New Links Between Differential and Linear Cryptanalysis

Céline Blondeau and Kaisa Nyberg

Tuesday, May 28, 2013
EUROCRYPT, Athens

Outline

Statistical Cryptanalysis
Statistical Attack
Differential and Linear Cryptanalysis

Links between Statistical Attacks
Recent Links
Zero Correlation Linear and Impossible Differential
Computing Differential Probabilities using Linear Correlations
Methodology
Experiment on PRESENT

Outline

Statistical Cryptanalysis

Statistical Attack
Differential and Linear Cryptanalysis

Links between Statistical Attacks
 Recent Links
 Zero Correlation Linear and Impossible Differential

Computing Differential Probabilities using Linear Correlations Methodology Experiment on PRESENT

Statistical Attacks

LINEAR CONTEXT

DIFFERENTIAL CONTEXT

Linear Cryptanalysis [Tardy, Gilbert 92] [Matsui 93]
Differential Cryptanalysis [Biham, Shamir 90]
Differential-Linear Cryptanalysis [Langford, Hellman 94]
Truncated Differential Cryptanalysis [Knudsen 94]

Higher Order Differential cryptanalysis [Lai 94] [Knudsen 94]
Square Attack, Integral … [Daemen, Rijmen, Knudsen 97]
Statistical Saturation [Collard, Standaert 09]
Zero Correlation [Bogdanov, Rijmen 11]
Impossible Differential Cryptanalysis [Biham, Biryukov, Shamir 99]
Multiple Linear Cryptanalysis Multiple Differential Cryptanalysis [Albrecht, Leander 12]
[Biryukov, de Cannière, Quisquater 04]
Multidimensional Linear Cryptanalysis [Cho, Hermelin, Nyberg 08]
[Blondeau, Gérard, Nyberg 12]

Link Between Statistical Attacks

Too many statistical attacks!!!

Aim:

- Understanding the attacks and their relations
- Helping designers and cryptanalysts to concentrate on important attacks

Differential Cryptanalysis

Difference between plaintext and ciphertext pairs

Input difference δ
Output Difference \triangle
Differential Probability:

$$
\mathbf{P}[\delta \rightarrow \Delta]=P_{x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\Delta\right]
$$

Truncated Output Differences:

Set of output differences: $\Delta \in W$

$$
\mathbf{P}[\delta \rightarrow W]=\sum_{\Delta \in W} \mathbf{P}[\delta \rightarrow \Delta]
$$

Linear Cryptanalysis

Linear relation involving plaintext, key and ciphertext bits.

$$
y=E_{k}(x)
$$

Input mask a

Key mask κ
Output mask b
Bias:
$\varepsilon=2^{-n} \#\left\{x \in \mathbb{F}_{2}^{n} \mid a \cdot x \oplus \kappa \cdot k \oplus b \cdot y=0\right\}-\frac{1}{2}$
Correlation: $\boldsymbol{c o r}_{x}(a, b)=2 \varepsilon$
Multidimensional linear approximation:
Set of masks $(a, b) \in A \times B$
Capacity: $\sum_{a \in A} \sum_{b \in B} \boldsymbol{c o r}_{x}^{2}(a, b)$

Estimation of Differential Probability or Correlation

Methods to catch significant trails:

- Dominant trails: By hand
- Branch and Bound algorithm
- Transition matrices

Observation:

- For some ciphers like PRESENT, it is easier to estimate linear correlations than differential probabilities

Idea:

- Use linear correlations to compute differential probabilities

Link between Differential Probability and Correlation

[Chabaud Vaudenay 94]
Let $E_{k}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

$$
\mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b \in \mathbb{F}_{2}^{m}}(-1)^{a \cdot \delta \oplus b \cdot \Delta} \operatorname{cor}_{x}^{2}(a, b)
$$

Link between Differential Probability and Correlation

[Chabaud Vaudenay 94]
Let $E_{k}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

$$
\mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b \in \mathbb{F}_{2}^{m}}(-1)^{a \cdot \delta \oplus b \cdot \Delta} \operatorname{cor}_{x}^{2}(a, b)
$$

- Used for theory (almost bent \Rightarrow APN)
- Not really used for cryptanalysis

Link between Differential Probability and Correlation

[Chabaud Vaudenay 94]
Let $E_{k}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

$$
\mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b \in \mathbb{F}_{2}^{m}}(-1)^{a \cdot \delta \oplus b \cdot \Delta} \operatorname{cor}_{x}^{2}(a, b)
$$

- Used for theory (almost bent \Rightarrow APN)
- Not really used for cryptanalysis

Our contribution:

- New links between statistical attacks
- New method to compute differential probabilities

Outline

Statistical Cryptanalysis
 Statistical Attack
 Differential and Linear Cryptanalysis

Links between Statistical Attacks
Recent Links
Zero Correlation Linear and Impossible Differential

