edge uv. As (A) is excluded, Ĝ is a simple planar graph with no
critical paths and with maximum degree Δ. We show that Ĝ does not contain any
of configurations (A)–(F). If Ĝ contains any of configurations (A), (B), (Ck) then G

contains the same configuration, a contradiction. The same argument works for (D≥1)
and (E≥1). If Ĝ contains (D0) then G contains (A) or (B) or (D0), a contradiction.
If Ĝ contains (E0) then G contains (E0) or (A), again a contradiction. Finally, if Ĝ

contains (F) then G contains one of (F), (B), (G) or (H), a contradiction once again.
Thus Ĝ satisfies the conditions of Theorem 5.1. Hence Ĝ contains a reducible edge.
This edge cannot be one of those which appeared after substituting a path, because
both ends of such edges have degree D. It follows that G also contains a reducible
edge. �

5.2 Reducibility

We have already proved the reducibility of configurations (A), (B) and (Ck). In this
section we give proofs for the other configurations.

Let Free(x) (resp. Free(uv)) denote the set all of colors from {1, . . . ,D} that are
free at vertex x (resp. edge uv). Analogously we define sets Used(x) and Used(uv).

Lemma 5.3 Configuration (Dk) is reducible for any k ≥ 0.
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Fig. 3 Labeling vertices in
configuration (Dk )

Fig. 4 Configuration (Ek )

Proof We name the vertices of the configuration as in Fig. 3. Recall that degG(x) ≤
3 + k, degG(y) ≤ 2 + k and degG(v) ≤ D − k. We remove edge vy and color the
remaining graph recursively. Now we show how to color G. We denote the edge
colors as in Fig. 3. Note that |Free(v)| ≥ k + 1 and |Used(y)| ≤ k + 1. We can as-
sume that Free(v) = Used(y) for otherwise we simply color vy with any color from
Free(v) − Used(y). Hence d ∈ Free(v) and a, b, e ∈ Free(y).

Case 1. Color e is free at x. Then we swap the colors of wy and wv, and color xv

with e and vy with a.
Case 2. Color e is used by x. Then |Used(x) − {a, e}| ≤ k + 1. We can assume

that Used(x) − {a, e} = Free(v) for otherwise we just color vy with a and vx with
any color from Free(v) − Used(x). Hence either c = e or c ∈ Free(v). We color vy

with b and swap the colors of ux and uv. If uv is now colored with e (i.e. c = e) we
additionally swap the colors of wy and wv. �

Lemma 5.4 Configuration (Ek) is reducible for any k ≥ 0.

Proof We name the vertices of the configuration as in Fig. 4. Recall that degG(x) ≤
2 + k, degG(y) ≤ 3 and degG(w) ≤ D − k. We remove edge xw and color the re-
maining graph recursively. Now we show how to color G. We denote the edge col-
ors as in Fig. 4. Note that |Free(w)| ≥ k + 1 and |Used(x)| ≤ k + 1. We can as-
sume that Free(w) = Used(x) for otherwise we simply color xw with any color from
Free(w) − Used(x). Hence d ∈ Free(w) and a, b ∈ Free(x). Let e be the color used
by y other than b, c, if any (otherwise let e be any color other than b, c).

Case 1. e �= d . Color xw with b and wy with d .
Case 2. e = d . Swap the colors of vw and vx, color wy with a and xw with b. �

Lemma 5.5 Configuration (F) is reducible.

Proof We name the vertices of the configuration as in Fig. 5. Recall that degG(x2) =
degG(x5) = degG(x6) = 3. We remove edge vx2 and color the remaining graph. Let
C be this coloring. Now we show how to color G. We denote edge colors as in Fig. 5
(note that b = c if x1 = x7 and f = g if x3 = x4). Let a be a color free at v. We can
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Fig. 5 Configuration
(F). Possibly x1 = x7 or x3 = x4.
degG(x2) = degG(x5) = degG(x6) = 3

assume that a ∈ Used(x2) for otherwise we simply color vx2 with a. By symmetry,
w.l.o.g. we can assume that C(x1x2) = a.