Computing Differential Probabilities using Linear Correlations
Methodology
Experiment on PRESENT

Recent Links

[Leander 11]:
Statistical Saturation \Leftrightarrow Multidimensional Linear
[Bogdanov et al 12] :

Integral \Leftrightarrow Zero Correlation Linear

Proofs can be done using Fundamental Theorem [Nyberg 94]:

$$
2^{-s} \sum_{x \in \mathbb{F}_{2}^{s}} \sum_{b \in \mathbb{F}_{2}^{q} \backslash\{0\}} \operatorname{cor}_{x}^{2}(0, b)=\sum_{a \in \mathbb{F}_{2}^{s}} \sum_{b \in \mathbb{F}_{2}^{q} \backslash\{0\}} \operatorname{cor}_{x}^{2}(a, b)
$$

New Extended Link : Splitting the Spaces

Split the input and output spaces

Left is active in:
the multidimensional linear context

Right is active in:
the truncated differential context

Zero Correlation Linear

Zero Correlation

Zero Correlation Linear :

$$
\operatorname{cor}_{x}\left(\left(a_{s}, 0\right),\left(b_{q}, 0\right)\right)=0
$$

for all $\left(a_{s}, b_{q}\right) \in \mathbb{F}_{2}^{s} \times \mathbb{F}_{2}^{q} \neq(0,0)$

Truncated Differential

Using the Chabaud-Vaudenay's link:

Truncated Differential:

$$
\sum_{\delta_{t} \in \mathbb{F}_{2}^{t} \Delta_{r} \in \mathbb{F}_{2}^{r}} \mathbf{P}\left[\left(0, \delta_{t}\right) \rightarrow\left(0, \Delta_{r}\right)\right]=2^{t-q}
$$

Impossible Differential

Using the Chabaud-Vaudenay's link:

\mathbb{F}_{2}^{t}
Truncated Differential:

$$
\begin{aligned}
& \sum_{\delta_{t} \in \mathbb{F}_{2}^{t} \Delta_{r} \in \mathbb{F}_{2}^{r}} \mathbf{P}\left[\left(0, \delta_{t}\right) \rightarrow\left(0, \Delta_{r}\right)\right]=2^{t-q} \\
& \text { If } \mathrm{t}=\mathrm{q} \text { and } \delta_{t} \neq 0 \\
& \text { Impossible Differential: }
\end{aligned}
$$

$\mathbf{P}\left[\left(0, \delta_{t}\right) \rightarrow\left(0, \Delta_{r}\right)\right]=0$
\quad for all $\left(\delta_{t}, \Delta_{r}\right) \in \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{r} \neq(0,0)$

Zero Correlation Linear and Impossible Differential

Zero Correlation Impossible

If $t=q$
Zero Correlation Linear Distinguisher
is equivalent to
Impossible Differential Distinguisher

Outline

Statistical Cryptanalysis
Statistical Attack
Differential and Linear Cryptanalysis
Links between Statistical Attacks
Recent Links
Zero Correlation Linear and Impossible Differential

Computing Differential Probabilities using Linear Correlations
Methodology
Experiment on PRESENT

Computation

Chabaud-Vaudenay's link:

$$
\mathbf{P}[\delta \stackrel{F}{\rightarrow} \Delta]=2^{-n} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b \in \mathbb{F}_{2}^{n}}(-1)^{\mathbf{a} \cdot \delta \oplus b \cdot \Delta} \operatorname{cor}_{x}^{2}(a, b)
$$

Complexity: Computation of $2^{2 n}$ correlations!!! \Rightarrow Impossible in practice

Computation

Chabaud-Vaudenay's link:

$$
\mathbf{P}[\delta \stackrel{F}{\rightarrow} \Delta]=2^{-n} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b \in \mathbb{F}_{2}^{n}}(-1)^{\mathbf{a} \cdot \delta \oplus b \cdot \Delta} \operatorname{cor}_{x}^{2}(a, b)
$$

Complexity: Computation of $2^{2 n}$ correlations!!! \Rightarrow Impossible in practice

How to reduce the complexity:

- Using truncated output difference
\Rightarrow Reduce the output space
- Assuming δ of small weight
\Rightarrow Reduce the input space

Truncated Output Difference

Setting:

- Affine space $\Delta_{q} \oplus \mathbb{F}_{2}^{r}$
- Let G be projection of F

$$
\mathbf{P}\left[\delta \xrightarrow{F}\left(\Delta_{q} \oplus \mathbb{F}_{2}^{r}\right)\right]=\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}\right]
$$

Truncated Output Difference

Setting:

- Affine space $\Delta_{q} \oplus \mathbb{F}_{2}^{r}$

$$
\mathbf{P}\left[\delta \xrightarrow{F}\left(\Delta_{q} \oplus \mathbb{F}_{2}^{r}\right)\right]=\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}\right]
$$

Truncated Output Difference

Setting:

- Affine space $\Delta_{q} \oplus \mathbb{F}_{2}^{r}$

$$
\mathbf{P}\left[\delta \xrightarrow{F}\left(\Delta_{q} \oplus \mathbb{F}_{2}^{r}\right)\right]=\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}\right]
$$

Link:

$$
\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}\right]=2^{-q} \sum_{a \in \mathbb{F}_{2}^{n}} \sum_{b_{q} \in \mathbb{F}_{2}^{q}}(-1)^{a \cdot \delta \oplus b_{q} \cdot \Delta_{q}} \operatorname{cor}_{x}^{2}\left(a, b_{q}\right)
$$

Complexity: Computation of 2^{n+q} correlations

Assuming δ of Small Weight

Assumption: $\delta=\left(\delta_{s}, \delta_{t}\right) \in \mathbb{F}_{2}^{s} \times \mathbb{F}_{2}^{t}$ with $\delta_{t}=0$
Fundamental Theorem:

$$
\sum_{a \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot \delta} \operatorname{cor}_{x}^{2}\left(a, b_{q}\right)=2^{-t} \sum_{x_{t} \in \mathbb{F}_{2}^{t}} \sum_{a_{s} \in \mathbb{F}_{2}^{s}}(-1)^{a_{s} \cdot \delta_{s}} \boldsymbol{\operatorname { c o r }}_{x_{s}}^{2}\left(a_{s}, b_{q}\right)
$$

Assuming δ of Small Weight

Assumption: $\delta=\left(\delta_{s}, \delta_{t}\right) \in \mathbb{F}_{2}^{s} \times \mathbb{F}_{2}^{t}$ with $\delta_{t}=0$
Fundamental Theorem:

$$
\sum_{a \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot \delta} \operatorname{cor}_{x}^{2}\left(a, b_{q}\right)=2^{-t} \sum_{x_{t} \in \mathbb{F}_{2}^{t}} \sum_{a_{s} \in \mathbb{F}_{2}^{s}}(-1)^{a_{s} \cdot \delta_{s}} \operatorname{cor}_{\chi_{s}}^{2}\left(a_{s}, b_{q}\right)
$$

Approximation:

$$
\sum_{a \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot \delta} \operatorname{cor}_{x}^{2}\left(a, b_{q}\right) \approx \frac{1}{|V|} \sum_{x_{t} \in V} \sum_{a_{s} \in \mathbb{F}_{2}^{s}}(-1)^{a_{s} \cdot \delta_{s}} \operatorname{cor}_{\chi_{s}}^{2}\left(a_{s}, b_{q}\right)
$$

Method of Computation

Estimated Truncated Differential Probability:

$$
\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}\right] \approx \frac{2^{-q}}{|V|} \sum_{x_{t} \in V} \sum_{a_{s} \in \mathbb{F}_{2}^{s}} \sum_{b_{q} \in \mathbb{F}_{2}^{q}}(-1)^{a_{s} \cdot \delta_{s} \oplus b_{q} \cdot \Delta_{q}} \operatorname{cor}_{x_{s}}^{2}\left(a_{s}, b_{q}\right)
$$

Complexity: Computation of $2^{s+q}|V|$ correlations
Accuracy: Depends on the choice of s and V

Setting of Experiments on PRESENT

PRESENT:

- Single-bit linear trails are dominant
- Computation of correlations using transition matrices as for instance in [Cho 10]

Setting of Experiments on PRESENT

PRESENT:

- Single-bit linear trails are dominant
- Computation of correlations using transition matrices as for instance in [Cho 10]

Setting:

- Truncated differential distribution cryptanalysis Using LLR statistical test [Blondeau Gérard Nyberg 12]
- Partition of the output difference space $\mathbb{F}_{2}^{n}=\cup \Delta_{q}^{(j)} \oplus \mathbb{F}_{2}^{r}$
- Estimation of all the $p_{j}=\mathbf{P}\left[\delta \xrightarrow{G} \Delta_{q}^{(j)}\right]$
\Rightarrow Need to compute the correlations only once
\Rightarrow We obtain a distribution

Truncated Differential Distribution Cryptanalysis

Experiments on PRESENT :

Truncated Differential Distribution Cryptanalysis

Experiments on PRESENT :

Cryptanalysis:

- On 19 rounds

Previously:

- Multiple differential cryptanalysis: 18 rounds
- Multidimensional linear cryptanalysis: 26 rounds

Conclusion

Extending the link of Chabaud and Vaudenay we provide:

- New links between statistical attacks

Zero Correlation Linear \Leftrightarrow Impossible Differential

- New method to compute differential probabilities
\Rightarrow Using correlations
- Instantiation of the technique on PRESENT