Case 1. C(x2x3) = b. Then we can assume that a ∈ Used(x5) for otherwise we
simply color vx2 with e and vx5 with a. Similarly, we can assume that g ∈ Used(x5)

for otherwise we swap the colors of x1v and x1x2, swap the colors of x3v and
x3x2, color vx2 with e and vx5 with g. Hence a,g ∈ Used(x5). By symmetry,
a,g ∈ Used(x6).

Case 1.1. C(x6x7) = a. Then x1 �= x7 for otherwise the coloring is not proper. We
swap the colors of x7x6 and x7v, and we color vx2 with c.

Case 1.2. C(x6x7) = g.
Case 1.2.1. x1 �= x7. Then c �= b. We swap the colors of the following three pairs

of edges: x1v and x1x2, x3v and x3x2, x7x6 and x7v. Finally we color vx2 with c.
Case 1.2.2. x1 = x7. Then c = b. We color x1x6 with b, x1v with a, x1x2 with g,

vx2 with e, vx5 with b.
Case 2. C(x2x3) �= b.
Case 2.1. C(x2x3) /∈ {e, f }. Then we can assume that a ∈ Used(x5) for other-

wise we simply color vx2 with e and vx5 with a. Similarly, we can assume that
b ∈ Used(x5) for otherwise we swap the colors of x1v and x1x2, color vx2 with e and
vx5 with b.

Then we color vx2 with f and we swap the colors of x4x5 and x4v. Then vx4 is
colored with a or b. In the latter case we additionally swap the colors of x1v and
x1x2.

Case 2.2. C(x2x3) ∈ {e, f }. Analogously to Case 2.1 we can assume that a, b ∈
Used(x6). Since C(x6x7) ∈ {a, b}, x1 �= x7 and c �= b. Hence we can proceed as in
Case 2.1: we color vx2 with c and we swap the colors of x7x6 and x7v. Then vx7
is colored with a or b. In the latter case we additionally swap the colors of x1v and
x1x2. �

Lemma 5.6 Configuration (G) is reducible.

Proof We name the vertices of the configuration as in Fig. 6. Recall that degG(x2) =
degG(x4) = 3 and degG(x6) = 2. We remove edge vx6 and color the remaining graph.
Let C be this coloring. Now we show how to color G. We denote edge colors as in
Fig. 6 (observe that when x1 = x5 then c = d). Let a be a color free at v. We can
assume that C(x3x6) = a for otherwise we simply color vx6 with a. Analogously we
assume that C(x1x2) = a for otherwise we color vx6 with e and vx2 with a. Finally
we assume that C(x2x3) = d for otherwise we swap the colors of x1v and x1x2 and
color vx6 with d .
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Fig. 6 Configuration (G).
Possibly x1 = x5

Fig. 7 Configuration (H)

Case 1. a is free at x4. Then we color vx4 with a and vx6 with b.
Case 2. d is free at x4. Then we swap the colors of x3x6 and x3x2, swap the colors

of x1x2 and x1v, color vx4 with d and vx6 with b.
Case 3. Both a and d are used by x4. Note that this is possible only when x1 �= x5.

Then we color vx6 with c and we swap the colors of x5x4 and x5v. If as a result
C(x5v) = d we also swap the colors of x3x6 and x3x2, and swap the colors of x1x2
and x1v. �

Lemma 5.7 Configuration (H) is reducible.

Proof We name the vertices of the configuration as in Fig. 7. Recall that degG(x2) =
degG(x4) = 3 and degG(x6) = 2. We remove edge vx6 and color the remaining graph.
Let C be this coloring. Now we show how to color G. We denote edge colors as in
Fig. 7. Let a be a color free at v. We can assume that C(x5x6) = a for otherwise we
simply color vx6 with a. Moreover, we can assume that x1x2 or x2x3 is colored with
a for otherwise we color vx6 with d and vx2 with a. By symmetry we can assume
that C(x2x3) = a.

Case 1. C(x1x2) �= c. Then we color vx6 with c and we swap the colors of x3x2
and x3v.

Case 2. C(x1x2) = c. Then we swap the colors of x1v and x1x2, swap the colors
of x3x2 and x3v, and we color vx6 with e. �

6 Further Research

The most natural question is whether our approach can lead to a linear-time algorithm
for coloring planar graphs with max{Δ,8} colors. We conjecture that this is possible,



368 Algorithmica (2008) 50: 351–368

but we suspect that it would involve both a large number of and more elaborate con-
figurations.
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